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Abstract. For λ > 1, we consider the locally free Z �λ R actions on T
2. We show that if

the action is Cr with r ≥ 2, then it is Cr−ε-conjugate to an affine action generated by a
hyperbolic automorphism and a linear translation flow along the expanding eigen-direction
of the automorphism. In contrast, there exists a C1+α-action which is semi-conjugate, but
not topologically conjugate to an affine action.
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1. Introduction
In dynamical systems, rigidity phenomena have been extensively studied over the past
decades. In particular, there have been a tremendous number of advancements, with
fascinating applications not only in dynamical systems, but also in other fields such as
geometry, number theory, etc. These include, but are not limited to, orbit closure rigidity
(e.g. [6, 21, 38]), measure rigidity (e.g. [16, 17, 32, 38]), local rigidity (e.g. [10, 11,
18]), global rigidity (e.g. [12, 42]) etc. This article is a contribution to the global rigidity
program. Namely, we would like to understand, describe, and classify all the actions of a
specific group on a specific manifold.

The group we are considering is a special type of so-called abelian-by-cyclic group. It is
given as follows. Let λ > 1 and Gλ := Z �λ R be defined by the following group relation:

(m, t) ◦ (n, s) = (m + n, λms + t) for any (m, t), (n, s) ∈ Z × R.

We are interested in the action of Gλ on the 2-torus T
2 by smooth diffeomorphisms.

Typical examples of such actions are affine actions. Let A ∈ GL(2, Z) with an eigenvalue
λ > 1 and corresponding unit eigenvector v with Av = λv. (To clarify, GL(2, Z) refers to
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the group of 2 × 2 matrices over Z with determinant ±1.) Then, for every constant a > 0,
it is easy to see that the automorphism A (induced by the matrix A on T

2, which we denote
by A for simplicity) together with the flow generated by av (the flow direction is v with
constant velocity a) on T

2 generate the group Gλ, and hence this gives an affine solvable
action of Gλ.

One may wonder whether there exist other smooth Gλ actions on T
2 up to smooth

conjugacy. To answer this question, we show that any C2+ locally free action of Gλ on T
2

is smoothly conjugate to an affine action.

THEOREM 1.1. Let λ > 1 and r ≥ 2. Suppose that ρ : Z �λ R → Diffr (T2) is a locally
free action; then it is Cr−ε conjugate to an affine action for any ε > 0. More precisely,
there exist:
• a hyperbolic automorphism A ∈ GL(2, Z) where λ is the unstable eigenvalue of A;
• a flow vt generated by the unit unstable vector field of A,
such that ρ is Cr−ε conjugate to the group action generated by {A, vat } for some
a ∈ R \ {0}. In particular, if the action ρ is C∞-smooth, then it is C∞-smoothly conjugate
to an affine action.

Remark 1.2. If the action ρ is orientation preserving, then the hyperbolic automorphism
obtained in Theorem 1.1 is induced by a hyperbolic element in SL(2, Z) instead of
GL(2, Z).

Recently, there has been an increasing interest in the study of rigidity properties for
actions of abelian-by-cyclic groups, see [1, 7, 8, 29, 35, 44]. In the literature, there
has been much more attention to higher rank abelian group actions and the well-known
Zimmer program (classifying actions of higher rank Lie groups/lattices). This may be the
case because of the following. The abelian actions have lots of symmetry either along
Lyapunov foliations in the ambient space or from the structure of an acting group and,
more importantly, there are many deep applications in the Diophantine approximation etc.
As for the Zimmer program, it aims to classify higher rank Lie groups/lattices acting
on low-dimensional manifolds, which brings together many fields such as group theory,
dynamics, and rigidity. In contrast, the group we consider here does not seem to have
certain properties like symmetry or rigidity (or super rigidity), so it is commonly known
that, in general, one should not expect any rigidity phenomenon for such group actions.
Nevertheless, it is quite surprising, as we state in Theorem 1.1, that when restricted to
some special manifolds (say T

2), it is still possible to obtain the rigidity result.
There are a few interesting works that are related to ours. We list some of them here. By

considering the same acting group, in [35], a local rigidity result on T
d is proven under

some additional conditions (Diophantine+Anosov). Additionally, in the Lie group setting
[1, 43], the authors obtained a few local rigidity results for certain special solvable group
actions, under different conditions. We also note that in [7, 8, 29, 44], the authors studied
various discrete abelian-by-cyclic group actions, and showed certain local/global rigidity.
Additionally, we refer to [2, 18, 29] and the references therein for more details about these
works.
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From another point of view, our work fits in the smooth linearization program of Anosov
diffeomorphisms on a torus, which aims to obtain global rigidity under certain conditions.
In [13, 14], de la Llave obtained smooth conjugacy on T

2 under the assumptions that
the Anosov diffeomorphisms are topological conjugate and the Lyapunov exponents of
the corresponding periodic orbits are the same. Since then, this has been generalized
to Anosov diffeomorphisms on higher dimensional tori under similar conditions, see
for example [15, 24] and the references therein. In [19], it has been shown that an
Anosov diffeomorphism on a four-dimensional torus that preserves a symplectic form
is C∞-conjugate to a linear automorphism, provided the stable and unstable foliations
are C∞. Around the same time, in a series of works [3–5], the authors considered higher
dimensional Anosov diffeomorphisms/flows, and obtained C∞ conjugacy to algebraic
models under the smoothness conditions of both stable and unstable distributions, together
with conditions of some contact/symplectic structure or preserving a C∞ connection.
Compared with these results, Theorem 1.1 is new in the sense that we only assume the
smoothness of one of the stable and unstable distributions (as well as the group relation).

