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Abstract. Consider a topologically transitive countable Markov shift � and a summable
locally constant potential φ with finite Gurevich pressure and Var1(φ) < ∞. We prove the
existence of the limit limt→∞ μt in the weak� topology, whereμt is the unique equilibrium
state associated to the potential tφ. In addition, we present examples where the limit at zero
temperature exists for potentials satisfying more general conditions.
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1. Introduction
Consider X a metric space and let (X, T ) be a dynamical system. The thermodynamic
formalism studies the existence, uniqueness and properties of T-invariant probability
measures that maximize the value h(μ)+ ∫

φ d μ, where h(μ) is the metric entropy,
whose measures are widely known in the mathematical literature as equilibrium states.
In this paper, we consider (X, T ) as a countable Markov shift and φ : X → R as a
continuous potential. Several properties about these observables have been studied using
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the so-called Ruelle operator and variational principles. In particular, in both the context
of finite Markov shifts and countable Markov shifts, the notions of pressure, recurrence
and transience were presented to guarantee the existence and uniqueness, see for instance
[1, 13, 20, 24].

For any t ≥ 1, we denote by μt the equilibrium state associated to the potential tφ. An
interesting problem in ergodic optimization is to study the weak� accumulation points at
infinity of the family (μt )t≥1. The foregoing occurs because those accumulation points,
also called in the mathematical literature as ground states, usually result in maximizing
measures for the potential φ, that is, those measures are the ones giving greater mass to the
potential φ on the set of all the T-invariant probability measures. In addition, the entropy
of the ground states usually exhibits interesting properties among the entropies of all the
maximizing measures for the potential φ. Actually, the fact that these accumulation points
usually become maximizing measures for the system shows an interesting connection
between thermodynamic formalism and ergodic optimization.

From the point of view of statistical mechanics, the equilibrium state μt describes the
equilibrium of the system whose interactions are given by the potential φ at temperature
1/t . Thus, the existence of accumulation points of the sequence (μt )t≥1 is associated with
the freezing of the system. Because of that, the accumulation points when t → ∞ are
also known as zero-temperature limits. A first study about limits at zero temperature in
the setting of countable Markov shifts was developed by Coelho in [10]. In fact, in that
work, the properties of the pressure associated to the potential tφ were studied as well as
a version of the central limit theorem in the context of aperiodic finite Markov shifts, also
known as topologically mixing shifts of finite type.

When (X, T ) is a finite Markov shift, the existence of ground states follows as an
immediate consequence of the compactness of the set of Borel probability measures
on X. However, the uniqueness of the accumulation point at zero temperature was studied
in the setting of locally constant potentials in [6, 8, 18] assuming transitivity on the
dynamics. It is important to mention that Chazottes and Hochman in [9] reported an
example where the existence of the limit at zero temperature of the equilibrium state fails
when the potential is not locally constant. Another interesting example of the existence
of more than one accumulation point at zero temperature in the setting of the so-called
XY models was presented in [28]. When the alphabet is countable infinite, seminal
works about the existence of accumulation points at zero temperature were performed
considering the well-known finitely irreducible condition, which is a strong assumption
on the combinatorics of the shift X that allowed the generalization of several of the main
results of the thermodynamic formalism in the countable Markov shifts context, see for
instance [15, 17, 20]. Actually, in [15], the existence of ground states was proved in the
setting of summable potentials. Moreover, the uniqueness was obtained in [17] assuming
the so-called big images and preimages property (BIP) condition on X, in the setting of
locally constant potentials. Later, in [12], the existence of accumulation points at zero
temperature was shown under the hypothesis of transitivity. Also, in [27], the existence of
weak� accumulation points at zero temperature was proved for a wider class of positive
recurrent potentials defined on topologically transitive countable Markov shifts satisfying
suitable conditions. However, in [19], conditions were presented to guarantee the existence
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of ground states in a wider class of linear dynamical systems defined on Banach spaces of
infinite dimension.

In this paper, we prove the uniqueness of the accumulation point at infinity of the family
of equilibrium states (μt )t≥1 assuming that the potential φ has bounded variations and
finite Gurevich pressure. The above serve as a generalization of the results presented in [17]
to the case of topologically transitive countable Markov shifts. To do that, we show that the
equilibrium states can be expressed as stationary Markov measures, see [13] for details.
In addition, we use an approximation of the topologically transitive countable Markov
shift by finite Markov subshifts, in a similar way as in [17], with the aim of obtaining an
approximation of the unique accumulation point at zero temperature of the family (μt )t≥1

by the ones obtained in the setting of finite Markov subshifts. It is important to mention
that we assume uniqueness of the accumulation point at zero temperature in the compact
context, which was actually proved in [6, 8, 18]. Additionally, we present some examples
where the uniqueness of the accumulation point is guaranteed assuming weaker conditions
on the potential φ.

The paper is organized as follows. In §2, we introduce some definitions on thermo-
dynamic formalism in the setting of countable Markov shifts and recall some previously
known results. In §3, we study the accumulation points of the family of equilibrium states
(μt )t≥1 at infinity and we prove the existence of the zero-temperature limit of equilibrium
states on topologically transitive countable Markov shifts. Finally, in §4, we present two
examples of the zero-temperature limit of the equilibrium state on the renewal shift.

2. Preliminaries
Let S be a countable set of states (when |S| = ∞, let us consider S = N). Assume that
A = (A(i, j))S×S is a square matrix of zeroes and ones with no columns or rows whose
entries are all zeroes. Fix the set N0 = N ∪ {0}. The countable Markov shift is the set of
all the sequences allowed by the matrix A, that is,

� := {x = (x0x1x2 . . .) ∈ SN0 : A(xi , xi+1) = 1 for all i ≥ 0},
equipped with the topology generated by the collection of cylinders

[x0x1 . . . xn−1]:= {y ∈ � : yi = xi , 0 ≤ i ≤ n− 1},
where xi ∈ S, for every 0 ≤ i ≤ n− 1, and the shift map (to be defined below) acting on
it. The sigma-algebra considered on � is the smallest one containing all the cylinders, that
is, the Borel σ -algebra. In the case where the set of states S is finite, the shift � is known
as a finite Markov shift. A path of length n, denoted by γ = x0x1. . . xn, is an element of
Sn+1 satisfying [x0x1 . . . xn] �= ∅ and we say that the path γ passes from x0 to xn through
the states x1, . . ., xn−1. The set of paths of length n is denoted by Pn(�) and we denote the
set of paths on � by P(�) := ⋃

n≥1 Pn(�). As usual, the function σ : � → � defined
by (σx)i = xi+1, for every i ∈ N0, is called the shift map.

