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Abstract

We show that the automorphism group of a linking system associated to a saturated fusion systemF depends only on

F as long as the object set of the linking system is Aut(F)-invariant. This was known to be true for linking systems

in Oliver’s definition, but we demonstrate that the result holds also for linking systems in the considerably more

general definition introduced previously by the author of this article. A similar result is proved for linking localities,

which are group-like structures corresponding to linking systems. Our argument builds on a general lemma about

the existence of an extension of a homomorphism between localities. This lemma is also used to reprove a theorem

of Chermak showing that there is a natural bijection between the sets of partial normal subgroups of two possibly

different linking localities over the same fusion system.
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2 Ellen Henke

1. Introduction

Given a finite group G with a Sylow p-subgroup S, the fusion system F( (�) is the category whose

objects are the subgroups of S and whose morphisms are the injective group homomorphisms induced by

conjugation in G. It turns out that the fusion systemF( (�) determines the p-completed classifying space

��∧
? up to homotopy; this statement is known as the Martino–Priddy conjecture and was first proved

by Oliver [17, 18]. Fusion systems also play an important role in many other contexts; for example, in a

program announced by Aschbacher to revisit the classification of finite simple groups. The concept of

a saturated fusion system generalises the properties of F( (�). In particular, a saturated fusion system

is a category F that comes equipped with a p-group S such that the objects of F are the subgroups of S

and the morphism sets consist of injective group homomorphisms subject to certain axioms.

For the purposes of homotopy theory, Broto, Levi and Oliver [3] defined centric linking systems

associated to saturated fusion systems. A category L2
( (�), which is a centric linking system associated

to F( (�), can be constructed directly from the group G. The p-completed classifying space ��∧
? of G

is homotopy equivalent to the p-completed nerve of the category L2
( (�). This fact played an important

role in the proof of the Martino–Priddy conjecture. In the abstract context, there is an essentially unique

centric linking system associated to every saturated fusion system. This long-standing conjecture was

proved by Chermak [6] and subsequently by Oliver [20]. Both proofs depend a priori on the classification

of finite simple groups, but work of Glauberman–Lynd [11] removes the dependence of Oliver’s proof

on the classification.

Linking systems not only form the algebraic foundation for defining p-completed classifying spaces

of fusion systems but are also important when studying extensions of fusion systems. The object set

of a centric linking system associated to a fusion system F over S is a certain set of subgroups of S

determined byF. When studying extensions, one often wants to choose the object sets of linking systems

more flexibly. At least partly for that reason, a more general notion of linking systems was introduced by

Oliver [19] (building on earlier work of Broto et al. [4]). Linking systems are special cases of transporter

systems as defined by Oliver and Ventura [21]. Extensions of linking systems and transporter systems

were studied, for example, in [2], [5], [21] and [19].

Chermak [6] introduced with localities group-like structures that correspond to transporter systems

in a certain way. A locality consists more precisely of a ‘partial group’ L (i.e., a set L with a ‘product’

defined on some tuples of elements of L subject to group-like axioms), a ‘Sylow p-subgroup’ S of L and

a set Δ of subgroups of S (cf. Definitions 2.1 and 2.5). Here Δ is called the set of objects of L and turns

out to be the object set of the transporter system corresponding to (L,Δ , (). A rich theory of localities

akin to the local theory of finite groups was developed by Chermak [7, 8, 9]. Extensions of partial

groups and localities were studied by Gonzalez [13] and are also the subject of work in progress by

Valentina Grazian and the author of this article. At least with the currently known conceptual framework,

it seems in fact that there are some advantages to studying extensions of localities rather than extensions

of linking systems or transporter systems. For example, for partial groups, there are natural notions of

homomorphisms and of partial normal subgroups such that the kernels of the homomorphisms from a

locality L are precisely the partial normal subgroups of L.

The author of this article [14] suggested a definition of a linking system that is significantly more

general than the previously existing notion, and this leads to the corresponding concept of a linking

locality (also called a proper locality by Chermak [8, 9]). It is one of the purposes of this article to

prove in this more general context some results that are known to hold for linking systems in Oliver’s

definition [19, Definition 3]. Another purpose of this article is to prove a lemma about homomorphisms

between localities (Lemma 3.1) and to reprove in Theorem C a result of Chermak [8, Theorem A2].

Both Lemma 3.1 and Theorem C are used in joint work of Chermak and the author of this article [10] to

show that there is a one-to-one correspondence between the normal subsystems of a fusion system and

the partial normal subgroups of an associated linking locality. The theorems on linking localities proved

in the present article were also used in [15], where the results from [9] are revisited and extended.
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We will now explain our main results in more detail. When studying extensions of linking systems

or linking localities, their automorphism groups play an important role. Thus, it is of interest to see

that different linking systems or linking localities associated to the same fusion system F have the same

automorphism group. This is indeed the case if we consider linking systems and linking localities with

Aut(F)-invariant object sets, as, for example, the typically used sets of F-centric, F-quasicentric or

F-subcentric subgroups. For linking localities, we prove the following theorem. In Theorem 5.1 and

Theorem 5.3 we also prove some more general statements about isomorphisms and automorphisms of

linking localities.

Theorem A.1. Let F be a saturated fusion system over S. If (L,Δ , () and (L+,Δ+, () are linking

localities over F such that Δ and Δ+ are Aut(F)-invariant, then Aut(L,Δ , () � Aut(L+,Δ+, (). In the

case that Δ ⊆ Δ+ and L = L+ |Δ , a group isomorphism is given by

Aut(L+,Δ+, () −→ Aut(L,Δ , (), U ↦→ U |L.

The reader is referred to Definition 2.22 for the definition of the ‘restriction’ L+ |Δ . The above-

mentioned correspondence between transporter systems and localities (which we outline in Subsection

4.2) leads to a correspondence between linking systems and linking localities. Passing to the restriction

L+ |Δ corresponds in the world of transporter systems to passing to the full subcategory with object set

Δ . Thus, we obtain the following theorem for linking systems.

Theorem A.2. Suppose that F is a saturated fusion system. If T and T + are linking systems associated

to the same saturated fusion system F such that the object sets of T and T + are Aut(F)-invariant,

then Aut(T ) � Aut(T +). In the case that T is a full subcategory of T +, a group isomorphism

Aut(T +) −→ Aut(T ) is given by restriction.

By Aut(T ) we mean here the group of isotypical self-equivalences of T that send inclusions to

inclusions; see Definition 4.1. In the literature, Aut(T ) is often denoted by Aut�typ(T ). We emphasise

also that the term linking system refers to a linking system in the general sense of [14] (cf. Definition

4.7). A version of Theorem A.2 was proved before by Andersen, Oliver and Ventura [2, Lemma 1.17]

for linking systems in Oliver’s definition; that is, for linking systems whose objects are quasicentric

subgroups. The precise statement is actually given for outer automorphism groups of linking systems.

We formulate a similar result in Theorem 5.5. For this purpose, we state in Lemma 4.10 that, for any

linking system T associated to a saturated fusion system F, there is an exact sequence

1 −→ / (F )
X(

−−−−→ AutT (() −→ Aut(T ) −→ Outtyp(T ) −→ 1.

Again, this was known to be true for linking systems in Oliver’s definition (cf. [2, Lemma 1.14(a)]) and

the proof of the more general statement is given by similar arguments.

Theorem 5.5 allows us to prove the following theorem from the corresponding statement for centric

linking systems, which was shown by Broto, Levi and Oliver [3, Theorem 8.1]. The statement was also

known before for linking systems in Oliver’s definition; see [1, Theorem 4.22]. For any space X, Out(-)

denotes the group of homotopy classes of self-equivalences of X.

Theorem B. Let T be a linking system associated to a saturated fusion system F such that Ob(T ) is

Aut(F)-invariant. Then there is an isomorphism

Outtyp (T )
�

−−−→ Out(|T |∧?)

that sends the class of U ∈ Aut(T ) to |U |∧? : |T |∧? → |T |∧? .

We show Theorem A.2 and some more general theorems about isomorphisms and automorphisms

of linking systems (Theorems 5.2 and 5.4) from the corresponding statements for linking localities via

the one-to-one correspondence between localities and transporter systems. However, in Remark 5.6,
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we outline how a direct proof could be given via similar arguments as in [2, Lemma 1.17]. The crucial

point in each of the proofs of Theorems A.1 and A.2 is to show that the appropriate restriction map is

surjective. The necessary argument for localities is similar to the argument for transporter systems in

[2, Lemma 1.17], but it can be formulated in a very general way such that it becomes useful in other

contexts. Namely, in Lemma 3.1 we show that, under certain assumptions, a homomorphism from a

locality (L,Δ , () can be extended to a homomorphism from a locality (L+,Δ+, () with L+ |Δ = L. We

use Lemma 3.1 to give a new proof of [8, Theorem A2] (stated as Theorem C(a) in this article) in

Section 6. Moreover, both Lemma 3.1 and Theorem C are used in [10]. For any partial group L, we

denote by N(L) the set of partial normal subgroups of L.

Theorem C. If (L,Δ , () and (L+,Δ+, () are linking localities over the same fusion system F with

Δ ⊆ Δ+ and L = L+ |Δ , then the following hold:

(a) The map

ΦL+ ,L : N(L+) −→ N(L), N+ ↦→ N+ ∩ L

is well defined and bijective. Both ΦL+ ,L and Φ−1
L+ ,L

are inclusion preserving.

(b) If N+ ∈ N(L+) and N := N+ ∩ L ∈ N(L) such that F(∩N (N) is F-invariant, then F(∩N+ (N+) =

F(∩N (N).

(c) Let N+,K+ ∈ N(L), set N := N+ ∩L, K := K+ ∩L and ) := N+ ∩ ( = N∩ (. Then N = K) if and

only if N+ = K+) .

The statement in part (a) of the above theorem that ΦL,L+ and its inverse are inclusion preserving is

equivalent to saying that every N+ ∈ N(L+) is the smallest partial normal subgroup of L+ containing

N+ ∩L. As a corollary to Theorem C(a) one can also show that any two linking localities over the same

fusion system have the same number of partial normal subgroups; see Corollary 6.4.

In his original proof of Theorem C(a), Chermak went into the (somewhat complicated) details of the

construction of elementary expansions as introduced in [6, Section 5]. Applying Lemma 3.1 makes this

unnecessary in our new proof. We do, however, use [6, Theorem 5.14], which is proved via elementary

expansions. Theorem C(c) fills in a small gap in the proof of [8, Lemma 7.3].

Organization of the article. After introducing some background in Section 2, we prove Lemma 3.1,

which is used in the proofs of our main results. Theorems A.1 and A.2 together with some more general

theorems and with Theorem B are proved in Section 5. In preparation for that, in Section 4 we define

automorphisms and isomorphisms of transporter systems (cf. Definition 4.1). Moreover, we explain

the correspondence between localities and transporter systems, which is then used in Section 5 to

prove theorems about linking systems from corresponding statements about linking localities. Finally,

in Section 6, we prove Theorem C. The proof of Theorem C is independent of the results stated and

proved in Sections 4 and 5.

