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Tensor Product Realizations of Simple
Torsion Free Modules

D. J. Britten and F. W. Lemire

Abstract. Let G be a finite dimensional simple Lie algebra over the complex numbers C. Fernando
reduced the classification of infinite dimensional simple G-modules with a finite dimensional weight
space to determining the simple torsion free G-modules for G of type A or C. These modules were
determined by Mathieu and using his work we provide a more elementary construction realizing each
one as a submodule of an easily constructed tensor product module.

0 Introduction

Let G be a finite dimensional simple Lie algebra over the complex numbers C, and
let 3 be a Cartan subalgebra of §. A §-module M is said to be a weight module if
and only if M = @ ), cgc- My, where each weight space My = {v € M | hv =
A(W)v(Vh € H)} is finite dimensional. A weight module is forsion free provided all
elements from G \ H act injectively on M and it has degree I provided all the weight
spaces are 1-dimensional.

Fernando [F] reduced the classification of all simple weight modules to determin-
ing the simple torsion free modules and showed that the only simple Lie algebras
admitting torsion free modules are those of type A or C.

In [BL2], every simple torsion free module T(d) of degree 1 is explicitly con-
structed. Example 1.4 below presents this construction in the A, case. The authors
conjectured, see [L] for example, that all simple torsion free modules of arbitrary
finite degree can be realized as submodules of a tensor product T(d) ® L(\) where
L(A) is a simple finite dimensional module.

In a recent paper Mathieu [M] has classified and provided a realization of all sim-
ple torsion free weight modules. Nevertheless, the proof of the conjecture would
provide a more elementary and explicit realization of the simple torsion free mod-
ules than the realization given by Mathieu.

In this paper techniques employed by Mathieu are adapted to establish the conjec-
ture. The proof of the conjecture for torsion free C,-modules follows directly from
a complete reducibility theorem [BHL] and Mathieu’s work and will be briefly de-
scribed at the end of this paper. The focus here is on the case of torsion free A,-
modules.

In the first section, we set down the notation and state the basic definitions and
results required for this paper. The key concept of a 3-injective A,-family of modules
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is introduced in Section 2 together with some basic properties of such families. Sec-
tion 3 is devoted to providing the Jordan-Holder composition factors for the tensor
product modules T@ = I(aw;) ® L(\) wherea € C \ Z>¢ and A is a dominant
integral weight. Finally in Section 4, we combine the results from Sections 2 and 3 to
prove the conjecture for torsion free A,-modules.

1 Preliminaries

Let gf(n + 1,C) denote the Lie algebra of all (n + 1) x (n + 1) complex matrices
with commutator product and {E;; | 1 < i,j < n+ 1} be the standard set of
matrix units. Fix a realization of A, as the Lie subalgebra of gf(n + 1, C) generated
by {Eiir1,Eis1; | 1 < i < n} and fix its Cartan subalgebra to be H = span{h; =

Ei —Eiqiv1 | i =1,...,n}. Let ¢ denote the projection of any (n + 1) x (n+1)
matrix onto its (i, )-th entry then a basis of simple roots for the root system A of A,
is given by A*™ = {a; = ¢, — €41 | i = 1,...,n} and the corresponding positive

roots A* = {e; —¢j = o +---+aj_ | i < j}. Fori < j, Ej j is a positive root
element belonging to the positive root ¢; — €j;1 = a; + -+ + a; and is denoted by
Xoj+-+a;- Correspondingly, Ej.1 ; belongs to the negative root —(a; +- - -+ ) and is
denoted 2,,+...+a,;. The rank n Z-lattice generated by A™* will be denoted by Q. The
weights w; = €, + -+ ¢ — —5(e1 + -+ + €y41) fori = 1,...,n provide the dual
basis for A™* with respect to the inner product determined by setting (e;, €j) = Jij.
Finally, let {1 | i = 1,...,n} be the basis of { dual to {a;}—i.e., a;(h}) = di;.
Let A, denote the Lie subalgebra of A, generated by

(L.D) {Eii+1,Eiv1,i | 2 <i<n}.

Clearly, A, ~ A,_.

Let U(A,) denote the universal enveloping algebra of A,,, U,(A,) the subalgebra
of U(A,) generated by the elements X,,,, U_(A,) the subalgebra of U(4A,) generated
by the elements Y,,, U(J) the universal enveloping algebra of the Cartan subalgebra
H and U, the centralizer of H in U(A,).

Let M be an A, weight module. The set of all weights A € H* with M, # {0}
is called the support of M and is denoted Supp(M). An infinite dimensional weight
module M is said to be admissible provided Supp (M) is contained in finitely many
Q cosets and there exists a B € Z such that dim M), < B for all A\ € Supp(M). The
degree of an admissible module is the maximum dimension of its weight spaces.

For each £ € H*, we denote by L(£) the simple A,-module having highest weight
& (with respect to A**). Clearly L(&) is a weight module and its support is contained
in {f — Z?:] n;Q | n; € ZZO}‘

Following Mathieu define a coherent A,-family of degree d to be a weight A,-
module M such that

(i) dimM, =dforall A € H* and
(ii) for each u € Uy the map A — trace(u | M,) is polynomial in A.

A coherent A,-family M is said to be irreducible if and only if there exists a weight
A € H* such that M, is a simple Up-module.
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Theorem 1.2

(i)  [M, Lemma 3.3] Any admissible weight module M has a composition series of finite
length.

(ii) [M, Proposition 4.8] For every simple infinite dimensional admissible A,-module
M of degree d there exists a unique irreducible semisimple coherent A,,-family M*
of degree d which contains M as a submodule.

(iii) [M, Proposition 5.4 and Theorem 10.2] For every irreducible coherent A, -family
M of degree d, thereis a T € 3* such that the submodule M) = >, .y M, is
simple torsion free of degree d.

Let M be an infinite dimensional admissible simple module of degree d. Mathieu
gives a general construction of a coherent family M(M) which contains M. This is
described briefly in Section 2. Theorem 1.2(i) allows us to form the “semisimplifica-
tion”, M*(M), of M(M). These irreducible semisimple coherent families are labelled
using A = {3>°" ajw; € H* | a; € Lo fori =2,...,n5a; € C\ Zso}.