Now let us explain briefly our argument. We obtain certain hyperbolicity by combining
Denjoy’s theory for circle maps and the geometry of the invariant foliations and then, via
Franks [20], we get topological conjugacy. After that, we obtain the rigidity of Lyapunov
exponents, which can be approximated by those on periodic orbits. From here, we can
complete the proof by using [13, 14, 30]. Our technique shares some similarity to [44];
however, neither do we use a Kolmogorov–Arnold–Moser iterative scheme nor assume a
priori any hyperbolicity of the action or Diophantine condition on the rotation number
(vector), all of which are heavily relied on in [35, 44]. Let us remark that, to extend our
argument in the higher dimensional manifold, a result analogous to Herman’s result for
pseudo rotations seems to be necessary.

We would like to emphasize that the regularity assumption, that is, r ≥ 2, is crucial
in the proof. In particular, the assertion in Theorem 1.1 cannot be obtained if the
action ρ is only C1+α-smooth for some α ∈ [0, 1). We have the following example of a
C1+αGλ-action which is not topologically conjugate to a linear model.

Example 1.3. Let A ∈ GL(2, Z) be a hyperbolic automorphism on T
2. One can carry out

the DA (derived from Anosov) construction in a small neighborhood of a fixed point of
A (for details see [41, (9.4d)] and [39, Ch. 8.8]) to obtain a diffeomorphism f : T2 → T

2

satisfying the conditions:
• f is partially hyperbolic with the splitting TT

2 = Ecs ⊕ Eu, which admits a
C1+α-smooth unstable foliation Fu tangent to Eu and a linear foliation tangent to
Ecs , which is the stable foliation of A;

• the �-set of f consists of a source and a hyperbolic expanding attractor.
The fact that f preserves the linear stable foliation of A implies that ‖Df |Eu(x)‖ = λ for
every x ∈ T

2 by taking an adapted metric. Let φt be a flow going through the unstable
foliation Fu of f with constant flow speed preserving the linear stable foliation of A. Then
the action ρ : Z �λ R → Diff1+α(T2) is defined by the fact that

f = ρ(1, 0) and φt = ρ(0, t) satisfies f ◦ φt = φλt ◦ f .
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Since f is not topologically conjugate to A, this action is not topologically conjugate to any
affine actions.

As pointed out to us by the anonymous referee, one may construct a similar
example from [23, §5]. We also want to remark that, under the existence of Anosov
diffeomorphisms, it is possible to obtain a smooth conjugacy result under a weaker
regularity condition.

2. Invariant foliation and linear action
Let f = ρ(1, 0) and φt = ρ(0, t). By the group relation,

f ◦ φt = φλt ◦ f . (2.1)

Let X be the vector field generating φt , namely

X (x) = d

dt
|t=0φt (x).

Notice that by our assumption, X is a smooth vector field and X (x) 	= 0 for every x ∈ T
2.

We have the following important observation.

LEMMA 2.1. There exists a constant C ≥ 1 such that, for any n ∈ N and x ∈ T
2,

C−1λn ≤ ‖Df n|X (x)‖ ≤ Cλn.

In particular, if we denote by Fu the foliation generated by φt , then for any ergodic
measure μ of f, the Lyapunov exponent of f on Fu is log λ.

Proof. From (2.1), we have f ◦ φt ◦ f −1(x) = φλt (x). By taking derivatives on both sides
with respect to t, we have

Df |X (f −1x) · X (f −1x) = λX (x).

Hence,

Df n|X (x) · X (x) = λnX (f n(x));

therefore,

‖Df n|X (x)‖ = λn ‖X (f n(x))‖
‖X (x)‖ .

The proof is complete by setting C = maxx{‖X (x)‖}/minx{‖X (x)‖}.
LEMMA 2.2. Let f : T2 → T

2 be a diffeomorphism which preserves a one-dimensional
expanding foliation Fu: there exists C0 > 0, λ0 > 1 such that

f (Fu(x))= Fu(f (x)) and ‖Df n|TFu(x)‖ ≥C0 · λn
0 for all x ∈ T

2, for all n ≥ 0.

Then, the expanding foliation Fu satisfies the conditions that:
(1) Fu is a suspension foliation with irrational rotation numbers, that is, there exists

a simple closed circle γ : S1 → T
2 which transversally intersects every leaf of Fu,

and the holonomy map induced by Fu on γ has an irrational rotation number;
(2) if Fu is C2, then it is minimal on T

2;
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(3) the lifting foliation F̃u of Fu is quasi-isometric on R
2, that is, there exist constants

a, b > 0 such that, for all x ∈ R
2 and y ∈ F̃u(x),

dF̃u(x, y) ≤ a · dR2(x, y) + b. (2.2)

Here, d
R2 , dF̃u are distance functions on R

2 and leaves of F̃u, respectively.

