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Smoothing of Limit Linear Series on Curves
and Metrized Complexes of
Pseudocompact Type

Xiang He

Abstract. We investigate the connection between Osserman limit series (on curves of pseudocompact
type) and Amini–Baker limit linear series (on metrized complexes with corresponding underlying
curve) via a notion of pre-limit linear series on curves of the same type. hen, applying the smooth-
ing theorems of Osserman limit linear series, we deduce that, ûxing certain metrized complexes, or
for certain types of Amini–Baker limit linear series, the smoothability is equivalent to a certain “weak
glueing condition”. Also for arbitrary metrized complexes of pseudocompact type the weak glueing
condition (when it applies) is necessary for smoothability. As an application we conûrm the li�ing
property of speciûc divisors on the metric graph associated with a certain regular smoothing family,
and give a new proof of a result of Cartright, Jensen, and Payne for vertex-avoiding divisors, and gen-
eralize it for divisors of rank one in the sense that, for the metric graph, there could be at most three
edges (instead of two) between any pair of adjacent vertices.

1 Introduction

he theory of limit linear series has been developed by Eisenbud andHarris in [EH86]
for handling the degeneration of linear series on smooth curves as the curves degener-
ate to reducible curves (of compact type). It has been applied to prove results involving
moduli space of curves, such as the Brill–Noether theorem ([GH80]), the Gieseker–
Petri theorem ([Gie82]), and that moduli spaces of curves of suõciently high genus
are of general type ([HM82,EH87]), etc.
A complete generalization of Eisenbud–Harris theory has remained open. Earlier

approaches can be found in papers of E. Esteves such as [Est98, EM02]. Recently,
Amini andBaker [AB15] introduced a notion ofmetrized complexes, which is roughly
speaking a ûnite metric graph Γ together with a collection of marked curves Cv , one
for each vertex v, such that the marked points of Cv is in bijection with the edges of
Γ incident to v. his can be considered as an enrichment of both metric graphs and
nodal curves. he concept of limit linear series on a metrized complex is proposed in
[AB15] as well as the specialization map. While the Amini–Baker limit linear series
satisûes the specialization theorem, it is unclear how to prove a general theorem about
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their smoothing behaviors. Related results can be found in [LM14], where a suõcient
and necessary condition for the smoothability (with respect to certain base ûeld) of a
(saturated) limit linear series of rank one is given.

On the other hand, B. Osserman [Oss] developed a notion of limit linear series on
curves possibly not of compact type, which is a generalization of Eisenbud andHarris
limit linear series. He also proved the specialization theorem, as well as a smoothing
theorem for curves of pseudocompact type (see below for deûnition), which states
that a limit linear series is smoothable if the moduli space is of expected dimension at
the corresponding point. his improves the smoothing theorem in the compact-type
case in the sense that it applies for possibly non-reûned limit linear series.

In this paper we investigate the smoothing of Amini–Baker limit linear series by
studying their connection with Osserman limit linear series.

Let X0 be a curve of pseudocompact type, which is a curve whose dual graph G
is a multigraph obtained from a tree G by adding parallel edges between adjacent
vertices of G. A chain structure n on G is roughly an integer-valued length function
on E(G). his induces a metric graph Γ as well as a metrized complex CX0 ,n with
underlying graph Γ (see §2 for details). Given a chain structure n, let X̃0 be the curve
obtained from X0 by inserting a chain of n(e)−1 projective lines at the node of e for all
e ∈ E(G). Let G̃ be the dual graph of X̃0. An Osserman limit linear series (which we
also refer to as a limit linear series on (X0 , n)) then consists of a certain line bundleL
on X̃0 and a collection of linear systems on each component of X0 that satisûes certain
(multi)vanishing conditions. An Amini–Baker limit linear series (which we also refer
to as a limit linear series on CX0 ,n) consists of a divisor on CX0 ,n with a collection of
linear spaces of rational functions on each component of X0 satisfying certain rank
conditions. he multidegree w0 of a limit linear series on (X0 , n) is the multidegree
of L on V(G̃), which induces a divisor on Γ as we identify Γ with the metric graph
obtained from G̃ by assigning length 1 to every edge. We also say a limit linear series
on CX0 ,n of multidegree w0 if its underlying divisor on Γ is (up to linear equivalence)
induced by w0.

In the following we ûx w0 to be the multidegree of a limit linear series on (X0 , n)
and CX0 ,n. Note that, by the deûnition of Osserman limit linear series, w0 is assumed
to be “admissible”, namely, when restricting to each component of Γ/V(G), the corre-
sponding divisor D ofw0 is eòective and of at most degree one; see also Deûnition 2.1.

In [Oss17] Osserman constructed a map F from the set of limit linear series on
(X0 , n) to the set of limit linear series on CX0 ,n. It is also proved in [Oss17] that F can
be deûned over the set of pre-limit linear series (aweakened version ofOsserman limit
linear series); in this case we show in Section 3 that F is a bijection. his essentially
says that a limit linear series on CX0 ,n carries the same data as a pre-limit linear series
on (X0 , n). We also give a necessary condition for a pre-limit linear series (hence for
a limit linear series on CX0 ,n) to be li�ed to a limit linear series on (X0 , n), called the
weak glueing condition.

In Section 4 we consider the smoothing of limit linear series on CX0 ,n. We show in
heorem 4.7 that a necessary condition is the weak glueing condition. On the other
hand, it is proved in [Oss16] that for a special case of (X0 , n) the moduli space of limit
linear series (again of multidegree w0) is of expected dimension, hence every limit
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linear series on (X0 , n) is smoothable. We show in this case that the weak glueing
condition is suõcient for a pre-limit linear series to be li�ed to a limit linear series,
and use the “equivalence” between pre-limit linear series on (X0 , n) and limit linear
series on CX0 ,n to give a smoothing theorem for the latter (see also heorem 4.8).

heorem 1.1 Suppose (X0 , n) satisûes the conditions of heorem 4.3. In other words,
the induced metric graph Γ has few edges, the edge lengths of Γ are general with respect
to a ûxed degree d′, and the components of X0 are strongly Brill–Noether general. hen
a limit linear series on CX0 ,n of degree not exceeding d′ is smoothable if and only if it
satisûes the weak glueing condition.

Additionally, for arbitrary n and X0 with strongly Brill–Noether general compo-
nents we consider a family of w0 such that the induced divisor D on Γ is “randomly
distributed” on Γ/V(G), as inheorem 4.4. More precisely, for any edge e ∈ E(G), let
e○1 , . . . , e○m be the components of Γ/V(G) corresponding to edges e1 , . . . , em ∈ E(G)
that lies over e. Given a certain direction on G, the divisor D∣e○i gives an integer
x i in [0, n(e i) − 1], and we consider w0 such that x1 , . . . , xm are distinct modulo
gcd(n(e1), . . . , n(em)). We show that a pre-limit linear series automatically li�s to
a limit linear series on (X0 , n), and the dimension of the moduli space of limit lin-
ear series on (X0 , n) is as expected. In this case, any limit linear series on CX0 ,n is
smoothable.

In Section 5we consider the problem of li�ing divisors on themetric graph Γ to the
generic ûber Xη of any regular smoothing family X (Deûnition 2.11) with special ûber
X̃0 with rational components and dual graph G̃. When Γ is a generic chain of loops,
it is proved by reducing to the so-called vertex-avoiding divisors that every rational
divisor on Γ is li�able (see [CJP15] for details). For (X0 , n) as in heorem 1.1, again
since the weak glueing condition is suõcient for a pre-limit linear series to be li�ed
to a limit linear series on (X0 , n), and the dimension counting shows that every limit
linear series on (X0 , n) is smoothable, we are able to prove the following theorem,
which gives an alternative approach to li�ing (rational) vertex-avoiding divisors on a
generic chain of loops, by li�ing the divisor on Γ to a pre-limit linear series on (X0 , n)
that satisûes the weak glueing condition.

heorem 1.2 Let (X0 , n) be as in heorem 1.1 and let X be as above. Suppose further
that X0 only has rational components, and that G is a path graph. hen every rational
divisor on Γ of rank less than or equal to 1 li�s to a divisor on Xη of the same rank. In
addition, if Γ is a generic chain of loops, then every rational vertex-avoiding divisor li�s
to a divisor on Xη with the same rank.

Seeheorems 5.1 and 5.4 for more precise statements. Note that, ignoring the ûeld
condition (see below), the ûrst part of the theorem conûrms [CDPR12, Conjecture
1.5] and [CJP15, heorem 1.1] for divisors of rank one, and generalizes the conditions
in [CJP15, heorem 1.1] for the graph Γ, in the sense that there could be at most three
edges (instead of two) between any pair of adjacent vertices.
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1.1 Conventions and Notation

All curves we consider are proper, (geometrically) reduced and connected, and at
worst nodal. All nodal curves are split. All irreducible components of a nodal curve
are smooth.

In the sequel we let R be a complete discrete valuation ring with valuation val∶R →
Z≥0 and residue ûeld κ. Let K be the fraction ûeld of R, which is a non-archimedean
ûeld with the induced norm ∣x∣ = exp(− val(x)). Let K̃ be the completion of the
algebraic closure of K and R̃ the valuation ring of K̃. Note that K̃ is still algebraically
closed, the valuation/norm extends uniquely to K̃, and K̃ has residue ûeld κ if κ is
algebraically closed (cf. [Con08, §1.1]).

Let X0 be a curve with dual graph G. For v ∈ V(G) let Zv be the irreducible
component of X0 corresponding to v. For e′ ∈ E(G) that is incident to v let Pe′ be
the node of X0 corresponding to e′ and Pv

e′ the preimage (of the normalization map
of X0) of Pe′ in Zv . Let G be the graph obtained from G as follows: for each pair of
adjacent vertices v and v′, replace all edges connecting v and v′ by a single edge. For
e ∈ E(G), we denote

Av
e = ⋃

e′
Pv
e′ and Av = ⋃

e∋v
Av
e ,

where in the ûrst expression e′ runs through all edges of G that lies over e.
For a curve (graph, metric graph, metrized complex) X denote by Div(X ) the

space of divisors on X . IfX is a curve let K(X ) be the space of rational functions
on X ; ifX is a graph (metric graph, metrized complex), denote the space of rational
functions on X by Rat(X ). Given a rational function f on X , we denote by div( f )
the associated divisor.

Let C be a curve. Let OC(D) be an invertible sheaf on C where D ∈ Div(C) and
take a nonzero section s ∈ H0(C ,OC(D)). We denote by div0(s) the eòective divisor
associated with s that is rationally equivalent to D. For a divisor D′ ∈ Div(C) and
P ∈ C denote by ordP(D′) the coeõcient of P in D′, denote ord0P(s) = ordP(div0(s)).
For a rational function f ∈ K(C), let ordP( f ) be the vanishing order of f at P. Hence,
if s is considered as a rational function, then we have ord0P(s) = ordP(s) + ordP(D).

Let Γ be a metric graph with underlying graph G. For e ∈ E(G) and v ∈ V(G)
incident on e and f ∈ Rat(Γ), let slpe ,v( f ) be the outgoing slope of f at v along the
tangent direction corresponding to e. For x ∈ Γ, let ordx( f ) be the sum of outgoing
slopes of f over all tangent directions of x.

2 Preliminaries

We recall some relative notions about Osserman and Amini–Baker limit linear se-
ries. Let G be a graph without loops. Recall that a chain structure on G is a function
n∶ E(G) → Z>0. Let Γ be the corresponding metric graph with edge length deûned
by n, and let G̃ be the graph obtained from G by inserting n(e) − 1 vertices between
the vertices adjacent to e for all e ∈ E(G). hen Γ can also be obtained from G̃ by
associating unit edge lengths to all of E(G̃). We use V(G) or V(G̃) instead of V(Γ)
for diòerent choices of vertex sets of Γ.
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2.1 Some Notions for Graph Theory

We recall some concepts about admissible multidegrees ([Oss16]) on a graph as well
as reduced divisors ([Luo11]).