Theorem 1.3 [M, Prop. 8.5] For each admissible irreducible semisimple coherent A,,-
family M* there exists a unique weight wt(M) € A such that the simple highest weight
module L(wt(J\/[)) is isomorphic to a submodule of M*. This correspondence is bijec-
tive.

Of particular interest is the following construction of a coherent A,,-family of de-
gree 1.

Example 1.4 Fix a € C. Define

n+1

by, ... by € Cwith Zbi:a}.

i=1

— b_ b by
S(a) = span(c{x =1

Then an A,-module structure can be defined on S§(a) by embedding A, into the Weyl
algebra Wy, = (x;,0; | i = 1,...,n+ 1) with E;; — x;0;. Here, W, is the Lie
algebra generated by x;, and 0; where the action of x; on 8(a) is multiplication by x;
and the action of J; on 8(a) is partial differentiation with respect to x;. It is easily
verified that 8(a) is a coherent A, -family of degree 1. Now fix aj,...,a,, € C\ Z
with Z:’;l a; = a. Define 7 = > (a; — a;1)w; and let T(d@) < 8(a) be given by

n+1

> obi=aa—b €7} =S@.

i=1

T(@) = span({ X =Kl ybe

Then T(4) is a simple torsion free A,-module of degree 1, and as shown in [BL2]
every such module may be realized in this manner. If a ¢ Z>, then L(aw,) < 8(a)
is an admissible module with maximal vector x{ having weight aw; € A. In fact

L(aw;) ~ span({x?*’zlxglfg2 "'xfﬂu |6 el:6,>0,>--- >4, >0} < S(a).
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Whena = N € Z>y, L(Nwy) is a simple finite dimensional (hence not admissible)
submodule of (V). In this case

L(Nw) ~ span {xN = = xle | 0 e 2,0 <0, < - <4 <N} < 8(N)

has a maximal vector x)¥ and the unique admissible submodule of §**(N) with highest
weight in A given by Theorem 1.3 is

L((=N = 2)w; + (N + Dwy) =~ (x; ') /L(Nw,).

The central character of 8(a) is X, in either case.
If M*(E) «— € € A is the bijection of Theorem 1.3 then the degree of M*(¢) is
equal to the degree of L(£). Mathieu partitions A into weights of three types:

(i) if&(hy) ¢ Z-o then £ is said to be nonintegral;

(ii) if there exists an index 7 such that £(h; + -+ + h;) + i = 0 then £ is said to be
singular and

(iii) if&(hy) € Z<o and is not singular it is said to be regular integral.

The regular integral elements of A can be associated with dominant integral weights
as follows. If i is a dominant integral weight then set u[0] = pandfork=1,...,n
define pu[k] = 0q 4.ty © <+ © 0o, + A Where o, denotes the reflection of H{* in
the hyperplane perpendicular to « for any v € A" and - denotes the affine action
of the Weyl group. For k = 1,...,n the weights u[k] € A, u[k] is linked to p,
wulk — 1] — ulk] is a positive integral multiple of oy + - - - + a4 and each regular
integral weight £ is of the form p[k] for some dominant integral weight p.

For any weight v = }""_| vjw; let 7 denote its restriction to H N A,, i.e, 7 =
3 i Vit

Theorem 1.5 [M, Theorem 11.4]

(i) If¢ = Z?:l aw; € A is either nonintegral or singular then the degree of M(£) is
equal to the dimension of the simple A,-module with highest weight &.

(ii) For any dominant integral weight p the degree of M*(p[n]) is equal to the dimen-
sion of the simple A,,-module with highest weight fi[n] and if 1 < k < n the degree
of M*(u[k]) plus the degree of M*(u[k+11]) is equal to the dimension of the simple
A,-module with highest weight fi[k].

Proposition 1.6 Let £ € A. The coherent A, -family M*(§) has degree 1 if and only if
& = aw forsomea € C\ Zsg or§ = —(N + 2)w; + (N + 1w, for some N € Z>q.

Proof If £ has either of the two forms given then construct 8(a) as in Example 1.4.
Use Theorem 1.2(ii) to obtain the semisimplification of 8(a). Theorem 1.4 tells us
that 8(a)* ~ M*(&) and hence the degree of M*(§) is 1.

Conversely, suppose that the coherent A,-family M*(&) has degree 1. Applying
Theorem 1.2(iii), let [7] be a Q coset such that M*(§)(] is a torsion free submod-
ule. Certainly this submodule is simple of degree 1 and so it is isomorphic to some
T(d). Seta = Z:l: a;. Form 8(a) containing T(4) as in Example 1.4. Then by
Theorem 1.2(ii), M*(£) =~ 8%(a) since both of these modules contain T(d). 8*(a)
contains L(aw;) if a € C\ Z>g or L(—(N + 2)w; + (N + 1)w,) ifa = N € Z>. By
the uniqueness of Theorem 1.3, £ = aw; or £ = —(N + 2)w; + (N + Dws,. [ |
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2 Y-Injective Coherent A,-Families

In this section, the focus is on a particular type of admissible coherent A, -family.

Its description starts by fixing a basis ¥ = {a; + -+ ax | k = 1,...,n} of the
root lattice Q which is a commuting basis in the sense that [Y,,,Y,,] = 0 for all
B, po € X

Definition 2.1 A X-injective coherent A,-family of degree d is an A, weight module
M such that

(i) dimM, = d for each ¢ € H",

(ii) Y, acts injectively on M for all p1 € 3,

(iii) there exists a linear basis B = UCE?’C* B of M where each B, is a basis of the
corresponding weight space M and B._,, = Y, B for each root 1 € %, and

(iv) for each element u € Uy, there is a d X d matrix of polynomials P (zy, ..., z,)

= pf— j)(zl, ...,2,)] such that the matrix representation of the action of u on
M, with respect to B is

[ud Mclp, = [p{(cr,. . )] = PYcr, ... o) when ¢ =D cilon + -+ + ).

i=1

To simplify notation we write pE’;)(g ) for pg;’)(cl, ...,Cy) when ¢ =
Z?:] c¢(lag + --- + ;). The pl(-?) (z1,...,2,)’s are called the structure polynomials
of M.