2. Localities and fusion systems

In this section we will introduce some basic definitions and show some lemmas needed in the proofs

of our main theorems. The reader is referred to [1] for background on fusion systems and to [6]

and [7] for a more comprehensive introduction to localities. We will, however, summarise the most

important definitions and results concerning localities. In particular, we will recall the definitions of

homomorphisms, projections, isomorphisms and automorphisms of localities in Subsection 2.5. Some

background on morphisms of fusion systems is also provided in Subsection 2.4.

2.1. Partial groups

For any set M, write W(M) for the set of words in M. If D, E ∈ W(M), then D ◦ E denotes the

concatenation of the two words. The empty word will be denoted by ∅.
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Definition 2.1 (Partial Group). Let L be a nonempty set, let D be a subset of W(L), let Π : D −→ L be

a map and let (−)−1 : L −→ L be an involutory bijection, which we extend to a map

(−)−1 : W(L) −→ W(L), F = (61, . . . , 6: ) ↦→ F−1
= (6−1

: , . . . , 6−1
1 ).

We say that L is a partial group with product Π and inversion (−)−1 if the following hold:

(PG1) L ⊆ D (i.e., D contains all words of length 1), and

D ◦ E ∈ D ⇒ D, E ∈ D.

(So, in particular, ∅ ∈ D.)

(PG2) Π restricts to the identity map on L.

(PG3) D ◦ E ◦ F ∈ D ⇒ D ◦ (Π(E)) ◦ F ∈ D, and Π(D ◦ E ◦ F) = Π(D ◦ (Π(E)) ◦ F).

(PG4) F ∈ D ⇒ F−1 ◦ F ∈ D and Π(F−1 ◦ F) = 1 where 1 := Π(∅).

Note that any group G can be regarded as a partial group with product defined on D = W(�) by

extending the ‘binary’ product to a map

Π� : W(�) −→ �, (61, 62, . . . , 6=) ↦→ 6162 · · · 6=.

If L is a partial group with product Π : D −→ L and D = ( 51, 52, . . . , 5=) ∈ D, then we write also

51 52 · · · 5= for Π(D).

Lemma 2.2. Let L be a partial group with product Π : D −→ L.

(a) If D, E ∈ W(L) with D ◦ (1) ◦ E ∈ D, then D ◦ E ∈ D and Π(D ◦ (1) ◦ E) = Π(D ◦ E).

(b) If D, E, F ∈ W(L) such that D ◦ E ◦ E−1 ◦F ∈ D, then D ◦F ∈ D and Π(D ◦ E ◦ E−1 ◦F) = Π(D ◦F).

Proof. Let D, E as in (a). If D = E = ∅, then by axiom (PG1) D ◦ E = ∅ ∈ D, and by axiom (PG2) and the

definition of 1 we have Π(D ◦ E) = Π(∅) = 1 = Π(1) = Π(D ◦ (1) ◦ E). So to prove (a), we may assume

that D ≠ ∅ or E ≠ ∅.

For any element 5 ∈ L, axiom (PG1) gives 5 = ( 5 ) ◦ ∅ ∈ D. So by axioms (PG2) and (PG3)

we have ( 5 , 1) = ( 5 ) ◦ (Π(∅)) ∈ D and 5 = Π( 5 ) = Π(( 5 ) ◦ (Π(∅))) = Π( 5 , 1). So if D =

( 51, . . . , 5=) ≠ ∅, then D ◦ (1) ◦ E = ( 51, . . . , 5=−1) ◦ ( 5=, 1) ◦ E ∈ D implies by axiom (PG3) that

D ◦ E = ( 51, . . . , 5=−1) ◦ (Π( 5=, 1)) ◦ E ∈ D and Π(D ◦ E) = Π(D ◦ (1) ◦ E). So (a) holds in this case. A

similar argument shows (a) in the case that E ≠ ∅.

For the proof of (b), let now D, E, F ∈ W(L) be arbitrary such that D ◦ E ◦ E−1 ◦ F ∈ D. Then by

axiom (PG3), we have D ◦ (1) ◦F = D ◦ (Π(E ◦ E−1)) ◦F ∈ D and Π(D ◦ E ◦ E−1 ◦F) = Π(D ◦ (1) ◦F).

Hence, (b) follows from (a). �

Definition 2.3. Let L be a partial group with product Π : D −→ L.

◦ For every 6 ∈ L we define

D(6) = {G ∈ L | (6−1, G, 6) ∈ D}.

The map 26 : D(6) −→ L, G ↦→ G6 = Π(6−1, G, 6) is the conjugation map by g.

◦ If H is a subset of L and H ⊆ D(6), then we set

H6
= {ℎ6 | ℎ ∈ H}.

◦ If % ⊆ L, then #L (%) is the set of all 6 ∈ L such that % ⊆ D(6) and %6 = %. Similarly, if P and Q

are subsets of L, we write #L (%,&) for the set of all 6 ∈ L such that % ⊆ D(6) and %6 ⊆ &.

◦ A partial subgroup is a subset H ⊆ L such that ℎ−1 ∈ H for all ℎ ∈ H and Π(F) ∈ H for all

F ∈ D(L) ∩ W(H). A partial subgroup H of L is a called a subgroup of L if W(H) ⊆ D(L).

◦ If N is a partial subgroup of L, then N is called a partial normal subgroup if = 5 ∈ N for all 5 ∈ L

and all = ∈ N ∩ D( 5 ).
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We remark that a subgroup H of L is always a group in the usual sense with the group multiplication

defined by ℎ6 = Π(ℎ, 6) for all ℎ, 6 ∈ H. In particular, we can talk about p-subgroups of partial groups,

meaning subgroups whose number of elements is a power of p.

2.2. Localities

Roughly speaking, localities are partial groups with some some extra structure, in particular, with a

‘Sylow p-subgroup’ and a setΔ of ‘objects’ that in a sense determines the domain of the product. Crucial

is the following definition.

Definition 2.4. Let L be a partial group.

◦ If Δ is a collection of subgroups of L, define DΔ to be the set of words F = (61, . . . , 6: ) ∈ W(L)

such that there exist %0, . . . , %: ∈ Δ with

%8−1 ⊆ D(68) and %
68
8−1

= %8 for all 1 ≤ 8 ≤ :.

If such %0, . . . , %: are given, then we say also that F ∈ DΔ via %0, %1, . . . , %: or just that F ∈ DΔ

via %0. In situations where we wish to stress the dependence of DΔ on L and on the product

Π : D −→ L, we write DΔ (L,Π) for DΔ .

◦ Given a p-subgroup S of L and 5 ∈ L, set

( 5 := {G ∈ ( : G ∈ D( 5 ) and G 5 ∈ (}.

If we want to stress the dependence of ( 5 on L and on the partial product and inversion on L, then

we write (L
5

for ( 5 .

Definition 2.5. Let L be a finite partial group, let S be a p-subgroup of L and let Δ be a nonempty set

of subgroups of S. We say that (L,Δ , () is a locality if the following hold:

1. S is maximal with respect to inclusion among the p-subgroups of L.

2. D = DΔ .

3. Δ is closed under taking L-conjugates and overgroups in S; that is, if % ∈ Δ , then %6 ∈ Δ for every

6 ∈ L with % ⊆ (6, and every subgroup of S containing an element of Δ is an element of Δ .

We remark that the above definition of a locality is a reformulation of the one given by Chermak [7,

Definition 2.8]. As argued in [14, Remark 5.2], the two definitions are equivalent.

Example 2.6. Let M be a finite group, ( ∈ Syl? (") and F = F( ("). Let Γ be a nonempty F-closed

collection of subgroups of S. Set

LΓ (") := {6 ∈ � : ( ∩ (6 ∈ Γ} = {6 ∈ � : There exists % ∈ Γ with %6 ≤ (}

and let D be the set of tuples (61, . . . , 6=) ∈ W(") such that there exist %0, %1, . . . , %= ∈ Γ with

%
68
8−1

= %8 . Then LΓ (") forms a partial group whose product is the restriction of the multivariable

product in M to D and whose inversion map is the restriction of the inversion map on the group M to

LΓ ("). Moreover, (LΓ ("), Γ, () forms a locality. See [6, Example/Lemma 2.10] for a proof.

Lemma 2.7 (Important properties of localities). If (L,Δ , () is a locality, then the following hold:

(a) #L (%) is a subgroup of L for every % ∈ Δ .

(b) Let % ∈ Δ and 6 ∈ L with % ⊆ (6. Then & := %6 ∈ Δ , #L (%) ⊆ D(6) and

26 : #L (%) −→ #L (&)

is an isomorphism of groups.

https://doi.org/10.1017/fms.2021.57 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.57


Forum of Mathematics, Sigma 7

(c) Let F = (61, . . . , 6=) ∈ D via (-0, . . . , -=). Then

261
◦ · · · ◦ 26= = 2Π (F)

is a group isomorphism #L (-0) −→ #L (-=).

(d) For every 6 ∈ L, (6 ∈ Δ . In particular, (6 is a subgroup of S. Moreover, (
6
6 = (6−1 and 26 : (6 −→ (

is an injective group homomorphism.

(e) For every 6 ∈ L, 26 : D(6) −→ D(6−1) is a bijection with inverse map 26−1 .

(f) For every F ∈ W(L), (F is a subgroup of (Π (F) , and (F ∈ Δ if and only if F ∈ D.

Proof. Properties (a), (b) and (c) correspond to the statements in [7, Lemma 2.3] except for the fact

stated in (b) that & ∈ Δ , which is, however, clearly true if one uses our definition of a locality. Property

(d) holds by [7, Proposition 2.6(a),(b)] and property (e) is stated in [6, Lemma 2.5(c)]. Property (f) is

[7, Corollary 2.7]. �

Lemma 2.8. If (L,Δ , () is a locality, A ∈ #L (() and 5 ∈ L, then (A, 5 ), ( 5 , A) and (A−1, 5 , A) are

words in D. Moreover,

( ( 5 ,A ) = ( 5 A = ( 5 , ( (A , 5 ) = (A 5 = (A
−1

5 and ( 5 A = (A5 .