Deûnition 2.1 An admissible multidegree w = (wG , µ) of total degree d on (G , n)
consists of a functionwG ∶V(G) → Z togetherwith a tuple (µ(e))e∈E(G) ∈ Πe∈E(G)Z/n(e)Z
such that d = #{e ∈ E(G)∣µ(e) ≠ 0} +∑v∈V(G)wG(v).

Correspondingly, we deûne the notion of (integral) edge-reduced divisor, which is
closely related to admissible multidegree, as follows.

Deûnition 2.2 A point x on Γ is called a rational point (resp., integral point) if the
distance between x and any vertex of Γ is a rational number (resp., integer).

Deûnition 2.3 A divisor D on Γ is edge-reduced if the restriction of D on each
connected component of Γ/V(G) is either empty or an eòective divisor of degree
one. We say that D is rational (resp., integral) if D is supported on rational (resp.,
integral) points.

Suppose G is directed. here is a natural bijection φ between the set of integral
edge-reduced divisors on Γ (of degree d) and the set of admissible multidegrees on
(G , n) (of degree d), as follows. Let D be an integral and edge-reduced divisor on Γ.
We set wG(v) = deg(D∣v) for all v ∈ V(G). For all e ∈ E(G) with tail v, denote by ẽ
the edge of Γ corresponding to e. If D∣ẽ○ = ∅, we set µ(e) = 0; otherwise, let µ(e) be
the distance between the point in D∣ẽ○ and v. We set Dw = φ−1(w) for any admissible
multidegree w. See Example 2.6 for an example of an admissible multidegree and the
corresponding integral edge-reduced divisor.
For each pair of an edge e and an adjacent vertex v, let σ(e , v) = 1 if v is the tail of

e and −1 otherwise. We have the following deûnition of twisting.

Deûnition 2.4 Let w = (wG , µ) be an admissible multidegree on (G , n) and v ∈
V(G). For each e ∈ E(G) incident to v we perform the following operations:
(i) If µ(e) + σ(e , v) = 0, increase wG(v′) by 1 where v′ is the other vertex of e.
(ii) If µ(e) = 0, decrease wG(v) by 1.
(iii) Increase µ(e) by σ(e , v).
he resulting admissible multidegree is called the twist of w at v. he negative twist
of w at v is the admissible multidegree w′ such that the twist of w′ at v is equal to w.

Letw0 be an admissible multidegree. We denote byG(w0) the directed graph with
vertex set consisting of all admissible multidegrees obtained fromw0 by sequences of
twists, and with an edge from w to w′ if w′ is obtained from w by twisting at some
vertex v ∈ V(G). Given w ∈ V(G(w0)) and v1 , . . . , vm ∈ V(G) (not necessarily
distinct), let P(w , v1 , . . . , vm) denote the path in V(G(w0)) obtained by starting atw
and twisting successively at each v i .
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Remark 2.5 In the case of an integral edge-reduced divisor D on Γ twisting at v
(where we choose V(G) as the vertex set of Γ) is the same as performing the follow-
ing operation on D: for all e ∈ E(Γ) incident to v, if D∣e○ is nonempty replace the
point p ∈ D∣e○ by the unique point on e whose distance to v is one more than the dis-
tance between p and v; otherwise, decrease deg(D∣v) by one and add to D the unique
point on e whose distance to v is one. Hence the deûnition of twisting is independent
of the direction of G, and we get a linearly equivalent divisor a�er twisting.

Example 2.6 Consider a graph G consisting of two vertices v and v′ connected by
three edges e1 , e2 , and e3. Take a chain structurenwithn(e1) = 4, n(e2) = 2, n(e3) = 3
and a direction from v to v′. Letw = (wG , µ)wherewG(v) = 3,wG(v′) = 0, µ(e1) = 1,
µ(e2) = 1, and µ(e3) = 0. hen Dw is as in the le� of the following graphs, with each
number representing the coeõcient of the corresponding node in Dw .

● ● ●

●
● ●

● ●

1

13
v

e1

e2

e3
v′ ● ● ●

●
● ●

● ●

1

2 1

1

A�er twisting at v, we get w′ = (w′
G , µ′) where w′

G(v) = 2, w′
G(v′) = 1, µ′(e1) = 2,

µ′(e2) = 0 and µ′(e3) = 1. he induced Dw′ is given in the right graph.

Let G denote the graph obtained from G by replacing parallel edges between any
pair of adjacent vertices by a single edge. We say thatG is amultitree ifG is a tree. Any
graph with two vertices is a multitree. For multitrees we also consider partial twists.

Deûnition 2.7 Let G be a multitree, let (e , v) be a pair of an edge e and an incident
vertex v ofG, and letw be an admissible multidegree on (G , n). We say that an edge ẽ
of G lies over e if the set of vertices of G incident on ẽ is the same as the set of vertices
of G incident on e. he twist of w at (e , v) is the admissible multidegree obtained
from w by performing the operations as in Deûnition 2.4 only for all edges in G that
lies over e.

Again for an integral edge-reduced divisor on Γ, twisting at (e , v) is just perform-
ing the operation in Remark 2.5 only for all edges lying over e. Note that the twists
are commutative, andw remains the same a�er twisting at all vertices ofG. Hence the
twists are invertible, as the negative twist at v is the same as the composition of the
twists at all v′ ≠ v. In addition, multitree twistingw at (e , v) is the same as twisting at
all vertices v′ in the connected component of G/{e} that contains v. If v′ is the other
vertex of e, then twisting at (e , v) is the inverse of twisting at (e , v′).
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Deûnition 2.8 Let G be a multitree. An admissible multidegree w is concentrated
on v if there is an ordering on V(G) starting at v such that for each subsequent vertex
v′, we have that w becomes negative in vertex v′ a�er taking the composition of the
negative twists at all previous vertices. A tuple (wv)v of admissible multidegrees is
tight if wv is concentrated at v for all v ∈ V(G) and for all e ∈ E(G) incident to the
vertices v1 and v2, we have that wv1 is obtained from wv2 by twisting bv1 ,v2 times at
(e , v2) for some bv1 ,v2 ∈ Z≥0.

IfG has only two vertices v and v′, thenw being concentrated on v is the same asw
being negative at v′ a�er twisting at (e , v′). An example of a tight tuple of admissible
multidegrees is given by the reduced divisors.

Deûnition 2.9 Given a vertex v0 ∈ V(G), a divisor D on G is v0-reduced if
(i) D is eòective on V(G)/{v0};
(ii) for every nonempty subset S ⊂ V(G)/{v0}, there is some v ∈ S such that D(v)

(the coeõcient of v in D) is strictly smaller than the number of edges from v to
V(G)/S.

Given a point x0 ∈ Γ (recall that Γ is a metric graph), a divisor D ∈ Div(Γ) is
x0-reduced if
(a) D is eòective on Γ/{x0};
(b) for any closed connected subset A ⊂ Γ there is a point x ∈ ∂A such that D(x) is

strictly less than the number of tangent directions of Γ/(A/x) at x.

For every divisor D ∈ Div(G) (resp., D ∈ Div(Γ)) and v0 ∈ V(G) (resp., x0 ∈
Γ), there is a unique divisor Dv0 (resp., Dx0 ) such that Dv0 (resp., Dx0 ) is linearly
equivalent to D and v0-reduced (resp., x0-reduced). One easily checks that a divisor
D ∈ Div(G̃) is v0-reduced if and only if it is v0-reduced as a divisor on Γ.

Proposition 2.10 Let G be a multitree. Let wred
v ∈ V(G(w0)) be the admissible

multidegree such that Dw red
v

is v-reduced. henwred
v is the unique admissiblemultidegree

in V(G(w0)) that is concentrated on v and nonnegative on all v′ ≠ v, and (wred
v )v is a

tight tuple.

Proof he ûrst conclusion follows directly from [Oss17, Corollary 3.9]. According
to Dhar’s burning algorithm ([Luo11, Algorithm 2.5]), for v and v′ in V(G) adjacent
to e ∈ E(G), we have that wred

v′ is obtained from wred
v by twisting b times at (e , v),

where b is the largest number (possibly negative) such that the resulting multidegree
is eòective on V(G)/{v′}. ∎

2.2 Limit Linear Series on Curves of Pseudocompact Type

In this subsection we recall the deûnition of limit linear series byOsserman in [Oss16]
for curves of pseudocompact type. Note that the notion of limit linear series for more
general curves is given in [Oss, Deûnition 2.21].
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Deûnition 2.11 We say that π∶X → B is a smoothing family if B is the spectrum of a
DVR, and
(i) π is �at and proper;
(ii) the special ûber X0 of π is a (split) nodal curve;
(iii) the generic ûber Xη is smooth;
(iv) π admits sections through every component of X0.
If, further, X is regular, we say that X is a regular smoothing family.

Let X0 be a curve over κ with dual graph G. For v ∈ V(G), let Zv be the corre-
sponding irreducible component of X0 and let Z cv be the closure of the complement
of Zv .

Deûnition 2.12 ([Mai98]) An enriched structure on X0 consists of, for each v ∈
V(G) a line bundle Ov on X0, the data satisfying
(i) for any v ∈ V(G), we haveOv ∣Zv ≅ OZv (−(Z cv ∩Zv)) andOv ∣Z cv ≅ OZ cv (Z

c
v ∩Zv);

(ii) ⊗v∈V(G)Ov ≅ OX0 .

Note that an enriched structure is always induced by any regular smoothing of X0
(cf. [Oss, Proposition 3.10]).

Take a chain structure n on G and an admissible multidegree w0. Let X̃0 be the
nodal curve obtained from X0 by, for each e ∈ E(G), inserting a chain of n(e) − 1
projective lines at the corresponding node, and G̃ the dual graph of X̃0. We say that
a divisor on G̃ is of multidegree w0 if (considered as a divisor on Γ) it is equal to Dw0 ,
and a line bundleL on X̃0 is of multidegree w0 if its associated divisor on G̃ is.

Given an enriched structure (Ov)v∈V(G̃) on X̃0 and a tuple of admissible multide-
grees (wv)v∈V(G) inV(G(w0)) such thatwv is concentrated on v and a line bundleL
on X̃0 of multidegreew0, we get a tuple of line bundles (Lwv )v∈V(G). Roughly speak-
ing, suppose wv , as a divisor on G̃, is obtained from w0 by ûring chips (cf. [BS13, §4])
at a sequence S ⊂ V(G̃) of vertices; then Lwv is obtained from L by tensoring with
Ov for all v in S. Note that Lwv is of multidegreewv . See [Oss16, §2] for details of this
construction.

Deûnition 2.13 A curve over κ is of pseudocompact type if its dual graph is a mul-
titree.

Now suppose X0 is a curve of pseudocompact type and the tuple (wv)v is tight. For
each pair (e , v) consisting of an edge e and an incident vertex v of G, let (De ,vi )i≥0 be
the eòective divisors on Zv deûned by setting De ,v0 = 0 and

De ,vi+1 − De ,vi = ∑
e′∈E(G),e′ lies over e

σ(e′ ,v)µv(e′)≡−i (mod n(e′))

Pv
e′ ,

where µv ∶ E(G) → Z/n(e)Z is induced by wv . Intuitively, De ,vi records the chips we
lose (in every direction) at vertex v when twisting i times at (e , v) from wv .
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Example 2.14 In Example 2.6, letwv = w and letwv′ be obtained fromwv by twist-
ing three times at (e , v). It is easy to check that (wv ,wv′) is a tight tuple. Straightfor-
ward calculation shows that

De ,vi = 0, Pv
e3 , P

v
e2 + Pv

e3 , P
v
e2 + Pv

e3 , P
v
e1 + 2Pv

e2 + 2Pv
e3 , . . .

for i = 0, 1, 2, 3, 4, . . . .

For convenience we call De ,vi the twisting divisors associated with (wv)v . In order
to deûne limit linear series, we have the following glueing isomorphism.