The countable Markov shift � is topologically transitive if for every a, b ∈ S, there is
a path connecting a and b, and it is topologically mixing if there exists N ∈ N such that
there is a path of length n connecting a and b, for all n ≥ N . Also, we say that � satisfies

https://doi.org/10.1017/etds.2022.65 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.65


3234 E. Beltrán et al

the BIP if there are b1, b2, . . . , bN ∈ S such that, for all a ∈ S, there exists 1 ≤ i, j ≤ N

such that A(a, bi) = A(bj , a) = 1.
Throughout the paper, we call potential a continuous function φ : � → R determining

the interactions on the lattice (that is, the one used to define the Ruelle operator). For each
n ≥ 1, we define Snφ(x) := ∑n−1

i=0 φ(σ
i(x)) as the nth ergodic sum and the nth variation

of φ as

Varn(φ) := sup{|φ(x)− φ(y)| : x, y ∈ �, xi = yi , 0 ≤ i ≤ n− 1}.
We say that φ has bounded variations if

Var(φ) :=
∞∑
n=1

Varn(φ) < ∞,

and has summable variations if
∑∞
n=2 Varn(φ) < ∞. Also, φ is a locally constant if there

exists an n ∈ N such that Varn(φ) = 0. However, we say that φ is a summable potential if
it satisfies ∑

i∈N
exp(sup(φ|[i])) < ∞,

where sup(φ|[i]) := sup{φ(x) : x ∈ [i]}, for every i ∈ N. The so-called summability
condition becomes important here, because it allows to guarantee a suitable behaviour
of the Gurevich pressure, also allows to have a uniform control on the tails of the measures
belonging to the family (μt )t≥1 and implies the existence of maximizing measures for the
potential φ (see for instance [3, 15]).

Throughout the paper, M(�) denotes the set of Borel probability measures on �,
Mσ (�) the set of σ -invariant Borel probability measures on � and Merg(�) the set
of Borel ergodic probability measures on �. For any μ ∈ M(�), we use the following
notation:

μ(φ) :=
∫
�

φ dμ.

For every ν ∈ Mσ (�), the metric pressure is defined by the following quantity:

Pν := h(ν)+ ν(φ), (2.1)

where h(ν) is the metric entropy associated to measure ν (see [24, 23]). The thermo-
dynamic formalism studies the existence and properties of measures ν ∈ Mσ (�) that
maximize the value of the metric pressure defined in equation (2.1). Note that the sum
at the right side of equation (2.1) is not always well defined, the foregoing occurs because
the potential φ may not be ν-integrable or it could even happen that h(ν) = +∞ and
ν(φ) = −∞. By the above, the usual definition of topological pressure in the setting of
countable Markov shifts is given by

Ptop(φ) := sup{h(ν)+ ν(φ) : ν ∈ Mσ (�) such that − ν(φ) < ∞}. (2.2)
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However, the Gurevich pressure of φ is defined by

PG(φ) := lim sup
n→∞

1
n

log Zn(φ, a), (2.3)

where Zn(φ, a) := ∑
σnx=x exp(Snφ(x))1[a](x). It is well known that PG(φ) is inde-

pendent of the choice of a ∈ N when the countable Markov shift � is topologically
transitive. Moreover, under the assumptions above, −∞ < PG(φ) ≤ ∞. Actually, Sarig
in [24] showed that for a topologically mixing countable Markov shift � and a potential φ
with summable variations and sup φ < ∞, the Gurevich pressure satisfies the variational
principle and thus

PG(φ) = Ptop(φ). (2.4)

Furthermore, an analogous result in the setting of topologically transitive countable
Markov shifts was presented in [7].

A measure μ ∈ Mσ (�) is an equilibrium state associated to the potential φ if the
supremum of equation (2.2) is attained for μ, that is, when it satisfies

Pμ = h(μ)+ μ(φ) = Ptop(φ). (2.5)

We say that a potential φ is recurrent if∑
n≥1

exp(−nPG(φ))Zn(φ, a) = ∞.

For every n ≥ 1 and a ∈ S, let

Z∗
n(φ, a) :=

∑
σnx=x

exp(Snφ(x))1[φa=n](x),

where φa(x) = 1[a](x) inf{n ≥ 1 : σnx ∈ [a]} and inf ∅ := ∞ (with 0 · ∞ := 0). Fix
some a ∈ S. We say that a recurrent potential φ is positive recurrent if∑

n≥1

n exp(−nPG(φ))Z∗
n(φ, a) < ∞.

In the case where the above series diverges, the potential φ is called null recurrent. It
is important to point out that when � is topologically transitive, all modes of recurrence
defined above are independent of the choice of a ∈ S. We refer the reader to [23] for details.
Also, when |S| < ∞, we have that any potential φ is positive recurrent. The positive
recurrent potentials have an important role in the setting in which we are interested in,
because they are the ones with an equilibrium state associated to them, as we describe
below.

A well-known tool in thermodynamic formalism useful to find equilibrium states is the
so-called Ruelle operator, which is defined in the setting of countable Markov shifts by the
following equation:

Lφf (x) :=
∑

σ(y)=x
exp(φ(y))f (y). (2.6)

When |S| < ∞, the Markov shift � is a compact metric space, the Ruelle operator
is well defined on the space of functions C(�) and we have the famous Ruelle’s
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Perron–Frobenius theorem, which guarantees the existence of a main eigenvalue with the
associated eigenfunctions to the Ruelle operator and eigenmeasures for the dual of the
Ruelle operator, see [5, 22] for complete details. In general, for countable Markov shifts
with |S| = N, the series in equation (2.6) can be infinite. However, in [11, 20, 24, 26], one
can find different types of regularity that can be considered, both on the countable Markov
shift � and on the potential φ : � → R, to have the Ruelle operator in equation (2.6)
well defined and obtain an analogous result to the so-called Ruelle’s Perron–Frobenius
theorem.

For positive recurrent potentials φ with PG(φ) < ∞, O. Sarig showed that there exists
a φ-conformal sigma-finite measure ν, that is, a finite Borel measure satisfying

ν(Lφf ) = exp(PG(φ))ν(f ) for each f ∈ L1(ν). (2.7)

Here the identity in equation (2.7) is denoted by L∗
φν = λν (see Theorem 4.9

in [23]).
In the context of topologically transitive countable Markov shifts, for any potential

φ bounded from above, with summable variations and finite Gurevich pressure, there
is at most one equilibrium state and, in the case where the existence is guaranteed, the
equilibrium state is given by d μ = h d ν, where h is the main eigenfunction of Lφ , that is,
Lφh = exp(PG(φ))h, and ν is a sigma-finite measure such that L∗

φν = exp(PG(φ))ν (for
more details, see Theorems 1.1 and 1.2 in [7]).

Remark 2.1. The hypotheses that we assume throughout the paper to prove the existence
of the zero-temperature limit are the following: we consider � as a topologically transitive
countable Markov shift and φ : � → R as a summable potential such that Var(φ) < ∞
and PG(φ) < ∞. Under these hypotheses, Theorem 1.1 from [7] assures that the Gurevich
pressure satisfies the variational principle in equation (2.4). Moreover, by Theorem 1 from
[12], we have that

PG(tφ) = Ptop(tφ) = h(μt )+ tμt (φ),

for every t ≥ 1, where μt is the unique equilibrium state associated to the potential tφ.
In addition, the existence of accumulation points at infinity for the family (μt )t≥1 is also
guaranteed. It is important to point out that we will additionally assume in Theorem 3.1
that φ is a locally constant potential.

Let us define

α(φ) := sup{ν(φ) : ν ∈ Mσ (�)}. (2.8)

A measure μ ∈ Mσ (�) is called φ-maximizing if α(φ) = μ(φ). We denote by Mmax(φ)

the set of φ-maximizing measures.
In the setting of finite Markov shifts, it is widely known that the existence of maximizing

measures is a direct consequence of the compactness of the subshift. Nevertheless, in the
non-compact approach, that is, when the alphabet S is countable infinite, one requires
additional conditions on the regularity of the potential. Indeed, in Theorem 1 of [3], the
authors proposed conditions on the potential φ that guarantee the existence of such a kind
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of measure. To be specific, they proved that any coercive potential with bounded variations
has a maximizing measure supported on a finite Markov shift �I , where I ⊂ N is a finite
set such that (�I , σ) is a topologically transitive countable Markov shift. Actually, the class
of potentials satisfying the so-called coercive property considered in [3] strictly contains
the class of summable potentials. For instance, the potential φ(x) := − log(x0) is coercive,
but it is not a summable one.