Proof. We will use Lemma 2.7(f) frequently in this proof without further reference. Because (A
5
≤ (,

we have ( 5 ⊆ ( ( 5 ,A ) . In particular, because ( 5 ∈ Δ , we have ( ( 5 ,A ) ∈ Δ and ( 5 , A) ∈ D. So by [7,

Lemma 1.4(d)], ( 5 , A, A−1) ∈ D and 5 = Π( 5 , A, A−1) = ( 5 A)A−1. Applying the first stated property with

( 5 A, A−1) in place of ( 5 , A), we also get ( 5 A ⊆ ( ( 5 A ,A−1) . We see now that

( 5 ⊆ ( ( 5 ,A ) ⊆ ( 5 A ⊆ ( ( 5 A ,A−1) ⊆ ( ( 5 A ,A−1) ≤ ( ( 5 A )A−1 = ( 5 .

Hence, all of the inclusions above are equalities and ( 5 = ( ( 5 ,A ) = ( 5 A .

Similarly, because conjugation by r takes (A
−1

5
≤ ( to ( 5 , we have (A

−1

5
≤ ( (A , 5 ) ∈ Δ and (A, 5 ) ∈ D.

So by [7, Lemma 1.4(d)], (A−1, A, 5 ) ∈ D and 5 = A−1(A 5 ). Similarly, (A
A 5

≤ ( (A−1 ,A 5 ) ≤ (A−1 (A 5 ) = ( 5

and thus (A 5 ≤ (A
−1

5
. Hence,

(A
−1

5 ⊆ ( (A , 5 ) ⊆ (A 5 ⊆ (A
−1

5

and equality holds everywhere above; that is, (A
−1

5
= ( (A , 5 ) = (A 5 .

Note that (A−1, 5 , A) ∈ D via (A
5
. Using the properties proved above, we see now that ( 5 A = ( (A−1 5 )A =

(A−1 5 = (A
5
. �

2.3. Fusion systems of localities

Similarly, because we can attach to a finite group a fusion system over a Sylow p-subgroup, we can

attach a fusion system to a locality.

Definition 2.9. Let (L,Δ , () be a locality.

◦ For all %,& ∈ Δ set

HomL (%,&) := {26 |% : 6 ∈ #L (%,&)}.

◦ We write F( (L) for the smallest fusion system over S containing all of the conjugation maps

2 5 : ( 5 −→ ( with 5 ∈ L or, equivalently, for the fusion system generated by the sets HomL (%,&),

where %,& are elements of Δ .

◦ We say that (L,Δ , () is a locality over F to indicate that F = F( (L).
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Lemma 2.10. If (L,Δ , () is a locality over F and % ∈ Δ , then the following hold:

(a) For every morphism i ∈ HomF (%, (), there exists 5 ∈ L such that % ≤ ( 5 and i = 2 5 |% .

(b) The subgroup P is fully F-normalised if and only if #( (%) ∈ Syl? (#L (%)). Moreover, if so, then

for every & ∈ %F there exists 6 ∈ #L (#( (&), () such that &6 = %.

(c) #F (%) = F#( (%) (#L (%)).

Proof. For (a) see [14, Lemma 5.6]. Part (c) follows easily from (a). For the proof of (b) assume first

that P is fully normalised. Because #( (%) is a p-subgroup of #L (%), we can pick a Sylow p-subgroup

T of #L (%) such that #( (%) ≤ ) . By [6, Proposition 2.22(b)], there exists G ∈ L such that ) ⊆ D(G)

and ) G ≤ (. Then, in particular, % ≤ #( (%) ≤ (G and by Lemma 2.7(b), ) G ≤ #( (%
G). By (a),

we have %G ∈ %F and thus, because P is fully normalised, |#( (%
G) | ≤ |#( (%) |. On the other hand,

|#( (%) | ≤ |) | = |) G | ≤ |#( (%
G) |. Hence, equality holds and thus #( (%) = ) is a Sylow p-subgroup

of #L (%).

Suppose now, on the other hand, that #( (%) ∈ Syl? (#L (%)). Take& ∈ %F. By (a) there exists 5 ∈ L

such that & 5 = %, and by Lemma 2.7(b) the map 2 5 : #L (&) −→ #L (%) is an isomorphism of groups.

Hence, #( (&) 5 is a p-subgroup of #L (%). Because #( (%) ∈ Syl? (#L (%)), by Sylow’s theorem there

exists 0 ∈ #L (%) such that #( (&) 5 0 = (#( (&) 5 )0 ≤ #( (%), where the equality uses Lemma 2.7(c).

Then 6 := 5 0 ∈ #L (#( (&), () with &6 = (& 5 )0 = %0 = %. Moreover, |#( (&) | = |#( (&)6 | ≤

|#( (%) |. Because & ∈ %F was arbitrary, this shows that P is fully normalised. Hence, (b) holds. �

If (L,Δ , () is a locality and F = F( (L), then notice that Δ is F-closed as defined next.

Definition 2.11. Let F be a fusion system over S, and let Δ be a set of subgroups of S.

◦ The set Δ is closed under F -conjugacy if %F ⊆ Δ for every % ∈ Δ .

◦ We call ΔF -closed if Δ is both closed under F-conjugacy and overgroup closed in S.

Important examples of F-closed collections are the set F2 of F-centric subgroups (cf. [1, Defini-

tion 3.1]), the set F@ of F-quasicentric subgroups (cf. Definition 4.5 and Lemma 4.6(d) in [1]) and the

set FB of subcentric subgroups (cf. Definition 1 and Proposition 3.3 in [14]).

2.4. Morphisms of fusion systems

Throughout this subsection let F and F̃ be fusion systems over S and (̃, respectively.

Definition 2.12. We say that a group homomorphism U : ( −→ (̃ induces a morphism from F to F̃ if,

for each i ∈ HomF (%,&), there exists k ∈ Hom
F̃
(%U,&U) such that (U |%)k = i(U |&).

Note that, for any i ∈ HomF (%,&), a map k ∈ Hom
F̃
(%U,&U) as in the above definition is uniquely

determined. So if U induces a morphism from F to F̃, then U induces a map

U%,& : HomF(%,&) −→ Hom
F̃
(%U,&U).

Together with the map % ↦→ %U from the set of objects of F to the set of objects of F̃ this gives a functor

from F to F̃. Moreover, U together with the maps U%,& (%,& ≤ () is a morphism of fusion systems in

the sense of [1, Definition II.2.2]. We call (U, U%,& : %,& ≤ () the morphism induced by U.

Definition 2.13. Suppose that U : ( −→ (̃ induces a morphism from F to F̃. We say that U induces an

epimorphism from F to F̃ if the induced morphism (U, U%,& : %,& ≤ () is a surjective morphism of

fusion systems. This means that U is surjective as a map ( −→ (̃ and FU∗ = F̃; that is, for all %,& ≤ (

with ker(U) ≤ %∩&, the map U%,& is surjective. If U is in addition injective, then we say that U induces

an isomorphism from F to F̃. If U ∈ Aut(() and U induces a morphism from F to F, then we say that

U induces an automorphism of F. We will write Aut(F) for the set of automorphisms of S that induce

an automorphism of F.
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If U : ( −→ (̃ is an isomorphism of groups, then it is easy to see that U induces an isomorphism

from F to F̃ if and only if, for all %,& ≤ ( and every group homomorphism i : % −→ &,

i ∈ HomF(%,&) ⇐⇒ U−1iU ∈ Hom
F̃
(%U,&U);

if so, then the map U%,& as above is given by i ↦→ U−1iU. It follows from this observation that U induces

an isomorphism from F to F̃ if and only if the inverse map U−1 induces an isomorphism from F̃ to F.

Lemma 2.14. Suppose that U : ( −→ (̃ induces an epimorphism from F to F̃. Let ker(U) ≤ ' ≤ (.

Then the following hold:

(a) ('U)F̃ = {'0U : '0 ∈ 'F}.

(b) The subgroup R is fully normalised if and only if 'U is fully normalised.

(c) The group homomorphism U |#( (') : #( (') −→ #
(̃
('U) induces an epimorphism from #F (') to

#
F̃
('U).

Proof. Property (a) is elementary to check, and property (b) follows from (a) because #( ('0)U =

#
(̃
('0U) has order |#( ('0) |/| ker(U) | for all '0 ∈ 'F.

For the proof of (c) let %,& ≤ #( (') with ker(U) ≤ % ∩ &, i ∈ HomF(%,&) and k = iU%,& ∈

Hom
F̃
(%U,&U). We then have U |%k = iU |&. Moreover, if ' ≤ %, then ker(U) ≤ 'i as ker(U) is

strongly closed. Hence, ' ≤ %∩& and 'i = ' if and only if 'U ≤ %U∩&U and ('U)k = ('i)U = 'U.

This implies (c). �

Lemma 2.15. Let U : � −→ �̃ be an epimorphism from a group G to a group �̃. Let ( ∈ Syl? (�) and

(̃ = (U ∈ Syl? (�̃). Then U |( induces an epimorphism from F( (�) to F
(̃
(�̃).

Proof. Let %,& be subgroups of S. If 6 ∈ � with %6 ≤ & ≤ (, then (%U)6U = %6U ≤ &U ≤ (̃

and (U |%) (26U |%U) = (26 |%) (U |&). So U |( is fusion preserving and the corresponding morphism of

fusion systems takes 26 |% to 26U |%U. To show that U |( induces an epimorphism, assume now that

ker(U |() ≤ % ∩ & and fix ℎ ∈ �̃ with (%U)ℎ ≤ &U. Because U is an epimorphism, there exists 6 ∈ �

with 6U = ℎ. We then have %6U = (%U)ℎ ≤ &U. Because ker(U |() = ker(U) ∩ ( ≤ &, the group

Q is a Sylow p-subgroup of ker(U)&, which is the preimage of &U in G. Thus, by Sylow’s theorem,

there exists = ∈ ker(U) with %6= ≤ &. Replacing g by 6=, we may assume that %6 ≤ &. As seen at

the beginning, this means that 2ℎ |%U ∈ HomF
(̃
(�̃) (%U,&U) is the image of 26 |% ∈ HomF( (�) (%,&)

under the morphism induced by U. �

2.5. Homomorphisms of partial groups

In this subsection, we will introduce natural notions of homomorphisms, projections, isomorphisms

and automorphisms of partial groups and of localities. Moreover, we state a few simple results needed

in the proofs of our main theorems.

Notation 2.16. If L and L̃ are sets and U : L −→ L̃, 5 ↦→ 5 U is a map, then we denote by U∗ the induced

map on words

W(L) −→ W(L̃), F = ( 51, . . . , 5=) ↦→ FU∗
= ( 51U, . . . , 5=U).

If D ⊆ W(L), set DU∗ := {FU∗ : F ∈ D}.

For the remainder of this subsection let L and L̃ be partial groups with products Π : D −→ L and

Π̃ : D̃ −→ L̃, respectively.

Definition 2.17. A map U : L −→ L̃ is called a homomorphism of partial groups if

1. DU∗ ⊆ D̃; and

2. Π(F)U = Π̃(FU∗) for every F ∈ D.
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If, moreover, DU∗ = D̃, then we say that U is a projection of partial groups. If U is injective and

DU∗ = D̃, then U is called an isomorphism. The isomorphisms of partial groups from L to itself are

called automorphisms and the set of these automorphisms is denoted by Aut(L).