Proposition 2.15 ([Oss16, Proposition 2.14]) Let X0 be a curve of pseudocompact
type and let X̃0 , (wv)v ,L ,Lwv be as above. DenoteL v = Lwv ∣Zv . Take vertices v and
v′ of G connected by an edge e. hen for 0 ≤ i ≤ bv ,v′ , we have isomorphisms

φe ,vi ∶L v(−De ,vi )/L v(−De ,vi+1) →L v′(−De ,v
′

bv ,v′−i)/L
v′(−De ,v

′

bv ,v′+1−i).

Note that in the above proposition, if De ,vi+1 − De ,vi = ∑e′∈I Pv
e′ , then

De ,v
′

bv ,v′−i+1 − D
e ,v′
bv ,v′−i = ∑

e′∈I
Pv′
e′ .

In particular, we have deg(De ,vi+1 − De ,vi ) = deg(De ,v
′

bv ,v′−i+1 − D
e ,v′
bv ,v′−i) for all i.

Deûnition 2.16 (i) Let Z be a smooth curve and r, d ≥ 0. Let D0 ≤ ⋅ ⋅ ⋅ ≤ Db+1
be a sequence of eòective divisors on X. We say j is critical for D● if D j+1 ≠ D j .

(ii) Suppose further that D0 = 0 and degDb+1 > d. Given (L ,V) a gr
d on Z, we

deûne themultivanishing sequence of (L ,V) along D● to be the sequence

a0 ≤ ⋅ ⋅ ⋅ ≤ ar ,

where a value a appears in the sequencem times if for some i we have degD i = a and
degD i+1 > a, and dim(V(−D i)/V(−D i+1)) = m.

(iii) Given s ∈ V nonzero, the order of vanishing ordD●(s) along D● is degD i
where i is maximal so that s ∈ V(−D i).

One checks easily that j is critical for De ,v● if and only if bv ,v′ − j is critical for De ,v
′

● .
We are now able to state the deûnition of limit linear series on a curve of pseudocom-
pact type (cf. [Oss16, Deûnition 2.16]).

Deûnition 2.17 Suppose we have a tuple (L , (Vv)v∈V(G)) with L a line bundle
of multidegree w0 on X̃0, and each Vv a (r + 1)-dimensional space of global sections
of L v as in Proposition 2.15. For each pair (e , v) in G where v is a vertex of e, let
ae ,v0 , . . . , ae ,vr be themultivanishing sequence ofVv alongDe ,v● . hen (L , (Vv)v∈V(G))
is a limit linear series of multidegree w0 with respect to (wv)v∈V(G) on (X0 , n) if for
any e ∈ E(G) with vertices v and v′ we have
(i) for l = 0, . . . , r, if ae ,vl = degDe ,vj with j critical forDe ,v● , then ae ,v

′

r−l ≥ degD
e ,v′
bv ,v′− j ;

(ii) there exists bases se ,v0 , . . . , se ,vr of Vv and se ,v
′

0 , . . . , se ,v
′

r of Vv′ satisfying the fol-
lowing conditions:
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(a) ordDe ,v● se ,vl = ae ,vl and ordDe ,v′●

se ,v
′

l = ae ,v
′

l for l = 0, 1, . . . , r;
(b) for all j critical with respect to De ,v● and all l such that ae ,vl = degDe ,vj and

ae ,v
′

r−l = degD
e ,v′
bv ,v′− j , we have φe ,vj (se ,vl ) = se ,v

′

r−l .

Note that in part (b) se ,vl (resp., se ,v
′

r−l ) is considered as a section in Vv(−De ,vj ) (resp.,
Vv′(−De ,v

′

bv ,v′− j)), and φe ,vj is as in Proposition 2.15.

Remark 2.18 Let g j = #{0 ≤ l ≤ r∣ae ,vl = degDe ,vj and ae ,v
′

r−l = degDe ,v
′

bv ,v′− j}.
Using the identiûcation of the two linear spaces induced by φe ,vj , Deûnition 2.17(ii) is
equivalent to the space

(Vv(−De ,vj )/Vv(−De ,vj+1)) ∩ (Vv′(−De ,v
′

bv ,v′− j)/Vv(−De ,v
′

bv ,v′− j+1))

having dimension at least g j .

2.3 Limit Linear Series on Metrized Complexes

In this subsection we introduce Amini and Baker’s construction in [AB15] of metri-
zed complexes and limit linear series on them. Suppose for now that κ is algebraically
closed. Recall that a metrized complex C of curves over κ consists of the following
data: (1) ametric graph Γ with underlying graphG; (2) for each vertex v ofG a smooth
curve Cv over κ; (3) for each vertex v of G, a bijection e ↦ xve between the edges of G
incident to v (recall that G is assumed loopless in the beginning of this section) and a
subset Av of Cv(κ). For consistency of symbols we assume that Γ is of integral edge
lengths.

he geometric realization ∣C∣ of C is the union of the edges of Γ and the collection
of curves Cv , with each endpoint v of an edge e identiûed with xve . he following is a
geometric realization of a metrized complex which has rational Cv for all v ∈ V(G)
and whose underlying graph G is K2.

Example 2.19 Given a curve X0 with dual graph G and a chain structure n on G,
we can associate a metrized complex CX0 ,n: let Γ be the metric graph with underlying
graph G and edge lengths given by n, let Cv be the component Zv and xve = Pv

e (hence
Av = Av). If the edge lengths are all 1 we denote by CX0 instead.

A divisor D on C is a ûnite formal sum of points in ∣C∣. Letting D = ∑x∈∣C∣ ax(x),
we can naturally associate a divisor DΓ on Γ, called the Γ-part of D, as well as, for
each v ∈ V(G), a divisor Dv on Cv called the Cv-part ofD as follows:

Dv = ∑
x∈Cv(κ)

ax(x) and DΓ = ∑
x∈Γ/V(G)

ax(x) + ∑
v∈V(G)

deg(Dv)(v).

Note that we have degD = degDΓ .
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A nonzero rational function f on C is the data of a rational function fΓ (the Γ-part)
on Γ and nonzero rational functions fv (the Cv-part) on Cv for each v ∈ V(G). he
divisor associated with f is deûned to be

div(f)∶ = ∑
x∈∣C∣

ordx(f)(x)

where ordx(f) is as follows: if x ∈ Γ/V(G), then ordx(f) = ordx( fΓ); if x ∈ Cv(κ)/Av ,
then ordx(f) = ordx(fv); if x = Pv

e ∈ Av , then ordx(f) = ordx(fv) + slpe ,v(fΓ). In
particular, the Γ-part of div(f) is equal to div(fΓ).

Similarly to the divisors on graphs we have the following deûnitions.

Deûnition 2.20 Suppose Γ has integral edge lengths. A divisor D on C is rational,
integral, or edge-reduced ifDΓ is. Similarly, let n be the chain structure on G induced
by Γ and w an admissible multidegree on (G , n). hen D is of multidegree w ifDΓ =
Dw .

Deûnition 2.21 Divisors of the form div(f) are called principal. Two divisors in
Div(C) are called linearly equivalent if they diòer by a principal divisor. he rank
rC(D) of a divisor D is the largest integer r such that D − E is linearly equivalent to
an eòective divisor for all eòective divisor E of degree r on C.

he deûnition of the rank of D can be reûned by restricting the set of rational
functions on C that induce linear equivalence, as follows.

Deûnition 2.22 Suppose we are given, for each v ∈ V(G), a non-empty κ-linear
subspace Fv of K(Cv). Denote by F the collection of all Fv . We deûne the F-rank
rC,F(D) ofD to be the maximum integer r such that for every eòective divisor E of
degree r, there is a nonzero rational function f on Cwith fv ∈ Fv for all v ∈ V(G) such
that D + div(f) − E ≥ 0.

Note that by deûnition we always have rC,F(D) ≤ rC(D) ≤ r(DΓ). We are now
able to deûne limit linear series on metrized complexes.

Deûnition 2.23 A limit linear series of degree d and rank r on C is a (equivalence
class of) pair (D,H) consisting of a divisorD of degree d and a collectionH of (r+1)-
dimensional subspaces Hv ⊂ K(Cv) for all v ∈ V(G), such that rC,H(D) = r. Two
pairs (D,H) and (D′ ,H′) are considered equivalent if there is a rational function f
on C such that D′ =D + div(f) and Hv = H′

v ⋅ fv for all v ∈ V(G).

Deûnition 2.24 A limit linear series on C is of multidegree w0 if there is a represen-
tative (D,H) such that D is so.

Let X be a smooth curve over K̃. Recall that a strongly semistable model for X is
a �at and integral proper relative curve over R̃ whose generic ûber is isomorphic to
X and whose special ûber is a curve in our setting (or a strongly semistable curve
over κ as in [AB15, §4.1]). Given a strongly semistable model X, again there is an
associated metrized complex CX where the underlying graph G is the dual graph of
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the special ûber X0 = X and Cv is the component Zv of X0 and xve = Pv
e . Moreover,

the length l(e) of e ∈ E(Γ) = E(G) is val(ωe) for some we ∈ R̃ such that the local
equation of X at the node Pe of e is xy − ωe . Equivalently, consider the natural re-
duction map red∶X(K̃) → X0(κ) induced by the bijection between X(K̃) andX(R̃);
this extends to a map red∶Xan → X0 and l(e) is the modulus of the open (analytic)
annulus red−1(Pe) in Xan, where Xan is the Berkovich analytiûcation of X. Note that
anymetrized complex with edge lengths contained in val(K̃) can be constructed from
strongly semistable models (cf. [AB15, heorem 4.1]).

here is a canonical embedding of Γ into Xan as well as a canonical retraction map
τ∶Xan → Γ, which induces by linearity a specialization map τ∗∶Div(X) → Div(Γ)
which maps X(K̃) to the set of rational points of Γ. For P ∈ X(K̃), if τ∗(P) = v ∈
V(G), then red(P) is a nonsingular closed point of X0 in Cv . We thus have the spe-
cialization map of divisors τCX∗ ∶Div(X) → Div(CX) given by the linear extension
of

τCX∗ (P) =
⎧⎪⎪⎨⎪⎪⎩

τ∗(P) τ∗(P) /∈ V(G)
red(P) τ∗(P) ∈ V(G).

On the other hand, let x ∈ Xan be a point of type 2. he completed residue ûeld H̃(x)
of x has transcendence degree one over κ and corresponds to a curveCx over κ. Given
a nonzero rational function f on X, choose c ∈ K̃× such that ∣ f (x)∣ = ∣c∣. We denote
by fx the image of c−1 f in K(Cx) ≅ H̃(x), which is well deûned up to scaling by κ×.
We call fx the normalized reduction of f . Note that the normalized reduction of a
K̃-vector space V is a κ-vector space of the same dimension, whereas the normalized
reduction of a basis of V is not necessarily a basis of the normalized reduction of V .
See [AB15, Lemma 4.3] for details.

Deûnition 2.25 Given X and X as above, the specialization τCX∗ ( f ) of 0 ≠ f ∈
K(X) is a nonzero rational function on CX whose Γ-part is the restriction to Γ of the
piecewise linear function F = log∣ f ∣ on Xan andwhose Zv-part is (up tomultiplication
by κ×) the normalized reduction fxv in which xv , whose completed residue ûeld is
identiûed with the function ûeld of Zv , is the image of v under the embedding Γ ↪
Xan mentioned above. he specialization τCX∗ (V) of a linear subspace V of K(X) is
a collection {Fv}v∈V(G) of space of rational functions on Zv , where Fv = { fxv ∣ f ∈ V}.
We denote by τCX∗v the Zv-part of τCX∗ , or equivalently the normalized reduction to
H̃(xv).

Note that τCX∗v (V) is a linear space of the same dimension asV asmentioned above.
Similar to the classical case, we have that the specialization of a linear series is a limit
linear series.

heorem 2.26 ([AB15, heorem 5.9]) Let X ,X be as above. Let D be a divisor on X
and let (OX(D),V) be a gr

d on X, where V ⊂ H0(X ,OX(D)) ⊂ K(X). hen the pair
(τCX∗ (D), τCX∗ (V)) is a limit gr

d on CX.

