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Abstract

We prove that there exists at least one positive Einstein metric on HP
m+1�HP

m+1

for m ≥ 2. Based on the existence of the first Einstein metric, we give a criterion to
check the existence of a second Einstein metric on HP

m+1�HP
m+1. We also investigate

the existence of cohomogeneity-one positive Einstein metrics on S
4m+4 and prove the

existence of a non-standard Einstein metric on S
8.

1. Introduction

A Riemannian manifold (M, g) is Einstein if its Ricci curvature is a constant multiple of g:

Ric(g) = Λg.

The metric g is then called an Einstein metric and Λ is the Einstein constant. Depending on the
sign of Λ, we call g a positive Einstein (Λ > 0) metric, a negative Einstein (Λ < 0) metric or a
Ricci-flat (Λ = 0) metric. A positive Einstein manifold is compact by Myers’ theorem [Mye41].

In this paper we investigate the existence of positive Einstein metrics of cohomogeneity one.
A Riemannian manifold (M, g) is of cohomogeneity one if a Lie group G acts isometrically on M
such that the principal orbit G/K is of codimension one. The first example of an inhomogeneous
positive Einstein metric was constructed in [Pag78]. The metric is defined on CP

2�CP
2 and

is of cohomogeneity one. The result was later generalized in [Ber82, KS86, Sak86, PP87, KS88,
WW98]. A common feature shared by positive Einstein metrics constructed in this series of works
is that the principal orbits are principal U(1) bundles over either a Fano manifold or a product of
Fano manifolds. From this perspective, one can view the Einstein metric on HP

2�HP
2 in [Böh98]

as another type of generalization to the Page metric, whose principal orbit is a principal Sp(1)
bundle over HP

1.
A natural question arises whether there exists a positive Einstein metric of cohomogeneity

one on HP
m+1�HP

m+1 with m ≥ 2, where the principal orbit is the total space of the quaternionic
Hopf fibration formed by the following group triple:

(K, H, G) = (Sp(m)ΔSp(1), Sp(m)Sp(1)Sp(1), Sp(m + 1)Sp(1)). (1.1)

The condition of being G-invariant reduces the Einstein equations to an ordinary differential
equation (ODE) system defined on the one-dimensional orbit space. The solution takes the form
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g = dt2 + g(t), where g(t) is a G-invariant metric on S
4m+3 for each t. One looks for a g(t)

that is defined on a closed interval [0, T ] with an initial condition and a terminal condition.
If g(t) collapses to the quaternionic Kähler metric on the singular orbit HP

m at t = 0 and
t = T , then g defines a positive Einstein metric on the connected sum HP

m+1�HP
m+1, or equiv-

alently, an S
4 bundle over HP

m. It has been conjectured that such an Einstein metric exists
on HP

m+1�HP
m+1 for all m ≥ 2, as indicated by numerical evidence provided in [PP86, Böh98,

DHW13].
Some well-known Einstein metrics are realized as integral curves to the cohomogeneity-

one Einstein equation. For example, the standard sphere metric, the sine cone over Jensen’s
sphere and the quaternionic Kähler metric on HP

m+1 are represented by integral curves to the
cohomogeneity-one system. Furthermore, the cone solution is an attractor to the system. It
was realized in [Böh98] that the winding of integral curves around the cone solution plays an
important role in the existence problem described above. To investigate the winding, one studies
a quantity (denoted by �Cw(h̄) in [Böh98]) that is assigned to each local solution that does not
globally define a complete Einstein metric on HP

m+1�HP
m+1. From the point of view of geometry,

the quantity records the number of times that the principal orbit becomes isoparametric while
its mean curvature remains positive. In general, an estimate for �Cw(h̄) can be obtained from
the linearization along the cone solution. For m = 1, the estimate is good enough to prove the
global existence. This is not the case, however, if m ≥ 2. For higher-dimensional cases, it is from
the global analysis of the system that we obtain a further estimate for �Cw(h̄) and we prove the
following existence theorem.

Theorem 1.1. On each HP
m+1�HP

m+1
with m ≥ 2, there exists at least one positive Einstein

metric with G/K = S
4m+3 as its principal orbit.

Numerical studies in [Böh98, DHW13] indicate that there exists another Einstein metric
on HP

m+1�HP
m+1 with m ≥ 2. Based on Theorem 1.1, an estimate for �Cw(h̄) in a limiting

subsystem (essentially obtained from the linearization along the cone solution) helps us propose
a criterion to check the existence of the second Einstein metric. Let n be the dimension of G/K.
Such a criterion only depends on n (or m).

Theorem 1.2. Let θΨ be the solution to the following initial value problem:

dθ

dη
=

n − 1
2n

tanh
(

2η

n

)
sin(2θ) +

2
n

√
(2m + 1)(2m + 2)(2m + 3)

(2m + 3)2 + 2m
, θ(0) = 0. (1.2)

Let Ω = limη→∞ θΨ. For m ≥ 2, there exist at least two positive Einstein metrics on

HP
m+1�HP

m+1
if Ω < 3π/4.

The upper bound for Ω in Theorem 1.2 is not sharp. Although it is difficult to solve the initial
value problem (1.2) explicitly, one can use the Runge–Kutta fourth-order algorithm to approx-
imate Ω. Since the right-hand side of (1.2) does not vanish at η = 0, the initial Runge–Kutta
step is well defined. Our numerical study shows that Ω < 3π/4 for integers m ∈ [2, 100].

We also look into the case where G/K completely collapses at two ends of a compact manifold.
In that case, the cohomogeneity-one space is S

4m+4. No new Einstein metric is found on S
4m+4

for m ≥ 2. For m = 1, however, we obtained a non-standard positive Einstein metric on S
8. Such

a metric is inhomogeneous by the classification in [Zil82].

Theorem 1.3. There exists a non-standard Sp(2)Sp(1)-invariant positive Einstein metric ĝS8

on S
8.
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It is worth mentioning that all new solutions found are symmetric. Metrics that are
represented by these solutions all have a totally geodesic principal orbit.

This paper is structured as follows. In § 2 we present the dynamical system for positive
Einstein metrics of cohomogeneity one with G/K as the principal orbit. Then we apply a coordi-
nate change that makes the cohomogeneity-one Ricci-flat system serve as a limiting subsystem.
Initial conditions and terminal conditions are transformed into critical points of the new system.
The new system admits Z2-symmetry. By a sign change, one can transform initial conditions
into terminal conditions. Hence, the problem of finding globally defined positive Einstein metrics
boils down to finding heteroclines that join two different critical points.

In § 3 we compute linearizations of the critical points mentioned above and obtain two one-
parameter families of locally defined positive Einstein metrics. One family is defined on a tubular
neighborhood around HP

m, represented by a one-parameter family of integral curves γs1 . The
other family is defined on a neighborhood of a point in S

4m+4, represented by another one-
parameter family of integral curves ζs2 .

In § 4 we make a little modification to the quantity �Cw(h̄) in [Böh98] and assign it to both
γs1 and ζs2 (hence denoted by �C(γs1) and �C(ζs2)). We construct a compact set to obtain an
estimate for �C(γs1) of some local solutions. Then we apply Lemma 4.4 in [Böh98] and prove
Theorem 1.1.

In § 5 we apply another coordinate change that allows us to obtain more information on
�C(γs1) and �C(ζs2), which is encoded in the initial value problem (1.2) in Theorem 1.2. We also
prove Theorem 1.3.

Visual summaries of Theorem 1.1–1.3 are presented at the end of this paper.

2. Cohomogeneity-one system

Consider the group triple (K, H, G) in (1.1). The isotropy representation g/k consists of two
inequivalent irreducible summands p1 = h/k and p2 = g/h. Let the standard sphere metric gS4m+3

on G/K = S
4m+3 be the background metric. As any G-invariant metric on G/K is determined by

its restriction to one tangent space g/k, the metric takes the form

f2
1 gS4m+3 |p1 + f2

2 gS4m+3 |p2 .

Let f1 and f2 be functions that are defined on the one-dimensional orbit space. We consider
Einstein equations for the cohomogeneity-one metric

g := dt2 + f2
1 gS4m+3 |p1 + f2

2 gS4m+3 |p2 .

By [EW00], the metric g is an Einstein metric on (t∗ − ε, t∗ + ε) × G/K if (f1, f2) is a solution to

f̈1

f1
−

(
ḟ1

f1

)2

= −
(

3
ḟ1

f1
+ 4m

ḟ2

f2

)
ḟ1

f1
+ 2

1
f2
1

+ 4m
f2
1

f4
2

− Λ,

f̈2

f2
−

(
ḟ2

f2

)2

= −
(

3
ḟ1

f1
+ 4m

ḟ2

f2

)
ḟ2

f2
+ (4m + 8)

1
f2
2

− 6
f2
1

f4
2

− Λ,

(2.1)

with a conservation law

3
(

ḟ1

f1

)2

+ 4m

(
ḟ2

f2

)2

−
(

d1
ḟ1

f1
+ d2

ḟ2

f2

)2

+ 6
1
f2
1

+ 4m(4m + 8)
1
f2
2

− 12m
f2
1

f4
2

− (n − 1)Λ = 0.

(2.2)
To fix homothety, we set Λ = n in this paper. We leave Λ in the equations for readers to trace
the Einstein constant.

1006

https://doi.org/10.1112/S0010437X24007073 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007073


Positive Einstein metrics with S
4m+3

as the principal orbit

Remark 2.1. If we replace the principal orbit G/K by S
4m+3 = [Sp(m + 1)U(1)]/[Sp(m)ΔU(1)],

then the isotropy representation g/k consists of three inequivalent irreducible summands. The
principal orbit can collapse either as HP

m or CP
2m+1, depending on the choice of intermediate

group. For such a principal orbit, the dynamical system of cohomogeneity-one Einstein metrics
involves three functions and has (2.1) as its subsystem. A numerical solution in [HYI03] indicates
the existence of a positive Einstein metric where G/K collapses to HP

m at one end and CP
2m+1

at the other end.

We consider (2.1) and (2.2) with the following two initial conditions. By [EW00], for the
metric g to extend smoothly to the singular orbit HP

m, we have

lim
t→0

(f1, f2, ḟ1, ḟ2) = (0, f, 1, 0) (2.3)

for some f > 0. On the other hand, for g to extend smoothly to a point where G/K fully collapses,
one considers

lim
t→0

(f1, f2, ḟ1, ḟ2) = (0, 0, 1, 1). (2.4)

By Myers’ theorem, any solution obtained from (2.1) that represents an Einstein metric on
HP

m+1�HP
m+1 must be defined on [0, T ] for some finite T > 0. Specifically, one looks for solutions

with the initial condition (2.3) and the terminal condition

lim
t→T

(f1, f2, ḟ1, ḟ2) = (0, f̄ ,−1, 0) (2.5)

for some f̄ > 0. Similarly, to construct an Einstein metric on S
4m+4, one looks for solutions with

the initial condition (2.4) and the terminal condition

lim
t→T

(f1, f2, ḟ1, ḟ2) = (0, 0,−1,−1). (2.6)

Remark 2.2. In [Koi81], one takes a non-collapsed principal orbit G/K as the initial data.
Specifically, consider

(f1, f2, ḟ1, ḟ2) = (f̄1, f̄2, h̄1, h̄2)

for some positive f̄i. To construct a positive Einstein metric, one looks for a solution that extends
backward and forward smoothly to either HP

m or a point on S
4m+4 in finite time.

Inspired by the coordinate change in [DW09] and a personal communication from Wei Yuan,
we introduce a coordinate change that transforms (2.1) into a polynomial ODE system. Let L
be the shape operator of principal orbit. Define

X1 :=
ḟ1/f1√

(trL)2 + nΛ
, X2 :=

ḟ2/f2√
(trL)2 + nΛ

, Y :=
1/f1√

(trL)2 + nΛ
, Z :=

f1/f2
2√

(trL)2 + nΛ
.

Also, define

H := 3X1 + 4mX2, G := 3X2
1 + 4mX2

2 ,

R1 := 2Y 2 + 4mZ2, R2 := (4m + 8)Y Z − 6Z2.
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Consider dη =
√

tr(L)2 + nΛdt. Let ′ denote taking the derivative with respect to η. Then (2.1)
becomes

⎡
⎢⎢⎣

X1

X2

Y
Z

⎤
⎥⎥⎦
′

= V (X1, X2, Y, Z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1H

(
G +

1
n

(1 − H2) − 1
)

+ R1 − 1
n

(1 − H2)

X2H

(
G +

1
n

(1 − H2) − 1
)

+ R2 − 1
n

(1 − H2)

Y

(
H

(
G +

1
n

(1 − H2)
)
− X1

)

Z

(
H

(
G +

1
n

(1 − H2)
)

+ X1 − 2X2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.7)

The conservation law (2.2) becomes

CΛ≥0 : G +
1
n

(1 − H2) + 6Y 2 + 4m(4m + 8)Y Z − 12mZ2 = 1. (2.8)

Or equivalently,

CΛ≥0 :
12m

n
(X1 − X2)2 + 6Y 2 + 4m(4m + 8)Y Z − 12mZ2 = 1 − 1

n
. (2.9)

We can retrieve the original system by

t =
∫ η

η∗

√
1 − H2

nΛ
dη̃, f1 =

1
Y

√
1 − H2

nΛ
, f2 =

1√
Y Z

√
1 − H2

nΛ
. (2.10)

It is clear that H2 ≤ 1 by the definition of H and the Xi. However, such a piece of information
can be obtained from the new system alone without (2.1) and (2.2). Note that

H ′ = 〈∇H, V 〉

= H2

(
G +

1
n

(1 − H2) − 1
)

+ 6Y 2 + 4m(4m + 8)Y Z − 12mZ2 − (1 − H2)

= H2

(
G +

1
n

(1 − H2) − 1
)

+ 1 − G − 1
n

(1 − H2) − (1 − H2) by (2.8)

= (H2 − 1)
(

G +
1
n

(1 − H2)
)

= (H2 − 1)
(

1
n

+
12m

n
(X1 − X2)2

)
. (2.11)

Therefore, the algebraic surface in R
4 with boundary

E := CΛ≥0 ∩ {Y, Z ≥ 0} ∩ {H2 ≤ 1}
is invariant. Moreover, E ∩ {H = ±1} are two invariant sets of lower dimension. The Z2-symmetry
on the sign of (X1, X2) gives a one-to-one correspondence between integral curves on E ∩ {H = 1}
and those on E ∩ {H = −1}.
Remark 2.3. The restricted system of (2.7) on E ∩ {H = 1} is in fact (2.1) with Λ = 0 under the
coordinate change dη = (trL)dt. The dynamical system is essentially the same as the one that
appears in [Win17]. An integral curve on the subsystem is known for representing a complete
Ricci-flat metric defined on the non-compact manifold HP

m+1\{∗} [Böh98]. The Ricci-flat metric
on HP

m+1\{∗} is the limit cone for locally defined positive Einstein metrics on the tubular
neighborhood around HP

m.
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Remark 2.4. If an integral curve to (2.7) enters E ∩ {H < 1} and is defined on R, then from
(2.11) it must cross E ∩ {H = 0} transversally. The crossing point corresponds to the turning
point in [Böh98]. For any integral curve to (2.7) that has a turning point, we choose the η∗ in
(2.10) so that t∗ :=

∫ 0
η∗

√
(1 − H2)/nΛ dη̃ is the value at which trL vanishes. By our choice of η∗,

the integral curve crosses E ∩ {H = 0} at η = 0. There are cohomogeneity-one Einstein systems
with additional geometric structure, such as the one considered in [FH17], where every trajectory
has a turning point.