General Assumption Unless otherwise stated M is assumed to be an admissible A,,-
module of degree d where Supp(M) C & + Q for some k € H* and such that Y, acts
injectively on M for each p € . Fix & so that M,; has basis B, = {vi,...,v4}.

The aim now is to show that there exists a unique X-injective A,-family M(M) of
degree d which contains M as a submodule. For the existence of such a module we
rely on the work of Mathieu.

Let Yy, denote the multiplicative subset of U generated by {Y,, | u € X}. By [M,
Lemma 4.2], the set Yy satisfies the Ore conditions. Let Uy, denote the localization
of U with respect to Yy. Set M’ to be the Ug-module Us ®y M. Then M’ is a
weight module with a U-submodule isomorphic to M and dimM,, = d forall v €
Supp(M’) =k + Q.

.....

automorphism given by

k kn —ky —k
@(k17~~~,kn)(w) = Yall T Yal+~~+a,,WYa1+~~+an Ul E
Assume k = Y - ¢i(ag + -+ + ;) is a weight of M with B, = {v,...,vs} a

basis of the weight space M,;. Fix an element u € Usy. Since ¥ is a basis of Q and the
elements of Yy act injectively on M’, for any weight { € x + Q there exists a unique
element Y(’?l o -Y§j+._+an in Yy, with k; € Z such that B, = {YZ;‘I .- 'Y§f+.<.+a,,1’i |i=
1,...,d} is a basis for the weight space M/.
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Since the elements Y, for v € ¥ are locally ad nilpotent on Uy, there exists an
integer N such that ad(Yq,)N“(u) = 0 forall v € 3. By [M, Lemma 4.3], we have
that

ki k —k —k
Yh.oo.yk uy Kk Yy

ajteta, Hagtetay,

k k" i i —i —i
_ Z (1) (l )(ad Yoq)l (ad Ya1+~-+an)"(”)Yalf-um,,"'Ya117

R 3
0<iy,...,in <N

and so O, ... k) given by
“Hi”'i ki) (K (ad Y, )" ---(ad Y, Yin ()Y " .
=0 i,=0 i n ! T e “

where

1!

ki _ (ki = 1) (Ko — i + 1)
im i

is an automorphism for all integer values of ki, .. ., k,. Thus, forany ¢y, ..., ¢, € G,
the map O, .., : Us — Us given by

o0 o0
c c ; . . .
wr Y o> () () @d Yo - (ad Yoy, )Y R Yo
im0 o \1 tn
1= n—

is an automorphism.

The Uy-module structure of M’ can be described through the use of the automor-
phisms O, . x,) with the k/s € Z. In fact, for each u € Uy, each n-tuple (i1, ... ,i,)
with 0 <i),...,i, < N, N as above, and each j, select a?’;(‘“’l” € C such that

d
(ad Yo, )"+ (2 Yo 0 (W)Y e, Vi v = e
k=1

where B, = {v1,...,v4} is a basis of the weight space M. Let zy, ..., z, denote n
commuting variables and define polynomials

(u) _ 21— 0 L Zy — Cp 1 yeensin
Pk (2150 y20) = E ( i i Ak -

0<i1yemnin <N

It follows that the action of  on B, = {Yf;‘] e Y§'1'+_..+anvi | i =1,...,d} abasis
M is given by

k , vk k ,
uYall T Ya:+--<+anv] - Yall U Yay1'+-<~+oz,,6(*kl~,~~~~,*kn)(u)v]

n
k kn
= YOc‘l e Ya1+-~»+a,, ZP;Z)(CI - k17 sy Cp — kn)vk
k=1

n
k kn
=Y P =k = R)YE YR e
k=1
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From this calculation one sees that the action of each u € Uy on the weight spaces M/
with € in the coset [k] = k+Q are “polynomially related” and the action of u on M Cl is
related to the action of ©(_y, .. _x,)(u) on M) where k—( = > ki(ay+- - ~+a;). In
particular, the action of Uy on M( is the action of Uy on M,; twisted by ©(—,, .. —k,)-

To construct M(M): start with a copy, M[’T], of M’ for each coset [7] of Q in F*;
form the direct sum indexed by these cosets

M(M):@ Z M[/T] with R_T:ibi(al"'""f'ai);

[T]eH*/Q i=1

and define the action of each element u € (Uy), on M['T] by twisting the action of u
on M’ through the use of the automorphism ©(_j, . _s,). Since by [M, Lemma 4.3]

Ok, k) © O(—by,.i—b) = O(—b—ky.o..—by—ky)

k k, /
forYg! -+ Yat..4a,vj € M[, we have
n
k k, _ (u) k ku
uYo Y Vi = E pila=by—kiyooen = by — k)Y, - Yo g e
=1

Hence the action of u € Uy on M, is determined by the structure polynomials.

As shown by Mathieu, the definition of M, is independent of the coset represen-
tative. Thus, the coherent family M(M) of degree d containing M, as constructed by
Mathieu, is in fact a X-injective family with structure polynomials pg';) (zZ1y. .-y 2n)-

Theorem 2.2

(i)  The structure polynomials of a X-injective coherent A,-family M of degree d con-
taining M are uniquely determined by M, a fixed weight k of M with dim M,; = d
and a basis B, = {vi,...,va}.

(i) A X-injective coherent A,-family M of degree d is a Ux-module and is uniquely
determined by its structure polynomials.

(iii) There is a unique, up to isomorphism, X-injective coherent A,-family M contain-
ing M as a submodule.

Proof (i) Let M be any X-injective coherent A,-family of degree d containing M.
Then the values of the structure polynomials pg;')(zl, ...,2,) are determined by M
for (z1,...,2z,) = (c1 — ki,...,¢c, — k,) with k; € Z>(. By Zariski density, these
polynomials are uniquely determined.