For any homomorphism U : L −→ L̃, we call ker(U) = { 5 ∈ L : 5 U = 1} the kernel of U.

Notice that every projection L −→ L̃ is surjective, because D̃ contains all of the words of length

one. In particular, every isomorphism is a bijection. In fact, there is the following characterization of

isomorphisms.

Lemma 2.18. A map U : L −→ L̃ is an isomorphism of partial groups if and only if U is bijective and

U and U−1 are both homomorphisms of partial groups.

Proof. If U is bijective and U and U−1 are both homomorphisms of partial groups, then DU∗ ⊆ D̃ and

D̃(U−1)∗ ⊆ D, with the latter inclusion implying D̃ ⊆ DU∗. Thus, we get DU∗ = D̃. Because U is an

injective homomorphism of partial groups, this yields that U is an isomorphism of partial groups.

Assume now thatU is an isomorphism of partial groups. ThenU is a bijection. Moreover, DU∗ = D̃ and

thus D̃(U−1)∗ = D. Given F ∈ D̃, it remains to show that Π̃(F)U−1 = Π(F(U−1)∗). Note that F(U−1)∗ ∈

D and thus, because U is a homomorphism of partial groups, Π(F(U−1)∗)U = Π̃(F(U−1)∗U∗) = Π̃(F).

This implies the required equality. �

Lemma 2.19. Suppose that U : L −→ L̃ is a homomorphism of partial groups. If M is a subgroup of L,

then "U is a subgroup of L̃ and U restricts to a group homomorphism " −→ "U.

Proof. If F = ( 51, . . . , 5=) ∈ W("U), then for 8 = 1, . . . , =, there exists 68 ∈ " such that 58 = 68U.

It follows that D := (61, . . . , 6=) ∈ W(") ⊆ D and F = DU∗ ∈ D̃. Moreover, Π̃(F) = Π̃(DU∗) =

Π(D)U ∈ "U because M is a subgroup. Hence, "U is a subgroup of L̃. The assertion follows because

(6ℎ)U = Π(E)U = Π̃(EU∗) = (6U) (ℎU) for every word E = (6, ℎ) ∈ W(") of length two. �

We now turn attention to maps between localities.

Definition 2.20. Let (L,Δ , () and (L̃, Δ̃ , (̃) be localities and let U : L −→ L̃ be a projection of partial

groups.

◦ For any set Γ of subgroups of L, set

ΓU := {%U : % ∈ Γ}.

◦ We say that U is a projection of localities from (L,Δ , () to (L̃, Δ̃ , (̃) if ΔU = Δ̃ .

◦ If U is a projection of localities that is injective (and thus an isomorphism of partial groups), then U

is a called an isomorphism of localities. We write Iso((L,Δ , (), (L̃, Δ̃ , (̃)) for the set of

isomorphisms from (L,Δ , () to (L̃, Δ̃ , (̃) (which may be empty).

◦ Given a set Γ of subgroups of S and a set Γ̃ of subgroups of (̃, we write

Iso((L,Δ , (), (L̃, Δ̃ , (̃))
Γ,Γ̃

for the set of isomorphisms U from (L,Δ , () to (L̃, Δ̃ , (̃) with ΓU = Γ̃.

◦ An isomorphism from (L,Δ , () to itself is called an automorphism. We write Aut(L,Δ , () for the

group of automorphisms of (L,Δ , (). If Γ is a set of subgroups of S, then Aut(L,Δ , ()Γ denotes the

set of automorphisms U of (L,Δ , () with ΓU = Γ.

◦ An automorphism of (L,Δ , () is called rigid if it restricts to the identity on S.

If U is a projection of localities from (L,Δ , () to (L̃, Δ̃ , (̃), then notice that U maps S to (̃, because

S and (̃ are the unique maximal elements of Δ and Δ̃ , respectively. In particular, Aut(L,Δ , () acts on S

for every locality (L,Δ , ().
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Lemma 2.21. Suppose that U : L −→ L̃ is a projection from a locality (L,Δ , () to a locality (L̃, Δ̃ , (̃).

Then the following hold:

(a) #L (')U = #
L̃
('U) for every ' ≤ ( with ( ∩ ker(U) ≤ '.

(b) The map U |( : ( −→ (̃ induces an epimorphism of fusion systems from F( (L) to F
(̃
(L̃).

(c) If U is an isomorphism, then (̃ 5 U = ( 5 U for every 5 ∈ L.

Proof. For the proof of (a) let ) := ( ∩ ker(U) ≤ ' ≤ (. By [7, Lemma 3.1(a)], T is strongly closed

in F( (L). Clearly, #L (')U ⊆ #
L̃
('U). Let 5̃ ∈ #

L̃
('U) and write P for the full preimage of (̃ 5̃ in S.

Then ) ≤ ' ≤ % and 5̃ ∈ #
L̃
(%U, (̃). Hence, by [7, Theorem 4.3(c)], we may choose 5 ∈ #L (%, ()

with 5 U = 5̃ . Then ' 5 ≤ ( and ' 5 U = ('U) 5̃ = 'U. So ' 5 = ' because ) = ) 5 ≤ ' ∩ ' 5 . Hence,

we have shown that 5 ∈ #L (') and thus that #
L
(') ⊆ #L (')U. This proves (a).

The fusion system F( (L) is generated by maps of the form 2 5 : % −→ &, where %,& ∈ Δ

and 5 ∈ #L (%,&). Similarly, F
(̃
(L̃) is generated by maps of the form 2 5̃ : %U −→ &U where

%,& ∈ Δ and 5̃ ∈ #
L̃
(%U,&U). Fixing %,& ∈ Δ , by [7, Theorem 4.3(c)], U induces a surjection

#L (%,&) −→ #
L̃
(%U,&U). Moreover, if 5 ∈ #L (%,&), then (2 5 |%) (U |&) = (U |%) (2 5 U |%U). This

implies (b).

For the proof of (c), let 5 ∈ L be arbitrary and suppose that U is an isomorphism. Using that U maps

S isomorphically to (̃ and that ( 5 −1)U = ( 5 U)−1 by [7, Lemma 1.13], we see

( 5 U = {BU : B ∈ (, ( 5 −1, B, 5 ) ∈ D, B 5 ∈ (}

= {BU : B ∈ (, (( 5 U)−1, BU, 5 U) ∈ D̃, (BU) 5 U ∈ (̃}

= {C ∈ (̃ : (( 5 U)−1, C, 5 U) ∈ D̃, C 5 U ∈ (̃}

= ((̃) 5 U . �

2.6. Restrictions of localities

Definition 2.22. Let (L+,Δ+, () be a locality with partial product Π+ : D+ −→ L+, and let Δ ⊆ Δ+ be

closed with respect to taking L+-conjugates and overgroups in S. Suppose that Δ is nonempty. Then we

set

L+ |Δ := { 5 ∈ L+ : ( 5 ∈ Δ}.

Note that D := DΔ (L
+,Π+) ⊆ D+ ∩ W(L+ |Δ ) and, by Lemma 2.7(c), Π+ (F) ∈ L|Δ for all F ∈ D. We

call L := L+ |Δ together with the partial product Π+ |D : D −→ L and the restriction of the inversion map

on L+ to L the restriction of L+ to Δ .

The properties of the restriction L+ |Δ are summarised in the following lemma, which we will use

throughout, most of the time without reference.

Lemma 2.23. Let (L+,Δ+, () be a locality with partial product Π+ : D+ −→ L+, and let Δ ⊆ Δ+

be nonempty and closed with respect to taking L+-conjugates and overgroups in S. Set L := L+ |Δ ,

D := DΔ (L
+,Π+) and Π := Π+ |D.

(a) L together with Π : D −→ L and the restriction of the inversion map on L+ to L forms a partial

group.

(b) If 5 ∈ L, then it does not matter whether we form ( 5 inside of L or of L+; that is, (L
5
= (L

+

5
(with

the notation introduced in Definition 2.4).

(c) The triple (L,Δ , () is a locality.
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Proof. Part (a) is straightforward to check. Let 5 ∈ L. Because D ⊆ D+ and Π = Π+ |D, clearly

(L
5
⊆ (L

+

5
. Setting % := (L

+

5
, by definition of L|Δ , we have % ∈ Δ . Moreover, the conjugate % 5 is

defined in L+ and an element of Δ , because Δ is closed under taking L-conjugates. Now for 0 ∈ %,

we have ( 5 −1, 0, 5 ) ∈ D = DΔ (L
+,Π+) via % 5 , %, %, % 5 . Hence, % 5 is defined in L, which implies

% ⊆ (L
5
. This shows (b).

The proof of (c) is given in [6, Lemma 2.21(a)], but we repeat the argument here in detail, because

we feel that there is a small gap in the proof: Note that ( ∈ Δ and so W(() ⊆ W(#L (()) ⊆ D =

DΔ (L
+,Π+). Hence, S is a p-subgroup of L. Because D ⊆ D+ and Π = Π+ |D, every p-subgroup of

L is also a p-subgroup of L+. Therefore, S is a maximal p-subgroup of L, because it is a maximal p-

subgroup of L+. By assumption, Δ is closed under taking L+-conjugates and overgroups in S, so it is in

particular closed under taking L-conjugates in S. Thus, it remains to show that DΔ (L,Π) = D. Clearly,

DΔ (L,Π) ⊆ D := DΔ (L
+,Π+). If F = ( 51, . . . , 5=) ∈ D := DΔ (L

+,Π+) via %0, . . . , %= ∈ Δ , this

means that the conjugate %
58
8−1

is defined in L+ and equal to %8 for 8 = 1, . . . , =. Then %8−1 ⊆ (L
+

58
= (L

58

by (b). Hence, F ∈ DΔ (L,Π) via %0, %1, . . . , %=. This proves (c). �

Lemma 2.24. Let (L+,Δ+, () and (L̃
+
, Δ̃+, (̃) be localities. Let ∅ ≠ Δ ⊆ Δ+ and ∅ ≠ Δ̃ ⊆ Δ̃+ such that

Δ is closed under taking L+-conjugates and overgroups in S and Δ̃ is closed under taking L̃-conjugates

and overgroups in (̃. Set L := L+ |Δ and L̃ := L̃
+
|
Δ̃

. Then W |L ∈ Iso((L,Δ , (), (L̃, Δ̃ , (̃))
Δ+ ,Δ̃+ for every

W ∈ Iso((L+,Δ+, (), (L̃
+
, Δ̃+, (̃))

Δ ,Δ̃
.