We end the section with the deûnition of smoothability of limit linear series on
metrized complexes.
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Deûnition 2.27 A limit linear series (D,H) of degree d and rank r on a metrized
complex C over κ is called smoothable if there exists a smooth proper curve X over K̃
such that C = CX for some strongly semistable modelX of X and (D,H) arises from
the specialization of a gr

d on X.

3 The Weak Glueing Condition

In this section we introduce the concept of pre-limit linear series on a curve X0 of
pseudocompact type with given chain structure n (on the dual graph), and a forgetful
map from the space of pre-limit linear series on (X0 , n) to the set of limit linear series
on CX0 ,n, derived from [Oss17].

We show that this map is bijective onto the set of (D,H) with integral D. By this
we can extend the weak glueing condition on curves, which will be deûned in the
beginning of this section, to metrized complexes, and transfer the smoothing prob-
lems on metrized complexes to those on curves. To be consistent with Section 2.3, we
assume in this section that κ is algebraically closed. We use the following notation.

Notation 3.1 Let X0 be a curve over κ of pseudocompact type, G the dual graph of
X0 andG the tree obtained fromG as in §1.1. Let n be a chain structure onG and Γ the
inducedmetric graph. Takew0 an admissible multidegree of total degree d on (G , n).
Choose also a tight tuple (wv)v∈V(G) of admissible multidegrees in V(G(w0)). Let
dv be the coeõcient of Dwv at v. Let X̃0 be the nodal curve corresponding to n as
constructed in Section 2.2 (a�er Deûnition 2.12) and G̃ the dual graph of X̃0. LetCX0 ,n
and CX̃0

be the induced metrized complexes as in Example 2.19. Given an enriched
structure on X̃0, for a line bundleL on X̃0 recall that L v = Lwv ∣Zv is constructed as
in Proposition 2.15.

With the notation above, we start by recalling pre-limit linear series on (X0 , n)
and the weak glueing condition.

Deûnition 3.2 A pre-limit linear series of rank r with respect to the admissible mul-
tidegrees (wv)v on (X0 , n) is a tuple (Lv ,Vv)v∈V(G) of line bundles Lv on Zv of
degree dv and linear spaces Vv ⊂ H0(Zv ,Lv) of dimension r + 1 such that the mul-
tivanishing sequence ae ,v● of Vv along the twisting divisors De ,v● satisûes condition (i)
of Deûnition 2.17. Given an enriched structure, we say a pre-limit linear series li�s to
a limit linear series if there exists a line bundleL on X̃0 of multidegree w0 such that
Lv = L v , and the tuple (L , (Vv)v) is a limit linear series as in Deûnition 2.17.

For an edge e ∈ E(G) with incident vertices v and v′ and a j critical for De ,v● ,
suppose De ,vj+1 − D

e ,v
j = Pv

e1 + ⋅ ⋅ ⋅ + Pv
em , where e i ∈ E(G) lies over e. We have an

isomorphism

ψ∶H0(Zv ,Lv(−De ,vj )/Lv(−De ,vj+1)) Ð→ κm

given by ψ(s) = (s(Pv
e1), . . . , s(P

v
em)), which is unique up to coordinate-wise scaling.

his induces an action of them-dimensional torus on Lv(−De ,vj )/Lv(−De ,vj+1) that is
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independent of ψ. Similarly, we have a torus action on

Lv′(−De ,v
′

bv ,v′− j)/Lv′(−De ,v
′

bv ,v′− j+1),

and φe ,vj (as in Proposition 2.15) respects torus orbits.

Deûnition 3.3 We say that a pre-limit linear series (Lv ,Vv)v∈V(G) satisûes theweak
glueing condition if for all e ∈ G with incident vertices v and v′, and for all j critical
for De ,v● , there exists subspaces

Wv , j ⊂ Vv(−De ,vj )/Vv(−De ,vj+1),

Wv′ ,bv ,v′− j ⊂ Vv′(−De ,v
′

bv ,v′− j)/Vv′(−De ,v
′

bv ,v′− j+1),

both of which have dimension g j , such that for all torus orbits
Tv ⊂ Lv(−De ,vj )/Lv(−De ,vj+1),

Tv′ = φe ,vj (Tv) ⊂ Lv′(−De ,v
′

bv ,v′− j)/Lv′(−De ,v
′

bv ,v′− j+1),

we have
dim(Tv ∩Wv , j) = dim(Tv′ ∩Wv′ ,bv ,v′− j).

Here g j is deûned in Remark 2.18.

Remark 3.4 In the above deûnition it is enough to check that for all torus orbits
Tv we have that Tv ∩Wv , j is nonempty if and only if Tv′ ∩Wv′ ,bv ,v′− j is nonempty: let
Tv = {(x1 , . . . , xm)∣x i ≠ 0 if and only if i ∈ I} for some I ⊂ {1, . . . ,m} and dim(Tv ∩
Wv , j) = l . For s = (a1 , . . . , am) ∈ Lv(−De ,vj )/Lv(−De ,vj+1), denote Is = {i∣a i ≠
0}. We can ûnd s1 , . . . , s l ∈ Tv ∩Wv , j that are linearly independent. Taking linear
combinations of {s i} gives t1 , . . . , t l ∈ Wv , j such that It1 ⊊ It2 ⊊ ⋅ ⋅ ⋅ ⊊ It l = I. Now let
T i
v′ = {(x′1 , . . . , x′m)∣x′i ≠ 0 if and only if i ∈ It i} ⊂ Tv′ . We have that T l

v′ = Tv′ and
Wv′ ,bv ,v′− j ∩ T i

v′ ≠ ∅ by assumption, which implies that dim(Tv′ ∩Wv′ ,bv ,v′− j) ≥ l =
dim(Tv ∩Wv , j), sinceWv′ ,bv ,v− j is a κ-vector space. he same argument shows that
dim(Tv∩Wv , j) ≥ dim(Tv′∩Wv′ ,bv ,v′− j), hence dim(Tv∩Wv , j) = dim(Tv′∩Wv′ ,bv ,v′− j).

Example 3.5 Note that g j ≤ degDe ,vj+1 − degD
e ,v
j . If g j = degDe ,vj+1 − degD

e ,v
j , then

the weak glueing condition is trivial, since in this case we have
Wv , j = Lv(−De ,vj )/Lv(−De ,vj+1),

Wv′ ,bv ,v′− j = Lv′(−De ,v
′

bv ,v′− j)/Lv′(−De ,v
′

bv ,v′− j+1).

On the other hand, if g j = 1, then the weak glueing condition is equivalent to the
existence of

sv ∈ Vv(−De ,vj )/Vv(−De ,vj+1) and sv′ ∈ Vv′(−De ,v
′

bv ,v′− j)/Vv′(−De ,v
′

bv ,v′− j+1)

such that sv vanishes at P ẽv if and only if sv′ vanishes at P ẽv′ , where P ẽv runs over the
support of De ,vj+1 − D

e ,v
j .

See also Example 4.11 for a concrete case of a pre-limit linear series (as well as a
limit linear series on CX0 ,n) that does not satisfy the weak glueing condition.
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Proposition 3.6 A pre-limit linear series that li�s to a limit linear series must satisfy
the weak glueing condition.

Proof his follows directly from Remark 2.18. ∎

Let Pr
d(X0 , n, (wv)v)be the space1 of pre-limit gr

dswith respect to (wv)v on (X0 , n),
andGr

d(CX0 ,n) be the set of limit gr
ds on CX0 ,n. Given w ,w′ ∈ V(G(w0)), we denote

by Dv
w ,w′ the divisor on Zv obtained by twisting fromw tow′. More precisely, if Dw′ =

Dw + div( f ) where f is a piecewise linear function on Γ, then Dv
w ,w′ = ∑ slpe ,v( f )Pv

e
where the summation is taken over all edges in G that are incident to v. In other
words, if P(w , v1 , . . . , vm) = (w1 , µ1), . . . , (wm+1 , µm+1) is a path in G(w0) from w to
w′, let S ⊂ {1, . . . ,m} consist of i such that v i (≠ v) is adjacent to v, and for i ∈ S let
e i ∈ E(G) be the edge connecting v and v i . hen ([Oss17, Notation 4.7])

Dv
w ,w′ = ∑

i∈S
∑

ẽ ∈ E(G) over e i
µ i+1(ẽ) = 0

Pv
ẽ − ∑

i∶v i=v
∑

ẽ ∈ E(G) incident on v
µ i(ẽ) = 0

Pv
ẽ .

Deûnition 3.7 We deûne a map F(wv)v ∶ Pr
d(X0 , n, (wv)v) → Gr

d(CX0 ,n) as follows:
given a tuple (Lv ,Vv)v ∈ Pr

d(X0 , n, (wv)v), for each v ∈ V(G), choose nonzero sv ∈
Vv . Fix w ∈ V(G(w0)). Take D ∈ Div(CX0 ,n) of multidegree w such that Dv =
div0(sv) − Dv

w ,wv
for all v and a collection H = (Hv)v of rational functions with

Hv = { s
sv
∶ s ∈ Vv}. hen we deûne F(wv)v ((Lv ,Vv)) = (D,H). We sometimes write

F instead of F(wv)v when (wv)v is speciûed.

Note that by [Oss17, Propostions 4.12 and 5.9] the map F(wv)v is well deûned; i.e.,
F(wv)v ((Lv ,Vv)v) is a limit gr

d on CX0 ,n for all (Lv ,Vv)v ∈ Pr
d(X0 , n, (wv)v), and it

is independent of choices of sv and w. We next show that F(wv)v is a bijection onto
the set of limit gr

ds on CX0 ,n of multidegree w0.
Given (D,H) a limit gr

d on CX0 ,n withDΓ = Dw0 . Recall that wred
v ∈ V(G(w0)) is

the admissible multidegree such that Dw red
v

is v-reduced on Γ. We have that (wred
v )v is

a tight tuple by Proposition 2.10. Let Dred
v ∶= Dv

w0 ,w red
v

. We have the following lemma.

Lemma 3.8 For any v ∈ V(G), we have Hv ⊂ H0(Zv ,OZv (Dv + Dred
v )).

Proof Take v0 ∈ V(G) and a rational function f on Γ such thatDw red
v0

= Dw0+div( f ).
Take a rational function f on CX0 ,n such that fΓ = f and fv = 1 for all v ∈ V(G). Let
D′ = D + div(f). We then haveD′

v0 = Dv0 + Dred
v0 and (D′ ,H) is also a limit gr

d , and
D′

Γ is the v0-reduced divisor on Γ that is linearly equivalent to DΓ .
Take r general points P1 , . . . , Pr ∈ Zv0 ; there is a h ∈ Rat(CX0 ,n) such that D′ +

div(h)−P1−⋅ ⋅ ⋅−Pr ≥ 0 and that hv ∈ Hv for all v. It follows thatD′
Γ+div(hΓ)−rv0 is an

1Here is a description of Pr
d(X0 , n, (wv)v): take non-negative sequences ae ,v● for each adjacent pair

(e , v) inG satisfying condition (i) of Deûnition 2.17, let Gr
d(Zv , (De ,v● , ae ,v● )e) be the space of gr

dv
s on Zv

havingmultivanishing sequence at least ae ,v● alongDe ,v● for all e incident to v. hen Pr
d(X0 , n, (wv)v) is the

union over all such (ae ,v● )e ,v of∏v∈V(G) Gr
dv
(Zv , (De ,v● , ae ,v● )e) in∏v∈V(G) Gr

dv
(Zv), where Gr

dv
(Zv)

is the space of gr
dv

s on Zv .
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eòective divisor on Γ. We denote this divisor byD and henceD′
Γ = D+div(−hΓ)+rv0.