Remark 2.5. From (2.9), the inequality 6Y 2 + 4m(4m + 8)Y Z − 12mZ2 ≤ 1 − 1/n is always
valid. Therefore, the set E ∩ {Z − ρY ≤ 0} is compact for any fixed ρ ∈ [0, (m(4m + 8) +√

m2(4m + 8)2 + 18m)/6m). If the maximal interval of existence of an integral curve to (2.7)
is (−∞, η̄) for some η̄ ∈ R, it must escape E ∩ {Z − ρY ≤ 0}. The crossing point corresponds
to the W-intersection point in [Böh98]. In Proposition 3.3 and Definition 4.9, we introduce an
invariant set W and a modified definition for the W -intersection point, which fixes ρ = 1 in the
original definition in [Böh98].

3. Linearization at critical points

The local existence of positive Einstein metrics around the singular orbit HP
m is well established

in [Böh98]. We interpret the result using the new coordinate. For m ≥ 2, the vector field V has
in total 10 critical points (12 critical points for m = 1) on E . As indicated by their superscripts,
these critical points lie on either E ∩ {H = 1} or E ∩ {H = −1}.
– p±0 =

(± 1
3 , 0, 1

3 , 0
)

These points represent the initial condition (2.3) and the terminal condition (2.5). Integral
curves that emanate from p+

0 and enter E ∩ {H < 1} represent positive Einstein metrics defined
on a tubular neighborhood around HP

m. A complete Einstein metric on HP
m+1�HP

m+1 is
represented by a heterocline that joins p±0 .

– p±1 = (±(1/n),±(1/n), 1/n, 1/n)
These points represent the initial condition (2.4) and the terminal condition (2.6). Integral
curves that emanate from p+

0 and enter E ∩ {H < 1} represent positive Einstein metrics defined
on a tubular neighborhood around a point on S

4m+4. The standard sphere metric is represented
by a straight line that joins p±1 . It is also worth mentioning that the quaternionic Kähler
metric on HP

m+1 (respectively, HP
m+1) is represented by an integral curve that joins p+

0 and
p−1 (respectively, p−0 and p+

1 ).
– p±2 = (±(1/n),±(1/n), (2m + 3)z0, z0), z0 = (1/n)

√
(2m + 1)/(2m + (2m + 3)2)

These points represent the initial condition and the terminal condition where the principal
orbit collapses as Jensen’s sphere [Jen73]. There is only one integral curve that emanates from
p+
2 and it represents the singular sine metric cone with its base as Jensen’s sphere [Jen73]. It

is also worth mentioning that p+
2 is a sink for the Ricci-flat subsystem of (2.7) restricted on

E ∩ {H = 1}, representing the asymptotically conical limit.
– q±1 = (±((3 + 2

√
12m2 + 6m)/3n),±((4m − 2

√
12m2 + 6m)/4mn), 0, 0),

q±2 = (±((3 − 2
√

12m2 + 6m)/3n),±((4m + 2
√

12m2 + 6m)/4mn), 0, 0)
These critical points are in general ‘bad’ points for our study. Integral curves that converge
to q−1 or q−2 represent metrics with blown-up ḟ1 and ḟ2. Straightforward computations show
that for m ≥ 2, critical points q+

1 and q+
2 are sources for (2.7) on (2.8). By the Z2 symmetry,

critical points q−1 and q−2 are sinks for m ≥ 2.
– q±3 = (∓1

3 ,±(2/4m), 0,
√

3 − 2m/6m)
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These critical points are also ‘bad’ points as q±1 and q±2 . They only exist for m = 1. Integral
curves that converge to q−3 represent metrics with blown-up ḟ1. For m = 1, critical points q+

1

and q+
3 are sources and q−1 and q−3 are sinks; q+

2 and q−2 are saddles.

Proposition 3.1. The list above exhausts all critical points on E .

Proof. By (2.11), it is clear that critical points on E must lie on {H2 = 1}. The list is complete
by considering the vanishing of the Y -entry and Z-entry. �

For any m, linearizations at q±i show that the phase space E is ‘filled’ with integral curves
that emanate from q+

i or those that converge to q−i . Hence, most integral curves that emanate
from p+

0 or p+
1 are anticipated to converge to one of these q−i . In the following, we give a detailed

analysis of the linearizations at p+
0 and p+

1 and integral curves that emanate from these critical
points.

The linearization at p+
0 is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8m − 6
3n

−32m2 − 24m

9n

4
3

0

6
n

16m − 6
3n

0
4m + 8

3
8m

3n

16m2 − 12m

9n
0 0

0 0 0
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Eigenvalues and eigenvectors are

λ1 = λ2 =
2
3
, λ3 = −2

3
, λ4 =

8m

3n
;

v1 =

⎡
⎢⎢⎣
−(8m2 + 18m + 18)

−9
−(8m2 + 18m)

9

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣
−4m(m + 2)

3(m + 2)
−2m(m + 2)

3

⎤
⎥⎥⎦ , v3 =

⎡
⎢⎢⎣
−4m

3
2m
0

⎤
⎥⎥⎦ , v4 =

⎡
⎢⎢⎣
−2(4m − 3)

18
4m − 3

0

⎤
⎥⎥⎦ .

The first three eigenvectors are tangent to E . Consider linearized solutions of the form

p+
0 + e(2/3)ηv1 + s1e

(2/3)ηv2 (3.1)

for some s1 ∈ R. By the Hartman–Grobman theorem, there is a one-to-one correspondence
between each choice of s1 ∈ R and an actual solution curve that emanates from p+

0 and leaves
E ∩ {H = 1} initially. Hence, we use γs1 to denote an actual solution that approaches the lin-
earized solution (3.1) near p+

0 . Moreover, by the unstable version of Theorem 4.5 in Chapter 13
of [CL55], there is some ε > 0 such that

γs1 = p+
0 + e(2/3)ηv1 + s1e

(2/3)ηv2 + O(e(2/3+ε)η).

From the linearization at p+
0 and (2.10), the parameter s1 is related to the initial condition f in

(2.3) as follows.

f = lim
η→−∞

(
1√
Y Z

1 − H2

nΛ

)
(γs1) =

√
6m + 18

n

1
3 + s1

. (3.2)

We set s1 > −3 so that f is positive. From another perspective, in order to have γs1 be in
E , we only consider γs1 with s1 > −3 so that Z is positive initially along the integral curve.
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Note that v2 is tangent to E ∩ {H = 1}. Therefore, it makes sense to let γ∞ denote the integral
curve that lies in E ∩ {H = 1} such that

γ∞ ∼ p+
0 + 0 · e(2/3)ηv2 + 1 · e(2/3)ηv2 (3.3)

near p+
0 . The integral curve γ∞ represents the Ricci-flat metric on HP

m+1\{∗} constructed in
[Böh98]. For m = 1, the metric is the Spin(7) metric in [BS89] and [GPP90]. Furthermore, as
shown in Proposition 6.3 in [Chi21], the integral curve γ∞ lies on the one-dimensional invariant
set

BSpin(7) := E ∩ {Y − 2Z − X1 = 0} ∩ {3Z − X2 = 0} (3.4)

and joins p+
0 and p+

2 .

Remark 3.2. The defining equations in (3.4) are equivalent to the cohomogeneity-one Spin(7)
condition on HP

2\{∗}. Specifically, we have the dynamical system

ḟ1

f1
=

1
f1

− 2
f1

f2
2

,

ḟ2

f2
= 3

f1

f2
2

.

(3.5)

Similar to the initial value problem in Remark 3.6, the initial condition can be obtained from
the coordinate of p+

0 and the limit limη→−∞(X2/
√

Y Z)(γ∞(η)). Since a Ricci-flat metric is
homothety invariant, the extra freedom allows us to set f2(0) as any positive number. Solving
the initial value problem with

(f1(0), ḟ1(0), ḟ2(0), ḟ2(0))) = (0, 1, β, 0), β > 0,

yields the homothetic family of Spin(7) metrics in [BS89] and [GPP90].

The linearization at p+
1 is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−16m2 + 8m − 6
n2

16m(m + 1)
n2

4
n

8m

n
12m + 12

n2
−4m + 6

n2

4m + 8
n

4m − 4
n

−4m

n2

4m

n2
0 0

4m + 6
n2

−4m + 6
n2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Eigenvalues and eigenvectors are

μ1 = μ2 =
2
n

, μ3 = 0, μ4 = −4(m + 1)
n

;

w1 =

⎡
⎢⎢⎣
−1
−1
0
0

⎤
⎥⎥⎦ , w2 =

⎡
⎢⎢⎣

−4m
3

2m
−(2m + 3)

⎤
⎥⎥⎦ , w3 =

⎡
⎢⎢⎣
−(n − 1)
−(n − 1)

1
1

⎤
⎥⎥⎦ , w4 =

⎡
⎢⎢⎣
−8m(m + 1)

6(m + 1)
−2m

2m + 3

⎤
⎥⎥⎦ .

The first three eigenvectors are tangent to E . Hence, there exists a one-parameter family of
integral curves ζs2 that emanate from p+

1 and

ζs2 = p+
1 + e(2/n)ηw1 + s2e

(2/n)ηw2 + O(e(2/3+ε)η). (3.6)
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The initial condition (2.4) has a degree of freedom in the second-order derivative. Specifically, the
parameter s2 is related to the limit limt→0(f̈2/f2)(f1/f̈1). From (2.1), (2.10) and the linearization
at p+

1 , we have

lim
t→0

f̈2

f2

f1

f̈1

= lim
η→−∞

X2
2 − HX2 + R2 − 1−H2

n

X2
1 − HX1 + R1 − 1−H2

n

=
n

4m(1 + 6ms2)
− 9

12m
. (3.7)

Although it is clear that ζs2 is in E for any s2 ∈ R, we mainly consider s2 ≥ 0 in this paper. We
have the following proposition for ζs2 with s2 < 0.

Proposition 3.3. Each ζs2 with s2 < 0 either does not converge to any critical point in E or
converges to q−2 (q−2 or q−3 if m = 1).

Proof. From the linearized solution, it is clear that each ζs2 with s2 < 0 is initially in

W := E ∩ {Z − Y ≥ 0} ∩ {X1 − X2 ≥ 0}. (3.8)

As W includes all points (
√

(n − 1)/12m cosh(λ), 0, 0,
√

(n − 1)/12nm sinh(λ)) with λ ≥ 0, the
set is non-compact. Furthermore, since〈

∇
(

Y

Z

)
, V

〉
= −2

Y

Z
(X1 − X2) ≤ 0 (3.9)

and

〈∇(X1 − X2), V 〉 = (X1 − X2)H
(

G +
1
n

(1 − H2) − 1
)

+ 2(Z − Y )((2m + 3)Z − Y ), (3.10)

the set W is invariant. Note that the second term in (3.10) is non-negative in W ∩ {X1 − X2 = 0}.
By (3.9), it is clear that the function Y/Z monotonically decreases from 1 along each ζs2

with s2 < 0. If the function Y/Z converges to some positive number, the function X1 − X2

would converge to zero. From (2.9), we know that both Y and Z converge to some positive
numbers with Y/Z < 1. Hence, the right-hand side of (3.10) is eventually positive as X1 − X2

converges to zero, a contradiction. Hence, the function Y/Z converges to zero. Therefore, if a ζs2

with s2 < 0 converges to a critical point in E , it must be q−2 (q−2 or q−3 if m = 1). �
Remark 3.4. For s2 = 0, it is clear that ζ0 lies on the one-dimensional invariant set

E ∩ {X1 = X2} ∩
{

Y = Z =
1
n

}
(3.11)

and joins p±1 . The integral curve represents the standard sphere metric gS4m+4 on S
4m+4.

Specifically, the defining equations in (3.11) give the initial value problem

ḟ1

f1
=

ḟ2

f2
, f2

1 + (ḟ1)2 = 1,

f1(0) = f2(0) = 0, ḟ1(0) = ḟ2(0) = 1,

(3.12)

in the original coordinates. The solution is exactly the standard sphere metric

gS4m+4 = dt2 + sin2(t)gS4m+3 .

We define ζ∞ to be the integral curve that emanates from p+
1 and lies in CΛ≥0 ∩ {H = 1}.