(ii) The fact that M can be viewed as a Uy-module follows immediately from the
injectivity of the elements Y, for all i € ¥ and the assumption that all weight spaces
have dimension d.

Since for any root v € A*\ ¥ both Y, and X, can be expressed as commutators of
appropriate elements Y, and X,,, with p;, u, € 3, to complete the proof it suffices
to show that for each 4 = a; +--- + @, € X the actions of Y, and X, are deter-
mined by the structure polynomials. By our assumption on the bases of the weight
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spaces the elements Yj[] simply translate the basis elements. Let u = Y, X,, € U,
and B, = {vj | j = 1,...,d} be a fixed basis of M,.. Then for any basis vector

ks : _
Y,ﬁ‘] Yo, Vi € M[’T] withs —7 =31 bi(ag +---+ )

X, Yo yk

arteta, Vi

—1 k kn
=Y, 'Y, X, Y5y,

arteta, Vi

n
=Y, pa = b — ki, — by — k)YE - YE L L v
(=1

n
— Z () k kp—1 k,
- p]‘g (Cl - bl - k17 ey Oy — bn - kn)Yall e Yof:+~-+ap e Y(ylx+m+anvf
=1

where the pl(-;’)’s are the structure polynomials belonging to u.
Part (iii) follows immediately from parts (i) and (ii). [ |

At this point, one should note that there are two different unique coherent A,-
families associated with a simple module M satisfying the General Assumption: the
irreducible semisimple coherent A, -family M*(M) and the X-injective coherent A,,-
family M(M).

Theorem 2.3 Let{ € A. If{ = aw, for somea € C\ Zsg or{ = —(N + 2)w; +
(N + Dw, for some N € Z>q and X is a dominant integral weight then

M(L(E) ® L(N)) =~ M(L(E)) ® L(N).

Proof Fix £ as in the Theorem. Independent of the the choice of £ both L(£) and
L(€) ® L()\) are X-injective A,-modules and hence one can construct the X-injective
coherent A, -families M(L(f)) ®L(\) and M(L(f) ®L()\)) . Since each of these have
degree d = dim L()\) and contain a submodule isomorphic to L(&) ® L()), it follows
from Theorem 2.2 that M (L(§) ® L(\)) ~ M(L(€)) ® L(A). [ ]

Theorem 2.4 Let { = aw, for somea € C\ Z>g or{ = —(N + 2)w; + (N + Dw,
for some N € 7> and X be a dominant integral weight. Then M(L(f) ® L()\)) - is
torsion free if and only ifM(L(f)) (-] is torsion free.
Proof If M(L(f)) (o] is torsion free, then clearly M(L({)) oy ® L(\) ~
M(L(f) ® L()\)) ] is torsion free.

Conversely, if M(L(£ ) ® L()\)) - is torsion free then it contains a simple torsion

free submodule T. Therefore,

T < M(LEO @ L), = M(LE) ,_, & L.

[T

Since the degree of M(L(f)) is 1, the degree of M(L(f)) (r—A] is 1. Assume

M(L({)) (roA] is not torsion free. Suppose further that J\/[(L(ﬁ)) Y is simple. By

[T
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[F], there is a root vector which is locally nilpotent on M(L(£ )) (oAl and hence on
J\/[(L(f )) roa ® L(A) which precludes it from containing a torsion free submodule.
Thus, ifM(L(f)) (oAl is not torsion free, then M(L({)) (o] is not simple. Since
N = J\/[(L(f )) A is admissible it has finite length by Theorem 1.2(i). Consider the

e [,
composmon series

0=Ny CN;C---CN;=N.
Certainly, if TN (N; ® L(A)) # {0} then by simplicity T C N; ® L()). Let j be the
largest index with T € Nj ® L(\). Then T & (N]-H ® L()\)) C N; ® L(\). If there is
a root vector which does not act injectively on N;j /N1, then again by [F], it is locally
nilpotent on Nj/Nj,; and hence on (N;/Nj;1)®L(A) ~ (N]-®L()\)> /(Nj+1®L(>\)) .
However, T N Nj;; ® L(A) = {0} and so (N]- ® L(/\)) /(N]-H ® L()\)) contains an
isomorphic copy of T, contrary to T being torsion free. On the other hand if all
root vectors act injectively on N;j/Nj,; they also act injectively on N; and hence each
element of [T — A] is a weight of N;. This implies N; = M(L({)) (-] is torsion free
as required. ]
Theorem 2.5 If

O=MyCM C---CMy=M

is a sequence of admissible submodules of M maximal with respect to having strictly
increasing degrees, and M (M), is any torsion free submodule of M(M) of degree d,
then

0= M(Mo)ir) € M(M))7) C -+ C MMg)r) = M(M)7

is a composition series of NU(M) 7).

Proof Let x be as in the General Assumption. Since each of My, ..., M, satisfies the
General Assumption, we may construct

0= (M(Mp) ,, C (MM) |, €+ C (MM) |, = (MM)) .

By Theorem 1.2(i) (M(M)) (7] has a composition series. If this sequence is not a
composition series, then for some i there is a submodule P such that (M(Mi)) i C

P C (M(Miﬂ)) - Certainly, since these submodules are torsion free, d; < dp <
diy1 < d where d;, dp, and d;;, are the degrees of M;, P, and M., respectively.
Necessarily, P satisfies the General Assumption and

0=M(M,) C--- CMM;) C M(P) C M(Mj11) C--- C M(M,) = M(M)
is a sequence of X-injective coherent A, -families.
M; =M N0 (MM) ; € M0 (MP) ,; € MO (MMis)) |, = Min
and this contradicts the maximality condition on

OZM()CMlC"'CMq:M. |
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3 Admissible Highest Weight Modules

In this section, the focus is on the decomposition of the tensor product module
T = L(awy) ® LV

where a € C\ Z> 0 and X is a dominant integral weight. The goal here is to show
that for each £ € A, L(§) occurs as a submodule of such a tensor product.