Proof. Since f is uniformly expanding along Fu, f −1 uniformly contracts leaves of Fu.
This implies that Fu has no closed leaves. Otherwise, assume γ u ∈ Fu is a closed leaf.
Then, the length of f −n(γ u) tends to zero as n → +∞. By taking a subsequence if
necessary, f −kn(γ u) → z ∈ T

2, which implies that the leaf Fu(z) = {z} and contradicts
with the condition on the foliation Fu.

Since Fu has no closed leaves, [27, Theorem 4.3.3] shows that Fu is a suspension
foliation with an irrational rotation number, that is, there exists a simple closed circle
γ : S1 → T

2 which transversally intersects every leaf of Fu, and the holonomy map
induced by Fu on γ has an irrational rotation number. In particular, if Fu is C2-smooth,
then Denjoy’s theorem shows that Fu is minimal. This proves items (1) and (2).

Finally, we show that the lifting foliation F̃u is quasi-isometric. Since γ is a simple
closed curve that intersects every leaf of Fu, there exists a1 > 0 such that, for every x ∈ γ

and y ∈ Fu(x) ∩ γ which contains no point in γ between x and y in Fu(x), we have

dFu(x, y) < a1.

Since γ is a simple closed curve in T
2 and transverse to the one-dimensional

foliation Fu, we have that:
• γ is homotopically non-trivial (otherwise it bounds a disk and Poincare–Hopf theorem

implies Fu has singularities);
• there exists (k, l) ∈ Z

2 with k, l coprime, such that for every lift γ̃ ⊂ R
2 of γ ,

γ̃ = γ̃ + (k, l);

• there exists b1 > 0 such that, for every x ∈ γ̃ , the line L(x) = {x + t · (k, l) : t ∈ R},
satisfies that the Hausdorff distance

dH (γ̃ , L(x)) = max
{

max
z∈γ̃

{dR2(z, L(x))}, max
z∈L(x)

{dR2(z, γ̃ )}
}

< b1.

Taking N1 ∈ N large enough such that 3b1  N1 · ‖(l, −k)‖, then

inf{dR2(z, y) : z ∈ γ̃ , y ∈ (γ̃ + N1(l, −k))}
≥ inf{dR2(z, y) : z ∈ L(x), y ∈ L(x + N1(l, −k))}

− dH (γ̃ , L(x)) − dH (γ̃ + N1(l, −k), L(x + N1(l, −k)))

≥ N1 · ‖(l, −k)‖ − b1 − b1

≥ b1.

There exists N2 > 0 (which depends on γ only), such that, for every x ∈ γ̃ and
y ∈ F̃u(x) ∩ (γ̃ + N1(l, −k)), the segment [x, y]u ⊂ Fu(x) with endpoints x, y

intersects γ̃ + Z
2 (all lifts of γ ) with (N2 + 1)-points. Thus, we have

dR2(x, y) ≥ b1 and dF̃u(x, y) ≤ N2 · a1.
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For every x ∈ R
2 and y ∈ F̃u(x) with dF̃u(x, y) large enough, there exist:

• x1 ∈ F̃u(x) ∩ γ̃1 with dF̃u(x, x1) < a1, where γ̃1 is a lift of γ ;
• m ∈ Z with |m| large, and y1 ∈ F̃u(x) ∩ (γ̃1 + mN1(l, −k)) such that dF̃u(y, y1) <

N2 · a1.
Then, we have

dR2(x, y) ≥ |m| · b1 − (N2 + 1)a1 and dF̃u(x, y) ≤ |m| · N2 · a1 + (N2 + 1)a1,

which implies

dF̃u(x, y) ≤
[
N2 · a1

b1

]
· dR2(x, y) +

[
N2(N2 + 1)a2

1
b1

+ (N2 + 1)a1

]
.

This proves that F̃u is quasi-isometric.

LEMMA 2.3. Let f : T2 → T
2 be a diffeomorphism which preserves a one-dimensional

expanding foliation Fu, and let f∗ : H1(T
2) → H1(T

2) be the induced map of f on the
first homology group of T2. Then f∗ := A ∈ GL(2, Z) is hyperbolic.

Proof. Assume A is not hyperbolic. Let F : R2 → R
2 be a lift of f. Then F(x) = Ax +

G(x) for every x ∈ R
2, where G : R2 → R

2 is a Z
2-periodic continuous function:

G(x + m) = G(x) for all x ∈ R
2, for all m ∈ Z

2.

In particular, there exists C0 > 0 such that ‖G(x)‖ ≤ C0 for every x ∈ R
2.

For any bounded set γ ⊂ R
2, denote ‖γ ‖ = supx∈γ {‖x‖}. Then we inductively have

‖F(γ )‖ = ‖A(γ ) + G(γ )‖ ≤ ‖A‖ · ‖γ ‖ + C0

‖F 2(γ )‖ = ‖F(A(γ ) + G(γ ))‖ ≤ ‖A2(γ ) + A ◦ G(γ )‖ + C0

≤ ‖A2‖ · ‖γ ‖ + C0‖A‖ + C0

· · · · · ·

‖Fk(γ )‖ ≤ ‖Ak‖ · ‖γ ‖ + C0 ·
( k−1∑

i=0

‖Ai‖
)

.