We have
ζ∞ ∼ p+

1 + e(2/n)ηw2. (3.13)

As studied in [Chi21], the integral curve ζ∞ is known to be defined on R; it joins p+
1 and p+

2 and
represents a complete non-trivial Ricci-flat metric defined on R

4m+4.
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As shown in the following proposition, there exists an integral curve that joins p+
0 and p−1 ,

and it represents the standard quaternionic Kähler metric on HP
m+1. By the Z2-symmetry of

(2.7) on the sign of (X1, X2), we know that there also exists an integral curve that emanates

from p+
1 and tends to p−0 , and it represents the standard quaternionic Kähler metric on HP

m+1.

Proposition 3.5. The integral curve γ0 lies on the one-dimensional invariant set

BQK := E ∩ {X1 − X2 + Z − Y = 0} ∩ {X2 + Z = 0}.
The integral curve ζ1/(2m+6) lies on the one-dimensional invariant set

B̄QK := E ∩ {X2 − X1 + Z − Y = 0} ∩ {X2 − Z = 0}.
Proof. As X1 − X2 = Y − Z and X2 = −Z on BQK , we can eliminate X1 and X2 in (2.9). Hence,

12m

n
(Y − Z)2 + 6Y 2 + 4m(4m + 8)Y Z − 12mZ2 = 1 − 1

n
(3.14)

holds on BQK . Therefore,

〈∇(X2 + Z), V 〉|BQK

= (X2 + Z)H
(

G +
1
n

(1 − H2)
)
− 1

n
(1 − H2) − X2H + (4m + 8)Y Z − 6Z2 + Z(X1 − 2X2)

= − 1
n

(1 − H2) − X2H + (4m + 8)Y Z − 6Z2 + Z(X1 − 2X2)

=
1

n − 1

(
12m

n
(Z − Y )2 + 6Y 2 + 4m(4m + 8)Y Z − 12mZ2 − n − 1

n

)

eliminating X1 and X2 by the definition of BQK

= 0 by (3.14). (3.15)

On the other hand, we have

〈∇(X1 − X2 + Z − Y ), V 〉|BQK

= (X1 − X2 + Z − Y )
(

H

(
G +

1
n

(1 − H2) − 1
)

+ 4Z − 2Y

)
+ (n − 1)(X2 + Z)(Z − Y )

= 0. (3.16)

Therefore, the set BQK is indeed invariant.
Since X1 = Y − 2Z and X2 = −Z on BQK , one can realize BQK as a hyperbola (3.14). Note

that p+
0 and p−1 are the only critical points in BQK and they are in the same connected component

in (3.14). Therefore, there is an integral curve that joins p+
0 and p−1 and lies on BQK . Hence, the

integral curve must be some γs1 . Let v(η) be the normalized velocity of the linearized solution
that uniquely corresponds to γ0. It is clear that limη→−∞ v(η) = v1/‖v1‖ is tangent to BQK

at p+
0 . Hence, we know that γ0 lies on BQK . By the Z2-symmetry on the sign of (X1, X2), we

know that ζ1/(2m+6) lies on the invariant set

B̄QK := CΛ≥0 ∩ {X2 − X1 + Z − Y = 0} ∩ {X2 − Z = 0}
and joins p+

1 and p−0 . �
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Remark 3.6. The defining equations for BQK are equivalent to the dynamical system

ḟ1

f1
= −2

f1

f2
2

+
1
f1

,

ḟ2

f2
= − f1

f2
2

.

(3.17)

While f1(0) = 0 and ḟ1(0) = 1 can be obtained from the coordinate of p+
0 , the initial conditions

f2(0) and ḟ2(0) are obtained from v1. Specifically, from (3.1) we have

f2(0) = lim
η→−∞

(√
1 − H2

n
√

Y Z

)
(γ0(η)) =

√
4(m + 3)

n
, ḟ2(0) = lim

η→−∞

(
X2√
Y Z

)
(γ0(η)) = 0.

Solving the initial value problem, the standard quaternionic Kähler metric on HP
m+1 is

g = dt2 +
m + 3

n
sin2

(
2
√

n

4(m + 3)
t

)
gS4m+3 |p1 +

4(m + 3)
n

cos2
(√

n

4(m + 3)
t

)
gS4m+3 |p2 .

Finally, we consider the linearization at p+
2 . We have⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−16m2 + 8m − 6
n2

16m(m + 1)
n2

(8m + 12)z0 8mz0

12m + 12
n2

−4m + 6
n2

4(m + 2)z0 4(2m + 1)(m + 3)z0

−4m(2m + 3)z0

n

4m(2m + 3)z0

n
0 0

(4m + 6)z0

n
−(4m + 6)z0

n
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Eigenvalues and eigenvectors are

δ1 = −2m + 1 −
√

(2m + 1)2 − 8(2m + 3)(m + 1)n2z2
0

n
,

δ2 = −2m + 1 +
√

(2m + 1)2 − 8(2m + 3)(m + 1)n2z2
0

n
,

δ3 =
2
n

, δ4 = 0;

u1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2mn

2m + 3
δ1

− 3n

2(2m + 3)
δ1

−2mnz0

nz0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, u2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2mn

2m + 3
δ2

− 3n

2(2m + 3)
δ2

−2mnz0

nz0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

u3 =

⎡
⎢⎢⎣
−1
−1
0
0

⎤
⎥⎥⎦ , u4 =

⎡
⎢⎢⎢⎢⎣
−2n((2m + 3)2 + 2m)z0

−2n((2m + 3)2 + 2m)z0

2m + 3

1

⎤
⎥⎥⎥⎥⎦ .

The first three eigenvectors are tangent to E . Furthermore, the first two eigenvectors are tangent
to E ∩ {H = 1} and δ2 < δ1 < 0. For m ≥ 1, the critical point p+

2 is a stable node for the restricted
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system on E ∩ {H = 1}. Let Φ be the only integral curve that emanates from p+
2 . It converges

to p−2 and lies on the one-dimensional invariant set

E ∩ {X1 = X2} ∩ {Y = (2m + 3)Z = (2m + 3)z0}. (3.18)

Remark 3.7. The initial value problem from the defining equations (3.18) is similar to the one
from (3.11). Specifically, we have

f2
1 =

1
2m + 3

f2
2 ,

(2m + 1)(2m + 3)2

2m + (2m + 3)2
(f2

1 + (ḟ1)2) = 1,

f1(0) = f2(0) = 0, ḟ1(0) =
1√

2m + 3
ḟ2(0) =

1
2m + 3

√
2m + (2m + 3)2

2m + 1
.

(3.19)

Hence, Φ represents the sine cone over Jensen’s sphere

g = dt2 +
2m + (2m + 3)2

(2m + 1)(2m + 3)2
sin2(t)gS4m+3 |p1 +

2m + (2m + 3)2

(2m + 1)(2m + 3)
sin2(t)gS4m+3 |p2

= dt2 + sin2(t)gJensen.

4. Existence of the first Einstein metric

We prove the existence of a heterocline that joins p±0 in this section. The technique is to construct
a compact set S such that a γs1 that enters the set can only escape through points in E ∩
{H ≥ 0} ∩ {X1 − X2 = 0}. Then we apply Lemma 4.4 in [Böh98] to complete the proof.

We define the compact set S as follows. Define polynomials

A := Y X2 − 3
m

Z

(
X1 +

2m

3
X2

)
,

B :=
1 − H2

n
− 2n2(2m + 3)(m − 1)

m(2m + 1)(8m + 3)
Y Z,

P := X1

(
R2 − 1

n
(1 − H2)

)
− X2

(
R1 − 1

n
(1 − H2)

)
− 2X2

(
X1 +

2m

3
X2

)
(X1 − X2),

Q := −4X2Y
2 − (4m + 8)(4mX2 + 2X1)Y Z + (2X1 + (4m + 2)X2)

1 − H2

n

+ 4X2

(
X1 +

2m

3
X2

)(
H +

2m

3
X2

)
.

(4.1)

Define

S := E ∩ {X1 − X2 ≥ 0} ∩ {X2 ≥ 0} ∩ {A ≥ 0} ∩ {B ≥ 0} ∩ {P ≥ 0}.
The following proposition lists some basic properties of S.

Proposition 4.1. The set S has the following properties.

(i) For m ≥ 1, the set S ∩ {X2 = 0} is a union of {p+
0 } and a one-dimensional curve Γ :=

S ∩ {X1 = X2 = 0}. For m ≥ 2, the set Γ is bounded.
(ii) The variable Y is positive in S for m ≥ 1.
(iii) For m ≥ 1, the set S ∩ {Z = 0} is {p+

0 , (0, 0,
√

(n − 1)/6n, 0)}.
(iv) The set S is compact for m ≥ 2.
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Proof. Since A ≥ 0 in S, a point in S with vanishing X2-coordinate must have ZX1 = 0. If we
further assume Z = 0 at that point, then from P ≥ 0 we have X1(1 − H2) = X1(1 − 9X2

1 ) ≤ 0.
Hence, we obtain X1 = 1

3 and that point must be p+
0 . We obtain Γ if X1 = 0 is further assumed.

It is obvious that Γ = E ∩ {X1 = X2 = 0} for m = 1 and the set is non-compact. We prove
that Γ is bounded for m ≥ 2. From B ≥ 0 and (2.9), we have

6Y 2 + 4m(4m + 8)Y Z − 12mZ2 =
n − 1

n
≥ (n − 1)

2n2(2m + 3)(m − 1)
m(2m + 1)(8m + 3)

Y Z

⇔ 6Y 2 +
(

4m(4m + 8) − (n − 1)
2n2(2m + 3)(m − 1)
m(2m + 1)(8m + 3)

)
Y Z − 12mZ2 ≥ 0. (4.2)

For m ≥ 2, the inequality above implies mY − Z ≥ 0. Then from (2.9) we have (n − 1)/n ≥
6Y 2 + (4m + 32)Z2. The first claim is clear.

Suppose there is a point in S with vanishing Y -coordinate. From A ≥ 0 we know that
−(3/m)Z(X1 + (2m/3)X2) = 0 at that point. If Z �= 0, then X1 = X2 = Y = 0 at that point,
which is impossible from (2.9). If X1 + (2m/3)X2 �= 0, then Y = Z = 0 at that point. Then
from (2.9), we have X1 − X2 �= 0. From P ≥ 0 we know that −(1/n)(1 − H2) − 2X2(X1 +
(2m/3)X2) ≥ 0 at that point. The point has to be (1

3 , 0, 0, 0), which does not lie on E . The
above discussion proves the second claim.

Since P ≥ 0 on a point with vanishing Z-coordinate in S, we have

(X2 − X1)
1
n

(1 − H2) − 2X2Y
2 − 2X2

(
X1 +

2m

3
X2

)
(X1 − X2) ≥ 0.

By the definition of S, each term in the above inequality is non-positive. Since Y > 0 from the
second claim, the variable X2 must vanish and the third claim is clear.

Finally, from A ≥ 0 and X1 − X2 ≥ 0 in S, we know that X2(Y − ((2m + 3)/m)Z) ≥ 0 in S.
If X2 �= 0, then mY ≥ (2m + 3)Z and the boundedness of all variables is obtained from (2.9). If
X2 = 0, then the boundedness comes from the first claim. Hence, S is a compact set. �

The case m = 1 is very special. In the following proposition, we show that for m = 1, the
defining inequalities A ≥ 0 and P ≥ 0 must be equalities. The set S is closely related to the
integral curves γ∞ in Remark 3.2 and Φ in Remark 3.7.

Proposition 4.2. For m = 1, the set S is the union

{p+
0 , p+

2 } ∪ γ∞ ∪ Γ ∪ (Φ ∩ {X1, X2 > 0}).
Proof. Consider S with m = 1. If X2 = 0 is imposed, we obtain either the point p+

0 or Γ from
Proposition 4.1(a). Hence, we assume X2 > 0 in the following. From A ≥ 0 it is clear that X2(Y −
5Z) ≥ Y X2 − 3Z(X1 + 2

3X2) ≥ 0 and hence Y − 5Z ≥ 0.
One can easily verify that

P = (X1 − X2)
(
6Y Z − 2X2

(
X1 + 2

3X2

)) − 1
7(X1 − X2)(1 − H2) − 2(Y − Z)A. (4.3)

If X1 = X2 = X > 0, the first two terms in (4.3) vanish while the last term is non-positive. Then
we must have A = 0, from which we deduce Y − 5Z = 0. By (3.18) we obtain the line segment
Φ ∩ {X1, X2 > 0}.

For X1 �= X2, we rewrite (4.3) as follows:

P = (X1 − X2)
(
6Y Z − 2X2

(
X1 + 2

3X2

) − 10
147(1 − H2)

) − 11
147(X1 − X2)(1 − H2) − 2(Y − Z)A.

(4.4)
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The last two terms in (4.4) are non-positive. Hence, from P ≥ 0 we have

0 ≤ 6Y Z − 2X2

(
X1 + 2

3X2

) − 10
147(1 − H2)

= 6Y Z − 2X2

(
X1 + 2

3X2

) − 10
147

(
7
6

(
6Y 2 + 48Y Z − 12Z2 + 12

7 (X1 − X2)2
) − H2

)
by (2.9)

= 1
21(5X1 + 4X2 + 5Y + 2Z)(X1 − X2 − Y + 5Z)

+ 1
21(5X1 + 4X2 − 5Y − 2Z)(X1 − X2 + Y − 5Z). (4.5)

Suppose X1 − X2 − Y + 5Z ≤ 0; then the first term in the last line of (4.5) is non-positive. As
the summation above is non-negative, we know that the second term in the last line of (4.5)
must be non-negative. As X1 − X2 + Y − 5Z ≥ 0, we must have 1

5(5X1 + 4X2 − 2Z) ≥ Y . From
A ≥ 0 we have

X2

5
(5X1 + 4X2 − 2Z) ≥ 3Z

(
X1 +

2
3
X2

)
⇔ (5X1 + 4X2)(X2 − 3Z) ≥ 0 ⇔ X2 − 3Z ≥ 0.

