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ADDITIVITY OF THE P"-INTEGRAL (2)
G. E. CROSS

1. Introduction. The problem of additivity of the P"-integral on
abutting intervals was considered in [2] and in [5]. It was noted in [2]
that the necessary and sufficient conditions for additivity for the P2-
integral obtained by Skvorcov in [5] could be completely generalized to
the P*-integral, n» > 2, if a key lemma (corresponding to Skvorcov's
Lemma 3 [6]) could be proved. We provide a proof of that lemma in this
paper and hence obtain the general additivity result.

The definitions and notation of [2] are used in the following, except
that we shall take the following as the definition of P"-major and minor
functions:

Definition 1.1. Let f(x) be a function defined in [a, b] and let a,, ¢ = 1,

2,...,n, be fixed points such that ¢ = a¢; < ay < ... <a, = b. The
functions Q(x) and ¢(x) are called P*-major and minor functions respec-
tively of f(x) over (a;) = (ay, as, ..., a,) if

(1.4) Q(x) and ¢(x) satisfy condition 4,* in [a, b];

1.5 Q(a;) = qa;) =0,2=1,2,...,n;

(1.6) "Q(x) = f(x) = A"q(x), x € (a,b) — E, |E[ = 0;
(1.7) 0"Q(x) # —oo, A% (x) # +0,x € (a,b) — S, S ascattered set;
(1.8) Q and ¢ are n-smooth in S.

(Condition (1.8) is stronger than the corresponding condition in [3]

and [2] but seems more natural. Compare the corresponding smoothness
conditions in [4] and [6].)

2. Main results. The property of additivity of the P*-integral may be
stated as follows:

THEOREM 2.1. Let f(x) be P*-integrable over (a;; x), where
Al = {az} = ((l, dly (2 d?y C3y -« 1d(n/'l)——1y Cn/?y dn/z)y
(dns2 = ¢), with associated integral Fi(x) and over (b;;x), where

As = {b:} = (dus2y Curpr1s Qs+, Carmtar + - 5 Cnety ye1y b)
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with associated iniegral Fo(x). Then f(x) is P"-integrable on [a, b] if and
only if there exist comstanis {0}, j =1,2,...,n — 1, such that the

function
n/2

SFl(x) + Z ANAy;x,d;)0;, ¢ =x =c.
=1

F(x) = n—1
?Fg(x) -+ Z ANAsx,d;)8;, ¢ <x =D,
j=n/2
(where for a set A = {xo, %1, . - . , %,} of distinct numbers,
MNd;x, %) = N, x,) =[] (x—_L) , r=0,1,...,n),
1T Xy — Xy

1s m-smooth and possesses Peano unsymmetric derivatives up to order
(n — 2) at x = c. If such numbers exist then the function F(x) is the
associated P"-integral of f(x) over (a, ¢y €3y . . ., Cue1, D).

The following result is crucial to our construction in the proof of

Lemma 2.2.
TaEOREM 2.2. If G(x) ts n-convex on [a,b] and G(a;) =0, © = 1,
2,...,m wherea = a;, < ay < ...<a, =Db, then

Gu—1y—(b) =2 0 and Gu-1y +(a) = 0.

Proof. Since G(x) is n-convex and has zeros at ay, as, ..., @,_1, and
a,, the graph of G lies alternately above and below the x-axis, lying below
if a,-1 = x £ a, = b (Theorem 5, [1]). We may choose points x;, a; <

x;i<agyn,t=1,2,...,n—1,and x,_; < x, < b, so that
G(xg)/w (xx) >0,k =1,2,...,n—1,
where

w@) = 11 @ - =),

and x, is close enough to b so that

$ 66 -,

SHw'l) =
It then follows from Theorem 7 [1] that
Guo1y—(x) 2 0forx, = x <b,
and consequently
Gau-1,—(b) 2 0.
Similarly it may be proved that

G(?z—l),+(a) =0
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LEmma 2.1, If f(x) is P"-integrable with respect to the basis (a;) on
[a, b] then it ts P*-integrable on each interior interval ¢, d], a < ¢ < d < b.
Furthermore, given € > 0, there exists a major function Q(x) and a minor
function q(x) for f(x) on [c, d], such that, if F(x) denotes a P"-integral of
f(x) on [c, d] (with respect to some basis (b;)), R(x) = Q(x) — F(x) and
r(x) = F(x) — q(x), then

IR(x)| < & [r(x)] < ¢ |[Ruy+(0)] <& [rm+(c)] <
[Ruy —(d)] < e, and |rgy —(d)] < e, for1 =k = n — 1.