Since A is not hyperbolic, ‖Fk(γ )‖ has at most polynomial growth rate in R
2 with respect

to k.
However, if we take a segment γ u ⊂ F̃u(x) for any x ∈ R

2 with two endpoints
x, y ∈ γ u, then

dF̃u(F
n(x), Fn(y)) ≥ C−1λn · dF̃u(x, y).

The third item of Lemma 2.2 shows that F̃u is quasi-isometric, and thus we have

dR2(F
n(x), Fn(y)) ≥ 1

a
· (dF̃u(F

n(x), Fn(y)) − b) ≥ 1
a

· (C−1λn · dF̃u(x, y) − b).
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This implies

‖Fn(γ u)‖ ≥ 1
2

· dR2(F
n(x), Fn(y)) ≥ 1

2a
· (C−1λn · dF̃u(x, y) − b),

which has exponential growth rate. This is a contradiction, so f∗ = A ∈ GL(2, Z) is
hyperbolic.

Remark 2.4. We can apply Lemmas 2.2 and 2.3 to f = ρ(1, 0) which shows that
f∗ ∈ GL(2, Z) is hyperbolic. Notice here that we only use the fact that f preserves an
expanding foliation. In particular, neither the fact that f ’s expanding rate is constant along
Fu, as in Lemma 2.1, nor the fact that the action ρ is C2-smooth (hence, Fu is C2-smooth)
are used.

3. Topological conjugacy on T
2

In this section, we prove the following proposition, which implies f = ρ(1, 0) is topolog-
ically conjugate to its linearization f∗ ∈ GL(2, Z). We want to mention that here we only
need f to be expanding along Fu (we do not assume f has constant expanding rate as in
Lemma 2.1) and Fu is minimal which can be deduced from C2-smoothness of Fu.

PROPOSITION 3.1. Let f : T2 → T
2 be a diffeomorphism which preserves a one-

dimensional expanding foliation Fu where Fu is minimal. Let A = f∗ : H1(T
2) → H1(T

2)

be the induced map of f which is hyperbolic by Lemma 2.3. Then, f is topologically
conjugate to A by a homeomorphism h : T2 → T

2, where h is homotopic to the identity.
Moreover, the conjugacy h maps the foliation Fu generated by φt to the linear

expanding foliation Lu of A on T
2, namely h(Fu) = Lu.

First, we state the following well-known semi-conjugacy theorem for toral diffeomor-
phisms proven by Franks [20].

THEOREM 3.2. [20] Suppose f is a diffeomorphism on T
2, and F is a lift of f on R

2. Assume
that f∗ = A is hyperbolic. Then there exists a continuous surjective map H : R2 → R

2

such that:
• H(x + m) = H(x) + m for any x ∈ R

2 and m ∈ Z
2;

• there exists a constant K > 0 such that ‖H − Id‖C0 < K;
• H ◦ F(x) = A ◦ H(x) for any x ∈ R

2.
Moreover, let h : T2 → T

2 be the projection of H on T
2. Then h is continuous, surjective,

and satisfies h ◦ f = A ◦ h on T
2.

By Lemma 2.3, we can apply Theorem 3.2 to f = ρ(1, 0) in our context, and thus
obtain that H , h satisfies the properties in Theorem 3.2.

Proof of Proposition 3.1. Since H : R2 → R
2 is Z2-periodic which induces a continuous

surjective map h : T2 → T
2, we only need to show that H is injective, which will guarantee

that both H and h are homeomorphisms.
We have the following claim which implies that h(Fu) = Lu.
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CLAIM 3.3. Let L̃u be the expanding line foliation of A on R
2. For any x ∈ R

2, the map
H satisfies

H(F̃u(x)) = L̃u(H(x))

and it is a homeomorphism.

Proof of the claim. First, we have H(F̃u(x)) ⊂ L̃u(H(x)). For any y ∈ F̃u(x), by (2.1),

dR2(F
−n(x), F−n(y)) → 0 as n → +∞.

Together with ‖H − Id‖C0 < K , this implies that there exists C > 0 such that

d
R2(H ◦ F−n(x), H ◦ F−n(y)) < C for all n ≥ 0.

Then, by the semi-conjugacy H ◦ F(x) = A ◦ H(x), we have

dR2(A
−n(H(x)), A−n(H(y))) < C.

Hence, H(y) ∈ L̃u(H(x)).
Moreover, H : F̃u(x) → L̃u(H(x)) is injective. Actually, for any y, z ∈ F̃u(x), since

F̃u is quasi-isometric,

dR2(F
n(y), Fn(z)) ≥ 1

a
(dF̃u(F

n(y), Fn(z)) − b) → ∞ as n → +∞.

If H(y) = H(z), then H ◦ Fn(y) = An ◦ H(y) = An ◦ H(z) = H ◦ Fn(z) and hence

dR2(F
n(y), Fn(z)) ≤ dR2(F

n(y), H ◦ Fn(y)) + dR2(H ◦ Fn(z), Fn(z)) ≤ 2K

for all n ≥ 0.

This is a contradiction, and thus H(y) 	= H(z) and H : F̃u(x) → L̃u(H(x)) is injective.
Finally, since H is continuous and F̃u(x) is simply connected, it follows that

H(F̃u(x)) ⊂ L̃u(H(x))

is also simply connected. This together with ‖H − Id‖C0 < K implies that

H(F̃u(x)) = L̃u(H(x)),

proving that H is surjective.
Therefore, H : F̃u(x) → L̃u(H(x)) is a homeomorphism for every x ∈ R

2 as
claimed.