Then we claim that the first term in (4.3) is non-positive since

6Y Z − 2X2

(
X1 + 2

3X2

) ≤ 6
5(5X1 + 4X2 − 2Z)Z − 2X2

(
X1 + 2

3X2

)
≤ 2

5

(
5X1 + 4X2 − 2

3X2

)
X2 − 2X2

(
X1 + 2

3X2

)
= 0. (4.6)

But P ≥ 0. Hence, assumptions X1 �= X2 and X1 − X2 − Y + 5Z ≤ 0 lead to the vanishing of A
and P .

Suppose X1 − X2 − Y + 5Z ≥ 0. Then A ≥ 0 implies

(X1 − X2 + 5Z)X2 ≥ 3Z
(
X1 + 2

3X2

) ⇔ X2 ≥ 3Z.

Then we claim that the first term in (4.3) is also non-positive since

6Y Z − 2X2

(
X1 + 2

3X2

) ≤ 6(X1 − X2 + 5Z)Z − 2X2

(
X1 + 2

3X2

)
≤ 2

(
X1 − X2 + 5

3X2

)
X2 − 2X2

(
X1 + 2

3X2

)
= 0. (4.7)

Hence, the assumption X1 �= X2 and X1 − X2 − Y + 5Z ≥ 0 also leads to the vanishing of A
and P .

Therefore, points in S with X1 �= X2 must have vanished A and P , which leads to the
equalities

H = 1, 3Z = X2, 3Y = 3X1 + 2X2.

Note that the last two equations above are equivalent to the defining equations in (3.4) for m = 1.
We obtain γ∞ and critical points p+

0 and p+
2 . �

Remark 4.3. For m = 1, there is another heterocline χ that also lies on the invariant set BSpin(7).
The integral curve joins q+

3 and p+
2 . Note that from the proof to Proposition 4.2, it is clear that

X1 − X2 and Y − 5Z are positive along γ∞. These two polynomials are negative along χ and
hence the integral curve is not in S.

With Proposition 4.2 established, we can take m = 1 as our ‘initial case’ for further analysis
of cases with m > 1. In particular, we prove the following technical proposition.
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Proposition 4.4. For m ≥ 1, the inequality Q ≥ 0 holds on the set S ∩ {P = 0}. For m = 1,
the inequality reaches equality only at {p+

0 , p+
2 } ∪ γ∞ ∪ Γ. For m ≥ 2, the inequality reaches

equality only at p+
0 , a point on Φ, and points in Γ.

Proof. We consider S ∩ {P = 0} as a union of slices

S ∩ {P = 0} =
⋃

κ∈[0,1]

Lκ, Lκ := S ∩ {P = 0} ∩ {X2 − κX1 = 0}.

Note that each Lκ contains Γ. As X1 ≥ X2 ≥ 0 in S, the function Q vanishes once X1 does. We
assume X1 > 0 in the following discussion.

For L0, we have

Q|L0 = −2(4m + 8)X1Y Z + 2X1
1 − H2

n
.

From A ≥ 0 we have Z = 0. Then Q|L0 = 2X1((1 − H2)/n), and P = 0 becomes −X1((1 −
H2)/n) = 0. Hence, L0 = Γ ∪ {p+

0 } and Q|L0 = 0.
If κ = 1, let X := X1 = X2 > 0. Then A ≥ 0 and P = 0 respectively become

X

(
Y − 2m + 3

m
Z

)
≥ 0, X(Y − (2m + 3)Z)(Y − Z) = 0.

For X > 0 we must have Y = (2m + 3)Z. Then from (2.9) we find that Y = (2m + 3)Z =
(2m + 3)z0. Hence, L1 is a union of Γ and a part of the invariant set (3.18). More specifically,
from B ≥ 0 we have

1
n
− nX2 − 2n2(2m + 3)(m − 1)

m(2m + 1)(8m + 3)
Y Z =

1
n
− nX2 − 2n2(2m + 3)2(m − 1)

m(2m + 1)(8m + 3)
z2
0 ≥ 0, (4.8)

and it follows that

L1 = Γ ∪
(

Φ ∩
{

0 < X ≤ 1
n

√
36m3 + 90m2 + 117m + 54
m(8m + 3)(4m2 + 14m + 9)

≤ 1
n

})
(4.9)

for m ≥ 2. For m = 1, we have

L1 = Γ ∪
(

Φ ∩
{

0 < X ≤ 1
n

})
∪ {p+

2 }. (4.10)

And Q|L1 becomes

Q|L1

= X

(
− 4Y 2 − (4m + 8)(4m + 2)Y Z + (n + 1)

(
1
n
− nX2

)
+ 4

(
1 +

2m

3

)(
n +

2m

3

)
X2

)

= X

(
− 4(2m + 3)2z2

0 − (4m + 8)(4m + 2)(2m + 3)z2
0 +

n + 1
n

− 4
9
m(8m + 3)X2

)

=
4
9
m(8m + 3)X

(
1
n2

36m3 + 90m2 + 117m + 54
m(8m + 3)(4m2 + 14m + 9)

− X2

)

≥ 0. (4.11)

Hence, for m ≥ 1, the function Q|L1 ≥ 0 and it only vanishes on Γ and boundary points of L1 ∩ Φ.
Note that for m = 1, one of the boundary points of L1 ∩ Φ is p+

2 .
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For each Lκ with κ ∈ (0, 1), replace X2 with X1κ. Then (2.9) and P = 0 respectively become

n − 1
n

− 12m

n
(1 − κ)2X2

1 = 6Y 2 + 4m(4m + 8)Y Z − 12mZ2,

κ − 1
n

− κ − 1
3n

(32κ2m2 − 12κ2m + 48mκ − 18κ + 27)X2
1

= 2κY 2 − (4m + 8)Y Z + (4mκ + 6)Z2.

(4.12)

With the equations above, we can write the constant 1 as a homogeneous polynomial
One(Y, Z) of degree 2. Multiplying the constant term in B by One(Y, Z), the function B
restricted to each Lκ ∩ {P = 0} then becomes a homogeneous polynomial in Y and Z. Factor
out X1 in Q and multiply the constant term in Q/X1 by One(Y, Z). We see that Q restricted
on each Lκ ∩ {P = 0} is a homogeneous polynomial in X1, Y and Z. In summary, we have

A|Lκ∩{P=0} = X1

(
Y κ − 3

m
Z

(
1 +

2m

3
κ

))
,

B|Lκ∩{P=0} = b2Z
2 + b1Y Z + b0Y

2,

Q|Lκ∩{P=0} = X1(q2Z
2 + q1Y Z + q0Y

2).

(4.13)

The coefficients bi and qi in (4.13) are rational functions in m and κ. Explicit formulas for each
coefficient are presented in the Appendix for the sake of simplicity. As Y is positive in S from
Proposition 4.1, we factor out Y and consider A|Lκ∩{P=0} = X1Y Ãm,κ(Z/Y ), B|Lκ∩{P=0} =
Y 2B̃m,κ(Z/Y ) and Q|Lκ∩{P=0} = X1Y

2Q̃m,κ(Z/Y ), where

Ãm,κ(x) = κ −
(

3
m

+ 2κ

)
x, B̃m,κ(x) = b2x

2 + b1x + b0, Q̃m,κ(x) = q2x
2 + q1x + q0.

(4.14)
We have

q2 = −4(2κm + 3)(32κ3m3 + κ2m2(96 − 68κ) + κm(90 − 84κ) + 27(1 − κ))
3(1 − κ)(2κ2m(8m − 5) + 6κ(4m − 1) + 9)

≤ 0 (4.15)

for any (m, κ) ∈ [1,∞) × (0, 1). Therefore, the restricted function Q|Lκ∩{P=0} is non-negative
if it is so on the boundary of Lκ ∩ {P = 0}. The upper bound and the lower bound of Z/Y
on each slice are respectively provided by A|Lκ∩{P=0} ≥ 0 and B|Lκ∩{P=0} ≥ 0. Specifically,
from A|Lκ∩{P=0} ≥ 0 we have Z/Y ≤ mκ/(3 + 2mκ). As shown in (A.1), we have b2 < 0. By
Proposition A.1 in the Appendix, the smaller real root σ(m, κ) of B̃m,κ is in the interval
(0, mκ/(3 + 2mκ)). Hence, from B|Lκ∩{P=0} ≥ 0 we have Z/Y ≥ σ(m, κ). By the arbitrariness
of κ, it is clear that the minimizing point of Q on S ∩ {P = 0} lies on S ∩ {P = 0} ∩ {A = 0} or
S ∩ {P = 0} ∩ {B = 0}.

We have

Q|Lκ∩{A=0} = X1Y
2Q̃m,κ

(
mκ

3 + 2mκ

)

= X1Y
2 4(m + 3)(m − 1)(4κ3m2(8m − 1) + 4κ2m(8m − 3) + 18κm + 9(1 − κ))κ2

3(2κm + 3)(1 − κ)(2κ2m(8m − 5) + 6κ(4m − 1) + 9)

≥ 0. (4.16)

Therefore, for m ≥ 2, the function Q is positive on Lκ ∩ {A = 0} for any κ ∈ (0, 1). For m = 1,
the function Q vanishes at S ∩ {P = 0} ∩ {A = 0}.
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Proving the non-negativity of Q|Lκ∩{B=0}∩{P=0} is a bit more computationally involved.
From Proposition 4.2, we know that for m = 1, the polynomials A, B and P identically vanish
at γ∞. Therefore, an explicit formula for the root σ(1, κ) can be obtained from A = 0. We have

σ(1, κ) =
Z

Y
=

X2

3
(
X1 + 2

3X2

) =
κ

2κ + 3
.

Define the function F (m, κ) := Q̃m,κ(σ(m, κ)). To show that Q|Lκ∩{P=0}∩{B=0} ≥ 0, it suffices
to show that F (m, κ) ≥ 0 for any (m, κ) ∈ [1,∞) × (0, 1). Note that the vanishing of F (m, κ)
means σ(m, κ) being also a root of Q̃m,κ. From the computation (4.16) we have

F (1, κ) := Q̃1,κ(σ(1, κ)) = Q̃1,κ

(
κ

3 + 2κ

)
= 0

for any κ ∈ (0, 1). Furthermore, by implicit derivative, we have(
∂σ

∂m

)
(1, κ) =

(
−

∂b2
∂mσ2 + ∂b1

∂mσ + ∂b0
∂m

2b2σ + b1

)
(1, κ) = −(92κ4 + 1202κ3 + 1458κ2 − 367κ − 537)κ

66(3 + 4κ)(κ + 1)(3 + 2κ)2
,

and it follows that(
∂F

∂m

)
(1, κ) =

(
∂q2

∂m
σ2 +

∂q1

∂m
σ +

∂q0

∂m
+ 2q2σ

∂σ

∂m
+ q1

∂σ

∂m

)
(1, κ)

=
4(κ − 1)(184κ2 − 244κ − 339)κ2

99(3 + 4κ)(κ + 1)(2κ + 3)
> 0.

Hence, F ≥ 0 on a neighborhood around {(1, κ) | κ ∈ (0, 1)} ⊂ [1,∞) × (0, 1). In other words,
for an m that is slightly larger than 1, the root σ(m, κ) of B̃m,κ is strictly between the two real
roots of Q̃m,κ. Hence, proving F ≥ 0 on [1,∞) × (0, 1) is equivalent to showing that σ(m, κ)
stays between the two real roots of Q̃m,κ for varying (m, κ). This idea leads us to consider the
resultant r(Q̃m,κ, B̃m,κ) for the two polynomials. We have

r(Q̃m,κ, B̃m,κ) = − 64κ2(m − 1)(2κm + 3)
(8m + 3)2(2m + 1)2m2(1 − κ)(2κ2m(8m − 5) + 6κ(4m − 1) + 9)2

r̃,

r̃ = 262144κ4m10 + (516096κ4 + 679936κ3)m9

+ (373760κ4 + 1233920κ3 + 675840κ2)m8

+ (−275904κ4 + 1151040κ3 + 1143744κ2 + 308160κ)m7

+ (−926496κ4 + 248832κ3 + 1432512κ2 + 507456κ + 54432)m6

+ (−800496κ4 − 1256256κ3 + 1472688κ2 + 857520κ + 92016)m5

+ (−281880κ4 − 1525392κ3 + 266328κ2 + 1353024κ + 199584)m4

+ (−33048κ4 − 644436κ3 − 672624κ2 + 957420κ + 375192)m3

+ (−90396κ3 − 433026κ2 + 186624κ + 333882)m2

+ (−74358κ2 − 59049κ + 133407)m + 19683(1 − κ). (4.17)

As verified in Proposition A.2 in the Appendix, the inequality r(Q̃m,κ, B̃m,κ) ≤ 0 is valid for
any (m, κ) ∈ [1,∞) × (0, 1). Furthermore, the function r(Q̃m,κ, B̃m,κ) vanishes if and only if
m = 1. In particular, both Q̃1,κ and B̃1,κ have σ(1, κ) = κ/(2κ + 3) as their roots. For m > 1,
the polynomials Q̃m,κ and B̃m,κ do not share any common root. Hence, F ≥ 0 on [1,∞) ×
(0, 1) and the function F vanishes if and only if m = 1. Therefore, for m ≥ 2, the inequality
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Q|Lκ∩{P=0}∩{B=0} ≥ 0 is valid and the equality occurs only at p+
0 and a point Φ ∩ {B = 0}. The

proof is complete. �

With the help of the proceeding proposition, we are ready to prove the following lemma.

Lemma 4.5. For m ≥ 2, integral curves γs1 that are in the interior of S can only escape through
some point in E ∩ {H ≥ 0} ∩ {X1 − X2 = 0}.

