
MATRIX RATIONAL COMPLETIONS SATISFYING 
GENERALIZED INCIDENCE EQUATIONS 
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1. Introduction. Let us consider the following problem. Let there be v 
elements and v sets Si, . . . , Sv such that every set contains exactly 
k distinct elements and every pair of sets has exactly X distinct elements in 
common. To avoid trivial situations we shall in general assume that 
0<\<k<v — 1. This is known as a v, k, X configuration or design. We can 
give an equivalent characterization of a configuration in terms of a matrix 
A = [#z;], called its incidence matrix, by writing the elements 
row and the sets Si, . . . , Sv in a column and setting atj = 1 if Xj is in St and 
a{j = 0 if Xj is not. This matrix A, of order v, is composed entirely of O's and 
l's and by the conditions of the problem is easily seen to satisfy the matrix 
equation 

(1.1) AAT = (k - \)I + \J = B, 

where A T is the transpose of A, / i s the identity matrix of order v, and / is the 
matrix consisting entirely of l 's of order v. Equation (1.1) is known as the inci­
dence equation for a v, k, X design. Ryser showed in (7) that \(v — 1) = k(k — 1) 
and that A is normal, i.e., A A T = ATA = B. 

Considering A as a matrix with rational entries, equation (1.1) with 
AAT — AIAT asserts that B is rationally congruent to the identity. Here the 
Minkowski-Hasse theory for the rational congruence of two integral symmetric 
matrices may be applied. Using the fundamental Minkowski-Hasse theorem, 
Bruck and Ryser (2) proved a non-existence theorem for finite projective plane 
designs. Later, Chowla and Ryser (3), using elementary methods and not the 
Minkowski-Hasse theory, proved a non-existence theorem for general v, k, X 
designs which included the Bruck-Ryser theorem as a special case. Still later, 
Shrikhande (9) applied the Minkowski-Hasse theory to equation (1.1) for 
general v, k, X to obtain results which exclude the same values of these para­
meters as the theorem of Chowla and Ryser. So far, this general theorem 
accounts for all known excluded configurations. 

We now go further into this situation and ask two questions. When is there a 
normal rational solution to the incidence equation? Given a design-consistent 
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start of r complete rows or columns of O's and l's, when is this start rationally 
completable to a normal solution to the incidence equation? The first question 
was answered for a special case of finite projective planes by Albert (1). He 
proved for plane cases of orders n = a2 + b2, where a and b are integers, that a 
normal rational A satisfying equation (1.1) exists. The proof was constructive 
and from it A could be obtained. Later, both questions were answered com­
pletely by Hall and Ryser (5). They extended Albert's conclusion to all design 
cases whose matrices B are rationally congruent to the identity, i.e., all cases 
not excluded by Chowla and Ryser (3). In that same paper they also proved 
a stronger theorem, which stated that if the matrix B for any design case is 
rationally congruent to the identity and we have a 0, 1 entry start in r complete 
rows (columns), 0 < r < v, whose row (column) inner products are consistent 
with those of a design, then that start can be rationally completed to a matrix 
A of order v which is a normal solution to the incidence equation. These proofs 
made some use of the combinatorial aspects of the problem, but for the most 
part they involved matrix theory. 

The question "If A AT = B, what is ATA7" now leads to a further con­
sideration of this situation. Ryser (8), in investigating the integral solutions to 
(1.1), gave a hint to the answer to this question in the proof of his Theorem 2.2. 
His proof indicated that if a rational matrix A satisfies (1.1), then AT satisfies 
a generalization of (1.1) where B is replaced by a matrix in a class 3} of matrices 
over the rationals of which B is a member. In this larger context we first 
generalize the preliminary and main results in (5). We then conclude with a 
result whose conjecture is readily motivated by this work, namely, that if 
the matrices in SB, for a given vy k,\, are rationally congruent to the identity 
and we have a rational entry start in r rows and 5 columns, 0 < r < v,0 < s < v, 
which satisfies certain necessary consistency conditions with respect to two 
arbitrary matrices Bi and B2 in S3, then that start can be rationally completed 
to a matrix A of order v such that A AT = Bi and AT A = B2. When the 
rational entries in the start are O's and l 's and B\ = B2 = B, then we get a 
new rational completion result related to v, k, A designs. In what follows, 
capital letters will generally denote matrices. We denote rational congruence 
by ^ and rational incongruence by oo, For the most part we shall be concerned 
specifically with the field of rationals. 

The author wishes to express his gratitude to Professor H. J. Ryser for his 
inspiration and his valuable suggestions concerning this work. 