To complete the proof, we consider the corresponding quotient maps. Recall that
F : R2 → R

2 preserving the foliation F̃u and A : R2 → R
2 preserving L̃u. Since H maps

the foliation F̃u(x) onto the foliation L̃u(H(x)), namely

H(F̃u(x)) = L̃u(H(x))
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for every x ∈ R
2, the commutative diagram H ◦ F = A ◦ H reduces to a diagram of the

corresponding quotient maps on quotient spaces R2/F̃u and R
2/L̃u. Namely, we have the

following diagram:

R
2/F̃u

R
2/F̃u

R
2/L̃u

R
2/L̃u

F̂

Ĥ Ĥ

Â

(3.1)

where F̂ (respectively Â, Ĥ ) is induced by F (respectively A, H ) on the quotient space.
Since by Lemma 2.2 both Fu and Lu = π(L̃u) are irrational minimal foliations on T

2,
both quotient spaces R

2/F̃u and R
2/L̃u are necessarily isomorphic to R. We denote

RF̃u = R
2/F̃u. Notice that the quotient space R

2/L̃u is equal to the stable leaf L̃s(0)

of A at 0 ∈ R
2: L̃s(0) = R

2/L̃u, and the quotient map Â = A on L̃s(0). Thus, the diagram
in (3.1) induces a new diagram

RF̃u = R
2/F̃u

RF̃u = R
2/F̃u

L̃s(0) = R
2/L̃u L̃s(0) = R

2/L̃u

F̂

Ĥ Ĥ

Â=A

(3.2)

where Â = A : L̃s(0) → L̃s(0) is the linear contracting map A(w) = λ−1w for every
w ∈ L̃s(0) ⊂ R

2.
We have the following claim.

CLAIM 3.4. We fix an orientation on RF̃u and the induced orientation on L̃s(0) by H.
Then the quotient map Ĥ : RF̃u → L̃s(0) satisfies:

(a1) Ĥ is orientation-preserving and increasing;
(a2) Ĥ is a bijection.

Proof of the claim. Since ‖H − Id‖C0 < K , the orientation of RF̃u induces an orientation
on L̃s(0) by H globally on R

2. Since F : R2 → R
2 is a diffeomorphism, the quotient map

F̂ : RF̃u → RF̃u is a homeomorphism. Since iterating F̂ is necessary, we can assume that
F̂ : RF̃u → RF̃u preserves the orientation and so does A : L̃s(0) → L̃s(0).

For claim (a1), assume otherwise that two points x̂, ŷ ∈ RF̃u satisfy x̂ < ŷ and Ĥ (x̂) >

Ĥ (ŷ) in L̃s(0). Since F̂ preserves the orientation, for F̃u(x) = x̂ and F̃u(y) = ŷ, we have

F̂−n(x̂) < F̂−n(ŷ) and F−n(F̃u(x)) < F−n(F̃u(y)) for all n > 0.

For Ĥ (x̂) > Ĥ (ŷ) and Ĥ (x̂) = L̂u(H(x)) > Ĥ (ŷ) = L̂u(H(y)), since A−1 is uni-
formly expanding along L̃s(0), we have

Â−n(Ĥ (x̂)) − Â−n(Ĥ (ŷ)) → +∞ as n → +∞.

This is equivalent to that the Hausdorff distance between A−n(L̃u(H(x))) and
A−n(L̃u(H(y))) tends to infinity as n → +∞ and A−n(L̃u(H(x))) > A−n(L̃u(H(y))).
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However, since F−n(F̃u(x)) < F−n(F̃u(y)) for every n > 0, the semi-conjugation

A−n(L̃u(H(x))) = H ◦ F−n(F̃u(x)), A−n(L̃u(H(y))) = H ◦ F−n(F̃u(y)),

and ‖H − Id‖C0 < K shows that A−n(L̃u(H(x)) has 2K-bounded distance with the
negative component of R2 \ A−n(L̃u(H(y))) for every n > 0. This contradicts the fact that
the Hausdorff distance between A−n(L̃u(H(x))) and A−n(L̃u(H(y))) tends to infinity as
n → +∞ and

A−n(L̃u(H(x))) > A−n(L̃u(H(y))).

This proves claim (a1).
For claim (a2), the surjective part of Ĥ comes from the fact that H : R2 → R

2 is
surjective. We only need to show that Ĥ is injective. Otherwise, Ĥ (x̂) = Ĥ (ŷ), meaning
that both F̃u(x) and F̃u(y) are mapped to a single line L̃u(H(x)) = L̃u(H(y)). Since
Ĥ is orientation-preserving and increasing, it follows that H maps the region Rx,y ⊂ R

2

bounded by F̃u(x) and F̃u(y) in R
2 to L̃u(H(x)). However, since F̃u is an irrational

minimal foliation, we have

T
2 = π(Rx,y) and T

2 = h(T2) = h ◦ π(Rx,y)) = π(H(Rx,y)) = π(L̃u(H(x))).

This is a contradiction since π(L̃u(H(x))) is a single one-dimensional leaf in T
2. This

proves the claim.