We claim that slpe ,v0(hΓ) ≤ 0 for all e ∈ E(G) incident to v0.
Suppose there is a e0 ∈ E(G) incident to v0 and ẽ0 ∈ E(G) lying over e0 such

that slpẽ0 ,v0(hΓ) > 0 (or equivalently slpẽ0 ,v0(−hΓ) < 0). Let v1 be the other vertex of
e0. Since D′

Γ is v0-reduced, for all x ∈ Γ/V(G) we have ordx(−hΓ) ≤ 1. herefore,
for all ẽ ∈ E(G) lying over e0 either slpẽ ,v1(−hΓ) > 0 or there is a point x ∈ ē○ such
that ordx(−hΓ) > 0, where ē ∈ E(Γ) is the edge induced by ẽ. Now Dhar’s algorithm
([Luo11]) implies that there must exist an edge e1 ∈ E(G)/{e0} incident to v1 and ẽ1 ∈
E(G) lying over e1 such that slpẽ1 ,v1(−hΓ) < 0. Inductively we end up with a sequence
of distinct vertices v0 , v1 , . . . and edges ẽ1 , ẽ2 , ⋅ ⋅ ⋅ ∈ E(G), lying over e1 , e2 , ⋅ ⋅ ⋅ ∈ E(G)
respectively, such that e i is incident to v i and v i+1 and that slpẽ i ,v i

(−hΓ) < 0. his
sequence must be ûnite, since G is a tree, which provides a contradiction.

It follows that D′
v0 + div(hv0) − P1 − ⋅ ⋅ ⋅ − Pr ≥ 0. Now the generality of Pi implies

that H0(Zv0 ,OZv0
(D′

v0)) ∩ Hv0 has dimension at least r + 1, hence we have Hv0 ⊂
H0(Zv0 ,OZv0

(D′
v0)) = H0(Zv0 ,OZv0

(Dv0 + Dred
v0 )). ∎

Let Gr
d(CX0 ,n ,w0) be the set of limit gr

ds of multidegree w0. We ûrst show the
bijectivity of F for the tuple (wred

v )v .

heorem 3.9 he map F(w red
v )v is a bijection onto Gr

d(CX0 ,n ,w0).

Proof It is easy to check that F is injective. We next show surjectivity. Take (D,H)
∈ Gr

d(CX0 ,n). According to Lemma 3.8, we have Hv ⊂ H0(Zv ,OZv (Dv + Dred
v )). We

next show that (Lv ,Vv)v = (OZv (Dv + Dred
v ),Hv)v is a pre-limit gr

d on (X0 , n) by
extending the method of the proof of [AB15, heorem 5.4]. Note that a�erwards
straightforward calculation shows that F((Lv ,Vv)v) = (D,H).

We can assume that DΓ = Dw0 . Fix an edge e ∈ E(G). Let e1 , . . . , em be the edges
of G lying over e and let v1 , v2 be the vertices of e. For simplicity let D j = Dv j ,D j =
Dred

v j
,H j = Hv j , Z j = Zv j ,L j = Lv j , and w j = wred

v j
for j = 1, 2. Denote by P j

i = Pv j
e i

the points on Z j corresponding to e i and byA j = A
v j
e the set of points P j

i . Suppose e
is directed by v1 → v2 and w0 = (wG , µ). Denote x i = µ(e i) for 1 ≤ i ≤ m.

Suppose w2 is equal to w1 twisting b times at (e , v1). We show that the condition
about multivanishing sequences (Deûnition 2.17(i)) is satisûed for our ûxed e, which
completes our proof.

Let ae ,v j
0 , . . . , ae ,v j

r be the multivanishing sequences of H j along D
e ,v j
● as in Deû-

nition 2.17. For l = 0, 1, . . . , r we claim that there is an s such that ae ,v1l ≥ De ,v1s and
ae ,v2
r−l ≥ D

e ,v2
b−s .

Take eòective divisors

(E1 , E2) = ( ∑
1≤k≤r−l

Qk , ∑
r−l+1≤k≤r

Qk) ∈ (Z(r−l)
1 , Z(l)2 )

where Z(l)j is the l-fold symmetric product. For v ∈ V(G), denote by E(v) the set of
edges of G incident to v. Let FE1 ,E2 be the set of divisors E on CX0 ,n of the form

E = ∑
j=1,2

∑
e′∈E(v j)

slpe′ ,v j
(fΓ)P

v j
e′ ,

644

https://doi.org/10.4153/S0008414X18000068 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X18000068


Smoothing of Limit Linear Series

where f is a rational function on C such that fv ∈ Hv for all v ∈ V(G) and div(f)+D−
(E1 + E2) ≥ 0}. hen the set

F = ⋃
(E1 ,E2)

FE1 ,E2

is ûnite. For D0 ∈ F, let SD0 be the subset of Z(r−l)
1 × Z(l)2 deûned by all collections of

eòective divisors (E1 , E2) such that D0 ∈ FE1 ,E2 . We have the following:
(i) Each SD0 is Zariski closed in Z(r−l)

1 × Z(l)2 . Indeed, SD0 is of the form Λ1 × Λ2,
where Λ1 (resp. Λ2) is the Zariski closed subset of Z(r−l)

1 (resp., Z(l)2 ) consisting of
all divisors E1 (resp., E2) such that there exists f1 ∈ H1 (resp., f2 ∈ H2) such that
div( f1) + (D0 +D)∣Z1 − E1 ≥ 0 (resp., div( f2) + (D0 +D)∣Z2 − E2 ≥ 0).

(ii) ⋃D0∈F SD0 = Z(r−l)
1 × Z(l)2 .

herefore, we can ûnd a D0 such that SD0 = Z(r−l)
1 × Z(l)2 . Now for any choices of

Q1 , . . . ,Qr−l ∈ Z1 and Qr−l+1 , . . . ,Qr ∈ Z2, we ûnd a rational function f on CX0 ,n such
that

D0 = ∑
j=1,2

∑
e′∈E(v j)

slpe′ ,v j
(fΓ)P

v j
e′

and div(f) +D −∑i Q i ≥ 0 and fv ∈ Hv for all v. Restricting to each Z j , we have

D j + D j − (D j − D0∣Z j) + div(fv j
) − ∑

k∈I j

Qk ≥ 0

for j = 1, 2, where I1 = {1, . . . , r − l} and I2 = {r − l + 1, . . . , r}. Moreover, we have

(3.1) (div(fΓ) +DΓ) ∣e○ ≥ 0.

Since fv j
∈ H j , it follows that

dim (H1 ∩H0(Z1 ,L1(−D1 + D0∣Z1))) ≥ r − l + 1

and that
dim (H2 ∩H0(Z2 ,L2(−D2 + D0∣Z2))) ≥ l + 1.

Let λ j
i = − slpe i ,v j

(fΓ). Since H j ⊂ H0(Z j ,L j), we have

dim (H1 ∩H0(Z1 ,L1(−D1∣A1 −∑
i

λ1
iP

1
i ))) ≥ r − l + 1

and that

dim (H2 ∩H0(Z2 ,L2(−D2∣A2 −∑
i

λ2
i P

2
i ))) ≥ l + 1.

We claim that there is an a such that D1∣A1 + ∑ λ1
iP1

i ≥ De ,v1a and D2∣A2 + ∑ λ2
i P2

i ≥
De ,v2
b−a , and hence ae ,v1l ≥ degDe ,v1a and ae ,v2

r−l ≥ degDe ,v2
b−a , and the vanishing condition

is satisûed.
Note that D1∣A1 = De ,v1λ and D2∣A2 = De ,v2

b−λ for some λ. Let n i = n(e i), let
Fi ∶ [0, n i] → R be the piecewise linear function such that Fi = fΓ ∣e i . Without lost
of generality assume Fi(0) = 0 and Fi(n i) = y ≥ 0. We have λ1

i = −F′i(0) and
λ2
i = F′i(n i). Take F̃i ∶ [0, n i] → R such that F̃i(x) = 0 if 0 ≤ x ≤ x i and F̃i(x) = x − x i

otherwise. According to (3.1), Fi(x) is convex when x i = 0 and Fi(x) + F̃i(x) is
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convex when x i ≠ 0. We then have λ1
i ≥ −⌊ y

n i
⌋ and λ2

i ≥ ⌈ y
n i
⌉ when x i = 0, and

λ1
i ≥ −⌊

y+n i−x i
n i

⌋ and λ2
i ≥ ⌈ y−x i

n i
⌉ when x i ≠ 0.

Now it is enough to ûnd a such that

∑
i∶x i=0

⌊ y
n i

⌋P1
i + ∑

i∶x i≠0
⌊ y + n i − x i

n i
⌋P1

i ≤ De ,v1λ − De ,v1a

=
λ−1

∑
k=a

∑
i∶x i−λ+k≡0 (mod n i)

P1
i

and

∑⌈ y − x i

n i
⌉P2

i ≥ De ,v2
b−a − D

e ,v2
b−λ =

b−a−1

∑
k=b−λ

∑
i∶x i−λ+b−k≡0 (mod n i)

P2
i .

In other words we must have the following:

⌊ y
n i

⌋ ≤ ∑
k∶a≤k≤λ−1

x i−λ+k≡0 (mod n i)

1,

⌈ y
n i

⌉ ≥ ∑
k∶b−λ≤k≤b−a−1

x i−λ+b−k≡0 (mod n i)

1 if x i = 0,

⌊ y + n i − x i

n i
⌋ ≤ ∑

k∶a≤k≤λ−1
x i−λ+k≡0(modn i)

1,

⌈ y − x i

n i
⌉ ≥ ∑

k∶b−λ≤k≤b−a−1
x i−λ+b−k≡0 (mod n i)

1 if x i ≠ 0.

It is straightforward to verify that a = λ − ⌊y⌋ satisûes the inequalities above. ∎

We next show that there is an isomorphism between

Pr
d(X0 , n, (wv)v) and Pr

d(X0 , n, (wred
v )v)

that is compatible with F(wv)v and F(w red
v )v for any tight tuple (wv)v . he bijectivity of

F(wv)v then follows.

Corollary 3.10 For any tight tuple (wv)v of admissible multidegrees in V(G(w0)),
we have a natural isomorphism I∶ Pr

d(X0 , n, (wv)v) → Pr
d(X0 , n, (wred

v )v) such that
F(wv)v = F(w red

v )v ○I. Moreover, I induces a bijection between the sets of pre-limit linear
series that satisfy the weak glueing condition.