Proof. If 5 ∈ L+, then by Lemma 2.21(c), (̃ 5 W = ( 5 W. Because ΔW = Δ̃ and W is bijective, this means

that ( 5 ∈ Δ if and only if (̃ 5 W ∈ Δ̃ . Hence, 5 ∈ L if and only if 5 W ∈ L̃; that is, W |L : L −→ L̃ is well

defined and surjective. Clearly, W |L is injective.

Write Π : D −→ L and Π̃ : D̃ → L̃ for the products on L and L̃, respectively. Let F = ( 51, . . . , 5=) ∈

D via %0, . . . , %= ∈ Δ; that is, %8−1 ≤ ( 58 and %
58
8−1

= %8 for 8 = 1, . . . , =. Then %8−1W ≤ (( 58 )W = (̃ 58W

and, because W is a homomorphism of partial groups, (%8−1W)
58W = (%

58
8−1

)W = %8W. Because ΔW = Δ̃ ,

this shows that FW∗ = ( 51W, . . . , 5=W) ∈ D̃ via %0W, . . . , %=W ∈ Δ̃ . Hence, DW∗ ⊆ D̃. Because W−1 is

an isomorphism from (L̃
+
, Δ̃+, () to (L+,Δ+, () by Lemma 2.18, a symmetric argument shows that

D̃(W−1)∗ ⊆ D and thus D̃ ⊆ DW∗. This proves DW∗ = D̃. Because W : L+ −→ L̃
+

is a homomorphism

of partial groups and because Π and Π̃ are restrictions of the products on L+ and L̃
+
, respectively, we

have Π̃(FW∗) = Π(F)W for all F ∈ D. So W |L is an isomorphism of partial groups from L to L̃ and the

assertion follows. �

2.7. Linking localities

Definition 2.25. ◦ A finite group G is said to be of characteristic p of �� ($ ? (�)) ≤ $ ? (�).

◦ A locality (L,Δ , () is called a linking locality if F( (L) is saturated, #L (%) is of characteristic p for

every % ∈ Δ and F( (L)
2A ⊆ Δ .

◦ If F is a saturated fusion system over a p-group S, then a subgroup % ≤ ( is called F -subcentric if

#F (&) is constrained for every fully F-normalised F-conjugate Q of P. Write FB for the set of

F-subcentric subgroups of S.

◦ A subcentric linking locality is a linking locality (L,Δ , () such that Δ = F( (L)
B.

Linking localities are closely related to linking systems. We provide some more details on that in

Subsection 4.3. Given a saturated fusion system F, it is elementary to show that the object set Δ

of a linking locality over F is always contained in FB . On the other hand, using the existence and

uniqueness of centric linking systems, it is shown in [14, Theorem A] that, for every F-closed set Δ with

F2A ⊆ Δ ⊆ FB , there exists a linking locality (L,Δ , () over F that is unique up to rigid isomorphism.

Moreover, it is proved that the set FB is F-closed and thus there exists a subcentric linking locality over

F that is unique up to rigid isomorphism.
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We will need the following slightly technical lemma.

Lemma 2.26. Suppose that (L,Δ , () and (L+,Δ+, () are linking localities over the same fusion system

F such that Δ ⊆ Δ+ and L = L+ |Δ . Let ' ∈ Δ+\Δ such that R is fully normalised and every proper

overgroup of R is in Δ . Then #L (') = #L+ (') is a subgroup of R. Moreover, '∗ = $ ? (#L+ (')) ∈ Δ

and #L (') = ##L ('∗) (').

Proof. Because ' ∉ Δ and F2A ⊆ Δ , we have ' ∉ F2A . By [14, Lemma 6.2], this implies ' < '∗ :=

$ ? (#L+ (')) and so '∗ ∈ Δ . Hence, using Lemma 2.23(b), we see that #L+ (') ⊆ #L+ ('∗) = #L ('
∗)

and #L+ (') = ##L+ ('∗) (') = ##L ('∗) (') = #L (') is a subgroup of L. �

3. A crucial lemma

In this section we prove the following general lemma on which the proofs of Theorem A.1 and Theorem

C will be based. It is also used in [10] to show that there is a one-to-one correspondence between

the normal subsystems of a saturated fusion system and the partial normal subgroups of an associated

linking locality.

Lemma 3.1. Let (L+,Δ+, () and (L̃, Δ̃ , (̃) be localities, set F := F( (L
+) and let Δ be a nonempty

subset of Δ+ that is F-closed. Set L := L+ |Δ . Let T be a strongly F-closed subgroup such that

Γ
+ := {% ∩ ) : % ∈ Δ

+} ⊆ Δ
+ and Γ := {% ∩ ) : % ∈ Δ} ⊆ Δ .

Assume that every proper overgroup in T of an element of Γ+\Γ is in Γ. Suppose we are given

◦ a homomorphism of partial groups U : L −→ L̃ with Δ+U ⊆ Δ̃;

◦ a set Γ0 ⊆ Γ+\Γ of fully F-normalised representatives of the F-conjugacy classes of the subgroups

in Γ+\Γ; and

◦ for each & ∈ Γ0 a homomorphism of groups U& : #L+ (&) −→ #
L̃
(&U) with U& |#L (&) = U |#L (&) .

Then there exists a unique homomorphism of partial groups W : L+ −→ L̃ with W |L = U and W |#L+ (&) =

U& for every & ∈ Γ0.

Proof. Write Π+ : D+ −→ L+, Π : D −→ L and Π̃ : D̃ −→ L̃ for the partial products on L+, L and

L̃, respectively. Recall from Definition 2.22 that then D ⊆ D+ and Π = Π+ |D. Because Γ0 is a set of

representatives of the F-conjugacy classes of subgroups in Γ+\Γ, for every % ∈ Γ+\Γ there is a unique

element of Γ0 ∩%F, which we denote by &% . By Lemma 2.10(b), for every % ∈ Γ+\Γ we may moreover

pick ℎ% ∈ #L+ (#( (%), () with %ℎ% = &% . Because ( ∈ Δ , we have ) ∈ Γ. So % ≠ ) and thus

% < #) (%) ∈ Γ by assumption. In particular, #( (%) ∈ Δ , ℎ% ∈ #L (#( (%), () and the conjugate %ℎ%

is defined in L.

We now first define a map W : L+ −→ L̃ and show then that it has the required properties. If 5 ∈ L,

then we set 5 W = 5 U. Suppose now that 5 ∈ L+\L so that ( 5 ∈ Δ+\Δ and thus

% := ( 5 ∩ ) ∈ Γ
+\Γ.

Notice that P and % 5 are F-conjugate and thus & := &% = &% 5 . Because

D 5 := (ℎ% , ℎ
−1
% , 5 , ℎ% 5 , ℎ−1

% 5 ) ∈ D+ via %,&, %, % 5 , &, % 5 ,

we have 5 = Π+(D 5 ) = Π+ (ℎ% , 6, ℎ
−1
% 5 ), where 6 := Π+(ℎ−1

%
, 5 , ℎ% 5 ) ∈ #L+ (&). Observe that %ℎ% = &

and &
ℎ−1

% 5 = % 5 in L. Moreover,

6U& ∈ #L+ (&)U& ⊆ #
L̃
(&U).
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Because Δ+U ⊆ Δ̃ and U is a homomorphism of partial groups, we conclude that

(ℎ%U, 6U&, ℎ
−1
% 5 U) ∈ D̃ via %U,&U,&U, % 5 U.

So for every 5 ∈ L+\L, setting % := ( 5 ∩ ) and & := &% , we may define 5 W via

5 W = Π̃(ℎ%U, 6U&, ℎ
−1
% 5 U) where 6 = Π

+(ℎ−1
% , 5 , ℎ% 5 ) ∈ #L+ (&). (3.1.1)

If V : L+ −→ L̃ is a homomorphism of partial groups with V |L = U and V |#L+ (&) = U& for all & ∈ Γ0,

then with f, g, P and Q as above, we see that

5 V = Π
+ (ℎ% , 6, ℎ

−1
% 5 )V = Π̃(ℎ%V, 6V, ℎ

−1
% 5 V) = Π̃(ℎ%U, 6U&, ℎ

−1
% 5 U) = 5 W.

Hence, we have in this case V = W. So to prove the assertion, it is sufficient to show that W is a

homomorphism of partial groups with W |#L+ (&) = U& for all & ∈ Γ0.

Step 1: Given 5 ∈ L+ and % ∈ Γ+\Γ with % ≤ ( 5 ∩ ) , we show that (3.1.1) holds for & := &% . If

% = ( 5 ∩ ) , then ( 5 ∉ Δ , so 5 ∉ L and the equation holds by the definition of W.

Assume now that % < ( 5 ∩ ) . Then, by assumption, ( 5 ∩ ) ∈ Γ and thus 5 ∈ L. Moreover,

% < ' := #( 5 ∩) (%) ∈ Γ. Notice that ' ≤ #( (%) ≤ (ℎ%
and ' 5 ≤ #( (%

5 ) ≤ (ℎ
% 5

. Hence,

(ℎ% , ℎ
−1
%
, 5 , ℎ% 5 , ℎ−1

% 5 ) ∈ D via R, and so

5 = Π(ℎ% , ℎ
−1
% , 5 , ℎ% 5 , ℎ−1

% 5 ) = Π(ℎ% , 6, ℎ
−1
% 5 ),

where 6 := Π(ℎ−1
%
, 5 , ℎ% 5 ) = Π+ (ℎ−1

%
, 5 , ℎ% 5 ) ∈ #L (&). Recall that W |L = U by definition of W.

Because U is a homomorphism of partial groups with U |#L (&) = U& |#L (&) , it follows that

5 W = 5 U = Π̃(ℎ%U, 6U, ℎ
−1
% 5 U) = Π̃(ℎ%U, 6U&, ℎ

−1
% 5 U).

So (3.1.1) holds.

Step 2: We show that W |#L+ (&) = U& for every & ∈ Γ0. To prove this, fix & ∈ Γ0 and 5 ∈ #L+ (&).

Observe that ℎ& ∈ #L+ (&) and ℎ&U& ∈ #
L̃
(&U). Indeed, ℎ& ∈ #L (&) and so ℎ&U& = ℎ&U. By Step

1, we have

5 W = Π̃(ℎ&U, 6U&, ℎ
−1
& U),

where 6 = Π+(ℎ−1
&
, 5 , ℎ&) ∈ #L+ (&). Moreover, D := (ℎ&U, ℎ

−1
&
U, 5 U&, ℎ&U, ℎ

−1
&
U) ∈

W(#
L̃
(&U)) ⊆ D̃. Because #L+ (&) is a group, 5 = Π+(ℎ&, ℎ

−1
&
, 5 , ℎ&, ℎ

−1
&
). So

5 U& = Π̃(D) = Π̃(ℎ&U, Π̃(ℎ−1
& U, 5 U&, ℎ&U), ℎ

−1
& U) = Π̃(ℎ&U, 6U&, ℎ

−1
& U) = 5 W,

where the third equality uses that U& is a homomorphism of groups with ℎ&U& = ℎ&U and ℎ−1
&
U& =

ℎ−1
&
U.