Proof. The boundary ∂S is a union of the following five sets:

S ∩ {X1 − X2 = 0}, S ∩ {X2 = 0}, S ∩ {A = 0}, S ∩ {B = 0}, S ∩ {P = 0}.

By Proposition 4.1, if a γs1 escapes S through some point with vanished X2-coordinate, the point
must lie in S ∩ {A = 0} ∩ {P = 0}. Hence, we aim to show that V points inward when restricted
to the last three parts of ∂S.

A straightforward computation shows that

〈∇A, V 〉|A=0

= A

(
2H

(
G +

1
n

(1 − H2)
)
− 2X1 − (4m + 2)X2

)

+
A

X1 + (2m/3)X2

(
R1 +

2m

3
R2 −

(
1 +

2m

3

)
1
n

(1 − H2)
)

+
Y

X1 + (2m/3)X2
P

=
Y

X1 + (2m/3)X2
P since A = 0

≥ 0. (4.18)

It is confirmed that V |A=0 points to the interior of S.
Since

〈∇B, V 〉|B=0

= −2
H

n
(H2 − 1)

(
G +

1
n

(1 − H2)
)

− 2n2(2m + 3)(m − 1)
m(16m2 + 14m + 3)

Y Z

(
2H

(
G +

1
n

(1 − H2)
)
− 2X2

)

by (2.11)

= 2BH

(
G +

1
n

(1 − H2)
)

+
4n2(2m + 3)(m − 1)
m(16m2 + 14m + 3)

Y ZX2

=
4n2(2m + 3)(m − 1)
m(16m2 + 14m + 3)

Y ZX2 since B = 0

≥ 0, (4.19)

it is clear that V |B=0 points to the interior of S.
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Since

〈∇P, V 〉|P=0

= P

(
H

(
3G +

3
n

(1 − H2) − 1
)

+
4m

3
X2

)
+ (X1 − X2)Q

= (X1 − X2)Q since P = 0

≥ 0 by Proposition 4.4, (4.20)

we learn that V |P=0 also points to the interior of S.
Finally, we need to exclude the possibility of non-transversal passing of a γs1 through some

point with X1 �= X2. By (4.19) and Proposition 4.1, such a point does not exist on S ∩ {B = 0}.
Suppose there were such a point on S ∩ {P = 0}; then P = Q = 0 at that point by (4.20).
Then by Proposition 4.4, we know that such a point is either p+

0 or a point on Φ, which is
impossible. Suppose the non-transversal passing point exists on S ∩ {A = 0}; then by (4.18) and
Proposition 4.1, we must have A = P = 0 at that point, which is also impossible. �

To show that some γs1 is initially in the set S we need the following technical proposition.

Proposition 4.6. Define Ǎ := Y X2 − ((m + 2)/m)Z(X1 + (2m/3)X2). For m ≥ 2, the func-
tion Q is positive on the set

Š = E ∩ {X1 − X2 > 0} ∩ {X2 > 0} ∩ {A > 0} ∩ {Ǎ < 0} ∩ {P < 0}.
Proof. We consider Š as a union of slices

Š =
⋃

κ∈(0,1)

Ľκ, Ľκ := Š ∩ {X2 − κX1 = 0}.

For each Ľκ with κ ∈ (0, 1), replace X2 with κX1. Then from (2.9) and P < 0 we have

0 >

(
1 − κ

3n
(32κ2m2 − 12κ2m + 48mκ − 18κ + 27) − 12m

n(n − 1)
(1 − κ)3

)
X2

1

−
(

2κ +
6(1 − κ)
n − 1

)
Y 2 + (4m + 8)

(
1 − 4m

1 − κ

n − 1

)
Y Z +

(
1 − κ

n − 1
12m − (4mκ + 6)

)
Z2

=
(1 − κ)(16κ2m2 − 10κ2m + 24κm − 6κ + 9)

6m + 3
X2

1

−
(

2κ +
6(1 − κ)
n − 1

)
Y 2 + (4m + 8)

(
1 − 4m

1 − κ

n − 1

)
Y Z +

(
1 − κ

n − 1
12m − (4mκ + 6)

)
Z2.

(4.21)

The coefficient for X2
1 in (4.21) is obviously positive for any (m, κ) ∈ [2,∞) × (0, 1). On the

other hand, use (2.9) to replace the constant term in Q with homogeneous polynomials in X1, Y
and Z. The polynomial Q restricted on Ľκ becomes

Q|Ľκ
=

−64κ3m3 + (40κ − 96)κ2m2 + (36κ2 + 60κ − 108)κm + 54(κ − 1)
18m + 9

X3
1

+ X1

((
2κ +

6
2m + 1

)
Y 2 − 8m + 16

2m + 1
Y Z −

(
12mκ +

12m

2m + 1

)
Z2

)
. (4.22)

It is obvious that the coefficient for X3
1 in (4.22) is negative for any (m, κ) ∈ [2,∞) × (0, 1). Note

that if (4.21) reaches equality, then one can write X2
1 as a homogeneous polynomial in Y and Z.
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Moreover, substituting the X2
1 by the homogeneous polynomial in (4.22) gives the formula for

X1Y
2Q̃(Z/Y ) as in (4.14). Therefore, from (4.21) we obtain

Q|Ľκ
> X1Y

2Q̃

(
Z

Y

)
.

Note that Q̃(Z/Y ) above is defined on Š instead of S ∩ {P = 0}. On the other hand, the
inequalities A > 0 and Ǎ < 0 become

3mκ

3(m + 2) + 2m(m + 2)κ
<

Z

Y
<

mκ

3 + 2mκ
.

As shown in (4.15), it is clear that the coefficient q2 is negative. It suffices to show that Q̃ is
positive at mκ/(3 + 2mκ) and 3mκ/(3(m + 2) + 2m(m + 2)κ) to prove that the polynomial is
positive on the open interval in between. From (4.16) it is clear that Q̃(mκ/(3 + 2mκ)) > 0. For
any (m, κ) ∈ [2,∞) × (0, 1), a straightforward computation shows that

Q̃

(
3mκ

3(m + 2) + 2m(m + 2)κ

)

=
512(m − 1)κ2

3(1 − κ)(2κm + 3)(2κ2m(8m − 5) + 6κ(4m − 1) + 9)(m + 2)2

×
((

m3 +
11
8

m2 − 19
4

m − 3
8

)
m2κ3

+
3
2

(
m3 − 5

8
m2 + 3 m − 3

4

)
mκ2 +

(
9
8
m3 − 99

64
m2 +

27
16

m − 27
32

)
κ +

(
27
64

m2 +
27
32

))

> 0. (4.23)

The proof is complete. �
We are ready to prove the following lemma.

Lemma 4.7. For m ≥ 2, the integral curve γs1 is initially in the interior of S if s1 ∈
(3/(m − 1), 9(5m + 3)(4m2 + 4m + 3)/n2(2m + 3)(m − 1)).

Proof. With the linearized solution (3.1), we have

X1(γs1) =
1
3
− (8m2 + 18m + 18 + (4m + 8)ms1)e(2/3)η + O(e(2/3+ε)η),

X2(γs1) = (−9 + 3s1(m + 2))e(2/3)η + O(e(2/3+ε)η), (4.1)

A(γs1) =
m + 3

m
((m − 1)s1 − 3)e(2/3)η + O(e(2/3+ε)η),

B(γs1) =
2n2(2m + 3)(m − 1)
m(2m + 1)(8m + 3)

(
9(5m + 3)(4m2 + 4m + 3)

n2(2m + 3)(m − 1)
− s1

)
e(2/3)η + O(e(2/3+ε)η),

P (γs1) = O(e(2/3+ε)η),

Q(γs1) = O(e(2/3+ε)η), (4.24)

near p+
0 . Hence, functions X2, A and B are positive along γs1 near p+

0 if s1 ∈ (3/(m − 1),
9(5m + 3)(4m2 + 4m + 3)/n2(2m + 3)(m − 1)). Furthermore, the last two equalities in (4.24)
show that ∇P and ∇Q are perpendicular to the linearized solution (3.1) at p0. Hence, the inte-
gral curve γs1 is tangent to {P = 0} and {Q = 0} for any s1. It takes a little bit more work
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to show that the function P is initially positive along γs1 . Recall in (4.20), we have

P ′ = P

(
H

(
3G +

3
n

(1 − H2) − 1
)

+
4m

3
X2

)
+ (X1 − X2)Q. (4.25)

Note that (
H

(
3G +

3
n

(1 − H2) − 1
)

+
4m

3
X2

)
(γs1)

= −(48m2 + 84m + 20m(m + 2)s1)e(2/3)η + O(e(2/3+ε)η)

near p+
0 . If P were negative initially along γs1 near p+

0 , the first term in (4.25) would be positive.
Moreover, from the linearized solution (3.1), we have

Ǎ(γs1) = − 1
m

(6m + 6 − (m + 2)(m − 1)s1)e(2/3)η + O(e(2/3+ε)η).

Since 9(5m + 3)(4m2 + 4m + 3)/n2(2m + 3)(m − 1) < 6(m + 1)/(m + 2)(m − 1) for m ≥ 2, we
know that Ǎ(γs1) is initially negative along γs1 . Based on the assumption that P is initially
negative along γs1 , we know that γs1 is initially in Š. By Proposition 4.6, we know that the
second term in (4.25) is also positive and so is P ′, which is a contradiction. Therefore, the
function P must be positive initially along γs1 near p+

0 . �

According to § 4 in [Böh98], the existence of the heterocline that joins p±0 relies on the number
of critical points of

√
Z/Y that appear before the turning point. The number is originally denoted

by �Cw(h̄) in [Böh98], where w is the ratio f1/f2 =
√

Z/Y and h̄ corresponds to the initial data
f in (2.3). We introduce the following modified definitions of �Cw(h̄) and W -intersection points.

Definition 4.8. For a γs1 that is not a heterocline (i.e., a γs1 that is not defined on R or
limη→∞ γs1 �= p−0 ), let �C(γs1) be the number of critical points of the function

√
Z/Y along γs1

that appear in E ∩ {H > 0} ∩ {Y − Z > 0}.
Definition 4.9. A point where γs1 or ζs2 intersects E ∩ {H > 0} ∩ {Y − Z = 0} is called a
W -intersection point.

We have the following proposition.

Proposition 4.10. Any γs1 with s1 > −3 (or ζs2 with s2 > 0) has a turning point at E ∩
{H = 0} or a W -intersection point at E ∩ {Y − Z = 0}.
Proof. An integral curve γs1 with s1 > −3 (or ζs2 with s2 > 0) is initially in the interior of
the compact set E ∩ {H ≥ 0} ∩ {Y − Z ≥ 0}. Suppose the integral curve does not have any
turning point or any W -intersection point. Then it must be defined on R. Furthermore, such
an integral curve is in E ∩ {H < 1} initially. From (2.11), along the integral curve we eventually
have H2 < 1 − ε for some ε > 0. Hence,

H ′ = (H2 − 1)
(

1
n

+
12m

n
(X1 − X2)2

)
≤ H2 − 1

n
< − ε

n

eventually, meaning the function H must at vanish some point. We reach a contradiction. Each
integral curve without a turning point must have a W -intersection point. �

We rephrase Lemma 4.4 in [Böh98] with these new definitions.

Theorem 4.11. If γs1 is not a heterocline for any s1 ∈ [a, b], then �C(γs1) is a constant for all
s1 ∈ [a, b].
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Immediately, we have the following proposition

Proposition 4.12. The quantities �C(γ0) and �C(ζ1/(2m+6)) are both zero.

Proof. From the defining equations of BQK , we have X1 = Y − 2Z and X2 = −Z along γ0. Then
H2 < 1 becomes (3Y − (n + 3)Z)2 < 1. From (3.14) we have

12m

n
(Y − Z)2 + 6Y 2 + 4m(4m + 8)Y Z − 12mZ2 >

n − 1
n

(3Y − (4m + 6)Z)2

⇔ n(n + 9)(n − 1)(Y − Z)Z > 0. (4.26)

Hence, X1 − X2 = Y − Z > 0 along γ0. Similarly, we have X2 − X1 = Y − Z > 0 along ζ1/(2m+6).
Note that X1 − X2 vanishes at the critical point p−1 and stays positive along γ0. �

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Consider a γs1 with s1 ∈ (3/(m − 1), 9(5m + 3)(4m2 + 4m + 3)/n2(2m +
3)(m − 1)). From Lemma 4.7 we know that such a γs1 is initially in S. From (2.11) we know that
such a γs1 must exit S. From Lemma 4.5 we know that such a γs1 exits S through the face E ∩
{H > 0} ∩ {Y − Z ≥ 0} ∩ {X1 − X2 = 0}. It is clear that (

√
Z/Y )′ =

√
Z/Y (X1 − X2). Since

Z is initially positive along γs1 with s1 > 3/(m − 1), we know that �C(γs1) is exactly the number
of times that γs1 intersects E ∩ {H > 0} ∩ {Y − Z ≥ 0} ∩ {X1 − X2 = 0}. Hence, �C(γs1) ≥ 1 for
s1 ∈ (3/(m − 1), 9(5m + 3)(4m2 + 4m + 3)/n2(2m + 3)(m − 1)).

On the other hand, the integral curve γ0 joins p+
0 and p−1 . From Proposition 4.12, the function

X1 − X2 stays positive along γ0. Hence, we have �C(γ0) = 0. Therefore, by Theorem 4.11 there
exists some s� ∈ (0, 9(5m + 3)(4m2 + 4m + 3)/n2(2m + 3)(m − 1)) such that γs� is a heterocline
that joins p±0 . Theorem 1.1 is proved. �
Remark 4.13. With some small modifications, the polynomial S can be applied to prove the
existence of positive Einstein metrics on Fm+1, a cohomogeneity-one space formed by the group
triple (Sp(m)U(1), Sp(m)Sp(1), Sp(m + 1)). Furthermore, some non-existence results can also be
obtained from the defining polynomial P . For some cohomogeneity-one spaces, the function P is
negative along all γs1 in E ∩ {X1 − X2 ≥ 0}, essentially forcing X1 − X2 to be positive along these
integral curves. For example, there is no Spin(9)-invariant cohomogeneity-one positive Einstein
metric on OP

2�OP
2. A systematic study of the existence problem on all cohomogeneity-one

spaces with two isotropy summands will be presented in later work.