Let Perp(�) be the set of points x ∈ � such that σp(x) = x and consider Per(�) :=⋃
p≥1 Perp(�). For every x ∈ �, define α(φ, x) := lim supn→∞(1/n)Snφ(x). So, when

x ∈ Per(�), it follows that α(φ, x) = (1/p)Spφ(x), where p is the period of x (that is, the
minimum p ∈ N such that σp(x) = x). Denote by Mper(�) the set of periodic probability
measures on �, that is, those supported on periodic orbits. Since

Merg(�) = Mper(�) ,

by the ergodic decomposition theorem, we have α(φ) = sup{α(φ, x) : x ∈ Per(�)} (see
for instance [3]). This last identity will be used later in Example 4.2.

3. Zero-temperature limits on topologically transitive countable Markov shifts
As we already said in the previous section, for any t ≥ 1, there is a unique equilibrium state
μt ∈ Mσ (�) associated to the potential tφ. Moreover, by [12], the family of equilibrium
states (μt )t≥1 has weak� accumulation points at t → ∞. In addition, Theorem 3.1, which
is the main result of this paper, states that there is at most one of those accumulation
points for (μt )t≥1 when φ is a locally constant potential, that is, there is n ∈ N such that
φ = φ(x0 . . . xn−1). The statement of the result is the following.

THEOREM 3.1. Let � be a topologically transitive countable Markov shift and let
φ : � → R be a summable locally constant potential such that Var1(φ) < ∞ and
PG(φ) < ∞. Then, the limit limt→∞ μt exists in the weak� topology, where μt ∈ Mσ (�)

is the unique equilibrium state associated to the potential tφ, for t ≥ 1. Furthermore, the
limit measure μ∞ is φ-maximizing.

The main idea to prove the above theorem is to obtain an approximation of the weak�

accumulation points at ∞ of the family (μt )t≥1 by the unique accumulation point at ∞
of a family of equilibrium states (ϑt )t≥1 defined on a suitable finite Markov shift �′,
which guarantees uniqueness in the non-compact context. Here we use a similar technique
to that in [17] guaranteeing that in our setting, any equilibrium state can be expressed
as a stationary Markov measure and that expression can be used to obtain the desired
approximation.

Our first goal here is to characterize the behaviour of those accumulation points and
the asymptotic behaviour of the map t → PG(tφ). To do that, next we present a lemma
that will be useful to state and prove Proposition 3.1, which assures that every weak�

accumulation point at ∞ of the family (μt )t≥1 is a maximizing measure for the potential φ.
The following lemma is already a well-known result in the matter of countable Markov
shifts satisfying the BIP condition, for details see [4], and its validity basically depends
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on the existence of equilibrium states μt , for each t ≥ 1. Since, the existence of each one
of the μt states is guaranteed in the topologically transitive context (see [12]), here, we
expect to obtain something similar to the result in [4]. The statement of the lemma is the
following.

LEMMA 3.2. Given t ≥ 1, assume that μt ∈ Mσ (�) is an equilibrium state associated to
the potential tφ. Then:
(i) the family {h(μt )}t≥1 is decreasing;

(ii) limt→∞(PG(tφ)/t) = α(φ).

Proof. A similar procedure to that in Lemma 9 from [4] shows that the family {μt(φ)}t≥1

is increasing. Fix 1 ≤ t1 < t2. Since μ1 ∈ Mσ (�) is an equilibrium state for the potential
t1φ, we have

h(μt1) = PG(t1φ)− t1μt1(φ). (3.1)

Note that by the variational principle in equation (2.4), we have PG(t1φ) > h(μt2)+
t1μt2(φ). Hence, replacing in equation (3.1), we obtain

h(μt1) > h(μt2)+ t1(μt2(φ)− μt1(φ)). (3.2)

As μt2(φ)− μt1(φ) > 0, so h(μt1) > h(μt2) and thus the family {h(μt )}t≥1 is decreasing.
Now we will prove item (ii). Note that |Mmax(φ)| �= ∅, see Theorem 1 from [3]. Let

ν ∈ Mmax(φ) and t ≥ 1, then by the variational principle of equation (2.4), we have

h(ν)+ tν(φ) ≤ sup{h(μ)+ tμ(φ) : μ ∈ Mσ (�) and − μ(φ) < ∞} = PG(tφ).

Later,

tα(φ) ≤ PG(tφ). (3.3)

However, the map t → PG(tφ)− tα(φ) is decreasing in [1, ∞), see [4]. Therefore, 0 ≤
PG(tφ)− tα(φ) ≤ PG(φ)− α(φ) < ∞ for every t ≥ 1, so

lim
t→∞

PG(tφ)

t
= lim
t→∞

1
t
(PG(tφ)− tα(φ))+ α(φ) = α(φ).

PROPOSITION 3.1. Every weak� accumulation point at ∞ of the family of equilibrium
states (μt )t≥1 belongs to the set Mmax(φ).

Proof. Consider some arbitrary accumulation point μ∞ ∈ Mσ (�) of the family (μt )t≥1.
It is enough to verify that

α(φ) ≤ μ∞(φ).

Indeed, since that map μ → μ(φ), from Mσ (�) into [0, ∞), is upper semi-continuous in
the weak� topology, see Lemma 1 in [15], we have

lim sup
t→∞

μt(φ) ≤ μ∞(φ). (3.4)
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However, by variational principle, for each t ≥ 1, we have

PG(tφ)

t
= h(μt )

t
+ μt(φ).

Now, taking the lim sup in the last equality, since (h(μt ))t≥1 is bounded from above (see
Lemma 3.2), we obtain that

α(φ) = lim sup
t→∞

PG(tφ)

t
≤ lim sup

t→∞
μt(φ) ≤ μ∞(φ).

An important condition necessary to prove the convergence in the weak� topology of
the family of equilibrium states (μt )t≥1 at ∞ is to show that the potential tφ is positively
recurrent for each t ≥ 1. That statement is verified in the following proposition.

PROPOSITION 3.2. For every t ≥ 1, the potential tφ is positive recurrent.

Proof. Note that the potential φ is positive recurrent. Theorem 1 in [12] guarantees that
for every t > 1, there is a unique equilibrium state μt associated to potential tφ, so by
Theorem 1.2 in [7], the potential tφ is positive recurrent, for every t > 1.

Remark 3.3. Under the same hypotheses of the previous lemma, but assuming that � is a
finitely primitive countable Markov shift, Morris showed in [21] that

h(μ∞) = lim
t→∞ h(μt ) = sup

ν∈Mmax(φ)

h(ν), (3.5)

where μ∞ ∈ Mσ (�) is some accumulation point of the family of equilibrium states
(μt )t≥1. Actually, Freire and Vargas in [12] obtained an extension of equation (3.5) for
the setting of topologically transitive countable Markov shifts.

We say the two potentials φ andψ are cohomologous when there is η such that φ = ψ +
η − η ◦ σ . It is not difficult to check that cohomology between potentials is an equivalence
relation preserving equilibrium states and maximizing measures.