2. Basic theorems. The main result of this section, Theorem 2.2, is a 
slight generalization of a fairly well known theorem proved in Jones (6, p. 14, 
Theorem 7). However, we shall need the generalization to obtain our main 
working result, Corollary 2.3. We give here an equivalent statement of the 
theorem in Jones (6). 

THEOREM 2.1. Let X and Y be two m X n matrices and U be an n X n matrix, 
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all with entries in a field F of characteristic 3^2 such that XUXT — YUYT — Z, 
where U is non-singular and symmetric and 

rank X = rank Y = rank Z = m < n. 

Then there exists an n X n matrix Q with entries in F for which QUQT = U and 
XQ = F. 

We use this result to obtain the following generalization. 

THEOREM 2.2. Let X and Y be two m X n matrices and U be an n X n matrix, 
all with entries in afield F of characteristic 9^2 such that XUXT = YUYT — Z, 
where U is non-singular and symmetric and 

rank X = rank Y — rank Z. 

Then there exists an n X n matrix Q with entries in F for which QUQT — U and 
XQ= Y. 

Proof. Let the common rank of Xy Y, and Z be r > 0. If r = 0, then 
X = Y = 0 and we may take Q = I. Now suppose r > 1. Since Z is symmetric, 
there exists an r X r principal submatrix Zr of order and rank r < min(w, n). 
Then we have 

Xr UXr
T = Yr UYr

T = Z r , 

where XT and F r are the corresponding r X n submatrices of X and Y, 
respectively. Since 

r — rank ZT < rank XTi rank F r < r, 

we have 

rank X r = rank Yr = rank Zr — r < w. 

Hence, by Theorem 2.1 there is an n X w matrix <2 with entries in F for which 
Ç j y ^ = [/and 

(2.1) Xr<2 = F r . 

We shall now show that if x and y are corresponding row vectors of X and Yf 

respectively, where x is not in XT and y is not in Yr, then xQ = y as well. 
Let Xi, . . . , x r be the row vectors of XT and yi, . . . , yr be those of Yr. Now x 
is linearly dependent upon Xi, . . . , xr and y is linearly dependent upon 
yi, . . . , y r . Let 

r r 

x = X) at*i and y = ^ /^y*, 

where au fit G F. Then for each x ; and yjy 

]C *iXiUxjT = xUxjT = ylly/ = X) p^tl/yf = É PiXiUxjT 

i=i i=i i=i 
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since XUXT = YUYT; hence 
r 

(2.2) £ («i - i8i)x* C/x/ = 0, j = 1, . . . , ». 

Now (2.2) is a homogeneous system of linear equations with matrix 

[x, UxjT]T = Xr UXr
T = Z r , 

which is non-singular. Hence (2.2) has only the trivial solution at — fit = 0 or 
at = Pu i = 1, . . . , r. Thus 

r r 

%=\ i=\ 

This together with (2.1) yields XQ = Y. 

We shall be using this result in the following form. 

COROLLARY 2.3. Let X and Y be two m X n matrices with entries in a formally 
real field F such that XXT = YYT. Then there exists an n X n orthogonal matrix 
Q with entries in F such that XQ = F. 

Proof. We take U = I in Theorem 2.2. Let Xi, . . . , xm be the row vectors 
of X with components in a formally real field F. Now the rank of the Gramian 
[(Xi, Xj)] of these vectors is equal to the dimension of the space generated by 
the vectors; see (4) for a discussion of Gramians. Hence for a formally real 
field F, if XXT = YYT = Z, then rank X = rank Y = rank Z and we have 
the corollary by Theorem 2.2. 

Corollary 2.3 has a geometric interpretation, particularly if F is the real or 
the rational field. Let F be one of these fields, and let Vn(F) denote an n-
dimensional vector space over F with the standard inner product relative to 
its basis. Let us call two sets of vectors in Vn(F) isometric if they can be put 
into a one-to-one correspondence which preserves inner products. Corollary 2.3 
then states that for each pair of isometric sets of vectors in Vn(F) there is a 
motion (rotation or reflection) of Vn(F) with a matrix representation over F 
which carries either set into the other. 

3. The class of matrices 33. We define a v X v matrix 

B(u), u = (uh . . . ,T / , ) , 

as 

B(u) = Xuru + (k - \)I = [\UiUj + (k - X)5„], 

where the ut's are rational and satisfy 
V 

Z 2 T 

Wi = U U = V, 
i = l 

dtj is the Kronecker delta, and where (v — 1)\ = k(k — l),0<\<k<v — 1, 
and v, k, X are integers. We note that B( — u) = B(u) and that B(x) = B(u) 
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implies x = zbu. Let us denote the class of all such matrices B(u) for a fixed 
set of v, k, X parameter values by 93. We note that in the incidence equation 
(1.1), B = JB(1), where 1 = (1, . . . , 1). The equations XXT = B(u) and 
YTY = B(w) where X and Y are of order v and have rational entries are then 
generalizations of the incidence equation. 

