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ADDITIVITY OF THE PMNTEGRAL (2) 

G. E. CROSS 

1. Introduction. The problem of additivity of the Pn-integral on 
abutting intervals was considered in [2] and in [5]. It was noted in [2] 
that the necessary and sufficient conditions for additivity for the P2-
integral obtained by Skvorcov in [5] could be completely generalized to 
the Pw-integral, n > 2, if a key lemma (corresponding to Skvorcov's 
Lemma 3 [6]) could be proved. We provide a proof of that lemma in this 
paper and hence obtain the general additivity result. 

The definitions and notation of [2] are used in the following, except 
that we shall take the following as the definition of Pw-major and minor 
functions: 

Definition 1.1. Let/(a;) be a function defined in [a, b] and let au i = 1, 
2, . . . , n, be fixed points such that a = ax < a2 < . . . < an = b. The 
functions Q(x) and q(x) are called Pn-major and minor functions respec­
tively of f(x) over (a7) = (ai, a2, . . . , an) if 

(1.4) Q(x) and q(x) satisfy condition An* in [a, b]; 

(1.5 Q(at) = q{cLi) = 0, i = 1 , 2 , . . . , » ; 

(1.6) dnQ(x) è f(x) è ànq(x), x e (a, 6) - £ , | £ | = 0; 

(1.7) dnQ(x) 9* -co,Anq(x) 9* +co,x € (a, b) - S, S a scattered set ; 

(1.8) Q and q are ^-smooth in S. 

(Condition (1.8) is stronger than the corresponding condition in [3] 
and [2] but seems more natural. Compare the corresponding smoothness 
conditions in [4] and [6].) 

2. Main results. The property of additivity of the Pw-integral may be 
stated as follows: 

THEOREM 2.1. Let fix) be Pn-integrable over (at\x), where 

Ai = \ai) = (a, di, C2, d%, c3, . . . , d(n/2)_i, cn/2, dn/2), 

(dn/2 = c), with associated integral F\{x) and over (&<;#), where 

A2 = {b~\ = (dn/2, C(n/2)+i, d(W/2)+i, C(n/2)+2, • . • , cn-i, dn-i, b) 
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with associated integral F2(x). Then f(x) is Pn-integrable on [a,b] if and 
only if there exist constants {6j\, j = 1, 2, . . . , n — 1, such that the 
function 

/ n/2 

\F\{x) + X) ^(Aùx,dj)dj, a ^ x ^ c. 
F(x) = \ n-\ 

lF2(x) + ]C^(^2î^ ,^)^ , c ^ x ^ b, 

(where for a set A = {xo, X\, . . . , xn} 0/ distinct numbers, 

X(A;x,xr) = \(x,xr) = Yl \—Z~/ r = 0, 1, . . . , n), 

is n-smooth and possesses Peano unsymmetric derivatives up to order 
(n — 2) at x = c. If such numbers exist then the function F(x) is the 
associated Pn-integral of f(x) over (a, c2, c3, . . . , cn_i, b). 

The following result is crucial to our construction in the proof of 
Lemma 2.2. 

THEOREM 2.2. If G(x) is n-convex on [a, b] and G(at) = 0, i = 1, 
2, . . . , n, where a = a,\ < a2 < . . . < an = b, then 

G(n_!),_(&) ^ 0 and G(n_i)i+(a) ^ 0. 

Proof. Since G(x) is w-convex and has zeros at aiy a2, . . . , an_i, and 
an, the graph of G lies alternately above and below the x-axis, lying below 
if an-i ^ x ^ an = b (Theorem 5, [1]). We may choose points xu at < 
Xi < ai+i, i = 1, 2, . . . , n — 1, and xn-\ < xn < o, so that 

G(xk)/w'{xk) > 0, k = 1, 2, . . . , n - 1, 

where 

w(x) = n (̂  - ^), 

and xn is close enough to b so that 

It then follows from Theorem 7 [1] that 

G(n-i)-(x) ^ 0 for xn S x < b, 

and consequently 

G(n_i),_(&) è 0. 

Similarly it may be proved that 

G(„_i)>+(a) ^ 0. 
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LEMMA 2.1. If f(x) is Pn-integrable with respect to the basis (az) on 
[a, b] then it is Pn-integrable on each interior interval [c, d], a < c < d < b. 
Furthermore, given e > 0, there exists a major function Q(x) and a minor 
function q(x) for f(x) on [c, d], such that, if F(x) denotes a Pn-integral of 
f(x) on [c, d] (with respect to some basis (bi)), R(x) — Q(x) — F(x) and 
r(x) = F(x) — q(x), then 

\R(x)\ < e, \r(x)\ < 6, \R(k)>+(c)\ < c, \rik),+ (c)\ < e, 
\Rik)t-(d)\ < e, and | r (*),-(d)| < e, for 1 ^ k ^ n - 1. 