Since there is an equilibrium measure associated with the potential φ, we have that there
is a potential φ̃ cohomologous to φ, such that φ̃ ≤ α(φ), see [16]. The potential φ̃ − α(φ)

is called normalized potential. So, for ease of computation, from now on, we consider the
normalization φ̃ − α(φ) of the potential φ and, to not overload the notation, we will denote
the normalized one simply by φ.

PROPOSITION 3.3. The following properties are satisfied:
(i) PG(tφ) ≥ 0, for every t ≥ 1;

(ii) the function t → PG(tφ) is decreasing;
(iii) limt→∞ PG(tφ) = h(μ∞), where μ∞ ∈ Mmax(�) is a weak� accumulation point

at ∞ for the family of equilibrium states (μt )t≥1.

Proof. The proofs of items (i) and (ii) are obtained directly from Lemma 3.2. Now we
proceed to check item (iii). Let {tk}k∈N be an increasing sequence of numbers greater than
one converging to infinity such that μtk → μ∞ as k → ∞ in the weak� topology. Note
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that limk→∞ μtk (φ) = 0, see Proposition 3.1. So, by Theorem 2 in [12], we obtain

h(μ∞) = lim sup
k→∞

h(μtk )

= lim sup
k→∞

(PG(tkφ)− tk · μtk (φ))

≥ lim sup
k→∞

(PG(tkφ)− μtk (φ))

= lim
k→∞ PG(tkφ)− lim inf

k→∞ μtk (φ)

= lim
t→∞ PG(tφ).

However, PG(tφ) ≥ h(μ∞)+ tμ∞(φ) = h(μ∞). Therefore, limt→∞ PG(tφ) =
h(μ∞).

3.1. Existence of the zero-temperature limit for locally constant potentials. From now
on, we consider locally constant potentials φ : � → R, that is, we assume that there
exists n ∈ N0 such that φ(x) = φ(x0 . . . xn−1) for any x ∈ �. We also consider the
normalization φ̃ − α(φ) of the potential φ such that φ̃ ≤ α(φ). As stated above, the
normalized potential will be denoted also by φ (see [16] for details). In fact, without loss of
generality, we can assume φ as a Markov potential as well, that is, φ(x) = φ(x0x1). This is
true because we can recode the Markov shift � to guarantee that any word of length r + 1
can be written as a word of length 2 in the new codification (we refer the reader to [8] for
details).

By [24], we have that the potential φ(x) = φ(x0x1) has an associated equilibrium state
μ ∈ Mσ (�) because it is positive recurrent, see Lemma 3.9. So the Ruelle operator Lφ is
well defined on the space of bounded continuous functions. In particular, for any function
of the form ψ(x) = ψ(x0), we have

Lφ(ψ)(x) = Lφ(ψ)(x0) =
∑
a∈S

A(a,x0)=1

exp(φ(ax0))ψ(a). (3.6)

From Theorem 1.2 in [7], it follows that the operator Lφ has a strictly positive eigenfunc-
tion h, Lφh = λh, where λ = exp(PG(φ)) and by equation (3.6), we have h(x) = h(x0).
In this case, we also can define the transpose of the Ruelle operator, Lᵀ

φ , calculated in a
function ψ(x) = ψ(x0) as

L
ᵀ
φ(ψ)(x) = L

ᵀ
φ(ψ)(x0) =

∑
a∈S

A(x0a)=1

exp(φ(x0a))ψ(a).

It is not difficult to check that the operator Lᵀ
φ has a strictly positive eigenfunction hᵀ,

satisfying Lᵀ
φ(h

ᵀ) = λhᵀ and hᵀ(x) = hᵀ(x0), where λ is the main eigenvalue of the
operator Lφ and

∑
a∈S h(a)hᵀ(a) = 1. A detailed proof about this claim can be found

in [13].
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Remark 3.4. Theorem C in [13] states that the equilibrium state μ is unique and it is a
stationary Markov measure given by the formula:

μ([x0x1 . . . xn]) = π(x0)p(x0x1)p(x1x2) . . . p(xn−1xn), (3.7)

where π(a) = h(a)hᵀ(a) > 0 for all a ∈ S is the stationary probability measure. More-
over, here h, hᵀ are the main eigenfunctions of the previously indicated operators Lφ and
L
ᵀ
φ , respectively. The explicit form for the transition probabilities is given by

p(a, b) = h(b)

h(a)
exp(φ(ab)− PG(φ)). (3.8)

Here, it is convenient to define a measure μ̂t ∈ Mσ (�̂) on the bilateral countable
Markov shift �̂ := {x ∈ SZ : A(xi , xi+1) = 1, for all i ∈ Z}, associated to the potential
t φ̂((xi)i∈Z) = tφ(x0x1), given by μ̂t ([xmxm−1 . . . xn]) = μt([x′

0x
′
1 . . . x

′
n−m]),m, n ∈ Z

and m ≤ n, where x′
0 = xm, . . . , x′

n−m = xn. The measure μ̂t is invariant under the
bilateral shift map and convergence of the family (μ̂t )t≥1 implies the convergence of the
family (μt )t≥1.

To facilitate the computations that appear below, we will use the measures μ̂t defined on
the bilateral countable Markov shift �̂ instead of the measures μt defined on the unilateral
one�. Trying to not overload the notation, hereafter, we will denote the bilateral countable
Markov shift by�, we will use the notation μt for its corresponding equilibrium states and
we will denote by σ the map given by (σx)i = xi+1 for any i ∈ Z.

Also, to simplify our notation, for each path γ = x0x1 . . . xn, we use l(γ ) to denote
its length and φ(γ ) := Snφ(x), x ∈ [γ ]. Since φ is a Markov potential, it follows that
φ(γ ) is constant on each x ∈ [γ ], so this notation is not ambiguous. Similarly, for any
probability measure μ ∈ Mσ (�), we write μ(γ ) := μ([γ ]). Now, for a typical path γ =
x0x1 . . . xn ∈ P(�), from equations (3.7) and (3.8) of Remark 3.4, we have

μt(γ ) = π(x0)

n−1∏
k=0

h(xk+1)

h(xk)
exp(tφ(xkxk+1)− PG(tφ))

= π(x0)
h(xn)

h(x0)
exp(tφ(γ )− nPG(tφ)). (3.9)

Obviously π(x0) = μt(x0) > 0, when γ is a loop, that is, x0 = xn, we have h(x0) = h(xn)

and consequently

μt(γ ) = μt(x0) exp(tφ(γ )− nPG(tφ)). (3.10)

This identity was deduced by Kempton in a more restrictive case (see [17]). In fact,
the positive recurrence of the potential tφ and the topologically transitive condition of
the Markov shift � are necessary and sufficient conditions to get equation (3.10) (see
Theorems C and D from [13] for more details).
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Notice that by the notation introduced earlier, we have that

(tφ − PG(tφ))(γ ) = tφ(γ )− nPG(tφ),

for every t ≥ 1. Therefore, for any loop γ = x0x1 . . . xn satisfying x0 = xn, equation
(3.10) can be re-written into the form

μt(γ )

μt ([x0])
= exp((tφ − PG(tφ))(γ )). (3.11)

However, by Theorem 1 from [3], there exists a finite set I ⊂ N such that any
φ-maximizing measure μ ∈ Mσ (�) satisfies sup(μ) ⊂ �I . From now on, the finite set
I will denote the set given for this theorem.

Remark 3.5. Since φ is a coercive potential, by Lemma 2 in [3], there exists d > 0 such
that sup φ|[i] < −d , for every i /∈ I , where sup φ|[i] := sup{φ(x) : x ∈ [i]}.