Proof Since F(w red
v )v is a bijection, we deûne I = F−1

(w red
v )v ○ Fw0 ,(wv)v . To show that

this is an isomorphism, we construct an inverse L of I.
We ûrst claim for all v ∈ V(G) that wv is obtained from wred

v by twisting vertices
in V(G)/{v}. Suppose there is a path P(wred

v , v1 , . . . , vm) in G(w0) from wred
v to wv

such that {v i}1≤i≤m ⊊ V(G). Take an ordering v = v′0 , v′1 , v′2 , . . . of V(G) such that
wv becomes negative in v′i for i ≥ 1 a�er taking the negative twists of v′0 , . . . , v′i−1. Let
j be the smallest number such that v′j /∈ {v i}1≤i≤m . hen negatively twisting wv at
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v′0 , . . . , v′j−1 is the same as twisting wred
v at vertices in {v i}1≤i≤m/{v′0 , . . . , v′j−1} (per-

haps with multiplicities) that cannot be negative at v′j unless j = 0; namely, v j = v,
since wred

v is nonnegative at all vertices except v. So v /∈ {v i}1≤i≤m .
It follows that Dv = Dv

w red
v ,wv

is eòective for all v. Let (Lv ,Vv)v ∈ Pr
d(X0 , n,

(wred
v )v). We deûne L((Lv ,Vv)v) = (L ′

v ,V ′
v )v where L ′

v = Lv(Dv) and V ′
v is the

image of Vv under the imbedding iv ∶H0(Zv ,Lv) → H0(Zv ,L ′
v ). We next show that

(L ′
v ,V ′

v )v is contained in Pr
d(X0 , n, (wv)v) and satisûes the weak glueing condition

if and only if (Lv ,Vv)v does.
Take e ∈ G incident to v and v′. Suppose wred

v (resp., wv) is obtained from
wred
v′ (resp., wv′) by twisting bv ,v′ (resp., b′v ,v′) times at (e , v′). Let De ,vi (resp.,

(De ,vi )′) be the twisting divisors associated with (wred
v )v (resp., (wv)v). Let (ae ,vl )l

(resp.,((ae ,vl )′)l ) be the multivanishing sequence of Vv (resp., V ′
v ) along De ,v● (resp.,

(De ,v● )′).
Let v1 , . . . , vm be as above. Also, take a path P(wred

v′ , v′1 , . . . , v′m′) in G(w0) from
wred
v′ to wv′ such that v′ /∈ {v′i}1≤i≤m′ . Suppose v appears a times in v′1 , . . . , v′m′ and v′

appears a′ times in v1 , . . . , vm . One easily veriûes that b′v1 ,v2
= bv1 ,v2 + a′ + a; and that

if ae ,vl = degDe ,vj for some j critical, then (ae ,vl )′ = deg((De ,vj+a′)′) with j + a′ critical;
and if ae ,v

′

l = degDe ,v
′

j for some j critical, then (ae ,v
′

l )′ = deg((De ,v
′

j+a)′) with j + a
critical. It then follows by deûnition that (L ′

v ,V ′
v )v is in Pr

d(X0 , n, (wv)v).
Moreover, for s ∈ Vv and s′ = iv(s) ∈ V ′

v , we have ord0P(s) − ordP(De ,v● ) =
ord0P(s′) − ordP((De ,v●+a′)′) for P ∈ Av

e , and the same holds if we replace v by v′ and
a′ by a. In particular, ifWv , j ⊂ Vv(−De ,vj )/Vv(−De ,vj+1) and

Wv′ ,bv ,v′− j ⊂ Vv′(−De ,v
′

bv ,v′− j)/Vv′(−De ,v
′

bv ,v′− j+1)

as in Deûnition 3.3 satisûes the weak glueing condition for (wred
v )v , then we can take

W ′
v , j+a′ = iv(Wv , j) ⊂ V ′

v and W ′
v′ ,bv ,v′− j+a = iv′(Wv′ ,bv ,v′− j) ⊂ V ′

v′ which fulûlls the
weak glueing condition for (wv)v , and vice versa. ∎

Corollary 3.11 For any tight tuple (wv)v in V(G(w0)) the map

F(wv)v ∶ Pr
d(X0 , n, (wv)v) Ð→ Gr

d(CX0 ,n ,w0)

is a bijection, the preimage of (D,H) with DΓ = Dw0 is (OZv (Dv + Dv
w0 ,wv

),Hv)v . In
particular, we have Hv ⊂ H0(Zv ,OZv (Dv + Dv

w0 ,wv
)).

Weare now able to deûne theweak glueing condition for limit linear series onCX0 ,n
of multidegree w0 by li�ing to a pre-limit linear series on (X0 , n), and the deûnition
is independent of the choice of li�ing by Corollary 3.10.

Deûnition 3.12 Let (D,H) ∈ Gr
d(CX0 ,n ,w0) be a limit gr

d on CX0 ,n. We say that
(D,H) satisûes the weak glueing condition with respect to w0 if F−1

(wv)v ((D,H)) sat-
isûes the weak glueing condition with respect to (wv)v for a tight tuple (wv)v in
V(G(w0)).
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Proposition 3.13 (i) Suppose (D,H) ∈ Gr
d(CX0 ,n ,w) for w = w0 and w = w′

0.
hen (D,H) satisûes the weak glueing condition with respect to w0 if and only if it
satisûes that with respect to w′

0.
(ii) Suppose w0 = (wG , µ). Take m ∈ Z≥0 and n′∶ E(G) → Z>0 such that n′(e) =

mn(e) for all e ∈ E(G). Let (D′ ,H′) be a limit gr
d on CX0 ,n′ such that H′

v = Hv and
D′ corresponds to w′ = (w′

G , µ′) where w′
G = wG and µ′(e) = mµ(e) for all e ∈ E(G).

hen (D,H) satisûes the weak glueing condition if and only if (D′ ,H′) satisûes the
weak glueing condition.

Proof (i) Note that Deûnition 3.12 only depends on V(G(w0)). We have Dw0 lin-
early equivalent to Dw′0 as divisors on Γ. It is then easy to check that w0 ∈ V(G(w′

0))
and hence G(w0) = G(w′

0).
(ii) his is obvious; note that the scaling of a concentrated admissible multidegree

is still concentrated. ∎

Nowwe deûne the weak glueing condition for arbitrary limit linear series onCX0 ,n.

Deûnition 3.14 We say that a limit linear series (D,H) on CX0 ,n satisûes the weak
glueing condition if a�er scaling (by integer) of n there is a multidegree w0 on (G , n)
such that (D,H) is contained inGr

d(CX0 ,n ,w0) and satisûes the weak glueing condi-
tion with respect to w0.

Note that the deûnition above is independent of the choice of w0 and scaling by
Proposition 3.13. See Example 4.11 for a limit linear series on a metrized complex that
does not satisfy the weak glueing condition.

4 Smoothing of Limit Linear Series on Metrized Complexes

In this section we use the same symbols as in Notation 3.1 and assume that κ is alge-
braically closed. We consider special cases of w0 and (X0 , n) such that (1) the space
of limit linear series on (X0 , n) is of expected dimension, and (2) any pre-limit linear
series satisfying the weak glueing condition li�s to a limit linear series on (X0 , n).
his along with the forgetful map constructed in the last section will guarantee the
smoothability of certain limit linear series on CX0 ,n.

In order to prove the main theorems, we ûrst recall some results from [Oss] and
[Oss16] for convenience.

heorem 4.1 ([Oss, heorem 6.1]) If π∶X → Spec(R) is a regular smoothing family
with special ûber X̃0, and the space of limit linear series on (X0 , n) has the expected
dimension ρ = g + (r + 1)(d − r − g), then every limit linear series on (X0 , n) can be
smoothed to a linear series on the generic ûber Xη .

Deûnition 4.2 Let X be a smooth projective curve of genus g, and ûx integers
r, d , n > 0, and for i = 1, . . . , n ûx also m i > 0. Choose distinct points Pk

i on X
for i = 1, . . . , n and k = 1, . . . ,m i . hen we say that (X , (Pk

i )i ,k) is strongly Brill–
Noether general for r, d if, for all tuples of nondecreasing eòective divisor sequences
D i
●, such that every divisor D i

● is supported on P1
i , . . . , P

m i
i , and for every tuple of
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nondecreasing sequences a i
● such that for each j we have a i

j = degD i
l for some ℓ

critical for D i
● and the number of repetitions of a i

j is at most deg(D i
ℓ+1 − D i

ℓ), the
spaceGr

d(X , (D i
● , a i

●)i) of gr
ds on X having multivanishing sequence at least a i

● along
D i
● for each i has the expected dimension

ρ ∶= g + (r + 1)(d − r − g) −
n

∑
i=1

(
r

∑
j=0

(a i
j − j) +

b i

∑
ℓ=0

(r
i
ℓ

2
))

if it is nonempty. In the above, D i
● is indexed from 0 to b i + 1, and r iℓ is deûned to be 0

if ℓ is not critical for D i
●, and the number of times degD i

ℓ occurs in a i
● if ℓ is critical.

See [Oss16,heorem 3.3] for examples of strongly Brill–Noether general curves. In
particular, a rational curve is strongly Brill–Noether general for n ≤ 2. his example
will be used in Section 5.

heorem 4.3 ([Oss16, Corollary 5.2]) Suppose (X0 , n) satisûes the following
conditions:
(i) there are at most three edges of G connecting any given pair of vertices;
(ii) there exists a d′ such that for any adjacent vertices v , v′ of G, connected by edges

(e i)i , and any integers (x i)i with ∑i x in(e i) = 0, if there is a unique j with
x j > 0, then we have∑i⌊x jn(e j)/n(e i)⌋ > d′;

(iii) each marked component of X0 is strongly Brill–Noether general.
hen the space of limit linear series on (X0 , n) (of multidegree w0) of degree d with
d ≤ d′ is pure of expected dimension ρ.

We ûrst let n vary. For a family of w0, conditions (i) and (ii) in the beginning of
this section are satisûed for all X0 with strongly Brill–Noether general components.
Moreover, the weak glueing condition is satisûed automatically.

heorem 4.4 Let {e ij}1≤i≤k j be all edges of G over an edge e j ∈ E(G) = {e j} j∈J . Let
(D,H) be a limit gr

d on CX0 ,n with rational and edge-reducedD. Suppose G is directed
such that the edges over the same edge of G have the same tail. Let x i

j ∈ [0, n(e ij))
correspond to the point in D ∩ (e ij)○ where we set x i

j = 0 if the intersection is empty.
Suppose that the following hold:
(i) here is a number m ∈ Z such that mx i

j ∈ Z for all j and 1 ≤ i ≤ k j , and for each j
the classes of mx i

j where 1 ≤ i ≤ k j modulo gcd(mn(e1j), . . . ,mn(ek j
j )) are distinct.

(ii) Each component of X is strongly Brill–Noether general.
hen the limit linear series (D,H) is smoothable.

Note that ifD is of multidegree w0 = (wG , µ), then heorem 4.4(i) says that, with
the given direction ofG inheorem4.4, for each j the classes of µ(e ij)where 1 ≤ i ≤ k j

modulo gcd(n(e1j), . . . , n(e
k j
j )) are distinct.

Lemma 4.5 Let (L , (Vv)v) be a limit gr
d on (X0 , n) of multidegree w0 with respect

to (wv)v , and let (L v ,Vv)v be the induced pre-limit linear series. Let X → Spec(R) be
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a regular smoothing family with special ûber X̃0. If (L , (Vv)v) can be smoothed to a
gr
d on Xη , then F((L v ,Vv)v) is smoothable in Amini–Baker sense.

Proof his follows directly from [Oss17, Proposition 4.16]. ∎

Proof of Theorem 4.4 Up to scaling, we can assume that D is integral and of mul-
tidegree w0, hence we can take m = 1. Take a pre-limit linear series (Lv ,Vv)v with
respect to (wv)v that maps to (D,H) under F(wv)v . hen condition (i) implies that
deg(De ,vj+1) − deg(D

e ,v
j ) = 1, and the morphism φ(e ,v)j in Deûnition 2.17 is a linear

morphism between one dimensional spaces. Hence for any line bundle L on X̃0 of
multidegree w0 such that L v = Lv and any enriched structure on X̃0 the condition
(ii) of Deûnition 2.17 is satisûed automatically. In other words (L , (Vv)v) is a limit
linear series. By Lemma 4.5, it remains to show that (L , (Vv)v) is smoothable. Ac-
cording to [Bak08, heorem B.2], there is a regular smoothing family X over B with
special ûber X̃0, and heorem 4.1 says that (L , (Vv)v) can be smoothed to a gr

d on
Xη if the the spaceGr

w0
(X0 , n, (Ov)v) of limit gr

ds on (X0 , n) has dimension ρ, where
(Ov)v is the enriched structure induced by X. his is ensured by condition (ii) and
[Oss16, heorem 4.1], since there is no glueing condition imposed. ∎

heorem 4.4(i) is trivial when X0 is of compact type, whereas condition (ii) is still
necessary; see [AB15, Example 5.14] for a counterexample. As a result we have the
following corollary.

Corollary 4.6 Let X0 be a curve of compact type, and assume themarked components
of X0 are all strongly Brill–Noether general. Let (D,H) be a limit linear series on the
metrized complex CX0 ,n with rational D. hen (D,H) is smoothable.

Wenext consider (X0 , n) as inheorem4.3 and prove that the weak glueing condi-
tion is a necessary and suõcient condition for the smoothability of a limit linear series
on CX0 ,n (of certain degree). he necessity is actually valid for arbitrary (X0 , n).

heorem 4.7 Suppose (D,H) is a smoothable limit gr
d on CX0 ,n. hen (D,H) sat-

isûes the weak glueing condition.