Finally, the injectivity of H follows from the injectivity of both H |F̃u(x)
for every

x ∈ R
2 and Ĥ . Thus, H : R2 → R

2 is a homeomorphism.

Remark 3.5. We can apply this proposition directly to f = ρ(1, 0) in our solvable action.
Notice that we only need the fact that f is uniformly expanding along Fu and Fu is minimal
to get topological conjugacy; neither the fact that f ’s expanding rate is constant along Fu as
in Lemma 2.1 nor the fact that Fu is C2-smooth is used. Surprisingly, these two conditions
will be crucial to get smooth conjugacy in Proposition 4.4.

4. Smooth conjugacy
By Proposition 3.1, f : T2 → T

2 is topologically conjugate to the hyperbolic automor-
phism A = f∗ ∈ GL(2, Z) by a homeomorphism h : T2 → T

2 where h ◦ f = A ◦ h.
By Lemma 2.1, f is uniformly expanding with constant Lyapunov exponent log λ for

every ergodic measure along the C2-foliation Fu, which is the orbit foliation of φt .
Moreover, the conjugacy h : T2 → T

2 satisfies h(Fu) = Lu. So we have the following
proposition.

PROPOSITION 4.1. The diffeomorphism f : T2 → T
2 is partially hyperbolic TT

2 =
Ecs ⊕ Eu with Eu = TFu. Moreover, we have:
• for every ergodic measure μ of f, the Lyapunov exponent of μ along Ecs is

non-positive;
• there exists an f-invariant foliation Fcs tangent to Ecs , and the conjugacy h maps Fcs

to the linear stable foliation Ls of A.
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Proof. By Lemma 2.1, for every periodic point p of f, f has one positive Lyapunov
exponent along Fu which is log λ. We denote it as λu(p) = log λ. By Proposition 3.1, f is
topologically conjugate to A by h and h(Fu) = Lu. Since A is uniformly contracting along
the transversal direction of Lu, f is topologically contracting in the transversal direction
of Fu. Thus, p has another Lyapunov exponent λcs(p) ≤ 0.

Moreover, the periodic measures of A are dense in the space of ergodic measures of A.
By the topological conjugacy, the periodic measures of f are also dense in the space
of ergodic measures of f. Thus, for every ergodic measure μ of f, f has two Lyapunov
exponents

λcs(μ) ≤ 0 < λu(μ) = log λ.

Now, we only need to show that f admits a dominated splitting, which implies that f is
partially hyperbolic. That is the following claim.

CLAIM 4.2. There exists a Df -dominated splitting TT
2 = Ecs ⊕ Eu with Eu = TFu,

that is, the splitting is continuous, Df -invariant, and there exist two constants 0 < η < 1,
C > 1, such that

‖Df n|Ecs(x)‖
‖Df n|Eu(x)‖ ≤ C · ηn for all x ∈ T

2, n ≥ 0.

Proof of the claim. The proof follows exactly the same form as in [25, Proposition 5.9].
Since Fu is a C2-foliation, the Df -invariant Eu = TFu is a C1-bundle. We have
a C1-smooth splitting TT

2 = Eu ⊕ E⊥ where E⊥ is perpendicular to Eu. We take
continuous families of unit vectors in {eu(x), e⊥(x)}x∈T2 in Eu, E⊥, respectively, which
form a C1 base on TT

2.
Since F is C2-smooth, there exist three families of C1-functions {A(x)}x∈T2 ,

{B(x)}x∈T2 , and {C(x)}x∈T2 , such that in the base {eu(x), e⊥(x)}x∈T2 ,

Df (x) =
(

A(x) B(x)

0 C(x)

)
for all x ∈ T

2.

Then, we have

Df (eu(x)) = A(x)eu(f x), and proj⊥ ◦ Df (e⊥(x)) = C(x)e⊥(f x),

where proj⊥ : TT
2 → E⊥ is the projection through Eu.

For every x ∈ T
2 and n ≥ 1, we introduce the following notation for the cocycles:

An(x) =
n−1∏
i=0

A(f i(x)) and Cn(x) =
n−1∏
i=0

C(f i(x)).

Lemma 2.1 shows that there exists C > 1, such that |An(x)| ≥ C−1λn for every x ∈ T
2

and n ∈ N. Moreover, for every ε > 0 and every periodic point p of f, since the other
Lyapunov exponent of p is non-positive, we have

lim
n→+∞

1
n

log |Cn(p)| ≤ ε.
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Since periodic measures are dense in all invariant measures, we have

lim
n→+∞

1
n

log |Cn(x)| ≤ ε for all x ∈ T
2.

We fix 0 < ε  log λ, and [31, Theorem 1.3] shows that there exists some N = N(ε),
such that

|Cn(x)| ≤ exp(nε) for all n ≥ N , for all x ∈ T
2.

Finally, since B(x) varies C1-smoothly with respect to x ∈ T
2 and is uniformly bounded,

there exists a continuous cone field {C(x)}x∈T2 containing Eu, such that

Df (C(x)) ⊂ C(f (x)) for all x ∈ T
2.

Therefore, by the cone-field criterion [9, Theorem 2.6], there exists a dominated splitting

TT
2 = Ecs ⊕ Eu with TFu = Eu.

This proves the claim.