By Proposition 3.1, we have that any weak� accumulation point μ∞ of the family
of equilibrium states (μt )t≥1 is a maximizing measure supported on

⋃
i∈I [i]. As a

consequence, the existence of the limit limt→∞ μt in the weak� topology is equivalent to
showing existence of the limit limt→∞ μt [a] for all a ∈ I (see for instance [17]). Because
of that, it is enough to check the convergence of the ratios limt→∞(μt ([b])/μt ([a])), for
all a, b ∈ I , to show the convergence of (μt )t≥1 in the weak� topology. In fact, the limit of
the ratios can even be infinite.

From now on, let us fix a, b ∈ I . We define

�(a) := {x ∈ � : xi = a for infinitely many i ∈ N0} .

Clearly, �(a) is σ -invariant. For every t ≥ 1, the potential tφ is positive recurrent, see
Lemma 3.2, so that μt ∈ Mσ (�) is an ergodic measure and moreover μt(�(a)) = 1, for
all t ≥ 1. Then we have that μt([b]) = μt(�(a) ∩ [b]), for every b ∈ I .

Let (a) denote the set of paths γ = x0x1 . . . xn, n ≥ 1, such that xj = a if and only
if j ∈ {0, n}. Since (a) is countable (because it is a countable union of countable sets),
this allows to write them as (a) = {γi}∞i=1, where every γ

i
∈ (a) for i ∈ N. Notice that

�(a) can be split as

�(a) =
∞⋃
i=1

l(γ
i
)⋃

k=1

σk[γ
i
],

and so,

�(a) ∩ [b] =
∞⋃
i=1

l(γ
i
)⋃

k=1

σk[γ
i
] ∩ [b]. (3.12)

For any loop γ
i
∈ (a), letN(b, γ

i
) be the number of occurrences of the symbol b within

the loop γ
i
, note that N(b, γ

i
) = ∑l(γ

i
)

k=1 1[b](σ
k[γ

i
]).
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Fix t ≥ 1, recalling that μt([b]) = μt(�(a) ∩ [b]) and μt is invariant by the action of
the bilateral shift σ . From equation (3.12), we see that

μt([b]) =
∞∑
i=1

l(γ
i
)∑

k=1

μt(σ
k[γ

i
])1[b](σ

k[γ
i
]) (3.13)

=
∞∑
i=1

μt(γ i
)N(b, γ

i
). (3.14)

From equation (3.11), we know that for any closed loop γ
i
∈ (a),

μt(γ i
) = μt([a]) exp((tφ − PG(tφ))(γ i

)), (3.15)

so

μt([b]) =
∞∑
i=1

μt([a]) exp((tφ − PG(tφ))(γ i
))N(b, γ

i
) (3.16)

and hence

μt([b])
μt ([a])

=
∞∑
i=1

exp((tφ − PG(tφ))(γ i
))N(b, γ

i
). (3.17)

Actually, the finiteness of μt([b])/μt ([a]), for all t ≥ 1, is guaranteed by the positive
recurrence of the potential tφ (see for instance [24]).

Those closed loops γ
i
∈ (a) which do not pass through of the symbol b have no

relevance at the right-hand of equation (3.17), becauseN(b, γ
i
) = 0. In this case, equation

(3.17) is equivalent to

μt([b])
μt ([a])

=
∞∑
m=1

m
∑

γ
i
∈(a)

exp((tφ − PG(tφ))(γ i
))1[N(b,γ

i
)=m], (3.18)

where 1[N(b,γ
i
)=m] = 1 if N(b, γ

i
) = m and otherwise 1[N(b,γ

i
)=m] = 0.

Definition 3.1. Let a, b ∈ I . We say that γ = x0 . . . xn, n ≥ 1, is a main path in � that
starts at i and ends at j, where i, j ∈ {a, b} if and only if x0 = i, xn = j and xm /∈ {a, b}
for m ∈ {1, 2, . . . , n− 1}. This means that the symbols a, b do not appear in the middle
of the path γ . We will denote by {γ : i → j} the set of all the main paths that start at i and
end at j.

Note that {γ : a → a} and (a) do not represent the same set. The foregoing is true
because (a) contains paths with the symbol b while {γ : a → a} does not. For �̃, a
topologically transitive σ−invariant subset of the Markov shift �, we use the notation
{γ : i → j ∈ P(�̃)} to indicate that each main path that starts at i and ends at j is a path
of �̃ (remember that P(�̃) denotes the set of paths in �̃).

For every i, j ∈ {a, b}, we define

ptij :=
∑

γ∈{γ :i→j}
exp((tφ − PG(tφ))(γ )). (3.19)
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Note from equation (3.11) that ptii < 1, for every i ∈ I . Indeed, the probability, with
respect to μt , that a path from i returns to i eventually is one, so from equations (3.11)
and (3.19), we observe that it can be split into ptii , the probability that a path from i returns
to i without passing through j, where j �= i, and ptij (

∑
n≥1(p

t
jj )

n)ptji , the probability that
a path from i returns to i passing through j at least once. Therefore,

ptii + ptijp
t
ji

∑
n≥1

(ptjj )
n = 1. (3.20)

Recalling that tφ is a Markov potential, for all m ∈ N, we get from equation (3.19),∑
γ∈(a)

exp((tφ − PG(tφ))(γ ))1[N(b,γ )=m] = ptab(p
t
bb)

m−1ptba . (3.21)

Therefore, from equation (3.18), we obtain

μt([b])
μt ([a])

=
∞∑
m=1

mptab(p
t
bb)

m−1ptba = ptabp
t
ba

(1 − ptbb)
2 . (3.22)

By inverting the roles of a and b, we get μt([a])/μt ([b]) = ptbap
t
ab/(1 − ptaa)

2 and
combining both expressions, we conclude

μt([b])
μt ([a])

= 1 − ptaa

1 − ptbb
. (3.23)

Therefore, proving the convergence of the equilibrium states (μt )t≥1, limt→∞ μt reduces
to showing the existence of limt→∞(1 − ptaa)/(1 − ptbb) for all a, b ∈ I .

It is well known that in the setting of finite Markov shifts, the existence of the limit
at zero temperature is satisfied for families of equilibrium states associated to Markov
potentials. Below, we present a definition of a suitable collection of finite Markov shifts
contained in � which are useful to approximate the unique accumulation point of the
family (μt )t≥1 in the weak� topology.

Definition 3.2. Let � be a topologically transitive countable Markov shift, φ : � → R be
a Markov potential φ(x) = φ(x0x1) and let c ∈ (0, ∞). We denote by �−c a minimal
topologically transitive subshift of � that contains all the symbols i ∈ N such that
sup φ|[i] ≥ −c.

Remark 3.6. In Definition 3.2, minimal is understood in the sense that any other
topologically transitive subshift strictly contained in �−c does not exist that includes all
the symbols i ∈ N satisfying sup φ|[i] ≥ −c.