Step 3: We show that W is a homomorphism of partial groups and thus the assertion holds by Step

2. For the proof let F = ( 51, . . . , 5=) ∈ D+. If F ∈ D, then Π+(F)W = Π(F)U = Π̃(FU∗) = Π̃(FW∗)

because W |L = U is assumed to be a homomorphism of partial groups. Thus, we may assume F ∉ D.

Then F ∈ D+ via %∗
0
, %∗

1
, . . . , %∗

= ∈ Δ+\Δ . Thus, upon setting %8 := %∗
8 ∩) for 8 = 0, 1, . . . , =, it follows

from our assumption that

F ∈ D+ via %0, %1, . . . , %= ∈ Γ
+\Γ.
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Notice that %0, %1, . . . , %= are all F-conjugate and so & := &%0
= &%8

for 8 = 1, . . . , =. Set ℎ8 := ℎ%8

for 8 = 0, 1, . . . , =. By Step 1,

58W = Π̃(ℎ8−1U, 68U&, ℎ
−1
8 U) where 68 = Π

+ (ℎ−1
8−1, 58 , ℎ8) ∈ #L+ (&) (3.1.2)

for 8 = 1, . . . , =. Set

D := (ℎ0, 61, ℎ
−1
1 , ℎ1, 62, ℎ

−1
2 , . . . , ℎ=−1, 6=, ℎ

−1
= ) and 6 := Π

+(61, 62, . . . , 6=).

Using Step 2, we see that DW∗ = (ℎ0U, 61U&, ℎ
−1
1
U, ℎ1U, 62U&, ℎ

−1
2
U, . . . , ℎ=−1U, 6=U&, ℎ

−1
= U).

Notice that D ∈ D+ via %0, &, &, %1, . . . , %=−1, &, &, %=. Similarly, because U is a homomor-

phism of partial groups and 68U& ∈ #
L̃
(&U) for 8 = 1, . . . , =, we have DW∗ ∈ D̃ via

%0U,&U,&U, %1U, . . . , %=−1U,&U,&U, %=U. Using (3.1.2) and applying axiom (PG3) of a partial

group and Lemma 2.2(b) several times, we get that FW∗ = ( 51W, . . . , 5=W) ∈ D̃ and

Π̃(FW∗) = Π̃(DW∗)

= Π̃(ℎ0U, 61U&, . . . , 6=U&, ℎ
−1
= U)

= Π̃(ℎ0U, Π̃(61U&, . . . , 6=U&), ℎ
−1
= U)

= Π̃(ℎ0U, 6U&, ℎ
−1
= U).

Observe also that 58 = Π+(ℎ8−1, ℎ
−1
8−1

, 58 , ℎ8 , ℎ
−1
8 ) = Π+ (ℎ8−1, 68 , ℎ

−1
8 ) for 8 = 1, . . . , =. So, similarly,

again using axiom (PG3) and Lemma 2.2(b) repeatedly, we see that

5 := Π
+(F) = Π

+ (D) = Π
+ (ℎ0, 61, . . . , 6=, ℎ

−1
= ) = Π

+(ℎ0, 6, ℎ
−1
= ) ∈ #L+ (%0, %=).

Because 6 = Π+(ℎ−1
0
, ℎ0, 6, ℎ

−1
= , ℎ=) = Π+ (ℎ−1

0
, 5 , ℎ=), it follows from Step 1 that

5 W = Π̃(ℎ0U, 6U&, ℎ
−1
= U).

Putting everything together, we get Π+ (F)W = 5 W = Π̃(FW∗) and thus W is a homomorphism of partial

groups. This completes Step 3 and the proof of the assertion. �

Corollary 3.2. Let (L+,Δ+, () and (L̃, Δ̃ , (̃) be localities, and let Δ be a nonempty subset of Δ+ that is

F( (L
+)-closed. Set L := L+ |Δ . Assume that every proper overgroup in S of an element of Δ+\Δ is in Δ .

Suppose we are given

◦ a homomorphism of partial groups U : L −→ L̃ with Δ+U ⊆ Δ̃;

◦ a set Γ0 ⊆ Δ+\Δ of fully F( (L
+)-normalised representatives of the F( (L

+)-conjugacy classes of

the subgroups in Δ+\Δ; and

◦ for each & ∈ Γ0 a homomorphism of groups U& : #L+ (&) −→ #
L̃
(&U) with U& |#L (&) = U |#L (&) .

Then there exists a unique homomorphism of partial groups W : L+ −→ L̃ with W |L = U and W |#L+ (&) =

U& for every & ∈ Γ0.

Proof. Apply Lemma 3.1 with S in place of T. �

In the proofs of our main theorems, Lemma 3.1 will be used in the form of the following corollary.

Corollary 3.3. Let (L+,Δ+, () and (L,Δ , () be linking localities over the same fusion system F such

that Δ ⊆ Δ+ and L = L+ |Δ . Suppose we are given a locality (L̃, Δ̃ , (̃) and a homomorphism of partial

groups U : L −→ L̃ with Δ+U ⊆ Δ̃ . Then there exists a unique homomorphism of partial groups

W : L+ −→ L̃ with W |L = U.
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Proof. We first prove the assertion under the following additional hypothesis:

We have & ∈ Δ for every & ≤ ( such that & properly contains a member ofΔ+\Δ . (*)

Notice that Δ+\Δ is closed under F-conjugacy, because Δ and Δ+ are closed under F-conjugacy. Thus,

we may choose a set Γ0 ⊆ Δ+\Δ of fully F-normalised representatives of the F-conjugacy classes of the

elements inΔ+\Δ . By Lemma 2.26, for every& ∈ Γ0, the normaliser #L (&) = #L+ (&) is a subgroup of

L. Because U is a homomorphism of partial groups, we have #L (&)U ⊆ #
L̃
(&U). Because we assume

that&U ∈ Δ+U ⊆ Δ̃ , the normaliser #
L̃
(&U) is a subgroup of L̃. So U& := U |#L (&) is a homomorphism

of groups from #L (&) = #L+ (&) to #
L̃
(&U). Now the assertion follows from Corollary 3.2.

We now remove the extra hypothesis (*). Let Γ be the set of the elements in Δ+\Δ of maximal order.

Then Γ is closed underF-conjugacy, because Δ+\Δ is closed underF-conjugacy. Moreover, becauseΔ+

is overgroup closed in S, every proper overgroup of an element of Γ is in Δ . In particular, because Δ is

F-closed, the set Δ∗ := Δ ∪ Γ is F-closed and L∗ := L+ |Δ is well defined. Then (L∗,Δ∗, () is a locality

with F2A ⊆ Δ ⊆ Δ∗ and L∗ |Δ = L. Moreover, #L∗ (%) = #L+ (%) is of characteristic p for every % ∈ Δ∗.

Hence, using Alperin’s fusion theorem [1, Theorem I.3.6], we conclude that (L∗,Δ∗, () is a linking

locality over F. Notice that (*) is fulfilled with Δ∗ in place of Δ+. As we proved at the beginning, there

thus exists a unique homomorphism of partial groups W∗ : L∗ −→ L̃ with W∗ |L = U. Now by induction

on |Δ+\Δ |, there exists a unique homomorphism of partial groups W : L+ −→ L̃ with W |L∗ = W∗. Then

W |L = W∗ |L = U. Moreover, if V : L+ −→ L̃ with V |L = U, then V∗ := V |L∗ is a homomorphism of partial

groups from L∗ to L̃ with V∗ |L = U. Because W∗ is unique, it follows that V |L∗ = V∗ = W∗, and then the

unique choice of W implies V = W. This proves the assertion. �

4. Transporter systems

Transporter systems are certain categories associated to fusion systems that were introduced by Oliver

and Ventura [21]. As shown by Chermak [6, Appendix A], there is a one-to-one correspondence between

localities and transporter systems, which we will outline in Subsection 4.2. Moreover, we will introduce

isomorphisms between transporter systems in Subsection 4.1 and linking systems in Subsection 4.3.

Because the literature on transporter systems is mainly written in ‘left-hand notation’, in this section

we will write functions on the left side of the argument. Similarly, we will conjugate from the left. Given

a group G, we set 6G := 6G6−1 and 6% = 6%6−1 for all G, 6 ∈ � and % ⊆ �. So conjugation by g from

the left corresponds to conjugation by 6−1 from the right.

4.1. Isomorphisms between transporter systems

If Δ is a set of subgroups of G, write TΔ (�) for the category whose object set is Δ and whose morphism

set between two subgroups %,& ∈ Δ is # ;
�
(%,&) := {6 ∈ � : 6% ≤ &} or, more precisely, the set

of triples (%,&, 6) with 6 ∈ # ;
�
(%,&). Here composition of morphisms corresponds to the group

multiplication.

A transporter system associated to a fusion system F over S is a category T whose set Δ of objects

is an F-closed collection of subgroups of S, together with functors

TΔ (()
X

−−−−→ T
c

−−−−→ F

subject to certain axioms. For example, X is the identity on objects and injective on morphism sets, and

c is the inclusion on objects and surjective on morphism sets; see [21, Definition 3.1] for details. If we

want to be more precise, we say that (T, X, c) is a transporter system. By [21, Lemma A.6], if % ∈ Δ ,

then every element of AutT (%) := MorT (%, %) is an isomorphism and so AutT (%) is a group. We set

X% := X%,% and c% := c%,% for every % ∈ Δ . Similarly, we set U% := U%,% for every functor U from T.
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IfT is a transporter system and%,& ∈ Ob(T ), then X%,& (1) should be thought of as the inclusion map.

Given %,&, %0, &0 ∈ Ob(T ) and k ∈ MorT (%,&) with %0 ≤ %, &0 ≤ & and c(k) (%0) ≤ &0, by [21,

Lemma 3.2(c)], there is a unique morphism k0 ∈ MorT (%0, &0) such that X&0 ,& (1) ◦k0 = k ◦X%0 ,% (1).

The morphism k0 is then denoted by k |%0 ,&0
and called a restriction of k. On the other hand, if k0 is

given, then because every morphism in T is an epimorphism by [21, Lemma 3.2(d)], the ‘extension’ k

is uniquely determined if it exists.

Definition 4.1. Let (T, X, c) and (T̃, X̃, c̃) be transporter systems associated to fusion systems F and F̃

over p-groups S and (̃, respectively.

◦ An equivalence of categories U : T −→ T̃ is called an isomorphism if

– U is isotypical; that is, U% (X% (%)) = X̃U(%) (U(%)) for every % ∈ Ob(T ); and

– U sends inclusions to inclusions; that is, U%,& (X%,& (1)) = X̃U(%) ,U(&) (1) for all %,& ∈ Ob(T ).