Proof. Let
B = sup; suposgza—1 (N (x5 09) o=},
and

1 j 1 L
C = supisgrsy—18uUp l(b — )" (¢ — a)kf '

Choose K such that ¢/2 > sup (K, KAC, BuK) where 4 is the constant
determined in Corollary 8(b), [1]. Then pick a P"-major function Q,(x)
for f(x) on [a, b] with respect to the basis {a;} such that if F,(x) is the
Printegral of f(x) on [a, b] with respect to the basis {a;}, then we have

[Ri(x)] < K < ¢/2
where

Ri(x) = Qu(x) — Fi(x).
Define the function R on [, d] by

RG) = Riw) = 3 M bORib).

Because of the choice of K, R(x) is seen to satisfy the required in-
equalities and thus the function Q defined by

06) = Qi) — 3 A3 0) 0100

is the major function required.

In a similar way a minor function with the required properties may
be shown to exist.

It follows incidentally that the P*-integral of f(x) on [c, d] with respect
to the basis (b;) is the function F defined by

F) = Fie) = 206300 Fa(bo).

LEmMaA 2.2, Suppose f(x) is P -integrable with respect to the basis {a}
on [a, b, and let F(x) be the associated P"-integral with respect to the basis
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{as} on [a,b]. Then corresponding to € > 0 there is a P"-major function
Q(x) and a P*minor function q(x) such that if R(x) = Q(x) — F(x) and
r(x) = F(x) — q(x), we have

R(x)| < e |r(x)] < e [Ru+(a)] <e
[Ruy ~ ()] < & [ran ()] < & [re-0)] <
1k n—1.

Proof. Let
K = maxizis, SUPuea,0 A¥; @4),
Ky = supisgza—1 Ny +(a; @),
K3 = supisi<n—2 (b — a)*/k!.

Suppose {ai}iz1, {Bx}%=1 are two sequences of points in the interval [a, b]
such that

011<61<62<...<6k<...,
a1>a2>ag<...>ak>...,

and limk_H_m ap = @, limk_,_,.m 6)6 = b.
Let {e} be a sequence of positive numbers such that

limy 4o —([;TE'?IV =0 and
limk-;\+oo?&—k—ff‘;‘)-f = 07 ] = ]-y 21 ey (n’ - 1))
2 , () (n — 2)! e(n — 2)! e }
,; € < min {8(b — )"0+ #nKy) 160 — @) nK, ' 16K,S

€, < min (6/4,5;;17{;,4”}_1), k=1,2,....

For the closed interval [a;, 8:1] and € = €, construct a function R;(x)
corresponding to the function R(x) of Lemma 2.1. Similarly for the
closed intervals [oy, ax—1] and [Bx—i, Bx] and e = ¢, B = 2, construct

functions Ry (x) and R, (x) corresponding to the function R(x) of Lemma
2.1. Then define the function R°(x) on [a, b] by

SRk(x),x € log, 1], &
50 _ Ry(x), % € [Bi—1, Bxl, &
R (x) - Rl(x)yx e [aly 61]

0,x =a,x =0b.

y Dy o o

3
!3!

Il
[

It is easy to verify that
R?i),+((l) = R((]j),—(b) =0,1=7=n-1
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Now construct a function p(x), constant on the intervals (o, 81),
(agy ax—1), and (Bx—1, Bx), k = 2, such that p(¢) = 0 and its jump at a
point of discontinuity d is equal to R{,_y, —(d) — R{,—1 +(d). Since the
functions R;(x), Ri(x), and Ri(x) are m-convex on their respective
intervals of definition, it follows from Theorem 2.2 that

Ry —(d) = RYpry + (@),

and p(x) is monotonic increasing on [a, b].
By construction we have that the jump in the function p(x) at «; and
Bx is not more than ¢, + €..1. Moreover