The key to the decomposition of T@ is the branching of L(\) into simple A, -
modules. The branching of L()\) into A, _;-modules is easily done using a Gel’fand-
Zeitlin basis realization of L()\). The branching into A,-modules can be found by
using the diagram reversing automorphism before applying this technique. This sug-
gests that a dominant integral weight A = " | A\w; is associated with a partition

m:0<m<m< - <mof|n| = Z?:lm where 7; = Z’j:l Aj. The desired
branching into A,-modules is easily described using a set of partitions

(3.1)
DA ={p:0<p1 <p <+ <p |0<p1 <m < p, <mp <+ < py <}

For each p € II(\), with [p| = Y7, p;, define
(3.2)
AP = (|p| +p1 — [m])wr + Z(Pi — pi-)w; and AP = Z(Pi — pi—1)wi,
i=2 i=2

then,

L(A)z@ Z LOP)

pell(N)

as A,-modules. For each p € II(\), fix a basis {v,; | j = 1,...,d,} of LOW)
consisting of A,-weight vectors in such a manner that v, is a highest weight vector
for L(AP)) with respect to A, and has A, weight AP,

Leta € C\ Z>o. In this setting, a basis of T@ = L(aw;) ® LX) is

(3.3)
B={x @y | 6 € Lo ly > > Ly > Ly =0 p €I j = 1,....d,}.

An alternate basis which takes advantage of the A,-module structure of 7@ is now

sought.

For each / = Uy, ... b)) € 72" with &y > --- > £, = 0, there existsg
unique monomial u(Z) = CzYﬁrlz e Y[’jJr.Hm" with C; € Csuch that u(Z)x? = xt.
Moreover, for each j = 1,...,d,, there exists a (not necessarily unique) element

Upi € U_(A,) such that Uyivpr = vpj. Since ux{ = 0 for any element u € U_ (A,), it
follows that for any u,;, ui’,j € U_(A,) with uyjvp = u;,jvpl = Vpj

(D) (6 @ vp1) = u(D)(x @ vy;) = (@), (x @ vyr).
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As is proven below a desirable basis is described using the elements
(x*' @ Vpi) T = u(Z)(xi‘ ® Vpij)-

Observe that in the special case when £ = 0 then (x¢ ® Vpi)T = xf ® vpj.
For each p € II()), define the subspace W, to be

Span«i{('xa’z@ V%j)_ | éi € Z7 61 2 Tt 2 én-%—l - 0;
qge N lgql > |plj=1,...,d4}

and observe that W, C W, if and only if A (hY) > A?)(hY) since

1 “ n
® (VY — () —_ Db | = _
AP (h) = A <n+1 ;:1 (n+1 z)h,) Ip| n+1|7r|.

Proposition 3.4 Leta € C\ Z>.

(i) A linear basis for T is given by
B = {(xT @vp)" | i € Lsp3ly >+ > Loy = 03 p €TIN); j = 1,...,d,}.
(ii) For p € I(\), W, is a U-module with linear basis given by

B, = {(xuj@"qj)f | b €2,60 > -+ > Ly =05
q € I\ ql > plsj=1,...,d.}.

(iii) U_(x{ ® vp1) + W, is a U-module with a linear basis given by
(@ vy [ G €7l > > by =05 = 1,...,d,} UB;.

Proof (i) Notice thatifv = \— Z ki is the weight ofvpj, and g = ag+- - -+ay,
then (v — pu)(hY) < v(h)) andso Y, vp] € Zlq\<| | L(A9). Order the elements in B
and B~ in such a way that x* I® v4; occurs before x* ) Vi, Tespectively (x“’ ®vyj ) -

occurs before (x*! ® vp1)”, whenever |g| < |p|. Then if the elements in B~
expressed as linear combinations of the elements in B the coefficient matrix is upper
triangular with 1’s on the main diagonal. Since B is a basis of T so is B~.

(ii) Itis clear from part (i) and the definition of W), that B, is a basis of W),. Also,
for any u € A* and any basis vector v,; € L()\) we have

Xvp; € LAY & > eL(?).
lal>Ip|

In fact, if g € A"\ X then X, vp, € LAAY) and if p € ¥ we have u(hy) > 0
and hence X,,v,; € Z‘qul ®L(A@). Further, since X,x! = 0 for any 1 € A" we
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conclude that X, (x{ ® v,;) € W,. Since W, is generated, as a U_-module, by the
elements {(x{ ® vy1)~ | |g| > |p|} it follows that W, is a U-module.
Part (iii) is proven in an analogous manner to part (ii). ]

Suppose v € T has weight p1. Then v can be expressed as ZZ Xt ® vz for unique
choices of v; € L(A) having weights p minus the weight of x*. Moreover, when v is
a maximal vector there is more to be said.

Proposition 3.5 Ifve = > px® £ ® vy is an A,-maximal vector in T@ then v; is a
nonzero A,-maximal vector in L()\). Conversely for each A,-maximal vector vy, in

L(X) there exists a unique A,-maximal vector _; x™ g ®vyin T such that V5 = V1.

Proof Assume, contrary to what we wish to prove, that v* = ng“’é ® v is an

A,-maximal vector in T with v; = 0. Select an index € such that 3" ¢; is minimal
among the indices with v; # 0. Wlthout loss of generahty, we may assume that £, > 0

and¢; = 0fori =g+1,...,n+1. Observe that Eq q+1x"’ = £gx™ xq/xqﬂ % 0. Also
since > ¢; is assumed to be minimal, for any k with v; . # 0, Eggnx® is linearly
independent of x** and assuming that E%qﬂx”’ # 0, it is linearly independent of

Eq_qﬂx“j when k #* 7 since they have different weights. Since v* is assumed to be

maximal,
.
0 = Eqqnv
xaé
=/ ®v~+x”’®E vy + (B gp1x% ®V~+x”k®E v=).
— q.4+1V7 q9,4+1 9,q+1V}
q

kA0

From the observations above, the first term of this sum is nonzero and is linearly
independent of the other terms. This contradiction implies that we must have v; # 0.