Finally, [37, Proposition 4.A.7] shows that a partially hyperbolic diffeomorphism on T
2

is dynamically coherent, that is, there exists an f -invariant foliation Fcs tangent to Ecs .
Moreover, by the topological conjugacy h ◦ f = A ◦ h, the foliation h(Fcs) is A-invariant
and transverse to Lu = h(Fu), which is unique and Ls = h(Fcs).

Remark 4.3. The fact Ls = h(Fcs) directly implies that the foliation Fcs is topologically
contracting by f, that is, for every segment γ ⊂ Fcs(x) for some x ∈ T

2, the length
|f n(γ )| → 0 as n → +∞.

The following proposition shows that if the unstable foliation of Fu is C2, then f is
uniformly contracting along Ecs with constant Lyapunov exponent − log λ. The proof is
almost the same as [26], see also [22, 36], but we include the proof for completeness.

PROPOSITION 4.4. For every periodic point p of f, the Lyapunov exponent λcs(p) of f
along Ecs is equal to − log λ. In particular, the diffeomorphism f ∈ Diffr (T2) with r ≥ 2
is Anosov and the conjugacy h : T2 → T

2 with h ◦ f = A ◦ h is Cr−ε-smooth.

Proof. First of all, let μmax be the measure with maximal entropy of f, which is also the
measure with maximal entropy of f −1. Since f is topologically conjugate to A, the measure
entropy of μmax associated to f −1 is equal to the topological entropy of A which is log λ.
From Ruelle’s inequality, the largest Lyapunov exponent of f −1 in μmax satisfies

log λ ≤ λ+(μmax, f −1) = −λcs(μmax, f ).

From the density of periodic measures, there exists a sequence of periodic points pn whose
periodic measures converge to μmax. Then, we have

lim
n→∞ λcs(pn) = λcs(μmax, f ) ≤ − log λ. (4.1)

In particular, λcs(pn) < 0 and pn is hyperbolic for n large enough.
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CLAIM 4.5. For every pair of hyperbolic periodic points p, q ∈ Per(f ), we have
λcs(p) = λcs(q).

Proof of the claim. Since φt is C2, when restricted to a smooth transversal cross section
which is diffeomorphic to a unit circle S

1, the induced map φ̂ is a C2 irrational rotation,
whose rotation number is a degree-2 algebraic number (that is, the largest eigenvalue λ

of f∗). By Herman [28], see also [33, 34], φ̂ is bi-Lipschitz conjugate to Rλ. As a result,
there exists a constant C2 > 0 such that, for any small segment I that is contained in a leaf
of Fcs(x),

1
C2

≤ |I |
|Holt (I )| ≤ C2. (4.2)

Here, | · | is the length function and Holt : Fcs(x) → Fcs(φt (x)) is the holonomy map
induced by φt satisfying

Holt (x) = φt (x) and Holt (I ) ⊂ Fcs(φt (x))

for any segment I ⊂ Fcs(x) of length small enough. We remark that the constant C2 is
independent of I and t.

Now, fix two distinct hyperbolic periodic points p, q. Then the Lyapunov exponents
of p, q along Ecs satisfy λcs(p), λcs(q) < 0. In particular, we have that both Fcs(p) and
Fcs(q) are contained in the stable manifolds of p and q, respectively. Denote π > 0 to be
the common period of p, and q: f π(p) = p and f π(q) = q.

Let x be an intersecting point of Fu(q) with the local stable manifold Fcs
loc(p). Then

there exists t ∈ R such that x = φt (q) ∈ Fcs(p). Moreover, we can define the holonomy
map

Holt : Fcs(q) → Fcs(x) = Fcs(p) with Holt (q) = x.

Take another point y ∈ Fcs
loc(q) and a segment J ⊂ Fcs(q) with two endpoints q, y.

Then there exists a unique point z = Holt (y) ∈ Fcs(x) = Fcs(p). Since we can take y
close to q and |J | is small, (4.2) implies |Holt (J )| is small, and Holt (J ) ⊂ Fcs(p) with
endpoints x = Holt (q) and z = Holt (y).

Since f is Cr -smooth with r ≥ 2, Ecs is Hölder continuous. This implies both Fcs
loc(p)

and Fcs
loc(q) are C1+Hölder-smooth sub-manifolds. Since f is uniformly contracting in

Fcs
loc(p) and Fcs

loc(q), the distortion control argument shows that there exists K > 0 such
that, for every n ≥ 0,

1
K

≤ |f πn(J )|
exp(λcs(q)πn)

≤ K and
1
K

≤ |f πn ◦ Holt (J )|
exp(λcs(p)πn)

≤ K .

However, since both Fcs and Fu are f -invariant, the holonomy map Holt is commuting
with f, and thus, for every n > 0, there exists tn ∈ R such that

f πn ◦Holt (J ) = Holtn ◦f πn(J ) and
1
C2

≤ |f πn(J )|
|Holtn ◦ f πn(J )| = |f πn(J )|

|f πn ◦ Holt (J )| ≤ C2.

https://doi.org/10.1017/etds.2024.82 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.82


14 C. Dong and Y. Shi

This implies

1
KC2

≤ exp(λcs(p)πn)

exp(λcs(q)πn)
≤ KC2 for all n > 0.

Thus, we must have λcs(p) = λcs(q) for every pair of hyperbolic periodic points p
and q.