By summability, �−c is a finite Markov shift when c is large enough. Furthermore, for
any c ≤ c′, it is possible to find �−c′ satisfying Definition 3.2 such that �−c ⊂ �−c′ . In
the following, the key argument to prove the existence of the zero-temperature limit of
equilibrium states on topologically transitive countable Markov shifts is the construction
of an appropriate finite Markov subshift (which remains fixed for all t ≥ 1), whose
equilibrium states approximate those defined on the countable Markov shift �.
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For every a, b ∈ I , we will denote by γ ba the shortest path connecting a to b. From the
construction, we immediately get that γ ba contains the symbols a and b only at the ends, so
that γ ba ∈ {γ : a → b}. This path always exists because� is topologically transitive which
allows to guarantee that any pair of symbols can be linked by a finite path. We denote γ ba γ

a
b

the concatenation of the paths γ ba with γ ab . With this, we have that there is always a loop
that passes through a and b. We now consider the set

C :=
⋃

a∈I ,b∈I
{γ ba γ ab ∈ P(�)},

which is a non-empty and finite set. In addition, for each pair a, b ∈ I and each non-empty
finite set of symbols J ⊂ I , consider γ ba (J ) as the shortest path connecting a to b and
avoiding in the middle any symbol belonging to J, the foregoing, in the case where there
is at least a path satisfying those conditions. We define the set of all the paths between a
and b avoiding some subset of I as

C̃ :=
⋃

a,b∈I ;J⊂I
{γ ba (J ) ∈ P(�)}.

Finally, we fix

N := max{l(γ ) : γ ∈ C ∪ C̃} < ∞, (3.24)

C := max{−φ(γ ) : γ ∈ C ∪ C̃} < ∞. (3.25)

c := C + 2d
7
> 0, (3.26)

where d > 0 was given in Remark 3.5. The above construction leads us to the following
proposition.

PROPOSITION 3.4. LetN ∈ N, C ≥ 0 and c > 0 as in equations (3.24), (3.25) and (3.26),
respectively. Then, for every a, b ∈ I , we have:
(i) there exists a loop γ ∈ P(�) connecting a to b such that φ(γ ) ≥ −C and l(γ ) ≤ N;

(ii) if there exists a loop γ connecting a to a and avoiding the set symbols of J ⊂ I , then
φ(γ ) ≥ −C and l(γ ) ≤ N .

Also, each symbol of I belongs to the symbols of the topologically transitive finite Markov
shift �−c, that is, �I ⊂ �−c.

Proof. Note that items (i) and (ii) are a direct consequence of equations (3.24), (3.25) and
(3.26). Furthermore, fixing i, j ∈ I , it follows that

−c + 2d
7

≤ φ(γ
j
i γ

i
j ) ≤ sup φ|[i],

so, by Definition 3.2, we have �I ⊂ �−c.

The main difference here between the BIP case and the topologically transitive case
is the following: in the BIP case, we are able to link a and b using only symbols of the
finite set {b1, b2, . . . , bN } and, thus, the length of the path is at most N. However, in the
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topologically transitive setting, we are only able to guarantee the existence of a finite path
linking a and b, but we do not have any control on the length of the paths. Despite this, the
finiteness of the set I makes it possible to build a compact subshift as in Proposition 3.4.

Fix the topologically transitive finite Markov shift �′ := �−7c, note that �I ⊂ �−c ⊂
�′ ⊂ �. For the subshift �′, we will denote by ϑt the equilibrium state associated with
the potential tφ restricted to �′ (this will be denoted by tφ|�′), and Q(tφ) ≤ PG(tφ) is
the topological pressure of the potential tφ|�′ .

For every i, j ∈ {a, b} and t ≥ 1, we define

qtij :=
∑

{γ :i→j∈P(�′)}
exp((tφ −Q(tφ))(γ )), (3.27)

where {γ : i → j ∈ P(�′)} is the set of paths in�′ that connect i to j and such that do not
have an intermediate occurrence of neither a nor b. Similarly to equation (3.23), we see
that

ϑt ([b])
ϑt ([a])

= 1 − qtaa

1 − qtbb
, (3.28)

for each a, b ∈ I . Since �′ is a finite Markov shift, we have an existence of the limit
limt→∞(ϑt ([b])/ϑt ([a])) for any a, b ∈ I , see [6, 8, 18] for details.

Next, we will show the following equality:

lim
t→∞

μt([b])
μt ([a])

= lim
t→∞

ϑt ([b])
ϑt ([a])

, (3.29)

for each a, b ∈ I . Since, we have an existence of the limit in the right side of the equation
above (see for instance [6, 8, 18]), by Proposition 3.1, it follows that equation (3.29)
guarantees the main theorem of this work (that is, Theorem 3.1).

So, by equations (3.23) and (3.28), it is only necessary to prove the following:

lim
t→∞

1 − ptaa

1 − ptbb
= lim
t→∞

1 − qtaa

1 − qtbb
. (3.30)

To study the asymptotic behaviour of 1 − ptaa and 1 − qtaa , we will use item (i) of
Proposition 3.4 to find their lower bounds. Now we will find a lower bound for 1 − ptaa .
Fix a, b ∈ I and t ≥ 1. By Proposition 3.4, the concatenation γ ba γ

a
b is a path from a to a

passing though b with length at most N satisfying φ(γ ba γ
a
b ) ≥ −C, thus

exp((tφ − PG(tφ))(γ
b
a γ

a
b )) ≥ exp(−tC −NPG(tφ)). (3.31)

Therefore, from equations (3.20) and (3.31), we obtain the lower bound

1 − ptaa = ptabp
t
ba

∑
n≥1

(ptbb)
n ≥ exp(−tC −NPG(tφ)). (3.32)

Obviously, the same argument gives us lower bounds for 1 − ptbb, 1 − qtaa and 1 − qtbb.
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To continue analysing the asymptotic behaviour of (1 − ptaa)/(1 − ptbb) and
(1 − qtaa)/(1 − qtbb), we introduce the terms:

rtij =
∑

{γ :i→j∈P(�′)}
exp(tφ − PG(tφ))(γ ), (3.33)

for each i, j ∈ {a, b}. It can be observed that rtij ≤ ptij and rtij ≤ qtij . Note that rtij is
obtained by taking the sum only on the main paths in �′, while ptij considers all the
main paths of �. Later, in Lemma 3.9, we will show that for each a ∈ I fixed, the value of
rtaa is close to ptaa and qtaa for t large enough.

The main tool to prove equation (3.30) is Lemma 3.9; in fact, Lemmas 3.7 and 3.8
allow us to prove this lemma. The aforementioned results are the same as those obtained
by T. Kempton for countable Markov shifts satisfying the BIP condition and the proofs are
similar, which can be found in [17]. This is due to Proposition 3.4 and because the Gurevich
pressure on topologically transitive countable Markov shifts has a similar behaviour to the
one observed in the case of countable Markov shifts satisfying the BIP condition. This was
proved in Proposition 3.3.

For each main path γ ∈ {γ : a → a}, we write n(γ ) to denote the number of times that
a symbol of I appears in γ without taking into account the symbols that appear at the
end. So, when n(γ ) = n, these symbols of I can be labelled as i0, i1, i2, . . . , in+1 with the
convention i0 = in+1 = a. We denote by Xnaa all those main paths satisfying n(γ ) = n.
From the definition of a main path, we necessarily have ik �= {a, b}, 1 ≤ k ≤ n. By calling
Xnaa the collection of main paths such that n(γ ) = n, we get

ptaa =
∞∑
n=0

ptaa(n), (3.34)

where

ptaa(n) =
∑

i0,...,in+1∈Xnaa

n∏
k=0

( ∑
{γ :ik↪→ik+1∈P(�)}

exp(tφ − PG(tφ))(γ )

)
. (3.35)

Note that for every n ≥ 0, the terms ptaa(n) are of the form exp(tφ − PG(tφ))(γ ), where
γ ∈ P(�) such that n(γ ) = n. The following lemma gives a lower bound for ptaa(n), for
every a ∈ I .