Remark 4.14. One can recover Böhm’s metric on HP
2�HP

2 by enlarging the set S for m = 1.
Specifically, we can increase the coefficient for Y in the polynomial A properly so that, first,
integral curves γs1 with large enough s1 are in the enlarged S initially; and second, integral
curves that are in the enlarged S must exit through the face S ∩ {X1 − X2 = 0}. Note that the
derivative of the new polynomial A still depends on the non-negativity of the same polynomial P .
Hence, �C(γs1) ≥ 1 with large enough s1 while �C(γ0) = 0, and Theorem 4.11 can be applied to
prove the existence.

We end this section with the following remark to discuss the motivation in defining S.

Remark 4.15. Inspired by Corollary 5.8 in [Böh98] and by the fact that p+
2 is a stable node, we

realized that taking the limit s1 → ∞ for γs1 may not provide enough information to prove the
existence theorem for all m. From (3.2) we know that s1 is related to the initial condition f .
Numerical data in Table 2 in [Böh98] indicate that the winding angle of γs1 around Φ may not
be monotonic as s1 increases. Hence, it is reasonable to find a bounded interval of s1 for which
the winding angle of γs1 is large enough.
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From (4.19) and (4.24), it appears that the upper bound for s1 can be easily controlled
by changing the coefficient of Y Z in B. Looking for an appropriate lower bound for s1, on
the other hand, is relatively more difficult. Originally we choose to obtain the lower bound from
f2ḟ2 ≥ f1ḟ1. The inequality is equivalent to Y X2 ≥ ZX1. Although the inequality is geometrically
motivated, showing it can be maintained before the winding angle gets large enough seems to
be too difficult. We eventually define the polynomial A, whose first and second derivatives are
relatively easier to control by polynomials P and Q.

5. Limiting winding angle

From [Win17] we know that γ∞ joins p+
0 and p+

2 . By the symmetry of (2.7), we know that there
exists γ̄∞ that joins p−2 and p−0 . As Φ joins p±2 , we have the set {γ∞, Φ, γ̄∞} of heteroclines that
joins p±0 . From this perspective, the critical point p+

2 is anticipated to play an important role in
the qualitative analysis. Intuitively speaking, if p+

2 were a stable focus in the Ricci-flat subsystem,
the integral curve γs1 would wind around Φ more frequently as s1 increases. From § 3, however,
we learn that p+

2 is a stable node in the Ricci-flat subsystem. Hence, the winding behavior of
γs1 around Φ is less obvious. The new coordinate change helps us estimate the limiting winding
angle of γs1 as s1 → ∞ and establish Theorem 1.2. On the other hand, another set {ζ∞, Φ, ζ̄∞}
of heteroclines joins p±1 . It is natural to ask if some heterocline other than ζ0 joins p±1 . The new
coordinate change also helps us to answer this question and prove Theorem 1.3.

We introduce some known estimates in the Ricci-flat system in the following. The Ricci-flat
subsystem on E ∩ {H = 1} is simply a subsystem of (2.16) in [Chi21], with Y1 → √

2, Y2 → √
2Y

and Y3 → 2
√

2Z. From Lemma 4.4 in [Chi21], we learn that the compact set

B̂RF := E ∩ {H = 1} ∩ {Y − Z ≥ 0} ∩ {X2 − X1 + 2Y − 2Z ≥ 0} ∩ {
X1 ≤ 1

2

} ∩ {X2 ≥ 0}

is invariant. Critical points p+
0 and p+

1 are on the boundary of B̂RF while p+
2 is in the interior.

Straightforward computations show that γ∞ and ζ∞ are initially in B̂RF. From Lemma 5.7 in
[Chi21], it is known that these two integral curves converge to p+

2 . We construct the following
invariant set introduced in [Chi19], which gives us more information on γ∞ near p+

2 .

Proposition 5.1. The set

BRF := E ∩ {H = 1} ∩ {Y − (2m + 3)Z ≥ 0} ∩ {X2 − X1 + Y − (2m + 3)Z ≥ 0}

is compact and invariant.

Proof. The compactness is derived from Y − (2m + 3)Z ≥ 0 and (2.9).
Since

〈∇(Y − (2m + 3)Z), V 〉BRF∩{Y −(2m+3)Z=0}

= (Y − (2m + 3)Z)
(

H

(
G +

1
n

(1 − H2)
)
− X1 − (4m + 6)Z

)

+ (4m + 6)Z(X2 − X1 + Y − (2m + 3)Z)

= (4m + 6)Z(X2 − X1 + Y − (2m + 3)Z) since Y − (2m + 3)Z = 0

≥ 0, (5.1)
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the vector field V points inward on the boundary BRF ∩ {Y − (2m + 3)Z = 0}. As for BRF ∩
{X2 − X1 + Y − (2m + 3)Z = 0}, from (2.9) we have

12m

n
(Y − (2m + 3)Z)2 + 6Y 2 + 4m(4m + 8)Y Z − 12mZ2 =

n − 1
n

⇔ 18(2m + 1)Y 2 + 8m(8m2 + 16m + 3)Y Z + 24m(2m2 + 4m + 3)Z2 = 4m + 2. (5.2)

Then we have

〈∇(X2 − X1 + Y − (2m + 3)Z), V 〉BRF∩{X2−X1+Y −(2m+3)Z)=0}

= (X2 − X1 + Y − (2m + 3)Z))
(

H

(
G +

1
n

(1 − H2) − 1
)

+
4m

n
Y +

8m2 + 24m + 18
n

Z

)

+
1
n

(Y − (2m + 3)Z)((4m + 2)H − (12m + 6)Y − (8m2 + 16m + 12)Z)

=
1
n

(Y − (2m + 3)Z)(4m + 2 − (12m + 6)Y − (8m2 + 16m + 12)Z)

since H = 1 and X2 − X1 + Y − (2m + 3)Z = 0. (5.3)

With Y, Z ≥ 0, showing 4m + 2 − (12m + 6)Y − (8m2 + 16m + 12)Z ≥ 0 is equivalent to show-
ing (4m + 2)2 ≥ ((12m + 6)Y + (8m2 + 16m + 12)Z)2. Note that (4m + 2)2 is simply the left-
hand side of (5.2) multiplied by 4m + 2. Hence, one can obtain the non-negativity by
verifying

(4m + 2)(18(2m + 1)Y 2 + 8m(8m2 + 16m + 3)Y Z + 24m(2m2 + 4m + 3)Z2)

≥ ((12m + 6)Y + (8m2 + 16m + 12)Z)2

⇔ 16n(m − 1)((4m2 + 8m + 3)Y Z + (2m2 + 4m + 3)Z2) ≥ 0. (5.4)

Note that the equality is obtained for m = 1. Hence, (5.3) is non-negative and identically vanishes
if m = 1. Hence, BRF is invariant. �
Remark 5.2. With (2.9) one can easily show that

BSpin(7) = E ∩ {Y − 2Z − X1 = 0} ∩ {3Z − X2 = 0}
= E ∩ {H = 1} ∩ {X2 − X1 + Y − 5Z = 0}. (5.5)

Therefore, the fact that (5.3) identically vanishes for m = 1 recovers the invariant set BSpin(7) as
in (3.4).

Remark 5.3. By (5.1) and (5.3), one can also show that the set

B̃RF := E ∩ {H = 1} ∩ {Y − (2m + 3)Z ≤ 0} ∩ {X2 − X1 + Y − (2m + 3)Z ≤ 0}.
is also invariant. Furthermore, we have the following proposition.

Proposition 5.4. For m ≥ 2, the integral curve γ∞ is in BRF initially. For m = 1, the integral
curve γ∞ stays on the boundary of BRF. For m ≥ 1, the integral curve ζ∞ is in B̃RF initially.

Proof. The statement is clear by (3.3) and (3.13). Note that for m = 1, the function X2 − X1 +
Y − 5Z is identically zero on γ∞. �

To obtain more information on how γs1 and ζs2 wind around Φ as s1, s2 → ∞, we consider
the ‘cylindrical’ coordinates

r sin(θ) = X1 − X2, r cos(θ) =

√
2m + 2
2m + 3

(Y − (2m + 3)Z).
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The system (2.7) is transformed into

⎡
⎢⎢⎣

H
r
θ
Y

⎤
⎥⎥⎦
′

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(H2 − 1)
(

1
n

+
12m

n
r2 sin2(θ)

)

rH

(
1
n

+
12m

n
r2 sin2(θ)

)
−Hr sin2(θ)− H

n
r cos2(θ) +

(
m + 2
m + 1

+
3
n

)
r2 sin(θ) cos2(θ)

2
√

2m + 2
2m + 3

Y +
1

m + 1
r cos(θ)− n − 1

n
H sin(θ) cos(θ)−

(
m + 2
m + 1

+
3
n

)
r cos(θ) sin2(θ)

Y

(
12m

n
Hr2 sin2(θ) − 4m

n
r sin(θ)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.6)

with conservation law (2.9) rewritten as

CΛ≥0 :
12m

n
r2 sin2(θ) + 6Y 2 + 4m(4m + 8)Y Z̃ − 12mZ̃2 = 1 − 1

n
,

Z̃ =
(

Y

2m + 3
− r cos(θ)√

(2m + 2)(2m + 3)

)
.

The set E is then defined in the (H, r, θ, Y )-coordinate accordingly. The variable r tells us the
distance from a point to Φ and θ records the winding angle around Φ.

With the new conservation law, setting r = 0 implies Y = (2m + 3)z0. Restricting (5.6) to
the invariant set E ∩ {r = 0} gives the subsystem

[
H
θ

]′
=

⎡
⎢⎣ (H2 − 1)

1
n

2
√

(2m + 2)(2m + 3)z0 − n − 1
n

H sin(θ) cos(θ)

⎤
⎥⎦ , r = 0, Y = (2m + 3)z0. (5.7)

This subsystem is essentially the integral curve Φ. Straightforward computations show that (5.6)
has the following four sequences of critical points in E ∩ {r = 0}:

{A±
i := (±1, 0, a±i , (2m + 3)z0)}i∈Z, a±i = ± arctan

(
− δ1

2
√

(2m + 3)(2m + 2)z0

)
+ iπ,

{B±
i := (±1, 0, b±i , (2m + 3)z0)}i∈Z, b±i = ± arctan

(
− δ2

2
√

(2m + 3)(2m + 2)z0

)
+ iπ.

(5.8)

Furthermore, for each i ∈ Z we have

a+
i ∈

(
iπ,

π

4
+ iπ

)
, b+

i ∈
(

π

4
+ iπ,

π

2
+ iπ

)
,

b−i ∈
(
− π

2
+ iπ,−π

4
+ iπ

)
, a−i ∈

(
− π

4
+ iπ, iπ

)
.

(5.9)

Remark 5.5. Computations show that A+
i and B+

i are transformed respectively from the two
stable eigenvectors u1 and u2 of the linearization at p+

2 . Recall from § 3 that both u1 and u2

are tangent to E ∩ {H = 1}, and the corresponding eigenvalues δ1 and δ2 are real numbers and
we have δ2 < δ1 < 0. Each linearized solution to the Ricci-flat subsystem around p+

2 must have
eδ2η � eδ1η as η → ∞. Hence, integral curves γ∞ and ζ∞ converge to p+

2 along u1. Hence, it
is not surprising that A+

i are sinks and B+
i are saddles in the subsystem of (5.6) restricted
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to E ∩ {H = 1}. Furthermore, for the subsystem (5.7), critical points A+
i are saddles, and B+

i

are sources.

Thanks to the invariant set BRF in Proposition 5.1, whose boundary contains p+
2 , we are now

ready to show that both γ∞ and ζ∞ do not wind fully around p+
2 .

Proposition 5.6. Consider the (H, r, θ, Y )-coordinate. For m ≥ 2, the integral curve γ∞ joins
the critical points p+

0 and A+
0 . For m = 1, the variable θ remains a constant along γ∞ and the

integral curve joins p+
0 and B+

0 . For m ≥ 1, the integral curve ζ∞ joins the critical points p+
1

and A+
1 .

Proof. In the new coordinate, the critical point p+
0 is(

1,
1
3

√
4m + 5
2m + 3

, arctan

(√
2m + 3
2m + 2

)
,
1
3

)
.

As γ∞ joins p+
0 and p+

2 in the (X1, X2, Y, Z)-coordinate, it is clear that the integral curve joins
p+
0 and one of A+

i or B+
i in the new coordinate. From Propositions 5.1 and 5.4 we know that

r cos(θ) ≥ 0 and
√

(2m + 3)/(2m + 2)r cos(θ) − r sin(θ) ≥ 0 along γ∞. In particular, the second
inequality reaches equality so that θ = arctan(

√
(2m + 3)/(2m + 2)) along γ∞ for m = 1. Note

that 0 < a+
0 < arctan(

√
(2m + 3)/(2m + 2)) ≤ b+

0 and the last inequality reaches equality only
for m = 1. The θ-coordinate for p+

0 is positive and {θ ≥ 0} is clearly invariant. Hence, for m ≥ 2,
the integral curve γ∞ converges to A+

0 ; for m = 1, the integral curve γ∞ converges to B+
0 as

θ = b+
0 along γ∞.

In the (H, r, θ, Y )-coordinate, the critical point p+
1 is(

1,

√
2m + 2
2m + 3

2m + 2
n

, π,
1
n

)
.