The vector v; is is claimed to be an A,-maximal vector. Certainly, for any index
i>2,

0=Ejjv'

=x{ @ Ejjp1v5 + Z(Ei,mxa’k ® vp + x* @ Ejj1vp).
k40
If E; j;1v5 # 0 then a linear independence argument shows that this equation is not
possible and so E; ;41v; = 0. Hence, v; is a maximal vector with respect to A, as
claimed.
To prove the second assertion it suffices to show that 7@ contains a maximal

vector of weight aw; + AP, To this end select any integer N > 7 k; where A =
>, kiwi. Applying the Pieri Formula we have that

TNV = L(Nw) @ LA) ~ & Y L(Nw; +AP).
pEI(N)
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Therefore for each p € II()\), there exists a nonzero maximal weight vector in T®)

of the formv* = Y~ ;xV L ® vz having weight Nw; + ), For any positive root vector
E;; one has that i < jand so

0=Ejv" = Z(xiﬁij"Z) ® vy + ZXN’Z ® (E;jvp)
7 7

l

from which it follows that the coefficients of the simple tensors do not involve N.
Clearly, the vectors vz in this vector v" are independent of the value of N. It follows
then that for any a € C\ Z>( the vector szavé ®vy € T@ is nonzero, has weight
aw; + AP and is maximal. [ |

Remark 3.6 According to Proposition 3.5, for each p € II(A) there exists a unique
maximal vector of weight aw; + A?) in 7@ having the form

X} ® vpr + Zx“'[ ® v;.
)
This vector is denoted by (x* ® v,1)*.

Lemma 3.7 The degree of the A,-module (U_(x{ ® vp1) + W) /W, equals the dimen-
sion d, of the A, -module LO\P).

Proof By Proposition 3.4(iii) V = (U_(x{ ® vp1) + W,) /W, has a linear basis given
by{(x”’[ ®ij)7 +WP | & € ZZO,& 2 Ez Z Z €n+l = 0,] = 1,...,dp}.
Since L(aw,) has degree 1 it follows that the degree of V' is less than or equal to d,,
the dimension of the A,,-module L(A?). It remains to be shown that V has a weight
space having dimension equal to d,,.

Assume that the A, weight of the vector v, ; is given by \?) — > m;;c; and de-
fine B to be the maximum of the coefficients mj; for j = 1,...,d,andi = 2,...,n.
For each j = 1,...,d, we define the n tuple Z(j) = (nB, (n—1)B—mj,...,
B— mjn) . It is readily verified that for each j = 1,. .., d, the vector (x40 ®vpi)” +
W, is in the aw; + AP — Z?:l(n — i+ 1)Ba; weight space. Since these vectors are
linearly independent, this weight space has dimension d,, as claimed. ]

Lemma 3.8 Let A = Y ., A\iw; be a dominant integral weight and a € C. For any
p € TI()\) there exists at most one other element q € TL(\) such that aw, + AP is linked
to aw, + A9, Further, in this case, there exists a dominant integral weight u such that
{aw; + AP aw) + XD} = {ulk — 1], ulk]} for some index k € 7.

Proof Let [r| = >"" (n —i+ 1)) and assume that aw; + AP and aw; + A@ are
linked. This means that their € coordinates are permutations of one another, a fact
which remains valid when any multiple of 21";1 €; is added to each. According to
(3.2), the € coordinates of

n+1

l n
(p) . . .
aw; + AP +6—n+1<a+|p+p1—|7r|+1+?_l(p,—pl_1+1)) ;:1 €
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and

n+1

l n
aw; + AP +§ n+1(a+|q|+q1 |7T\+1+§1(‘11 ‘111+1))Z;€l
i= i=

are respectively,
(a+|pl+putn—|rl,pu—p1+un—1,ps—p2+n—2,...,p0— pn_1+1,0)

and
(a+lgl+qu+n—|nlygn—q+n—1,q.—qp+n—2,...,40 — Gu—1 + 1,0).

By assumption these two tuples are permutations of each other and their last # coor-
dinates form a decreasing sequence of integers. Since the sum of their components
area+ (n+ 1)p, + @ —|n|and a+ (n+ 1)g, + @ — || respectively it fol-
lows that p, = gq,. For any indices i < jsince p; < m < --- < 7w < gj it
follows that p, — p; + n — i # g, — q; + n — j. Therefore if g # p, there exists
an index k such that p; = ¢q; fori # k,a+ |p| + p, — |7| = g — g + n — k and
Pn— px+n—k=a+|q| + g, — |r|. This establishes the uniqueness.
Assume that p; < gi and define the dominant integral weight

= (p2—prwi +--+(pr — pr—1)wk—1 + (qx — px — Dwx

+ (Pks1 — G)Wke1 + (Prs2 — Prs)Whaz + -+ + (P — Pu—1)wWh.

By direct computation we find that [k — 1] = aw; + \#) and p[k] = aw, +A?. =

Lemma 3.9 If T € H* such that L(7) is an admissible ¥.-injective module with central
character x,, for some dominant integral weight i, then T = p(k] for some 1 < k < n.

Proof According to Mathieu, since L(7) is admissible with central x,,, 7 = Z?:] a;w;
with a; € Z having exactly one a; € Z_o. If a; = m > 0 and v" is the maximal
vector of L(7) then by Y-injectivity Y"*!v* 2 0 is a maximal vector, contrary to
the simplicity of L(7). Therefore, 7 € A and as noted in Section 1, this implies that
7 = plk] forsome 1 < k < n. |

Theorem 3.10 Let p be a dominant integral weight and assume that V is a X-injective
A,-module generated by a highest weight vector vy of weight u[k] and degree equal to
the dimension of the A,,-module L(fi[k]). Then

(i) ifk=mn,thenV ~ L(u[n]);
(ii) if k < n, then V contains the submodule L(u[k + 1]) and is indecomposable with
composition factors L(ulk + 1]) and L(ulk]) ~ V /L(ulk + 1]).