LEMMA 3.7. For every r ∈ N0 and r|I | ≤ n < (r + 1)|I |, we have that

ptaa(n) ≤ (1 − exp(−Ct −NPG(tφ)))
r .

Similarly to equations (3.34), (3.35), we now define rtaa = ∑∞
n=0 r

t
aa(n), where

rtaa(n) :=
∑

i0,...,in+1∈Xnaa

n∏
k=0

( ∑
{γ :ik↪→ik+1∈P(�′)}

exp(tφ − PG(tφ))(γ )

)
.
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By calling

ε(n) := ptaa(n)

rtaa(n)
,

it can be checked that

0 ≤ ptaa − rtaa =
∞∑
n=0

ptaa(n)

(
1 − 1

ε(n)

)
.

LEMMA 3.8. There exists T > 0 and K1 such that for all t > T , the following hold.
(i) For each 0 ≤ n < |I | − 1, the following inequality holds:

ε(n) ≤ 1 +K1 exp(−5Ct).

(ii) For each r ≥ 1 and r|I | ≤ n < (r + 1)|I |, the following statement is satisfied:

ε(n) ≤ (1 +K1 exp(−5Ct))r .

Proof. From Proposition 3.3(ii) and Theorem 2 from [12], the Gurevich pressure PG(tφ)
decreases to hmax. So, there exists T > 0 such that

PG(tφ) ≤ hmax + d for all t ≥ T + 1,

where d was given in Remark 3.5, also

hmax ≤ PG(tφ) for all t ≥ 1.

Therefore,

−d ≤ PG(tφ)− PG(T φ) < 0 for all t ≥ T + 1, (3.36)

and thus the difference between the pressure PG(tφ) and PG(T φ) can be controlled,
for t � 0. Let ik , ik+1 ∈ I be arbitrary. Consider a path γ = ikx1 . . . xm−1ik+1 : ik ↪→
ik+1 ∈ P(� \�′), that is, xn /∈ I for all 1 ≤ n ≤ m− 1 and at least one symbol xn,
n = 1, 2, . . . , m− 1 does not belongs to the alphabet associated to the finite Markov
shift�′. From Remark 3.5, we have φ(ikx1) ≤ 0, φ(xnxn+1) < −d for n = 1, . . . , m− 2
and φ(xm−1ik+1) < −d , because xn /∈ I for n = 1, . . . , m− 1. Moreover, since γ ∈
P(� \�′), there exists some j ∈ {1, 2, . . . , m− 1} such that φ(xjxj+1) < −7c and
consequently

φ(γ ) = φ(ikx1)+ φ(x1x2)+ · · · + φ(xm−1ik+1) ≤ −d(m− 2)− 7c.

In addition, from equation (3.36), we have PG(T φ)− PG(tφ) ≤ d ≤ (t − T )d for t ≥
T + 1, so that

(tφ − PG(tφ))(γ )− (T φ − PG(T φ))(γ ) = ((t − T )φ − PG(tφ)+ PG(T φ))(γ )

= m(PG(T φ)− PG(tφ))+ (t − T )φ(γ )

≤ (t − T )md + (t − T )(−d(m− 2)− 7c)

= (t − T )(2d − 7c)

≤ −7C(t − T ). (3.37)
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We now fix the constant:

K := exp(7CT ) max
ik ,ik+1∈I

∑
γ :ik↪→ik+1∈P(�\�′)

exp((T φ − PG(T φ))(γ )), (3.38)

note thatK < ∞, because
∑
γ :ik↪→ik+1∈P(�\�′) exp((T φ − PG(T φ))(γ )) ≤ pTikik+1

< ∞.
From equation (3.37), we have for t ≥ T + 1,

(tφ − PG(tφ))(γ ) ≤ (T φ − PG(T φ))(γ )− 7C(t − T ),

so that ∑
γ :ik↪→ik+1∈P(�\�′)

exp((tφ − PG(tφ))(γ ))

≤ exp(−7Ct + 7CT )
∑

γ :ik↪→ik+1∈P(�\�′)
exp(((T φ − PG(T φ))(γ ))

≤ exp(−7Ct)K .

The proof continues following the same steps as [17] to obtain items (i) and (ii).

Due to Lemmas 3.7 and 3.8, the following lemma is obtained.

LEMMA 3.9. There exists T > 0 and 0 < M < ∞ such that for each pair a, b ∈ I and
for all t > T :
(i) ptaa ≤ rtaa +M exp(−3Ct);

(ii) ptabp
t
ba ≤ rtabr

t
ba +M exp(−3Ct).

We write a(t) ∼ b(t) to express that

lim
t→∞

a(t)

b(t)
= 1.

As a consequence of the previous lemma, one can obtain that

1 − ptaa ∼ 1 − rtaa , 1 − rtaa ∼ 1 − qtaa , (3.39)

for every a ∈ I , see [17] for complete details.
Finally, from equation (3.39), we have that

μt([b])
μt ([a])

= 1 − ptaa

1 − ptbb
∼ 1 − rtaa

1 − rtbb
∼ 1 − qtaa

1 − qtbb
= ϑt ([b])
ϑt ([a])

.

Therefore,

lim
t→∞

μt([b])
μt ([a])

= lim
t→∞

ϑt ([b])
ϑt ([a])

,

since that limt→∞(ϑt ([b])/ϑt ([a])) exists for all a, b ∈ I , we finally have that limt→∞ μt

exists in the weak� topology.
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1 2 3 4 5 6 7

FIGURE 1. Renewal shift.

4. Examples on the renewal shift
Throughout this section, we present some examples where there is selection at zero
temperature for the family of equilibrium states (μt )t≥, that is, where the limit limt→∞ μt

exists in the weak� topology. In fact, those examples are given in the context of the
so-called renewal shifts (to be defined below), when the potentials do not necessarily
satisfy the conditions stated in Theorem 3.1.

The renewal shift is the countable Markov shift whose transition matrix (A(i, j))N×N

has entries A(1, 1), A(1, i), and A(i, i − 1) are equal to 1 for every i > 1, and the other
entries are equal to 0. Note that the renewal shift is topologically mixing and does not
satisfy the BIP property (see Figure 1).

In this subsection, we will present two examples of the zero-temperature limit of
equilibrium states on the renewal shift. Example 4.1 is for the potential φ(x) = −x0. Note
that this potential satisfies the hypotheses of Theorem 3.1. However, Example 4.2 is for
the potential φ(x) = x0 − x1, which is not a summable potential; however, it has zero
temperature limits for its associated equilibrium states.

In a renewal shift with φ : � → R a weakly Hölder continuous function such that
sup φ < ∞, Sarig [25] showed that there exists tc > 0 and a unique equilibrium state
μt ∈ Mσ (�) associated to the potential tφ, for t ∈ (0, tc). In that same context, Iommi
[14] showed that if tc = ∞, then the set of φ-maximizing Mmax(φ) �= ∅, otherwise there
is no maximizing measure associated to potential φ.

Example 4.1. Consider the renewal shift � and a potential φ : � → R given by

φ(x) = −x0.

We will show that limt→∞ μt exists and is a maximizing measure, where μt is the
equilibrium state associated to potential tφ. Also, limt→∞ μt([a]) = 0, for all a ≥ 2.