Proof. Let 

B = Slip* SUpogjb^n-l {X(fc)(^î*0U=cî» 

and 

r - j l l \ 
C - sup^s^i sup | {h-_ c)l, -{c _ a)Sf . 

Choose K such t ha t e/2 > sup (K, KAC, BnK) where A is the cons tant 
determined in Corollary 8 (b ) , [1]. Then pick a Pw-major function Q\(x) 
for f(x) on [a, b] with respect to the basis {at} such t ha t if Fi(x) is the 
Pw-integral of f(x) on [a, b] with respect to the basis (a,-(, then we have 

| £ i ( * ) | <K < e/2 

wThere 

Ri(x) = Qi(x) - Fx(x). 

Define the function R on [c, d] by 

£(*) = Pi(x) - J2 XfabJR^bi). 

Because of the choice of K, R(x) is seen to satisfy the required in­
equalities and thus the function Q defined by 

n 

Q(x) = Qx(x) - E \ ( * ; 6 , ) ( M M 

is the major function required. 
In a similar way a minor function with the required properties may 

be shown to exist. 
I t follows incidentally t ha t the Pw-integral oif(x) on [c, d] with respect 

to the basis (bt) is the function F defined by 

F(x) = Fi(*) - E A ( * ; & 0 * I ( & * ) -

LEMMA 2.2. Suppose f(x) is Pn-integrable with respect to the basis {a^ 
on [a, b], and let F(x) be the associated Pn-integral with respect to the basis 
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{at} on [a, b]. Then corresponding to e > 0 there is a Pn-major function 
Q(x) and a Pn-minor function q(x) such that if R(x) = Q(x) — F(x) and 
r(x) = F(x) — q(x), we have 

\R(x)\ < e, \r(x)\ < e, \Rik),+ (a)\ < e, 

\Rto.-(b)\ < €, k(*),+ (a) | < 6, | f ( t ) i - (6) | < c, 

1 ^ k g n - 1. 

Proof. Let 

Jfi = maxig^wsupx€[a,&] X(x;a*), 

i£2 = supig*gn_i X a ) t + ( a ; a,)> 

i£3 = s u p i ^ n - 2 (b - a)k/k\. 

Suppose {ak}t=i, {Pk}t=i are two sequences of points in the interval [a, b] 
such tha t 

c*i < ft < ft < . . . < ft < . . . , 

« i > «2 > «2 < • • • > a* > • • • , 

and l im^ + 0 0 ak = a, l im^ + 0 0 ft = b. 
Let {e*} be a sequence of positive numbers such tha t 

Hm^+00 -^rj-y = ° and 

\imk_,+O0-,——-77 = 0, j = 1, 2, . . . , (w - 1), 

V ' / (e)(n-2)l e(n - 2)1 e \ 
h €k < m m 18(6 - a)"-1 (1 + nKx) ' 16(6 - a)n~lnK, ' UK J ' 

€fc < min (e/4 f 2 ^ ; f ^ j f £ = 1 , 2 , . . . . 

For the closed interval [ai, ft] and e = ei, construct a function Ri(x) 
corresponding to the function R(x) of Lemma 2.1. Similarly for the 
closed intervals [ak, ak-i] and [ft_i, ft] and e = ek, k ^ 2, construct 
functions ^ ( x ) and i?fc(x) corresponding to the function R(x) of Lemma 
2.1. Then define the function R°(x) on [a, b] by 

(Rk(x), x e [akl «it-i], £ = 2, 3, . . . 
)Rk(x),xe [ft. 
jRi(x),x G [ai, 
\0 , x = a, x = 

#<V~\ /^*w> x e [ft-i, ft], k = 2, 3, . . . 
L«ii ft] 

6. 

I t is easy to verify t ha t 

2?!,).+ (a) = *<,).-(&) = 0 , U i g n - l . 
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Now construct a function p(x), constant on the intervals (ai, ft), 
(ak,ak-i), and (ft-i, ft), k ^ 2, such that £(a) = 0 and its jump at a 
point of discontinuity d is equal to R°(n^i)t^(d) — R°(n-i)t+(d). Since the 
functions Ri(x), Rk(x)j and Rk(x) are w-convex on their respective 
intervals of definition, it follows from Theorem 2.2 that 

£ ;o 
(n-1) , .(d) è *(n-l),+ W , 

and £>(x) is monotonie increasing on [a, b]. 
By construction we have that the jump in the function p(x) at ak and 

ft is not more than ek + e^+i. Moreover 

oo 

0 £p(x) èp(b) <i^£ek. 
J f c = l 

Now define G(x) as the (n — l ) t h indefinite integral of p{x) on the 
interval [a, b]: 

G(x) = ^ - = " 2 ) ] / „ * ( x _ ')""*/> ( 0 * . 

and let the function L be defined on [a, 6] by 

n 

L(x) = G(x) — ^Xixia^Gidi). 
z = l 

Then L{at) = 0, i = 1, 2, . . . , n, 

\L(x)\ ^ 
4(6 - a)*"1 f, 4 ^ x f . 