0= plx) < plb) < 4:_'21 o

Now define G(x) as the (z — 1)™ indefinite integral of p(x) on the
interval [a, b]:

Gx) = 2)'f (x — )" *p(t)dt,

and let the functlon L be defined on [a, b] by

LE) = 66) — 3 A6 006 (@),

Then L(a;) = 0,1 =1,2,...,n,
4(1) a)"‘ 2 4nK1 n—l %
IL( )[ _2)| k;ek 2)' (b—(l) kzzlek

- (1+nK1)[4<(b——(%l,——} Zek<e/2 a £x

Lo @] = [Gare @] + 2 Mo @5 00)] [6@0)]

IIA
&

< 4K, 1; & + (nKs) 4‘(’17“ 2))' k—21 €

<e/b+e/d=¢/2, 1=k=<n-—1

Similarly |Lgy —(b)] < ¢, for 1 £ B £ n — 1. Now define the functions
R® and R on [a, b] by

R') = B() — 3 A5 a )R,
and

R(x) = L(x) + R(x).
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Then if d is a point of discontinuity of R°(x), we have

L |G@+m) +Gd—h) "R
Pt [ : 2 ,; (2k)! D7GW)
Ro(d + k) +R0(d _ h) (n/2)—1 2k km ]
+ 5 2 (2k),D R(@)

éﬁi i [G(d +h) —G@) — ;:ZIZ_,G<k),+(d)]
1 S (=h)F h F
9( iy [G(d k) — G(@) — Z_; G- (d)]

5 [R @+n - Ra@ -3 HR?k>,+(d)]

50 = (= k)k
- i?[G(n—l) +(d) - G(n—l) —(d) + R(()n—-l).+<d) - R((]n—l).—(d)y

as h — +0,
= +£3p+) — p(d—) — Rtpe1) +(d) — Rbyy —(d)] = 0,

by definition of p(x). Since each A (x; a;) is n-smooth it follows that R (x)
is n-smooth at each point of discontinuity of R°(x). Since R (x) is n-convex
on each of the intervals determined by the sequences {a,} and {B,} it
follows that R(x) is n-convex on [a, b].

We have then |R(x)| < ¢ |Ray+(a)] < e and |Ru —(0)] <e¢ 1=
E<n—1

Now let Q be defined on [a, b] by

Qx) = F(x) + R(x),

where F(x) is defined in the statement of the lemma. Then
Q(x) = F(x) + L(x) + R(x),

and on a typical interval, say [B8;_1, Bi],
Qx) = F(x) + Qi(x) — Fi(x) + L(x)

where Q(x) is a major function for f(x) on [Bx_1, Bx] and Fi(x) is its
Pr-integral. Since F(x) — Fy(x) and L(x) are polynomials of degree at
most (n — 1), it is easy to see that Q(x) has the required properties of
a P"major function on [B:_1, Bx].

Q(x) is obviously continuous and the existence of Qu(x), 1 < & <
n — 2, follows from the n-convexity of R(x) and the existence of Fy,(x),
1<k=<n—2[2]. F(x)is n-smooth in (a, b) and since R(x) is n-convex
then R™1)(x) exists except at a countable number of points in (a, b)
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[1] and so R(x) is n-smooth except at a countable number of points in
(a, b). This shows that condition (1.4) in the definition of a major
function is satisfied.

Conditions (1.5) and (1.6) are satisfied by Q(x) since, clearly,
Q(a;) =0,i=1,2,...,n, and

9"Q(x) 2 9"Qi(x) = flx), a.e. in [Be—1, Bil.

We have moreover that 9"Q(x) = 9"Qx(x) > —o0 except on a
scattered set in (8:_1, B;) where Q,(x), and hence Q(x), is n-smooth. But
the set which is the union of all the scattered sets from the intervals
(a1, B1), (ox, ax—1), (Br, Brt+1), B = 1,2, ..., is scattered, as is its union
with the set of end points T = {aj, as, ..., 81, B2 -..}. Since F(x) is
n-smooth everywhere and R(x) is n-smooth at the points of 7", condition
(1.7) is verified for Q(x).

In a similar way we can construct a minor function with the required
properties.

Now Theorem 2.1 follows because of the results of [3] (in particular,
Remark, page 796).
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