We write Iso(T, T̃) for the set of isomorphisms from T to T̃.

◦ If Γ and Γ̃ are sets of subgroups of S and (̃, respectively, then we write Iso(T, T̃)
Γ,Γ̃

for the set of

isomorphisms U : T −→ T̃ with {U( (X( (%)) : % ∈ Γ} = {X
(̃
(&) : & ∈ Γ̃}.

◦ An isomorphism U : T → T̃ is called rigid if ( = (̃ and U( ◦ X( = X̃
(̃
.

◦ An automorphism of T is an isomorphism T −→ T. Set Aut(T ) := Iso(T, T) and, for any set Γ of

subgroups of S, set Aut(T )Γ := Iso(T, T)Γ,Γ.

◦ If W ∈ AutT ((), then an automorphism 2W ∈ Aut(T ) is defined on objects via

% ↦→ 2W (%) := c(W) (%) and on morphisms i ∈ HomT (%,&) by sending i to

2W (i) := W |&,2W (&) ◦ i ◦ (W |%,2W (%) )
−1 ∈ HomT (2W (%), 2W (&)).

We will refer to 2W as the automorphism of T induced by conjugation by W. The group of

automorphisms of T of the form 2W with W ∈ AutT (() is called the group of inner automorphisms of T.

◦ Let Outtyp(T ) be the set of natural isomorphism classes of isotypical self-equivalences of L.

It should be noted that Outtyp(T ) is a submonoid of the (finite) group of natural isomorphism classes

of self-equivalences of L and thus forms a finite group. In Lemma 4.10 we will see that Outtyp(T ) is

actually the image of Aut(T ) under a homomorphism whose kernel is the group of inner automorphisms.

The above definition of isomorphisms and rigid isomorphisms of transporter systems follows

Glauberman–Lynd [12, Definition 2.3]. The definition of isomorphisms used previously in the liter-

ature (e.g., in [3, p.799], [1, p.146] and [6, Definition A.2]) is different. In the situations we care about

(in particular, when we consider linking systems later on), it agrees with the definition of a rigid iso-

morphism as we explain in Remark 4.2(d). The group Aut(T ) is also often denoted by Aut�typ(T ); see,

for example, [1, p.153].

Remark 4.2. Suppose that (T, X, () and (T̃, X̃, c̃) are transporter systems over fusion systems F and F̃,

respectively, and let U : T −→ T̃ be an isomorphism of transporter systems.

(a) It follows from the axioms of a transporter system that X( : ( −→ AutT (() is a group homomorphism

whose image X( (() is a normal Sylow p-subgroup of AutT ((). Similarly, X̃
(̃
((̃) is a normal Sylow

p-subgroup of Aut
T̃
((̃). In particular,

U( : AutT (() −→ Aut
T̃
((̃)

is an isomorphism of groups that takes X( (() to X̃
(̃
((̃). So writing X̃−1

(̃
for the inverse of the map

(̃ → X̃((̃) induced by X̃
(̃
, the map V := X̃−1

(̃
◦ U( ◦ X( is a group isomorphism from S to (̃. If

Γ and Γ̃ are sets of subgroups of S and (̃, respectively, notice that U ∈ Iso(T, T̃)Γ if and only if

V(Γ) := {V(%) : % ∈ Γ} equals Γ̃.

(b) As can be seen from the proof of [12, Proposition 2.5], if F2A ⊆ Ob(T ) and F̃
2A

⊆ Ob(T̃ ),

then the isomorphism V : ( → (̃ from (a) induces an isomorphism of fusion systems from F
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to F̃. In particular, if F2A ⊆ Ob(T ) and Γ is an Aut(F)-invariant set of subgroups of S, then

Aut(T )Γ = Aut(T ).

(c) Because U maps inclusions to inclusions, U commutes with taking restrictions and exten-

sions. If % ∈ Ob(T ), then observe that X( (G) |%,% = X% (G) for every G ∈ % and, similarly,

X̃
(̃
(H) |U(%) ,U(%) = X̃U(%) (H) for every H ∈ U(%). Hence, because U% (X% (%)) = X̃U(%) (U(%)), it

follows that U( (X( (%)) = X̃
(̃
(U(%)) for every % ∈ Ob(T ). So if V : ( → (̃ is as in (a), one can see

that U(%) = V(%) for every % ∈ Ob(T ). Hence, U is a bijection on objects and thus an isomorphism

of categories. In particular, Aut(T ) is a group. Moreover, if Γ ⊆ Ob(T ) and Γ̃ ⊆ Ob(T̃ ), then

U ∈ Iso(T, T̃)
Γ,Γ̃

if and only if {U(%) : % ∈ Γ} = Γ̃.

(d) If U is a rigid isomorphism, then ( = (̃ and the isomorphism V : ( → ( from (a) is the identity.

In particular, by (c), it follows then that U(%) = % for all % ∈ Ob(T ). If F2A ⊆ T and F̃
2A

⊆ T̃,

then it is a consequence of [12, Proposition 2.5] that U ◦ X = X̃ and c̃ ◦ U = c. Thus, in this case a

rigid isomorphism T −→ T̃ is the same as an isomorphism of transporter systems in the sense of [6,

Definition A.2] (which extends the definition of an isomorphism of linking systems in [3, p. 799]

and [1, p. 146]).

4.2. The correspondence between transporter systems and localities

If (L,Δ , () is a locality, then one can easily define a transporter system TΔ (L) over F( (L) similarly as

for groups; the object set of TΔ (L) is Δ , and the morphism set between two objects P and Q consists of

the triples (%,&, 6), where 6 ∈ L with % ⊆ D(6−1) and 6% := %6−1

≤ &. We will now outline how one

can construct a locality from a transporter system.

Let (T, X, c) be a transporter system associated to a fusion system F. Denote the set of objects of T

by Δ and write IsoT (%,&) for the set of isomorphisms between two objects P and Q and Iso(T ) for

the set of all isomorphisms in T. By [6] there is a partial order ↑T defined on Iso(T ) via i0 ↑T i if

i0 ∈ IsoT (%0, &0), i ∈ IsoT (%,&), %0 ≤ %, &0 ≤ & and

i ◦ X%0 ,% (1) = X&0 ,& (1) ◦ i0.

Note that the latter condition means that i0 = i|%0 ,&0
.

Definition 4.3. Let LΔ (T ) be the set of equivalence classes of the elements of Iso(T ) with respect

to the smallest equivalence relation on Iso(T ) containing ↑T. If i ∈ Iso(T ) and write [i] for the

equivalence class of i in LΔ (T ). By D denote the set of tuples F = ( 5: , 5:−1, . . . , 51) ∈ W(LΔ (T ))

for which there exist i8 ∈ 58 for 8 = 1, . . . , : such that the composition i: ◦ i:−1 ◦ · · · ◦ i1 is defined

in the category T. Moreover, given such w and i8 , set Π(F) := [i: ◦ i:−1 ◦ · · · ◦ i1].

The map Π : D −→ LΔ (T ) defined above is well defined. Together with Π and the map L −→

L, [i] ↦→ [i−1] (which is also well defined), the set L forms a partial group by [6, Proposition A.9].

Moreover, the map

( −→ LΔ (T ), G ↦→ [X( (G)]

is an injective homomorphism of partial groups, and its image [(] is a subgroup of LΔ (T ). Most of

the time, we will identify G ∈ ( with [X( (G)] ∈ [(]. With this identification, by [6, Proposition A.13],

(LΔ (T ),Δ , () is a locality.

Lemma 4.4. Let (T, X, c) be a transporter system associated to a fusion system F, Δ := Ob(T ) and

L := LΔ (T ). As above, write [i] for the equivalence class of i ∈ Iso(T ) in L. Then the following hold:

(a) If %,& ∈ Δ , i ∈ IsoT (%,&) and 5 = [i], then % ⊆ ( 5 −1 , 5% = & and 2 5 −1 |% = c(i).

(b) AutT (%) � #L (%).

(c) F( (L) is the subsystem of F generated by all of the sets HomF(%,&) with %,& ∈ Δ .
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Proof. Let P, Q, i and f be as in (a), fix G ∈ % and set H := c(i) (G) ∈ &. Observe that, via the

usual identification of the elements of S with elements of L, we have G = [X( (G)] = [X% (G)], because

X( (G)X%,( (1) = X%,( (G) = X%,( (1)X% (G). Similarly, H = [X( (H)] = [X& (H)]. Notice that the composi-

tion i◦X% (G)◦i
−1 is defined inL. Moreover, it follows from the definition of a transporter system (axiom

(C) in [21, Definition 3.1]) that i◦X% (G)◦i
−1 = X& (H). Hence, ( 5 , G, 5 −1) = ([i], [X% (G)], [i

−1]) ∈ D

and G 5 −1

= Π( 5 , G, 5 −1) = [i ◦ X% (G) ◦ i
−1] = [X& (H)] = H. This shows (a).

Property (a) yields in particular that the map U : AutT (%) −→ #L (%), i ↦→ [i] is well defined.

Moreover, U is surjective by [6, Corollary A.11] and injective by [6, Lemma A.8(b)]. For all i, k ∈

Aut(T ), we have U(i ◦ k) = [i ◦ k] = Π([i], [k]) = Π(U(i), U(k)). Hence, U is an isomorphism of

groups and (b) holds.

To prove (c), notice that F( (L) is generated by all of the maps of the form 2 5 −1 : % −→ &, where

%,& ∈ Δ , % ≤ ( 5 −1 and 5% = &. For such %,&, 5 , by [6, Corollary A.11], there exists always

i ∈ IsoT (%,&) with 5 = [i]. Moreover, the fusion system generated by the sets HomF (%,&) with

%,& ∈ Δ is actually generated by the sets IsoF (%,&) with %,& ∈ Δ . Because c is surjective on

morphism sets and, by [21, Lemma A.6], the preimages of isomorphisms inF under c are isomorphisms

in T, property (c) follows from (a). �

If C is a small category and Γ ⊆ Ob(C), we will write C|Γ for the full subcategory of C with object

set Γ.

Lemma 4.5. Let T + be a transporter system associated to a fusion system F and let Δ ⊆ Δ+ := Ob(T +)

such that Δ is F-closed. Then T := T + |Δ is a transporter system associated to F. Moreover, writing [i]+
for the equivalence class of i ∈ Iso(T +) in LΔ+ (T +) and [i] for the equivalence class of i ∈ Iso(T )

in LΔ (T ), the map

] : LΔ (T ) −→ LΔ+ (T +) |Δ , [i] ↦→ [i]+ for all i ∈ Iso(T )

is well defined and an isomorphism of partial groups, which restricts to the identity on S (if one identifies

the elements of S with elements of LΔ (T ) and LΔ+ (T +) as usual).