Proof It follows from Lemma 3.9 that if V' is not simple it must contain a submodule

isomorphic to L(u[!]) for some index I > k. If k = n this is impossible and hence in
this case V must be simple—i.e., equivalent to L(u[n]).
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Assume now that 0 < k < n. By Lemma 1.5(ii), we have that the degree of
L(u[k]) is strictly less than the dimension of the A,-module L(fi[k]). Therefore V
is not equivalent to L(u[k])—i.e. is not simple. Since V is generated by a highest
weight vector, V is a homomorphic image of the Verma module M(u[k]) having
highest weight u[k]. Also by Theorem 3.9 V must contain a submodule isomorphic
to L(u[1]) for some [ > k.

IfI > k+2 then since p[k+1] > p[k+2] in the Bruhat ordering, the BGG resolu-
tion implies that V must contain highest weight vectors of weight p[k+1] and p[k+2].
However, the sum of the degrees of L(u[k]), L(u[k + 1]) and L(u[k + 2]) is strictly
larger than the degree of V. It follows that V' must have a highest weight vector, say
vy, of weight u[k+1]. Therefore V is indecomposable and further V /Uv; ~ L(u[k]),
Uv, ~ L(u[k + 1]) and hence L(u[k + 1]) < V. [ |

The composition factors of the tensor product module T7'® are now given in the
following theorem.

Theorem 3.11 Let
Ozjocj‘lc...cg'q:g'(a)

be a composition series of T@). Then the composition factors for T are L(v) with

veQ={aw + A\ | pcTI(\)}
U{plk+1] |0 < k < n, whenever aw; + \?) = p[k]

for some p € II(\) and some dominant integral weight (1 }.
Moreover, in the corresponding sequence of X-injective coherent A, -families
0 = M(To) € M(Tp) € -+ € M(T,) = M(T)

equality holds between M (T;) and M(Tiy1) if and only if Tip1 /T ~ L(aw, +AP)) where
aw; + AP) is dominant integral.

Proof For each p € TI()) such that aw;, + A\?) is a nonintegral or a singular weight
(xf ® vp1)" is a highest weight vector in T@ and by Theorem 1.5 the submod-
ule generated by this vector has degree equal to the degree of L(aw; + A?))—i.e.,
Ux{ ® vp1)*t ~ Law; + AP)), On the other hand assume that p € TI()\) where
aw; + AP = k] for some dominant integral weight . By Lemma 3.7 together with
Theorem 1.5(ii) there exists ¢ € II(\) such that aw; + A? = p[k — 1] or plk + 1].
Without loss of generality assume that aw; + A9 = p[k + 1]. Since W, is the di-
rect sum of generalized eigenspaces belonging to central characters X, ;@ Where
lgl > [p], U(x{ ® vp1)" "W, = 0. Hence, by Lemma 3.7, the degree of U(x{ ® v;;)*
is equal to the dimension of A,-module L(i[k]). By Theorem 3.10, the submodule
generated by the highest weight vector (x{ ®v,1)" is an indecomposable module with
composition factors given by L(u[k]) and L(p[k+1]). Further the highest weight vec-
tor (x{ ® v41)" is contained in this submodule. In this case the vector x{ ® v, does
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not belong to U (x{ ® v,1)" and therefore U (x{ ® v,1) + W, is a highest weight mod-
ule with highest weight u[k + 1] in 7@ /W, having degree equal to the dimension of
the A,-module L(fi[k + 1]). By Theorem 3.10, U(x} ® vq1) + W, is isomorphic to
L(u[n])ifk+1 =mnandif k+ 1 < n, then it has composition factors L(u[k + 1]) and
L(u[k +2]).

By the first part of the proof,

Tiv1/Ti ~ L(1) = L(aw; + A\9)  or L(u[k +1]).

If 7 is not dominant integral, then M*(T;) C M*(T}41), since the larger module
contains a copy of L(7) not contained in the smaller one. If 7 is dominant integral,
then 7 = aw; + A¥) since u[k + 1] is not and moreover the degree of T; equals the
degree of T;;;. Thus since M(T;) C M(T41), it must be the case that M(T;) =
M(Tit1). u

Corollary 3.12 For any weight £ € A there exists a dominant weight XA and a scalar
a € C\ Z> such that L(§) is isomorphic to a submodule of L(aw;) @ L(\).

Proof If £ = Y  ajw; € A is either nonintegral or singular then Theorem 1.5
implies that the degree of L(£) is equal to the dimension of the simple A,-module
L(§). Let A = £ —ayw,. Let v* be a maximal vector of L()\) and x¢ ® v* be the highest
maximal vector in L(ajw;) ® L(A). By Lemma 3.7, U(x{ ® v*) has degree equal to
the degree of the A,-module L(§). Y -injectivity implies that U (x ® v*) ~ L(§) and
hence in this case L() is isomorphic to a submodule of L(aw;) ® L(A).

If € is a regular integral weight in A then let i denote the unique dominant inte-
gral weight such that £ = p[k] for some k = 1,. .., n. Assume first that k > 1. Then
plk—1] =31 | bijw; whereb; € Zgand by, ..., b, € Z>¢. Let V be the submodule
generated by the highest maximal vector of L(byw;) ® L(u[k — 1] — byw;). By Theo-
rem 3.10(ii), L(§) is a submodule of V. Now suppose that k = 1. By Lemma 3.8, L(§)
is a submodule of L(—w;) ® L(u + wy) since the submodule generated by the highest
maximal vector, which has weight © = p[0], is not simple. [ ]

The following example is presented to illustrate the concepts of this section.