Note that φ is a summable potential with Var(φ) = 0. Also,

PG(tφ) ≤ log(2)− t for all t ≥ 1.
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So, by Theorem 1 in [12], the family (μt )t≥1 of equilibrium states associated to potential
tφ have accumulation points. To verify the statement of the previous example, we need the
following affirmations to hold.

AFFIRMATION 1. For a, n ∈ N, we have

Zn(tφ, a) ≤ exp(nPG(tφ)).

Proof. Let a, n ∈ N. It can be verified that Zn(tφ, a) = (Lntφ1[a])(x) for all x ∈ [a]. Let
us integrate that expression with respect to νt , which is the eigenmeasure of the dual of the
Ruelle operator, that is, L∗

tφνt = exp(PG(tφ))νt . So, we obtain

Zn(tφ, a) = 1
νt [a]

∫
[a]
Lntφ1[a](x) d νt

≤ 1
νt [a]

∫
Lntφ1[a](x) d νt

= exp(nPG(tφ))
νt [a]

∫
1[a](x) d νt = exp(nPG(tφ)).

AFFIRMATION 2. For any a ∈ N, there is a constant C = exp(−(a − 1)(a + 2)/2) such
that

(Lntφ1[1])(x) ≤ C · Zn+a−1(tφ, 1),

where x ∈ [a].

Proof. Fix x ∈ [a]. We define the application bijective:

θ : {y ∈ [1] : σn(y) = x} −→ {z ∈ [1] : σn+a−1(z) = z, zn = a}
y = 1, y1, . . . , yn−1, x∞

0 −→ z = 1, y1, . . . , yn−1, a, (a − 1), . . . , 2per.

Note that for every y ∈ Dom(θ), Snφ(y)− Sn+a−1φ(θ(y)) = −(a − 1)(a + 2)/2. So,

(Lntφ1[1])(x) = exp
(

− (a − 1)(a + 2)
2

t

) ∑
z∈Im(θ)

exp(tSn+a−1φ(z))

≤ exp
(

− (a − 1)(a + 2)
2

t

) ∑
σn+a−1z=z

exp(tSn+a−1φ(z))1[1](z)

= exp
(

− (a − 1)(a + 2)
2

t

)
· Zn+a−1(tφ, 1).

AFFIRMATION 3. For a ∈ N, we have

νt ([a]) = exp
(

− (a + 2)(a − 1)
2

t − (a − 1)PG(tφ)
)
νt ([1]).

Proof. Fix t ≥ 1. By the generalized Ruelle’s Perron–Frobenius theorem (see Theorem
4.9 in [23]), there is an eigenmeasure νt such that

νt (Lφf ) = λνt (f ), para f ∈ L1(νt ). (4.1)
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Let a ≥ 2. Consider f := 1[a]. Substituting in equation (4.1), we have

exp(PG(tφ))νt ([a]) =
∫ ∑

σy=x
exp(tφ(y))1[a](y) d νt (x)

=
∫

[a−1]

∑
σy=x

exp(tφ(y))1[a](y) d νt (x)

= exp(−at)νt ([a − 1]).

So,

νt ([a]) = exp(−at − PG(tφ))νt ([a − 1]), (4.2)

using equation (4.2) recursively follows the statement.

Note that the potential tφ is positive recurrent, for every t ≥ 1. Consider a ≥ 1, then by
the generalized Ruelle’s Perron–Frobenius theorem, we have

μt([a])
νt ([a])

= h(x) for all x ∈ [a]

= 1
νt ([1])

lim
n→∞ exp(−nPG(tφ))(Lntφ1[1])(x)

≤ exp(−(((a − 1)(a + 2))/2)t)
νt ([1])

exp((a − 1)PG(tφ)),

where in the third line, the Affirmations 1 and 2 were used. Later, by Affirmation 3, we
have

μt([a]) ≤ exp(−(a + 2)(a − 1)t).

Therefore,

lim
t→∞ μt([a]) = 0 for all a ≥ 2. (4.3)

We will show that (μt )t≥1 has only one accumulation point and this is δ1 ∈ Mσ (�),
where this measure is the one supported at the point 1 = 111 . . . 1 . . . ∈ �. Consider
μ∞ ∈ Mσ (�) an arbitrary accumulation point of (μt )t≥1. Note that it is enough to show
that μ∞ = δ1. From equation (4.3), we have that μ∞([a]) = 0, for all a ≥ 2, and hence
μ∞([1]) = 1. Since the measure μ∞ is σ -invariant, then

μ∞([1]) = μ∞([11])+ μ∞([21]),

so, from equation (4.3) and the fact that [1] = ⋃
i≥1[1i], we have that μ∞([1a]) = 0, for

all a ≥ 2. Similarly, we obtain that

μ∞([11 . . . 1a]) = 0 for all a ≥ 2. (4.4)

So, since μ∞([1]) = 1, we have

μ∞([1 . . . 1]) = 1, (4.5)
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where 1 . . . 1 is a word of arbitrary size composed only of the symbol one. To show that
μ∞ = δ1, it suffices to show that

μ∞([ω]) = δ1([ω]) for all ω ∈ W . (4.6)

Note that for every a ≥ 2 and ω ∈ W such that [ω] ∩ [a] �= ∅, we have that equation (4.6)
is satisfied. Also, from equations (4.4) and (4.5), for every [ω] ∩ [1] �= ∅, we have that
equation (4.6) is satisfied. Therefore, limt→∞ μt = δ1. Also, Proposition 3.1 ensures that
δ1 ∈ Mmax(φ).

Example 4.2. Consider the renewal shift � and the potential φ : � → R given by

φ(x) = x0 − x1.

We will show that limt→∞ μt exists and it is a φ-maximizing measure, where μt ∈
Mσ (�) is the equilibrium state associated to potential tφ, for every t ≥ 1. Also,
limt→∞ μt([a]) > 0, for every a ∈ N.

Note that φ is a weakly Hölder continuous potential with Var1(φ) = +∞ and
sup φ < ∞. Also tc = ∞. Next, by Theorem 5 in [25], we know that the equilibrium
state μt ∈ Mσ (�) associated with the potential tφ exists, for every t ≥ 1, and hence
Mmax(φ) �= ∅, see Theorem 1.1 in [14]. Fix t ≥ 1, and notice that the Gurevich pressure
of PG(tφ) is constant, PG(tφ) = log 2 (see [2]). Also, α(φ) = 0, and |Mmax(φ)| = ∞,
because of the fact that for every x ∈ Per(�) such that σnx = x, we have Snφ(x) = 0.

However, let ω ∈ Wm, such that ω ⊂ [a], then

μt([ω]) = ht (x)νt ([ω]), x ∈ [a]

= lim
n→∞

1
2n
Lntφ1[ω](x)

= lim
n→∞

1
2n

{y ∈ [ω] : σny = x}. (4.7)

So, for any cylinder ω, we have that μt([ω]) does not depend on t. Since ω was arbitrary,
we have that (μt )t≥1 is a singleton which we will denote byμ∞ ∈ Mσ (�). By Proposition
3.3(iii), h(μ∞) = log 2. So, by the variational principle, we have

PG(tφ) = h(μ∞)+ μ∞(tφ),

and thus μ∞(φ) = 0. Therefore, μ∞ is a φ-maximizing measure. If we consider ω = a in
equation (4.7), we have μ∞([a]) = 1/2a .

Note that from Example 4.2, we have the existence of the zero temperature limit of
equilibrium states in more general conditions than Theorem 3.1.
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