Note that in the following proof we do not assert that (D,H) is the image (under
F(wv)v ) of a smoothable limit linear series on (X0 , n), as F((L v ,Vv)v) in Lemma
4.5. It is unclear whether a strongly semistable model (when the associated metrized
complex has identical edge lengths) over R̃ is a base extension of a regular smoothing
family over R, and we do not know if the specialization of any gr

d on the generic ûber
of a strongly semistable model can be li�ed to the specialization of a gr

d on the generic
ûber of a regular smoothing family.

Proof of Theorem 4.7 SinceDΓ is linearly equivalent to a rational divisor on Γ, we
can assume that D is integral and edge-reduced and DΓ = Dw0 . Suppose there is a
strongly semistable model X over R̃ with associated metrized graph CX = CX0 ,n and
a linear series (Dη ,Hη) on Xη of rank r that specializes to (D,H).
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Suppose the concentrated degrees (wv)v = (wred
v )v are given. Let Dv = Dv

w0 ,w red
v

.
We have Hv ⊂ H0(Zv ,OZv (Dv + Dv)). Consider v and v′ in V(G) connected by
e ∈ E(G). Let {e i} ⊂ E(G) be the edges lying over e, let Pi = Pv

e i and P′i = Pv′
e i .

Take h ∈ Hv ⊂ H0(Zv ,OZv (Dv + Dv)). Choose g ∈ Hη such that τCX∗v (g) = h up
to multiplication by κ×. Let h′ = τCX∗v′ (g). According to the Slope Formula [AB15,
heorem 4.4(3)], we have
(4.1) ordPi (h) = − slpe i ,v ( τ

CX
∗ (g)Γ) and ordP′i (h

′) = − slpe i ,v′(τ
CX
∗ (g)Γ).

On the other hand, since Dη + div(g) ≥ 0, by [AB15, heorem 4.5] we have

0 ≤ τCX∗ (Dη + div(g)) =D + div ( τCX∗ (g)) .
Restricting to e○i , where e i is considered as an edge of Γ (with vertex set V(G)), we
have
(4.2) D∣e○i + div(τ

CX
∗ (g)Γ)∣e○i ≥ 0.

By (4.1), for each j we have (note that Dv is supported on Zv/Av)

ord0Pi
(h) − ordPi (De ,vj ) = slpe i ,v (− τCX∗ (g)Γ) − ordPi (De ,vj − Dv).

Let w j
v be the multidegree obtained from wv by twisting j times at (e , v) and λ be the

piecewise linear function on Γ such that div(λ) =DΓ −Dw j
v
. Let Fg = −τCX∗ (g)Γ − λ.

We then have ordPi (De ,vj − Dv) = slpe i ,v(λ) and

(4.3) ord0Pi
(h) − ordPi (De ,vj ) = slpe i ,v(Fg).

A symmetric argument shows that

(4.4) ord0P′i (h
′) − ordP′i (D

e ,v′
r− j ) = slpe i ,v′(Fg).

According to (4.2) we have

(4.5) div(−Fg)∣e○i =D∣e○i + div ( τ
CX
∗ (g)Γ) ∣e○i + (div(λ) −D) ∣e○i ≥ −Dw j

v
∣e○i .

hus, the same argument as in the proof ofheorem 3.9 shows that there is an a such
that
(4.6) ordDe ,v● (h) ≥ degDe ,v

′

a and ordDe ,v′●

(h′) ≥ degDe ,v
′

bv ,v′−a .

Now let h0 , . . . , hr be a basis of Hv such that ordDe ,v● (h i) = ae ,vi , where {ae ,vi } is the
multivanishing sequence of (OZv (Dv+Dv),Hv) alongDe ,v● . Let j be a critical number
forDe ,v● . It follows that bv ,v′− j is critical forDe ,v

′

● . AssumeHv(−De ,vj+1) is generated by
{h l+1 , . . . , hr}. hen ordDe ,v● (ℓ) ≤ deg(De ,vj ) for ℓ ∈ span(h0 , . . . , h l). Let g0 , . . . , g l

be rational functions in Hη such that τCX∗v (g i) = h i . hen L = span(g0 , . . . , g l) is an
(l+1)-dimensional subspace ofHη such that τCX∗v (L) = span(h0 , . . . , h l) and τCX∗v′ (L)
is an (l + 1)-dimensional subspace of Hv′ .

It follows from (4.6) that for any g ∈ L we have τCX∗v′ (g) ∈ Hv′(−De ,v
′

bv ,v′− j). Now we
can pick the spaces Wv , j andWv′ ,bv ,v′− j (of dimension g j) as described in Deûnition
3.3. Note that g j ≤ l + 1− dim(Hv′(−De ,v

′

bv ,v′− j+1)). TakingWv′ ,bv ,v′− j to be an arbitrary

subspace of τCX∗v′ (L) of dimension g j such that Wv′ ,bv ,v′− j ∩ Hv′(−De ,v
′

bv ,v′− j+1) = 0 and
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Wv , j = τCX∗v (W), where W is a g j dimensional subspace of L such that τCX∗v′ (W) =
Wv′ ,bv ,v′− j (which can be constructed in the same way as L), will complete the proof.
Indeed, for all s′ ∈ Wv′ ,bv ,v′− j , taking t ∈ W such that τCX∗v′ (t) = s′ and s = τCX∗v (t) ∈
span(h0 , . . . , h l) we have that ordDe ,v● (s′) = De ,v

′

bv ,v′− j , and hence ordDe ,v● (s) = De ,vj

by (4.6). On the other hand, we have −Dw j
v
∣e○i = ∅ and hence Fg is a concave func-

tion on e○i by (4.5) for all i such that Pi is in the support of D j+1 − D j . herefore
for the same set of i we have that s vanishes at Pi if and only if s′ vanishes at P′i
by (4.3) and (4.4) where s (resp., s′) is considered in Hv(−De ,vj )/Hv(−De ,vj+1) (resp.,
Hv′(−De ,v

′

bv ,v′− j)/Hv′(−De ,v
′

bv ,v′− j+1)). Now the conclusion follows from Remark 3.4. ∎

We now focus on the case of heorem 4.3.

heorem 4.8 Let (X0 , n) and d′ be as inheorem 4.3. hen for any limit linear series
(D,H) on CX0 ,n of multidegree w0 with deg(D) ≤ d′ the following are equivalent.
(i) (D,H) is smoothable;
(ii) (D,H) satisûes the weak glueing condition;
(iii) (D,H) is the image under F(wv)v of a pre-limit linear series on (X0 , n) that li�s

to a limit linear series.
Moreover we have (i)⇔ (ii) when D is only required to be rational.

Lemma 4.9 Let (X0 , n) be as in heorem 4.8 and d ≤ d′. hen a pre-limit linear
series (Lv ,Vv)v with respect to (wv)v li�s to a limit linear series if and only if (Lv ,Vv)v
satisûes the weak glueing condition.

Proof By Proposition 3.6 it remains to prove the “if ” part. Take any line bundleL
on X̃0 of multidegree w0 such that L v = Lv . For any adjacent vertices v , v′ ∈ V(G)
connected by e ∈ E(G), according to the proof of heorem 4.3 we have one of the
following:

(a) there is at most one j such that degDe ,vj+1 − degD
e ,v
j = 3 while degDe ,vj′+1 −

degDe ,vj′ ≤ 1 for j′ ≠ j and 0 ≤ j′ ≤ bv ,v′ ;
(b) there are at most two numbers { j i}1≤i≤m where 0 ≤ j i ≤ bv ,v′ and m ≤ 2

such that degDe ,vj i − degDe ,vj i−1 = 2, and when m = 2 the supports of De ,vj1+1 − D
e ,v
j1 and

De ,vj2+1 − D
e ,v
j2 only overlap at one point.

For any given enriched structure (Ov)v we check that Deûnition 2.17(ii) will be
satisûed a�er adjusting the glueing data of L along the edges lying over e, which
has dimension c = #{e′∣e′ ∈ E(G) lies over e} − 1. he nontrivial cases are when
degDe ,vj+1 − degD

e ,v
j = 3 and g j ≤ 2, which impose codimension at most 2 (when

g j = 2 we can take basis of V(−De ,vj )/V(−De ,vj+1) that vanish at diòerent points, each
of which impose codimension at most one); or when degDe ,vj+1 − degD

e ,v
j = 2 and

g j = 1, which impose codimension at most 1. Now the ûrst case happens only if c = 2
and the second case happens when m = 1 and c ≥ 1 or m = 2 and c = 2. ∎
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Proof of Theorem 4.8 We have (i) ⇒ (ii) according to heorem 4.7. Lemma 4.9,
heorem 4.3, and the smoothing theorem (heorem 4.1) together show (ii)⇒ (iii).
And (iii)⇒(i) is Lemma 4.5. ∎

When ρ = 0, the weak glueing condition in heorem 4.8 is trivial, since accord-
ing to the proof of heorem 4.3, the space of pre-limit gr

ds with extra vanishing has
dimension strictly less that ρ, which is empty. As a result we have the following corol-
lary.

Corollary 4.10 Let (X0 , n) be as in heorem 4.8, and (D,H) a limit gr
d of multide-

gree w0 such that d ≤ d′ and ρ = 0. hen (D,H) is smoothable.

Example 4.11 We give an example of a limit linear series on a metrized complex
that does not satisfy the weak glueing condition, hence is not smoothable. Let X0 be
a nodal curve obtained by glueing two copies of P1

κ along two points. Let V(G) =
{v , v′} and E(G) = {e1 , e2}. Let n be the chain structure such that n(e1) = 2 and
n(e2) = 1. Let Av = {P,Q} and Av′ = {P′ ,Q′}. he metrized complex is as below,
where P̃ is the midpoint of e1.

P
R

Q

P′

R′

P̃

Q′

Consider (D,H) such that Dv = 2R, DΓ = 2v, Dv′ = 0, Hv = ⟨ f0 , f1⟩, and Hv′ =
⟨ f ′0 , f ′1 ⟩, where div( f0) = P − R, div( f1) = P + Q − 2R, div( f ′0) = R′ − Q′, and
div( f ′1 ) = 0 (namely f ′1 is a nonzero constant function), for some R ∈ Zv/{P,Q} and
R′ ∈ Zv′/{P′ ,Q′}. Choose admissible multidegrees w0 and (wv)v such that Dw0 =
Dwv = 2v and Dwv′

= P̃ + v′. Straightforward calculation shows that Dv = Dv
w0 ,wv

= 0,
and Dv′ = Dv′

w0 ,wv′
= Q′. It follows that bv ,v′ = 1, f0 , f1 ∈ H0(Zv ,OZv (Dv + Dv)), and

f ′0 , f ′1 ∈ H0(Zv′ ,OZv′
(Dv′ + Dv′)). he tuple

((OZv (Dv + Dv),Hv), (OZv′
(Dv′ + Dv′),Hv′))

= ((OZv (2R),Hv) , (OZv′
(Q′),Hv′)

is a pre-limit linear series on (X0 , n) with respect to (wv ,wv′) (by the calculation
below) that maps to (D,H) under F. Hence, (D,H) is a limit linear series on CX0 ,n.
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Now we calculate the twisting divisors:

De ,vi = 0, P + Q , P + 2Q , 2P + 3Q , . . . ,

De ,v
′

i = 0,Q′ , P′ + 2Q′ , P′ + 3Q′ , . . . .

We have div0( f0)∣{P ,Q} = P, div0( f1)∣{P ,Q} = P + Q, div0( f ′0)∣{P′ ,Q′} = 0, and
div0( f ′1 )∣{P′ ,Q′} = Q′, which satisûes the condition for pre-limit linear series. It is easy
to check that theweak glueing condition is not satisûed for j = 0, since div0( f0)∣{P ,Q}−
De ,v0 = P but div0( f ′1 )∣{P′ ,Q′} − De ,v

′

1 = 0. hus (D,H) is not smoothable.