From this claim and (4.1), we know that

λcs(p) ≤ − log λ < 0 (4.3)

for every hyperbolic periodic point p of f.
Since f : T2 → T

2 is topologically conjugate to A : T2 → T
2, it also satisfies the

specification property in [40]. If there exists some periodic point p ∈ Per(f ) satisfying
λcs(p) = 0, then by the specification property, there exist hyperbolic periodic points of
f with Lyapunov exponents arbitrarily close to zero along Ecs . This is absurd since
λcs(p) ≤ − log λ for every hyperbolic periodic point p. Thus, every periodic point p of
f is hyperbolic with λcs(p) ≤ − log λ.

This implies f is Anosov and λcs(μ) ≤ − log λ for every ergodic measure μ of f. If we
consider the Sinai–Ruelle–Bowen measure μ− of f −1, its Lyapunov exponent along Ecs

is equal to its measure entropy h(μ−, f −1), which is smaller than log λ. So we have

−λcs(μ−) = λu(μ−, f −1) = h(μ−, f −1) ≤ htop(f
−1) = log λ.

This implies λcs(p) = λcs(μ−) ≥ − log λ. Combined with (4.3) and Lemma 2.1, we have

λcs(p) = − log λ and λu(p) = log λ for all p ∈ Per(f ).

Finally, the work of de la Llave [13, 14] (e.g. [14, Theorem 1.1]) indicates that the
conjugacy h is Cr−ε-smooth when all periodic points of f have the same Lyapunov
exponents to A.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. We have shown that by the Cr−ε-smooth conjugacy,

A = h ◦ f ◦ h−1 = h ◦ ρ(1, 0) ◦ h−1.

Now, we can define a Cr−ε-smooth flow on T
2:

ψt = h ◦ φt ◦ h−1 = h ◦ ρ(0, t) ◦ h−1 satisfying A ◦ ψt = ψλt ◦ A.

Moreover, we have shown that h(Fu) = Lu which maps the orbit of φt to the linear
unstable foliation of A. Thus, the orbit of ψt is Lu. To prove Theorem 1.1, we only need to
show that ψt has constant velocity.

Denote

Z(x) = d

dt
|t=0ψt(x).
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Let p be a fixed point of A and x ∈ Lu(p) with ψt(p) = x for some t ∈ R. Then,
we have

An ◦ ψt(p) = ψλnt ◦ A(p) and DAn ◦ Dψt(Z(p)) = Dψλnt ◦ DAn(Z(p)).

This implies that DAn(Z(x)) = Dψλnt (λ
n · Z(p)). By taking the norm, we have

λn · ‖Z(x)‖ = λn · ‖Z(ψλnt (p))‖ for all n ∈ Z.

Letting n → −∞, we have

ψλnt (p) → p and ‖Z(ψλnt (p))‖ → ‖Z(p)‖.

This implies that ‖Z(x)‖ = ‖Z(p)‖ for every x ∈ Lu(p).
Since Lu(p) is dense in T

2, we have ‖Z(x)‖ = ‖Z(p)‖ � a for every x ∈ T
2. Thus, ψt

is the linear flow with constant velocity. This proves Theorem 1.1, that ρ is Cr−ε conjugate
to the affine action {A, vat }.

Acknowledgements. The authors are grateful to the anonymous referee for careful
reading and many useful suggestions. C.D. was supported by the Nankai Zhide Foundation
and ‘the Fundamental Research Funds for the Central Universities’ Nos. 100-63233106
and 100-63243066. Y.S. was supported by the National Key R&D Program of China
(2021YFA1001900), the NSFC (12071007, 12090015) and the Institutional Research Fund
of Sichuan University (2023SCUNL101).

REFERENCES

[1] M. Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. J. Mod.
Dyn. 9 (2015), 191–201.

[2] M. Asaoka. Local rigidity problem of smooth group actions. Sugaku Expositions 30(2) (2017), 207–233.
[3] Y. Benoist, P. Foulon and F. Labourie. Flots d’Anosov à distributions de Liapounov différentiables,

I. Hyperbolic behaviour of dynamical systems (Paris, 1990). Ann. Inst. H. Poincaré Phys. Théor. 53(4)
(1990), 395–412.

[4] Y. Benoist, P. Foulon and F. Labourie. Flots d’Anosov à distributions stable et instable différentiables.
J. Amer. Math. Soc. 5(1) (1992), 33–74.

[5] Y. Benoist and F. Labourie. Sur les difféomorphismes d’Anosov affines à feuilletages stable et instable
différentiables. Invent. Math. 111(2) (1993), 285–308.

[6] D. Berend. Multi-invariant sets on tori. Trans. Amer. Math. Soc. 280(2) (1983), 509–532.
[7] C. Bonatti, I. Monteverde, A. Navas and C. Rivas. Rigidity for C1 actions on the interval arising from

hyperbolicity I: solvable groups. Math. Z. 286(3–4) (2017), 919–949.
[8] L. Burslem and A. Wilkinson. Global rigidity of solvable group actions on S1. Geom. Topol. 8(2) (2004),

877–924.
[9] S. Crovisier and R. Potrie. Introduction to Partially Hyperbolic Dynamics. School on Dynamical Systems,

ICTP, Trieste, 2015.
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