LEMMA 3.1. Any two matrices in 33 are rationally orthogonally congruent. 

Proof. Let B(u) and B(w) be arbitrary in 93. Now u u r = w w r = v. Hence 
by Corollary 2.3 there exists a rational orthogonal matrix Q of order v such that 
u<2 = w. Then by a straightforward computation 

QTB(u)Q = 5 ( w ) . 

By Lemma 3.1 either all matrices in S3, or none, are rationally congruent to 
the identity / . Hence we may write without ambiguity either 93 ^ / or 33 ^ J. 

LEMMA 3.2. Every B(u) in 93 is non-singular; 

(3.1) B-^u) = (k - A)"1!/ - X*-2u ru] 
and 
(3.2) d e t £ ( u ) = k2(k - \y-K 

Proof. We have 

[Xuru + (k - \)I](k - X)-1!/ - X£-2uTu] 

= (* ~ X)_1[^ ~ ^k~2v - \k~2(k - X)]u ru + / , 

and replacing k — X by k2 — \v, we see that B(u) is non-singular and that its 
inverse is given by (3.1). Since, by Lemma 3.1, any two matrices in 33 are 
orthogonally congruent, all the matrices in 93 have the same determinant.By 
computing the determinant of B = (k — \)I + \J we easily find the value 
given in (3.2). 

THEOREM 3.3. Let X be a v X v rational matrix satisfying XXT — B(u). 
Then XTX = B(YT), where w = ek~l\lX, e = 1 or — 1. 

Proof. We have XXT = ^ ( u ) where B(u), and hence also X, is non-singular. 
Hence we may write 

XTB~l(\\) = X~\ 

which by Lemma 3.2 becomes 

(3.3) XT[I - \k-2uTu\ = (k - \)X-K 

Multiplying each side of (3.3) on the right by X yields 

(3.4) XTX - Xk-2(uX)T(uX) = (* - X)/, 

and setting W = ek~lx\X, e = 1 or — 1 , in (3.4) we obtain 

XTX = XwTw + (* - \)I. 
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Now 

w w r = k~2uXXTuT = &-2u[Xuru + (k - X)I]uT = k~2v[\v + k - X] = v. 

Hence XTX = Biyv) £ 93, which proves the theorem. 

COROLLARY 3.4. For a v X v rational matrix X, any two of the following three 
conditions imply the third: 

(a) XXT = 5 ( u ) , 

(b) XTX=B(w), 

(c) u X = €1 jfew, €1 = 1 or — 1, 

and likewise for (a), (b), and 

(d) wXT = €2 &u, e2 = 1 or — 1. 

Proof. By Theorem 3.3, (a) and (b) imply (c), and (a) and (c) imply (b). 
Now assume (b) and (c). iVpplying Theorem 3.3 to XT we see that there 
exists a z such that 

(3.5) XXT = B(z). 

Applying the theorem again to (3.5) and (b), we have 

(3.6) zX = e*£w, €* = 1 or - 1 , 

and combining (3.6) and (c), we have 

zX = d=uX. 

Since X is non-singular, z = =bu, whence by (3.5) XXT = B(u), which is (a). 
We obtain the same result for the conditions (a), (b), and (d) by interchanging 
X and XT, and ll and w, in conditions (a), (b), and (c). 

COROLLARY 3.5. Let X be a v X v rational matrix satisfying (a) and (b) in 
Corollary 3.4. Then X satisfies (c) and (d) there with ex = e2. 

Proof. By Corollary 3.4 we know that uX = ei kw and wXT = e2 ku where 
€i, e2 = 1 or — 1 . Then 

€l e2 k
2u = 6! kwXT = uXXT = u[XurU + ik - \)I] 

= (\v + k - X)u = k2u. 

Since u F^ (0, . . . , 0), ei e2 = 1 or ei = e2. 

We may now prove the following general theorem for 93. 

THEOREM 3.6. Suppose 93 ~ 7, and Ze£ I? (u) and 5 (w) be arbitrary in 93. Then 
there exists a v X v rational matrix A such that AAT = B(u) and ATA = B(w). 

Proof. Since B (u) ~ I, there exists & v X v rational matrix C such that 
CCT=B(u). By Theorem 3.3, CTC = B(x) for some £(x) in 93. Now 
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xxT = wwT = v. Hence by Corollary 2.3, there exists a v X v rational ortho­
gonal matrix Q such that xQ = w. Let A = CQ. Then 

AAT = C(2(C(2)r = CCT = B(u) . 