Example 3.13 Consider the A; module 7@ = L(aw;) ® L()\) where a = —2 and
A = w,. A basis for L(w,) is given by

{xinx|[1<i<j<4}
and a basis for L(—2w,) is given by
{xfzfé‘xg‘%zxgr["xﬁa | 6 € L0361 > £y > 45}
The partition 7 associated with A = w;, is {0,0,1,1} and Il(w,) = {{O, 1,1},

{0,0,1}}. The corresponding weights are A{OL1H = w,, A\{OOLD = —¢ 4 ws.
Observe that x; A x; and x; A x3 are highest weight vectors in L(w,) with respect to

https://doi.org/10.4153/CJM-2001-010-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2001-010-x

Tensor Product Realizations 241

the subalgebra A3 and have weights A\{OL1H = ) XHO0ID — () 405 respectively.
The associated highest weight vectors in T~ are

(xl_2 & (x1 A xz)) T xl_2 ® (x1 Axy) and

+

(x*2 ® (x, /\x3)) xfz ® (x3 A x3) — xf3x2 ® (x; Ax3) + xf3x3 R (x1 A\ x2)
having weights —2w, + A{OL1D = 20 + w, and—2w; + AOOD = 34 + w;y
respectively.

Note that —2w; + w, = p[l] and —3w; + w3 = p[2] are regular integral weights
where p is the dominant integral weight 0. According to Theorem 3.11, therefore,
the composition factors for T7(—2) are the simple highest weight modules with highest
weights —2w1 +w;, —3wi +ws, —3w; +ws and —4w;. Define the following submodules

To=U- (xl_2 ® (x5 A Xg))
Ti=U-(x72® (i Ax))
T, =U- (x1_3x4 ® (%2 A x3) — x1_4x3x4 ® (%1 ANxp) + x1_4x2x4 ® (% A x3))

T, =U - (xf2 ® (% A X3) — X% @ (3 AXs) + X% @ (% /\xz)) .

O Ty D

. . . (72) _
It is readily verified that T'=% = T 5 T, o

T5. A Jordan Holder series for

T2 is given by
T =T, >+ T, DT, DO T;

with composition factors Ty /(T)+T3) ~ L(—3wi+w3), (T1+T2)/T> ~ L(—2w;+w,),
T,/T5 ~ L(—4w), and Ts ~ L(—3w; + ws) as expected.

4 Simple Torsion Free A,-Modules

In this section, the previous results are combined to determine the composition fac-
tors for the tensor product of a torsion free A,-module of degree 1 having central
character x,,, with a ¢ Z> and a simple finite dimensional module. Finally it is
shown that every simple torsion free A,-module of finite degree is isomorphic to a
submodule of such a tensor product module.

Fix any simple torsion free A,-module M of degree 1 having central character
Xaw With a ¢ C\ Z>o. Then by [BL2], M is of the form T(d) as constructed in
Example 1.4 and by Proposition 1.6, there exists a coset [7] € H*/Q such that M ~
J\/[(L(awl)) .

Theorem 4.1 Let M be a simple torsion free A,-module of degree 1 as above, L(\)
be any simple finite dimensional A,-module, and Q) be as in Theorem 3.11. Then the
composition factors for the tensor product module M ® L(\) are M(L(l/)) (Al where
v € Q and v is not dominant integral.
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Proof Since M ~ M(L(aw,)) (]

M & L(\) = M(L(aw)) ,; ® L) =~ M(Llaw) @ LN) -

Let T@ = L(aw;) ® L(\) and
0=TCThhcC--CT,=T9

be a composition series of T@. Modify this sequence to obtain a sequence of ad-
missible submodules maximal with respect to having strictly increasing degrees. By
Theorem 2.5, this sequence is transferred to a composition series of M @ L(A). MW

Remark According to Proposition 1.6 there are two types of weights £ € A associ-

ated with degree 1 coherent A,-families, namely £ = aw, fora € C\ Z>¢and { =

—(N+2)w; +(N+1)w, for N € Z>(. For completeness we state without proof that if

A is a dominant integral weight and M = M(L( —(N+2)w, — (N + l)wz) ) S is
—

a simple torsion free A,-module of degree 1 having central character x,, for some
N € 7> then the composition factors of M ® L(A) are M(L(f)) ] where

€€ ({Nw +X? | peII(N)}NA)
U {plk+1] | 3p € II(A\) and u dominant integral

such that u[k] = Nw; + A% for some 0 < k < n}.

Theorem 4.2 Every simple torsion free module of finite degree is isomorphic to a sub-
module of T(d) ® L(A) for some choice of a simple finite dimensional A,-module, L(\),
and some choice of a simple torsion free module, T(d), of degree 1.

Proof Let T be a simple torsion free module of degree d and M(T) be the unique
Y-injective coherent family of degree d containing T, i.e., for some 7 € H*, T =
M(T)(7). From this form the irreducible semisimple coherent family M*(T) con-
taining T. According to Theorem 1.3, there is a unique simple highest weight mod-
ule L(§) of degree d with £ € A such that L(£) is a submodule of M*(T). The
unique X-injective coherent family 3\/[( L(f)) of degree d containing L(§) has the
property that its semisimple form contains T and so T = M(L(§)) (- This means
that M (L(€)) ~ M(T) by Theorem 2.2(iii).

By Corollary 3.12, there is a dominant integral weight A and an a € C\ Z>( such
that L(€) is isomorphic to a submodule of L(aw;) & L(A). Therefore,

T = M(L(©) ,, < M(Llaw) @ L)) |, = M(Llawy)) . _,; ® L(V)

[T

and by Theorem 2.4, M(L(awl)) e is torsion free. [ |

[T
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Remark As noted in the introduction, the proof of the conjecture for torsion free
C,-modules is much more transparent. In fact, if T is a simple torsion free C,-
module of degree d then by [M, Theorem 4.5], there exists an admissible highest
weight £ and a coset [7] € H*/Q such that T ~ M(L({)) r Moreover, Mathieu
tells us that if w = —1/2w,, then A := £ —w is a dominant integral weight. According
to [BHL], L(w)®L(\) is completely reducible. Certainly, it is admissible and contains
a submodule isomorphic to L(§). It follows then that

T =M(L(©&) ;) < M(Lw) ® L)) (,; = M(LW)) ,_,, @ LV

[T

where J\/[(L(w)) (r_A] is a simple torsion free module of degree 1.
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