It is established in [Chi21] that ζ∞ is an integral curve that joins p+
1 and p+

2 in the (X1, X2, Y, Z)-
coordinate. Therefore, in the (H, r, θ, Y )-coordinate, the integral curve ζ∞ joins p+

1 and one of A+
i

or B+
i . As ζ∞ is in B̃RF initially, by Remark 5.3 we know that cos(θ) =

√
(2m + 2)/(2m + 3)(Y −

(2m + 3)Z) ≤ 0 and
√

(2m + 3)/(2m + 2)r cos(θ) − r sin(θ) ≤ 0 along ζ∞. Hence, we know that
π/2 ≤ θ ≤ arctan(

√
(2m + 3)/(2m + 2)) + π ≤ b+

1 along ζ∞. Therefore, ζ∞ converges to A+
1 for

m ≥ 2. We claim that the integral curve ζ∞ also converges to A+
1 for m = 1. Recall Remarks 4.3

and 5.2. The integral curve χ also converges to p+
2 and along χ we have X2 − X1 ≥ 0 and X2 −

X1 + Y − 5Z = 0. Hence, χ converges to B+
1 in the (H, r, θ, Y )-coordinate. As the linearization

at B+
1 has only one stable eigenvector, we know that ζ∞ converges to A+

1 . �

We claim the following lemma.

Lemma 5.7. Let Π be the integral curve of the subsystem (5.7) that emanates from A+
0 . Let

(0, 0, θ∗, (2m + 3)z0) be the midpoint of Π at which it passes through H = 0. For m ≥ 2, we have
θ∗ = lims1→∞ θ(γs1 ∩ {H = 0}).
Proof. We think of (5.6) on E as a dynamical system in the three-dimensional Hrθ-space with Y
as a function in (H, r, θ). As mentioned in Remark 5.5, each A+

i is a saddle whose linearization has
two stable eigenvectors and one unstable eigenvector. Furthermore, the two stable eigenvectors
are parallel to E ∩ {H = 1}, meaning that each A+

i is a sink in the Ricci-flat subsystem and Π
is the only integral curve that emanates from A+

i in E ∩ {H < 1}. By the Hartman–Grobman
theorem, there is a local homeomorphism (φ,U) defined around A+

0 through which the system
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(5.6) is topologically equivalent to the linear dynamical system⎡
⎣x

y
z

⎤
⎦
′

=

⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦

⎡
⎣x

y
z

⎤
⎦ . (5.10)

In particular, we have

φ(A+
0 ) = (0, 0, 0), φ(U ∩ {H = 1}) ⊂ {(x, y, 0) | x, y ∈ R}, φ(U ∩ Π) ⊂ {(0, 0, z) | z ∈ R}.

Let Dε be an open disk on the xy-plane with radius ε1. Let U1 be the cylinder Dε1 × (−ε2, ε2].
Note that integral curves in U1 ∩ {z > 0} can only escape through the face Dε1 × {ε2}. Choose
small enough ε1 and ε2 so that U1 := φ−1(U1) is contained in U . Then p := φ−1(0, 0, ε2) is a point
on U ∩ Π.

Let U0 be an open neighborhood around the point (0, 0, θ∗) in the Hrθ-space. By the continu-
ous dependence, there exists an open set U2 � p in U such that any point in U2 lies on an integral
curve that enters U0. It is clear that p ∈ U1 ∩ U2. Modify U1 by shrinking ε1 so that Dε1 × {ε2}
is contained in φ(U2) while leaving ε2 unchanged. Then correspondingly with the modified U1,
an integral curve in U1 ∩ {H < 1} must enter U2. Since γ∞ converges to A+

0 , there exists a point
q ∈ γ∞ ∩ U1. By the continuous dependence, there exists a large enough N such that s1 > N
implies γs1 must enter U1 ∩ {H < 1} and hence U0. �

Note that proving Lemma 5.7 for m = 1 is more subtle. As γ∞ converges to B+
0 and there

is an obvious integral curve that joins B+
0 and A+

0 , a more delicate analysis is needed to show
that γs1 with a large enough s1 must enter U0. On the other hand, since ζ∞ converges to A+

1 for
m ≥ 1, we have the following corollary to Lemma 5.7.

Corollary 5.8. For m ≥ 1, the number θ∗ + π is the limiting winding angle of ζs2 around Φ
while H > 0 as s2 → ∞.

Lemma 5.9. For m ≥ 2, there exist at least two Einstein metrics on HP
m+1�HP

m+1
if θ∗ < π.

For m ≥ 1, there exist at least two Einstein metrics on S
4m+4 if θ∗ > π.

Proof. Consider HP
m+1�HP

m+1 for m ≥ 2. Let s̃1 = max{3/(m − 1), s�}, where γs� is the het-
erocline in the proof of Theorem 1.1 that joins p±0 . The proof of Theorem 1.1 shows that we
have �C(γs1) ≥ 1 for s1 ∈ (s̃1, 9(5m + 3)(4m2 + 4m + 3)/n2(2m + 3)(m − 1)). If θ∗ < π, then
lims1→∞ �C(γs1) = 0 by Lemma 5.7. By Theorem 4.11 there exists a heterocline γs�� for some
s�� ∈ (

s̃1,∞
)

and s�� �= s�.
Consider S

4m+4 for m ≥ 1. If θ∗ > π, then Π + (0, 0, π, (2m + 3)z0) is an integral curve that
emanates from A+

1 and passes (0, 0, θ∗ + π, (2m + 3)z0) and θ∗ + π > 2π. By Proposition 4.10,
any ζs2 with s2 > 0 has either a turning point or a W -intersection point. We learn from the
linearized solution (3.6) that along ζs2 with s2 > 0 the functions Y − Z and X2 − X1 are positive
initially. Since (Y/Z)′ = 2(Y/Z)(X2 − X1) by (3.9), the function Y − Z = Z(Y/Z − 1) can only
have a zero after X2 − X1 changes sign. In particular, the function X2 − X1 must vanish first
before any W -intersection point can occur.

Replace (s1, γs1) by (s2, ζs2) in Definition 4.8 and Theorem 4.11. For θ∗ > π we have
lims2→∞ �C(ζs2) ≥ 1 by Corollary 5.8. On the other hand, from Proposition 4.12 we know that
X2 − X1 > 0 along ζ1/(2m+6) and hence �C(ζ1/(2m+6)) = 0. By Theorem 4.11 there exists some
s• ∈ (1/(2m + 6),∞) such that ζs• is a heterocline.

Assume θ∗ > π so that such an s• exists. We claim that the Einstein metric ĝS4m+4 represented
by ζs• is not the standard sphere metric. If ĝS4m+4 were the standard sphere metric, it would
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(a) (b) (c)

(d) (e) ( f )

Figure 1. Each graph shows the horizontal line θ = π and the level curve
2
√

(2m + 2)(2m + 3)z0 − ((n − 1)/n)H sin(θ) cos(θ) = 0. The cross at {H = 1} is A+
0 .

The plots show that for m = 1, the graph of Π must be above Ψ + (0, π) and hence
θ∗ > π. On the other hand, for m = 5, the graph of Π is below Ψ + (0, π) and hence
θ∗ < π. (a) m = 1, Ψ(η), η ≥ 0. (b) m = 1, Ψ(η), η ∈ R. (c) m = 1, Ψ(η) + (0, π), η ∈ R. (d)
m = 5, Ψ(η), η ≥ 0. (e) m = 5, Ψ(η), η ∈ R. (f) m = 5, Ψ(η) + (0, π), η ∈ R.

have constant sectional curvature. In particular, we must have (f̈2/f2)(f1/f̈1) = 1. From (3.7) we
must have s2 = 0. Hence, ĝS4m+4 is not the standard sphere metric. The proof is complete. �

From Lemma 5.9 we learn that the number θ∗ plays an important role in proving the existence
of Einstein metrics on HP

m+1�HP
m+1 and S

4m+4. We can apply the Runge–Kutta algorithm
to estimate Π. Then one can only set the initial step near A+

0 , making the approximation less
accurate as m increases. To bypass this issue, we make use of the symmetry of (5.7) and estimate
θ∗ using the fourth-order Runge–Kutta algorithm with a well-defined initial step.

Now consider the Hθ-plane. It is obvious that (5.7) admits Z2-symmetry in the sign of
(H, θ). The system also admits translation symmetry (H, θ) → (H, θ + iπ) for any i ∈ Z. Let O±

i

be either A±
i or B±

i and correspondingly, let o±i be either a±i or b±i . Let Ψ be the integral curve
with the initial condition Ψ(0) = (0, 0). In general, the integral curve Ψ must converge to some
O−

i with i ≥ 1. By symmetry, we know that Ψ is defined on R and joins O+
−i and O−

i . Then
Ψ + (0, π) is an integral curve that joins O+

−i+1 and O−
i+1 and passes through (0, π), forming

a barrier for estimating θ∗. In particular, if Ψ converges to O−
1 , then we have o−1 < π. Then

Ψ + (0, π) passes (0, π) and joins either A+
0 and A−

2 or B+
0 and B−

2 . In both cases, the integral
curve Π passes through (0, θ∗) for some θ∗ ≤ π. On the other hand, if Ψ converges to O−

i with
i ≥ 2, then Ψ + (0, π) passes (0, π) and joins O+

−i+1 and O−
i+1. But o+

−i+1 < a−0 , hence Π passes
through (0, θ∗) for some θ∗ > π. We present two sets of graphs on Hθ-plane for Ψ and Ψ + (0, π)
in Figure 1 to illustrate our argument. Note that if Ψ converges to A−

1 , then Π = Ψ + (0, π) and
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(a) (b) (c)

(d) (e) ( f )

Figure 2. (a) m = 1. (b) m = 2. (c) m = 5. (d) m = 10. (e) m = 29. (f) m = 100.

we have θ∗ = π. In such a situation, a more delicate analysis is needed to obtain lims1→∞ �C(γs1)
and lims2→∞ �C(ζs2). In fact, Lemma 5.9 implies that as long as Ψ does not converge to A−

1 for
a fixed m, we have either a second Einstein metric on HP

m+1�HP
m+1 or a new Einstein metric

on S
4m+4.
Fortunately, the fourth-order Runge–Kutta algorithm shows that for m ∈ [2, 100], the integral

curve Ψ converges to B−
1 . Hence, Π must pass (0, θ∗) for some θ∗ < π. Therefore, by Lemma 5.9,

the second Einstein metric exists on HP
m+1�HP

m+1 for m ∈ [2, 100]. The function H in (5.7) can
be solved explicitly. By Remark 2.4, it is clear that H = − tanh(2η/n). Hence, the above discus-
sion can be summarized into a more compact statement as in Theorem 1.2. Since Ψ converges
to one of the O−

i , from (5.9) the inequality Ω < 3π/4 in Theorem 1.2 essentially means that Ψ
converges to B−

1 . As shown by the algorithm, for m = 1 the integral curve Ψ converges to B−
2 ,

meaning that Π must pass (0, θ∗) for some θ∗ > π. We show some plots of Ψ for different m on
the Hθ-plane in Figure 2, generated by the fourth-order Runge–Kutta algorithm with step size
0.01 in Grapher.

In the following lemma, we prove that Ω > π for m = 1. Therefore, the inequality θ∗ > π is
indeed valid for m = 1.

Lemma 5.10. Let Ψ be an integral curve to the dynamical system

[
H
θ

]′
= Ṽ (H, θ) :=

⎡
⎢⎣ (H2 − 1)

1
7

4
√

5
21

− 3
7
H sin(2θ)

⎤
⎥⎦ (5.11)

with Ψ(0) = (0, 0). Then limη→∞ θ(Ψ) > π.
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Proof. Let H1 = 2/(e
√

5π/6 + 1) − 1 ≈ −0.527 and H2 = 2/(π − 2 − 2a−1 ) ≈ −0.543. Define the
function

Θ(H) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
H

+ 1 + a−1 , −1 ≤ H ≤ H2,

π

2
, H2 < H < H1,

3
√

5
5

ln
(

1 − H

1 + H

)
, H1 ≤ H ≤ 0.

Recall that in (5.8) we have a−1 = π − arctan (2
√

5/5). Then we have

sin(a−1 ) =
2
3
, cos(a−1 ) = −

√
5

3
, sin(2a−1 ) = −4

√
5

9
, cos(2a−1 ) =

1
9
.

The function Θ is non-increasing. The numbers H1 and H2 are chosen so that {θ − Θ(H) = 0}
is a continuous curve that joins the origin and A−

1 .
We show that Ṽ restricted to {θ − Θ(H) = 0} points upward. For (H, θ) ∈ (H1, 0) × (0, π/2),

we have 〈
∇

(
θ − 3

√
5

5
ln

(
1 − H

1 + H

))
, Ṽ

〉
=

4
√

5
21

− 3
7
H sin(2θ) +

6
√

5
5

1
1 − H2

H2 − 1
7

=
2
√

5
105

− 3
7
H sin(2θ)

> 0. (5.12)

Therefore, the function θ − Θ(H) remains positive along Ψ as H decreases from 0 to H1. The
computation above also shows that the function θ − Θ(H) is positive along Ψ(η) once the integral
curve leaves the origin. If θ = π/2, then 〈∇θ, Ṽ 〉 = 4

√
5/21 > 0. Hence, θ > π/2 along Ψ as H

decreases from H1 to H2.
Finally, as H decreases from H2 to −1, the function Θ(H) increases from π/2 to a−1 . We first

claim that for θ ∈ [π/2, a−1 ], the inequality

D(θ) := sin(2θ) −
(

θ − π

2

)(
7
4
(θ − a−1 ) +

sin(2a−1 )
a−1 − π/2

)
≥ 0 (5.13)

is valid. It is obvious that D(a−1 ) = D(π/2) = 0. Hence, there exists some θ1 ∈ (π/2, a−1 ) such
that D′(θ1) = 0 by the mean value theorem. On the other hand, we have

D′(θ) = 2 cos(2θ) −
(

7
4
(θ − a−1 ) +

sin(2a−1 )
a−1 − π/2

)
− 7

4

(
θ − π

2

)
, D′′(θ) = −4 sin(2θ) − 7

2
.