By Corollary 3.4 we have 

U.4 = UCQ = e&xÇ = e&W, e = 1 or — 1, 

and hence ATA = B(w). 

The following result of Hall and Ryser (5) then becomes a corollary to 
this theorem. 

COROLLARY 3.7. Suppose B ~ I. Then there exists a v X v rational matrix A 
such that AAT = ATA = B. 

4. Rational completions. Let x = (xh . . . ,xv), where the x / s are 
rational, satisfy xx r = v. We then define xm

l = (xi, . . . , xm) and xw* = 
(xv-m+i, . . . ,xv), where i and / suggest * 'initial" and "terminal" with reference 
to the subset of m entries taken from x. Then -B(xm0 and B(xm*) will denote 
the initial principal and terminal principal m X m submatrices of JB(X) 
respectively. We further let xm, without any attached i or t, denote any m-tuple 
of rational entries such that xm xm

T < v and define 

B(xm) = \xm
Txm + (k - \)Im. 

We define a T/-array as the configuration from a v X v matrix consisting of 
the first r rows and the first 5 columns. We let r r denote the r X v row sub-
matrix and Vs the v X s column submatrix of T / . 

We can now prove a general rational completion theorem for a given con­
sistent rational start of s complete columns of entries. 

THEOREM 4.1. Let 33 ^ / and let B{u) and Biyv) be arbitrary in S3. Suppose 
As, 0<s<v,isavXs rational matrix satisfying 

AS
TAS = S ( w , 0 . 

Then 

(4.1) uAs = ekvts\ e = 1 or — 1, 

is a necessary and sufficient condition that there exist a v X v rational matrix A 
containing A s as its first s columns and satisfying A AT = B (u) and ATA = B (w). 

Proof. Let (4.1) be satisfied. Since 33 ̂  I, there exists by Theorem 3.6 a 
v X v rational matrix C such that CCT = B(u) and CTC = 5 (w) , where we 
may choose the signs of the entries of C such that by Corollary 3.4 uC = ekw, 
whence 

uCs = clew,*. 
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Let 

P = [Cs,u
T] and R = [A„uT]. 

Then 

PTP = \CS
TCS (uCs)

Tl = \AS
TAS (UAS)

T~\ = RTR 

LuCs u u r J Lu^4s u u r J 

Hence by Corollary 2.3 there exists a v X v rational orthogonal matrix Q such 
that RTQ = PT and so QP = R. Let A = QC. Then A contains A s as its 
first 5 columns, 

ATA = CTQTQC = CTC = B(w), 

and since 

u^4 = uÇC = uC = tkw, 

we have, by Corollary 3.4, A AT = B{\x). This shows that the condition is 
sufficient. The necessity of the condition follows trivially from Corollary 3.4 
since A = [A8, *], AAT = Bin), and ATA = B(yr) imply uA = e^w implies 
uAs = efew/, where e = 1 or — 1. 

It is clear that Theorem 4.1 could also have been stated in terms of a row 
start instead of a column start. When this is done, the following result of Hall 
and Ryser (5) becomes a corollary to the theorem. 

COROLLARY 4.2. Let B = B(l) ~ I. Suppose Ar, 0 < r < v, is an r X v 
matrix of O's and Vs such that 

(4.2) ArArT = Bilr1). 

Then there exists a v X v rational matrix A having Ar as its first r rows such that 
AAT = ATA = B. 

Proof. The condition for the rational completability of the row start to the 
desired matrix is that 

\ArT = eklr\ e = l o r - 1 . 

Now by (4.2) every row of Ar has exactly k l 's and v — k O's; hence the con­
dition is satisfied. 

Under the same necessary and sufficient condition as in the theorem we may 
sacrifice the satisfaction of one of the generalized incidence equations and, 
instead, obtain a rational solution to the other equation, which contains a 
prescribed T/-array. 

COROLLARY 4.3. Let 33 ~ I and let B(u) be arbitrary in 33. Suppose As
r is a 

T s1'-array, 0<r<v,0<s<v, such that 

ATArT = 5 ( u r 0 
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and 

AS
TAS =B(ws). 

Then 

(4.3) uAs = tkws, e = 1 or — 1, 

is a necessary and sufficient condition that there exist a v X v rational matrix A 
containing A J as a Y J-array and satisfying AAT = JB(U). 