Note that the chain structure n and X0 in the above example satisûes the conditions
in heorem 4.3. One can also construct non-smoothable limit linear series on CX0 ,n
with n(e1) = n(e2) = 1.

5 Lifting Divisors on Metric Graphs

Let X′ → Spec(R) be a regular smoothing family with generic ûber X. Let G′ be
the dual graph with associated metric graph Γ′ where each edge is assigned length 1.
M. Baker [Bak08] constructed a specialization map τ∶Div(XK) → DivQ(Γ′), where
K denotes the algebraic closure of K and DivQ(Γ′) is the set of rational divisors on Γ′,
with the property that r(D) ≤ r(τ(D)) for all D ∈ Div(XK). he question of whether
a divisor D ∈ DivQ(Γ′) of rank r(D) li�s to a divisor in XK of the same rank is not
completely solved. A survey of partial results can be found in [BJ16]. he case when Γ′
is a chain of loops with generic edge length is proved li�able in [CJP15] by a thorough
examination of divisors on Γ′. In this section we provide a diòerent approach to the
li�ing problem via the smoothing properties of (pre-)limit linear series on curves with
chain structure, for an enlarged scale of Γ′ and certain divisors on Γ′. Note that we
do not require κ to be algebraically closed, and both Deûnitions 3.2 and 3.3 remain
valid as well as the conclusions we use in this section (Lemma 4.9 and heorems 4.1
and 4.3).

Let X0 ,G , n,w0 , (wv)v , Γ, X̃0 and G̃ be as in Notation 3.1. Let (wred
v )v be as in

heorem 3.9.

heorem 5.1 Let X be a smooth curve of genus g over K. Suppose there is a regular
smoothing family X′ → Spec(R) with generic ûber X and special ûber X̃0. Suppose
further that X̃0 only has rational components, and (X0 , n) is as in heorem 4.3 with
d′ = min{2g − 2, g + 1} and that G is a chain. hen every rational divisor class D on Γ
such that r(D) ≤ 1 li�s to a divisor class of the same rank on XK .

Proof A�er a ûnite base ûeld exchange we can assume that D is a integral and edge-
reduced divisor of multidegree w0. We show that D can be li�ed to a pre-limit linear
series on (X0 , n) with respect to (wred

v )v , which li�s to a limit linear series with re-
spect to the induced enriched structure on X̃0. his limit linear series is smoothable,
and the corresponding gr

d on X has underlying divisor specializing to D (up to linear
equivalence).
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Let v0 , v1 , . . . , vm be the vertices of G as in the following graph, and let e i be the
edge of G that connects v i−1 and v i . Let e1i , . . . , e

a i
i be the edges in G lying over e i

where 1 ≤ a i ≤ 3. We can assume for simplicity that w0 = wred
v0 , and hence it is

reasonable to denote w i = wred
v i

.

v0 v1 v2

vm−1 vm

Note that bv i−1 ,v i is the maximal number n such that the admissible multidegree
obtained from w i−1 (resp., w i) by twisting n times at (e i , v i−1) (resp., (e i , v i)) is non-
negative at all v ∈ V(G). Let Z0 , . . . , Zm be the (rational) components of X0 corre-
sponding to v0 , . . . , vm . Let d i = deg(Dw i ∣v i ). Since τ is surjective ([Bak08, §2.3])
we can assume that r(D) = 1. Denote the the pre-limit linear series that we want to
construct by (Li ,Vi)i = (OZ i (Di), span( f 0i , f 1i )).
First takeD0 = P1

0 + ⋅ ⋅ ⋅ + Pd00 with P j
0 ∈ Z0/Av0

e1 . If bv0 ,v1 > 0, let f 00 = 1 and take f 10
such that ordPv0

e j1

( f 10) = ordPv0
e j1

(De1 ,v0bv0 ,v1
). If bv0 ,v1 = 0, let f 00 = 1 and take f 10 such that f 10

has no zeros or poles at {Pv0
e j
1
} j and that Π j≠k( f 10(Pv0

e j
1
) − f 10(Pv0

e k1
)) ≠ 0. Next assume

that (Li−1 ,Vi−1) is given. Set f 0i = 1.
If bv i−1 ,v i = bv i ,v i+1 = 0 we take Di = P1

i + ⋅ ⋅ ⋅ + Pd i
i with P j

i ∈ Z i/(Av i
e i ∪Av i

e i+1)
general. Take f 1i such that f 1i has no zeros or poles at Av i

e i ∪Av i
e i+1 and that

Π j≠k( f 1i (Pv i

e j
i

) − f 1i (Pv i
e ki
)) ⋅Π j≠k( f 1i (Pv i

e j
i+1
) − f 1i (Pv i

e ki+1
)) ≠ 0.

If bv i ,v i+1 = 0 and bv i−1 ,v i > 0, we take D i as above. Take f 1i such that f 1i has no zeros
or poles at Av i

e i+1 and that

Π j≠k( f 1i (Pv i

e j
i+1
) − f 1i (Pv i

e ki+1
)) ≠ 0

and that
ordPvi

e ji

( f 1i ) = ordPvi

e ji

(De i ,v i
bvi−1 ,vi

).

If bv i ,v i+1 > 0 and bv i−1 ,v i = 0, we take D i as above. Take and f 1i such that f 1i has no
zeros or poles at Av i

e i and that Π j≠k( f 1i (Pv i

e j
i

) − f 1i (Pv i
e ki
)) ≠ 0 and that ordPvi

e ji+1

( f 1i ) =

ordPvi

e ji+1

(De i+1 ,v i
bvi ,vi+1

).

655

https://doi.org/10.4153/S0008414X18000068 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X18000068


X. He

If bv i ,v i+1 > 0 and bv i−1 ,v i > 0, we take

Di = ∑
j
ordPvi

e ji

(De i ,v i
bvi−1 ,vi

)Pv i

e j
i

+D′ = De i ,v i
bvi−1 ,vi

+D′

with D′ an eòective divisor supported on Z i/(Av i
e i ∪ Av i

e i+1) such that degDi = d i .
Take f 1i such that

ordPvi

e ji

( f 1i ) = −ordPvi

e ji

(De i ,v i
bvi−1 ,vi

) and ordPvi

e ji+1

( f 1i ) = ordPvi

e ji+1

(De i+1 ,v i
bvi ,vi+1

).

Now let 1 ≤ i ≤ g. If bv i−1 ,v i > 0, then ordDei ,vi−1●

f 0i−1 = degDe i ,v i−1
0 andordDei ,vi−1●

f 1i−1 =
degDe i ,v i−1

bvi−1 ,vi
; we also have ordDei ,vi●

f 0i = degDe i ,v i
bvi−1 ,vi

and ordDei ,vi●

f 1i = degDe i ,v i
0 when

bv i ,v i+1 > 0, while ordDei ,vi●

f 1i = degDe i ,v i
bvi−1 ,vi

andordDei ,vi●

f 0i = degDe i ,v i
0 when bv i ,v i+1 =

0. Note that 0 and bv i−1 ,v i are critical for both De i ,v i−1● and De i ,v i● , hence (Li ,Vi)i
is a pre-limit linear series with respect to (w i)v i . Moreover, one checks easily that
(Li ,Vi)v i satisûes the weak glueing condition.

Now since r(D) = 1, the Riemann–Roch theorem for graphs [GK08, Proposi-
tion 3.1] shows that degD ≤ g+1. If degD ≤ 2g−2, Lemma 4.9 implies that (Li ,Vi)v i

li�s to a limit g1
d on (X0 , n), which is smoothable by heorems 4.1 and 4.3. hus D

can be li�ed to a rank-one divisor on X. If degD > 2g − 2 we can take a divisor
D ∈ Div(X) that specializes to D and the Riemann–Roch theorems (on curves and
graphs) would imply that r(D) = r(D). ∎

Remark 5.2 If we set d′ = 2g − 2 in heorem 4.3, then as described in [Oss16,
Remark 5.4], this recovers precisely the general curves considered in [CJP15]. hus
theheorem above provides an alternative proof for [CJP15,heorem 1.1] for divisors
of rank less than or equal to one (over a complete discrete valued ûeld). Later we will
give another proof of [CJP15, heorem 1.1] for vertex-avoiding divisors.

Combining this with the tropical Riemann–Roch theorem, we can proveheorem
5.1 without requiring r(D) ≤ 1 for X with small genus.

Corollary 5.3 In heorem 5.1, suppose further that g ≤ 5. hen any rational divisor
class D on Γ can be li�ed to a divisor class on XK of the same rank as D.

Proof We can assume that r(D) ≥ 2 and, by the Riemann–Roch theorem, that
r(KΓ − D) ≥ 2. We have r(KΓ) = g − 1 ≥ r(D) + r(KΓ − D) ≥ 4, hence it remains to
consider the case g = 5 and r(D) = r(KΓ − D) = 2. Now the tropical Cliòord theorem
[Fac10, heorem 1] shows that degD = 4 and D = 2D′ where r(D′) = 1. It follows
from heorem 5.1 that D′ is li�able to a divisor of the same rank, hence so is D. ∎

We next show the li�ing of vertex-avoiding divisors on a generic chain of loops.
Since only one proposition is needed in the proof, we refer to [CJP15] for the deû-
nition of vertex-avoiding divisors. he idea for the proof came from Sam Payne at a
workshop.
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heorem 5.4 Inheorem 5.1 let d′ = 2g−2 instead. Suppose further that every pair of
adjacent vertices is connected by at most two edges. hen every rational vertex-avoiding
divisor D on Γ li�s to a divisor class on XK of the same rank as D.

Proof We use the same strategy as in the proof of heorem 5.1. Suppose D is v0-
reduced. Let v i , e i , e j

i ,w i and d i be as in heorem 5.1. According to [CJP15, Proposi-
tion 2.4], for each 0 ≤ j ≤ r there exists a unique divisor D j linearly equivalent to D
such that D j − jv0 − (r − j)vm is eòective, which is obtained by taking a pile of d0 − j
chips from v0 andmoving to the right (see the proof of [JP14, Proposition 6.3]), where
d0 is the coeõcient of D at v0 as in heorem 5.1.

Take rational functions f j
Γ on Γ such that D j = D + div( f j

Γ). For 0 ≤ i ≤ m and
0 ≤ j ≤ r let

D j
i = ∑

k
slpe ki ,v i

( f j
Γ)P

v i
e ki

and E j
i = −∑

k
slpe ki+1 ,v i

( f j
Γ)P

v i
e ki+1

be divisors on Z i . Hence D j
i represents the chips we get when we try to move the pile

of r− j chips of v0 from v i−1 to v i , while E j
i represents the chips we lost whenmove the

chips from v i to v i+1 (note that the size of the pile of chips may change as it moves).
For each i, by construction we have

D j
i = D

e i ,v i
bvi−1 ,vi

− De i ,v i

m j
i

for somem j
i critical and E

j
i = D

e i+1 ,v i

n j
i

for some n j
i critical such that n j

i +m j
i+1 = bv i ,v i+1 .

he uniqueness of D j shows that the D j
i s are distinct for ûxed i and so are the E j

i s.
Nowwe takeDi = De i ,v i

bvi−1 ,vi
+D′

i to be a divisor of degree d i on Zv i whereD′
i ⊂ Zv i /Av i

is eòective and f j
i ∈ OZvi

(Di) such that

ordPvi
eki

( f j
i ) = −ordPvi

eki

(D j
i) and ordPvi

eki+1

( f j
i ) = ordPvi

eki+1

(E j
i )

for all possible k. Note that the existence of f j
i follows from the eòectiveness of D j . It

is easy to check that the tuple (Li ,Vi)v i = (OZvi
(Di), span({ f j

i } j))v i is a pre-limit
linear series on X0 that satisûes the weak glueing condition, hence it li�s to a limit
linear series on (X0 , n). As a result, D can be li�ed to a divisor of rank r(D) on X. ∎

Acknowledgments he author would like to thank BrianOsserman for introducing
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