Hence, D′′ > 0 on (π/2 + 1
2 arcsin(7

8), π − 1
2 arcsin(7

8)). Since π − 1
2 arcsin(7

8) ≈ 2.609 > 2.412 ≈
a−1 , it is clear that D′ decreases in (π/2, π/2 + 1

2 arcsin(7
8)) and increases in (π/2 +

1
2 arcsin(7

8), a−1 ). Since

D′
(

π

2

)
= −2 −

(
7
4

(
π

2
− a−1

)
+

sin(2a−1 )
a−1 − π/2

)
≈ 0.654 > 0,

D′(a−1 ) = 2 cos(2a−1 ) − sin(2a−1 )
a−1 − π/2

− 7
4

(
a−1 − π

2

)
≈ −0.068 < 0,

(5.14)
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we know that D′ only vanishes once in [π/2, a−1 ]. Therefore, the function D is indeed positive for
θ ∈ (π/2, a−1 ).

Then from (5.13) we have

〈
∇

(
θ − 1

H
− 1 − a−1

)
, Ṽ

〉∣∣∣∣
θ−1/H−1−a−

1 =0

=
4
√

5
21

− 3
7
H sin(2θ) +

1
7H2

(H2 − 1)

≥ 4
√

5
21

− 3
7
H

(
θ − π

2

)(
7
4
(θ − a−1 ) +

sin(2a−1 )
a−1 − π/2

)
+

1
7H2

(H2 − 1)

=
4
√

5
21

− 3
7
H

(
1 + H

H
+ a−1 − π

2

)(
7
4

(
1 + H

H

)
+

sin(2a−1 )
a−1 − π/2

)
+

1
7H2

(H2 − 1)

since θ − 1
H

− 1 − a−1 = 0

=
4
√

5
21

(1 + H) −
(

3
4

(
a−1 − π

2

)
+

3
7

sin(2a−1 )
a−1 − π/2

)
(1 + H) − 3

4
(1 + H)2

H
+

1
7H2

(H2 − 1).

(5.15)

Since 4
√

5/21 − (3
4(a−1 − π/2) + 3

7(sin(2a−1 )/(a−1 − π/2))) ≈ 0.3015 > 0.3, the computation above
continues as

〈
∇

(
θ − 1

H
− 1 − a−1

)
, Ṽ

〉∣∣∣∣
θ−1/H−1−a−

1 =0

≥ 3
10

(1 + H) − 3
4

(1 + H)2

H
+

1
7H2

(H2 − 1)

=
1 + H

H2

(
− 9

20
H2 − 17

28
H − 1

7

)
. (5.16)

A straightforward computation shows that the factor − 9
20H2 − 17

28H − 1
7 is positive on [−1,−1

2 ].
As H2 < −1

2 , it is proved that Ψ does not pass the barrier θ − Θ(H) = 0 where H ∈ (−1, H2).
Therefore, we must have limη→∞ θ(Ψ) ≥ a−1 .

We claim that Ψ does not converge to A−
1 . The linearization of (5.11) at A−

1 is
[ − 2

7
0

4
√

5
21

2
21

]
, whose

only stable eigenvalue and eigenvector are respectively −2
7 and

[
2

−√
5

]
. Hence, the linearized

solution in {H > −1} takes the form A−
1 +

[
2

−√
5

]
e−(2/7)η. Suppose Ψ is the integral curve that

tends to A−
1 . We must have

(θ−Θ(H))(Ψ(η)) ∼ (θ−Θ(H))
(

A−
1 +

[
2

−√
5

]
e−(2/7)η

)
= −e−(2/7)η

(√
5− 2

1 − 2e−(2/7)η

)
< 0

as η → ∞, which is a contradiction. Therefore, the integral curve Ψ converges to some O−
i with

i ≥ 2. As A−
2 > B−

2 > π, we conclude that limη→∞ θ(Ψ) > π. �

Theorem 1.3 is proved with Lemma 5.10 established.
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Appendix A.

A.1 Coefficients for B̃m,κ and Q̃m,κ

We list coefficients for B̃m,κ and Q̃m,κ:

– B̃m,κ(x) = b2x
2 + b1x + b0

b2 = − 96κ3m3 + 264κ2m2 + 216κm + 54
(1 − κ)(2κ2m(8m − 5) + 6κ(4m − 1) + 9)

< 0,

b1 =
4(m + 2)(4κm + 3)(2κ2m + 4κm + 3)

(1 − κ)(2κ2m(8m − 5) + 6κ(4m − 1) + 9)
− 2(4m + 3)2(2m + 3)(m − 1)

m(2m + 1)(8m + 3)
,

b0 = − 3(4 + (4m − 2)κ)(4κm + 3)κ
(1 − κ)(2κ2m(8m − 5) + 6κ(4m − 1) + 9)

< 0.

(A.1)

– Q̃m,κ(x) = q2x
2 + q1x + q0

q2 = −4(2κm + 3)(32κ3m3 + κ2m2(96 − 68κ) + κm(90 − 84κ) + 27(1 − κ))
3(1 − κ)(2κ2m(8m − 5) + 6κ(4m − 1) + 9)

< 0,

q1 =
16κ(m + 2)(16κ3m3 − 18κ3m2 + 32κ2m2 − 24κ2m + 27κm − 9κ + 9)

3(1 − κ)(2κ2m(8m − 5) + 6κ(4m − 1) + 9)
> 0,

q0 = −4κ2(32κ2m3 − 20κ2m2 − 6κ2m + 48κm2 − 6κm − 9κ + 18m + 9)
3(1 − κ)(2κ2m(8m − 5) + 6κ(4m − 1) + 9)

< 0.

(A.2)

Proposition A.1. For any (m, κ) ∈ [1,∞) × (0, 1), the function B̃m,κ has a real root σ(m, κ)
in the interval (0, mκ/(3 + 2mκ)). For m = 1, polynomials B̃1,κ and Q̃1,κ share a common real
root σ(1, κ) = κ/(3 + 2κ).

Proof. From (A.1), computations show that

B̃m,κ(0) = b0 < 0,

B̃m,κ

(
mκ

3 + 2mκ

)
=

768(m − 1)κB∗
(8m + 3)(2κm + 3)(2m + 1)(1 − κ)(2κ2m(8m − 5) + 6κ(4m − 1) + 9)

(A.3)
where

B∗ =
(

m4 +
15
8

m3 +
5
16

m2 − 45
32

m − 45
64

)
mκ3 +

(
13
4

m4 +
163
32

m3 +
255
64

m2 +
9
16

m − 27
64

)
κ2

+
(

21
8

m3 +
147
64

m2 +
243
128

m +
27
32

)
κ +

21
32

m2 − 27
128

> 0 (A.4)

for any (m, κ) ∈ [1,∞) × (0, 1). Hence, such a σ(m, κ) exists. Furthermore, we have

B̃1,κ(x) =
2(3 + 4κ)((2κ + 1)x − κ − 2)((2κ + 3)x − κ)

(2κ2 + 6κ + 3)(κ − 1)
,

Q̃1,κ(x) = −4((12κ3 − 4κ2 − 21κ − 9)x + 2κ3 + 11κ2 + 9κ)((2κ + 3)x − κ)
3(2κ2 + 6κ + 3)(κ − 1)

.

(A.5)

The proof is complete. �
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A.2 Non-positivity of r(Q̃m,κ, B̃m,κ)
Proposition A.2. The resultant r(Q̃m,κ, B̃m,κ) in (4.17) is non-positive for any (m, κ) ∈
[1,∞) × (0, 1) and vanishes if and only if m = 1.

Proof. Recall that

r(Q̃m,κ, B̃m,κ) = − 64κ2(m − 1)(2κm + 3)
(8m + 3)2(2m + 1)2m2(1 − κ)(2κ2m(8m − 5) + 6κ(4m − 1) + 9)2

r̃,

r̃ = 262144κ4m10 + (516096κ4 + 679936κ3)m9

+ (373760κ4 + 1233920κ3 + 675840κ2)m8

+ (−275904κ4 + 1151040κ3 + 1143744κ2 + 308160κ)m7

+ (−926496κ4 + 248832κ3 + 1432512κ2 + 507456κ + 54432)m6

+ (−800496κ4 − 1256256κ3 + 1472688κ2 + 857520κ + 92016)m5

+ (−281880κ4 − 1525392κ3 + 266328κ2 + 1353024κ + 199584)m4

+ (−33048κ4 − 644436κ3 − 672624κ2 + 957420κ + 375192)m3

+ (−90396κ3 − 433026κ2 + 186624κ + 333882)m2

+ (−74358κ2 − 59049κ + 133407)m + 19683(1 − κ). (4.17)

It is clear that the coefficient for r̃ is non-positive on [1,∞) × (0, 1) and vanishes if and only if
m = 1.

Consider the polynomial r̃. Since coefficients for mi are obviously positive for k ∈ (0, 1) if
i ≥ 5, we must have

r̃ > 262144κ4m4 + (516096κ4 + 679936κ3)m4 + (373760κ4 + 1233920κ3 + 675840κ2)m4

+ (−275904κ4 + 1151040κ3 + 1143744κ2 + 308160κ)m4

+ (−926496κ4 + 248832κ3 + 1432512κ2 + 507456κ + 54432)m4

+ (−800496κ4 − 1256256κ3 + 1472688κ2 + 857520κ + 92016)m4

+ (−281880κ4 − 1525392κ3 + 266328κ2 + 1353024κ + 199584)m4

+ (−33048κ4 − 644436κ3 − 672624κ2 + 957420κ + 375192)m3

+ (−90396κ3 − 433026κ2 + 186624κ + 333882)m2

+ (−74358κ2 − 59049κ + 133407)m + 19683(1 − κ)

= (−1132776κ4 + 532080κ3 + 4991112κ2 + 3026160κ + 346032)m4

+ (−33048κ4 − 644436κ3 − 672624κ2 + 957420κ + 375192)m3

+ (−90396κ3 − 433026κ2 + 186624κ + 333882)m2

+ (−74358κ2 − 59049κ + 133407)m + 19683(1 − κ)

≥ (−1132776κ4 + 532080κ3 + 4991112κ2 + 3026160κ + 346032)m3

+ (−33048κ4 − 644436κ3 − 672624κ2 + 957420κ + 375192)m3
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(a) (b) (c)

Figure A.1. The set S is degenerate as shown in Proposition 4.2. Hence, only one integral
curve γs�

is known to join p±0 and it represents the Bohm’s metric. The graphs indicate that
γs1 converges to q−1 for s1 ∈ (0, s�) and converges to q−3 for s1 ∈ (s�,∞). (a) γs1 for m = 1.
(b) s1 ∈ (0, s�). (c) s2 ∈ (s�,∞).

+ (−90396κ3 − 433026κ2 + 186624κ + 333882)m2

+ (−74358κ2 − 59049κ + 133407)m + 19683(1 − κ)

= (−1165824κ4 − 112356κ3 + 4318488κ2 + 3983580κ + 721224)m3

+ (−90396κ3 − 433026κ2 + 186624κ + 333882)m2

+ (−74358κ2 − 59049κ + 133407)m + 19683(1 − κ)

≥ (−1165824κ4 − 112356κ3 + 4318488κ2 + 3983580κ + 721224)m2

+ (−90396κ3 − 433026κ2 + 186624κ + 333882)m2

+ (−74358κ2 − 59049κ + 133407)m + 19683(1 − κ)

= (−1165824κ4 − 202752κ3 + 3885462κ2 + 4170204κ + 1055106)m2

+ (−74358κ2 − 59049κ + 133407)m + 19683(1 − κ)

> 0. (A.6)

Since r̃ is positive on [1,∞) × (0, 1), the proof is complete. �

A.3 Visual summaries
We summarize Theorem 1.1–1.3 in Figures A.1–A.4 generated by Grapher, where integral curves
presented are generated by the fourth-order Runge–Kutta algorithm with step size 0.01 and the
initial step is set in a neighborhood around p+

0 or p+
1 . All figures are in the X1X2Z-space and

the variable Y is eliminated by (2.8).
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(a) (b) (c) (d)

Figure A.2. Theorems 1.1 and 1.2 claim that for m ≥ 2 there are at least two integral curves
γs�

and γs��
that join p±0 . The graphs indicate that γs1 converges to q−1 for s1 ∈ (0, s�) ∪ (s��,∞)

and converges to q−2 for s1 ∈ (s�, s��). (a) γs1 for m = 2. (b) s1 ∈ (0, s�). (c) s2 ∈ (s�, s��).
(d) s2 ∈ (s��,∞).

(a) (b) (c) (d)

Figure A.3. These plots are a realization of Theorem 1.3. For m = 1, the graph of ζ0 is the
straight line that joins p±1 . As s2 increases from 0, the integral curve ζs2 converges to q−1 , until
ζ1/(2m+6) converges to p−0 . For s2 > 1/(2m + 6), the integral curve ζs2 converges to q−3 , until
s2 = s• once again joins p±1 . For the s2 > s•, the integral curve ζs2 converges again to q−1 . (a) ζs2

for m = 1. (b) s2 ∈ (0, 1/(2m + 6)). (c) s2 ∈ (1/(2m + 6), s•). (d) s2 ∈ (s•,∞).

(a) (b) (c)

Figure A.4. For m ≥ 2, the behavior of ζs2 is relatively simpler. For s2 ∈ (0, 1/(2m + 6)), the
integral curve ζs2 converges to q−1 . For s2 > 1/(2m + 6), the integral curve ζs2 converges to q−2 .
(a) ζs2 for m = 1. (b) s2 ∈ (0, 1/(2m + 6)). (c) s2 ∈ (1/(2m + 6),∞).
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