Proof. Let (4.3) be satisfied, and let A = [As, X] be a matrix such that 
AAT = B(u), which is guaranteed to exist by Theorem 4.1. Set 

As = Lz\ ' x = lv\ ' andlr = lw> n 

where W and F have r rows. Let Ar = [W, U]. Now 

ArArT = ArATT, 

whence 

WWT + YYT = WWT + UUT 

or 
YYT = UUT. 

Hence by Corollary 2.3 there exists a (v — s) X (v — s) rational orthogonal 
matrix Q such that YQ = [/. Set 4 = [As, XQ]. Then 4 contains i / a s a 
T/-array and 

. 4 ^ = ASAS
T + XQQTXT = 4 . 4 / + JOT r = B(u) . 

This shows that the condition is sufficient. The necessity of the condition 
follows from Theorem 3.3 and Corollary 3.4 since A = [As,*] and A A T = B (ll) 
imply that there exists an x such that A TA = B (x) and uA = ex kx, where 
xs

i = c2w5, ei, €2 = 1 or — 1, which implies that 

UL4, = ei &x/ = ci e2 kws = €&WS, t = ci €2 = 1 or — 1. 

This corollary readily suggests the following theorem. 

THEOREM 4.4. Let $8 ~ I and let B (u) and B (w) be arbitrary in 33. Suppose 
A J is a V/-array, 0 < r < v, 0 < s < v, such that 

ArATT = 5 ( u r 0 
and 

AS
TAS = B(ws

i). 

Then 

(4.4) U A s = ekws
i 

and 

(4.5) wArT = €*ur', 
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e = l or — 1, are necessary and sufficient conditions that there exist a v X v 
rational matrix A containing As

r as a T/-array and satisfying AAT = B{xx) 
andATA = B(yr). 

Proof. Let (4.4) and (4.5) be satisfied. Also let 

A = [W,U] and As = [^J . 

Since 93 ̂  7, there exists by Theorem 4.1 a z; X v rational matrix 

j _ [W X~ 
A~IY Z_ 

satisfying AAT = B(u) and l ^ l = J3(w), where l r = [W, X] and l s = As. 
Then by Corollaries 3.4 and 3.5 \iA = e* kw and vtAT = 6* &u, e* = 1 or — 1. 
Now 

6*w!rîT = *ur* = e w ^ r r 

or 

(4.6) e^;WT + wlsX
T) = e(ws

{WT + wj_, UT). 

If e* = e, then (4.6) becomes 

(4.7) e*W<_sX
r = ewl.sU

T, 

and if e* = - e w e have from 

€* kws
l = UÂS = UAS = ekws

i 

that ws
z' = (0, . . . , 0) in 5 > 0 components, so that again (4.6) becomes 

(4.7). Now 
ArATT = ArArT, 

which becomes WWT + XXT = WWT + UUT, or 

(4.8) XXT = UUT. 

Hence for 

P = \ x
t 

Le* wj_, 

of size (r + 1) X (v — s) we have from (4.7) and (4.8) that 
PPT = RRT. 

and R = r u 

Lewis 

By Corollary 2.3 there then exists a (z; — s) X (ZJ — s) rational orthogonal 
matrix Qv-S such that PQv-s = ^- We now construct the v X v rational 
orthogonal matrix 

Q = Is + QVs, 

where Is is the s X s identity matrix. We set A = ÂQ. Then .4 contains 
A J as a r /-array and 
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AAT = ÂQQTÂT = ÂAT = B(u). 

Now 

uA = ui lQ = e* &wQ 

= e&W, 

since either e* = e or w/ ' = (0, . . . , 0). Hence by Corollary 3.4 we have 
ATA — B(w). This shows that the conditions are sufficient. The necessity of 
the conditions follows trivially since for an A containing i / as a IY-array 
where A AT = B(\x) and ATA = B(w), we must have by Corollaries 3.4 and 
3.5 that uA = ekw and wAT = ekw, whence \xAs = ekws

i and w^4 r r = eku/ 
where e = 1 or — 1 . 

This theorem yields the following corollary, which is of interest in the 
study of v, k, X designs. 

COROLLARY 4.5. Let B = B(l) ~ I. Suppose As
r is a V/-array, 0 < r < v, 

0 < 5 < v, composed of 0's and Vs such that 

(4.9) ArArT = B{\r
l) 

and 

(4.10) A/As = 5 ( V ) . 

Then there exists a v X v rational matrix A containing A J as a T/-array and 
satisfying AAT = ATA = B. 

Proof. The conditions for the rational completability of the F/-array to the 
desired matrix are that 

1AS = ckl,' 

and 
lArT = eklr\ 

where e = 1 or — 1. Now by (4.9) and (4.10), every row of AT and every 
column of A s has exactly k l 's and v — k 0's; hence the conditions are satisfied. 
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