(» - 2)! *tf 

= (1 + nKi) 
Hb - a)n 

£ «* < e/2, a g x ^ b, 
L in - 2)! 

|L(fc)l+(a)| g |G(fc)l+(a)| + X) |X(*).+ («ï^<)| |G(ai)| 
2 = 1 

^ 4i£3 2-, €* + (»^2) - 7 - ^ T ~ S «* 

< e/4 + e/4 = e/2, 1 ^ k g* n - 1. 

Similarly \L(k)-(b)\ < e, for 1 ^ fe fg n — 1. Now define the functions 
i?° and # on [a, b] by 

i?°(*) =R\x) - E x ( x ; a ^ 0 ( a ( ) , 

and 

#(x) = L(x) + i?°(x). 
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Then if d is a point of discontinuity of R°(x)1 we have 

h2k 
1 

7 M - l 

G(d + h) + G(d - A) ( n /-^1 

2 èa (2ft)! 

+ 
jg°(<f+ft) + i?0(J A) 

fc=0 

( n / 2 ) - l 

D"G(d) 

h* 

1 
~ 2AÏ_T G(d 

1 

2(-ft)"-1 1 

+ _J_ R\ 

1 
2(-/*)n~1 

-»±i[Gc.-i> .+ (<*) 

= ±Up(d+ ) -

G(d) 

*=o (2ft) 
DuR°(d) 

G(d - A) - G(d) - E^TT^G<„ ,_(d) 
ft! 

" * A * 

i ? V - A) 

as ft -» ± 0 , 

£(<*-) - 5?n_1)f+(d) - Rl-1},-(d)] = 0, 

by definition of £(x). Since each \(x\ at) is w-smooth it follows that R(x) 
is w-smooth at each point of discontinuity of R°(x). Since R(x) is ^-convex 
on each of the intervals determined by the sequences {an\ and {ftn} it 
follows that R(x) is w-convex on [a, b]. 

We have then \R(x)\ < e, \Rik)t+(a)\ < e and \Rik)_(b)\ < e, 1 g 
& g w - 1 

Now let Q be defined on [a, fc] by 

Q(x) = F(*) + R(x), 

where F(x) is defined in the statement of the lemma. Then 

Q(x) = F(x) + L(x) + R°(x), 

and on a typical interval, say [A_i, ft], 

Q(x) = F(x) + Qk{x) - Fk(x) + L{x) 

where Qk(x) is a major function for f(x) on [ft_i, ft] and Fk(x) is its 
Pw-integral. Since F(x) — Fk(x) and L(x) are polynomials of degree at 
most (n — 1), it is easy to see that Q(x) has the required properties of 
a Pw-major function on [ft_i, ft]. 

Q(x) is obviously continuous and the existence of Q{k)(x), 1 ^ k ^ 
w — 2, follows from the n-convexity of R(x) and the existence of Fw(x), 
1 ^ k ^ n — 2 [2]. F(x) is w-smooth in (a, b) and since P(x) is w-convex 
then R{n~l){x) exists except at a countable number of points in (a, 6) 
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[1] and so R(x) is n-smooth except at a countable number of points in 
(a, b). This shows that condition (1.4) in the definition of a major 
function is satisfied. 

Conditions (1.5) and (1.6) are satisfied by Q(x) since, clearly, 
Qicii) = 0, i = 1, 2, . . . , w, and 

d*Ç(x) è dBÇ*(x) è / (* ) , a.e. in [ f i^ , &]. 

We have moreover that dnQ(x) ^ dnQk(x) > — oo except on a 
scattered set in (ft-i, ftO where Qfc(x), and hence Q(x), is w-smooth. But 
the set which is the union of all the scattered sets from the intervals 
(«i, /Si), (a*, ofa-i), (ft, ft+i), fe = 1, 2, . . . , is scattered, as is its union 
with the set of end points T = {«i, a2, • • • , 0i, 02, . . .}. Since F(x) is 
w-smooth everywhere and i?(x) is w-smooth at the points of T, condition 
(1.7) is verified for Q(x). 

In a similar way we can construct a minor function with the required 
properties. 

NOWT Theorem 2.1 follows because of the results of [3] (in particular, 
Remark, page 796). 
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