Proof. Because Δ is F-closed, it is immediate from the axioms of a transporter system that T := T + |Δ
together with the restriction of X to TΔ (() and the restriction of c to T is a transporter system. Set

L := LΔ (T ) and L+ := LΔ+ (T +). Write D for the domain of the partial product on L and D′ := DΔ (L
+)

for the domain of the partial product on L+ |Δ .

If i, k ∈ Iso(T ) ⊆ Iso(T +), then i ↑T k implies i ↑T + k and so [i] = [k] yields [i]+ = [k]+.

Hence, the map

]′ : L −→ L+, [i] ↦→ [i]+ for all i ∈ Iso(T )

is well defined. It follows from the construction of the partial products onL = LΔ (T ) andL+
= LΔ+ (T +)

that ] is a homomorphism of partial groups. Moreover, because we identify every element G ∈ ( with

[X( (G)] ∈ L and with [X( (G)]+ ∈ L+, the map ]′ restricts to the identity on S. In particular, because

(L,Δ , () is a locality, it follows that ]′(L) ⊆ L+ |Δ and (]′)∗(D) ⊆ D′ = DΔ (L
+) (with (]′)∗ defined

as in Definition 2.16 but written on the left). Hence, ] is well defined and a homomorphism of partial

groups. It remains to show that ] is injective and D′ ⊆ ]∗(D).

If i ↑T + j for some i ∈ Iso(T ) and j ∈ Iso(T +), then the assumption that Δ is overgroup closed

in S implies j ∈ Iso(T ) and i ↑T j. By [6, Lemma A.8(a)], every element of L+ contains a unique

maximal element with respect to the partial order ↑T + . So if [i]+ = [k]+ for some i, k ∈ Iso(T ), then

for the ↑T + -maximal element j of [i]+ = [k]+ we have j ∈ Iso(T ), i ↑T j and k ↑T j. Hence,

[i] = [k], which proves that ] is injective.

If %,& ∈ Δ and 5 ∈ L+ with 5% = &, then by [6, Corollary A.11], there exists k ∈ IsoT + (%,&) with

5 = [k]+. For such k, we have k ∈ IsoT (%,&) and ]([k]) = 5 . From this property, the definition of D

and the definition of D′ = DΔ (L
+), one sees that D′ ⊆ ]∗(D). Hence, the assertion holds. �

https://doi.org/10.1017/fms.2021.57 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.57


20 Ellen Henke

Lemma 4.6. Let (T, X, c) and (T̃, X̃, c̃) be transporter systems associated to fusion systems F and F̃

over p-groups S and (̃, respectively. Set Δ := Ob(T ), L := LΔ (T ), Δ̃ = Ob(T̃ ) and L̃ := L
Δ̃
(T̃ ). For

U ∈ Iso(T, T̃) define Λ(U) : L −→ L̃ to be the map that, for all %,& ∈ Δ and all i ∈ IsoT (%,&), sends

the class [i] ∈ L to the class [U%,& (i)] ∈ L̃. Then this defines a bijection

Λ : Iso(T, T̃) −→ Iso((L,Δ , (), (L̃, Δ̃ , (̃)), U ↦→ Λ(U).

Moreover, if Γ and Γ̃ are sets of subgroups of S and (̃, respectively, then Λ induces a bijection

Iso(T, T̃)
Γ,Γ̃

−→ Iso((L,Δ , (), (L̃, Δ̃ , (̃))
Γ,Γ̃

.

Proof. By [12, Theorem 2.11] and the proof of this result, there is an equivalence Λ′ from the category

of transporter systems with isomorphisms to the category of localities with isomorphisms, which is

defined on objects by sending a transporter system T to LOb(T ) (T ) and on morphisms by sending an

isomorphism U ∈ Iso(T, T̃) to Λ(U) as defined in the theorem. In particular, Λ = Λ′

T,T̃
is a bijection

Iso(T, T̃) −→ Iso((L,Δ , (), (L̃, Δ̃ , (̃)).

Let now % ≤ ( and & ≤ (̃. Via the usual identifications of the elements of S and (̃ with elements of

L and L̃, we have

% = {[X( (G)] : G ∈ %} and & = {[X̃
(̃
(H)] : H ∈ &}.

So given U ∈ Iso(T, T̃),

Λ(U) (%) = {Λ(U) ([X( (G)]) : G ∈ %} = {[U( (X( (G))] : G ∈ %}.

Because the map Aut
T̃
(() −→ L̃, i ↦→ [i] is by [6, Lemma A.8(b)] injective, it follows that Λ(U) (%) =

& if and only if U( (X( (%)) = X̃
(̃
(&). So Λ(U) (Γ) := {Λ(U) (%) : % ∈ Γ} equals Γ̃ if and only if

{U( (X( (%)) : % ∈ Γ} = {X̃
(̃
(&) : & ∈ Γ̃}. Equivalently, Λ(U) ∈ Iso((L,Δ , (), (L̃, Δ̃ , (̃))

Γ,Γ̃
if and only

if U ∈ Iso(T, T̃)
Γ,Γ̃

. (Unlike in Definition 2.20, we write maps here on the right.) �

4.3. Linking systems

In this article we work with the following definition of a linking system, which is slightly nonstandard

but fits well with the earlier given definition of a linking locality (Definition 2.25).

Definition 4.7. If F is a saturated fusion system, then a linking system associated to F is a transporter

system T associated toF such thatF2A ⊆ Ob(T ) and AutT (%) is of characteristic p for every % ∈ Ob(T ).

If Ob(T ) = FB , then T is called a subcentric linking system associated to F.

The original definitions of linking systems in [3], [4] and [19] are not based on the definition of

a transporter systems. A linking system in either of these definitions is a linking system in the above

definition, whereas the converse does not hold in general. Historically, centric linking systems – that is,

linking systems over F whose object sets are the sets of F-centric subgroups – were studied first. The

long-standing conjecture that there is a centric linking system associated to every saturated fusion system

and that such a centric linking system is unique up to a rigid isomorphism was shown by Chermak [6]

and subsequently by Oliver [20]. Originally, these proofs used the classification of finite simple groups,

but the dependence on the classification of the proof in [20] was removed by Glauberman–Lynd [11].

If T is a linking system associated to a saturated fusion system F over S, then Ob(T ) ⊆ FB . On the

other hand, ifF2A ⊆ Δ ⊆ FB such thatΔ isF-closed, then it was stated in [14, Theorem A] that there is a

linking system T with object set Δ associated to F; moreover, such T is unique up to rigid isomorphism.

The proof relies heavily on the existence and uniqueness of centric linking systems. Formally, [14,

Theorem A] is proved as a consequence of the corresponding statement about linking localities that is
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summarised in Subsection 2.7. We use this opportunity to point out that a precise argument that T is

unique up to a rigid isomorphism is actually missing in [14]. However, the uniqueness of T follows from

[12, Theorem 2.11] (or [6, Lemma A.14, Lemma A.15]) and from Lemma 4.8.

If (L,Δ , () is a locality over F, then it is easy to see that the corresponding transporter system TΔ (L)

is a linking system associated to F if and only if (L,Δ , () is a linking locality. Moreover, we have the

following lemma.

Lemma 4.8. If T is a linking system associated to a saturated fusion system F, then for Δ := Ob(T ),

the locality (LΔ (T ),Δ , () is a linking locality over F.

Proof. Because F2A ⊆ Δ , it follows from Alperin’s fusion theorem [1, Theorem I.3.6] and Lemma

4.4(c) that F( (L) = F. In particular, F( (L) is saturated and F( (L)
2A ⊆ Δ . Moreover, by Lemma

4.4(b), #L (%) � AutT (%) is of characteristic p for every % ∈ Δ . �

Lemma 4.9. If (T, X, c) is a linking system associated to a saturated fusion system F over S, then the

following hold:

(a) ker(c() = X( (/ (()).

(b) For every % ∈ Ob(T ), $ ? (AutT (%)) = X% (%) if and only if % ∈ F2A .

(c) (Alperin’s fusion theorem for linking systems) Each morphism in T is the composite of restrictions

of elements in the automorphism groups AutT (%), where % ∈ F2A is fully F-normalised.

Proof. If W ∈ AutT ((), then for all 6 ∈ (, c( (W) (6) = 6 if and only if W commutes with X( (6) by Axiom

C in [21, Definition 3.1] and [21, Lemma 3.3]. Hence, ker(c() = �AutT (() (X( (()). Because AutT (() is

of characteristic p and X( (() is a normal Sylow p-subgroup of AutT ((), we have W ∈ �AutT (() (X( (()) =

/ (X( (()) = X( (/ (()) showing (a).

Property (b) follows from [14, Lemma 6.2] and Lemma 4.8 or, alternatively, this property can be

shown by reformulating the argument in the proof of [14, Lemma 6.2] for transporter systems. Property

(c) follows from (b) and [21, Proposition 3.9]. �

Lemma 4.10. If (T, X, c) is a linking system associated to a saturated fusion system F over S, then the

sequence

1 −→ / (F )
X(

−−−−→ AutT (()
W ↦→2W
−−−−−−→ Aut(T ) −→ Outtyp(T ) −→ 1

is exact.

Proof. The statement was shown in [2, Lemma 1.14(a)] for linking systems in Oliver’s definition; that is,

for linking systems whose objects are quasicentric subgroups. The argument can be repeated verbatim

(with L replaced by T) to prove exactness in Aut(T ) and in Outtyp(T ) and to show that 2W = idT implies

W ∈ X( (/ (F)); here only the reference to [2, Lemma 1.11(b’)] needs to be replaced by a reference to

[21, Lemma 3.2(c)], the reference to axiom (A) needs to be replaced by a reference to Lemma 4.9(a), and

the reference to [2, Lemma 1.11(e)] needs to be replaced by a reference to axiom (II) in the definition of

a transporter system [21, Definition 3.1]. On the other hand, by [1, Proposition 4.5], we have / (F) ≤ %

for all % ∈ F2A . So if 0 ∈ / (F), then Lemma 4.9(c) yields that any morphism k ∈ MorL (%,&) extends

to a morphism k ∈ MorL (〈%, 0〉, 〈&, 0〉) with c(k) (0) = 0. Such k commutes with W = X( (0) by

axiom (C) again. So W commutes with k and thus 2W = idL. This shows exactness in AutT ((). �

5. Isomorphisms between linking localities and linking systems

In this section we prove Theorems A.1 and A.2. Moreover, we show considerably more general versions

of these theorems, where for each result we formulate a version for linking localities and a version for

linking systems. Theorem A.2 leads naturally to a statement about outer automorphism groups (Theorem

5.5), and building on this we prove Theorem B.
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Theorem 5.1 (Linking locality version). Let (L,Δ , (), (L+,Δ+, (), (L̃, Δ̃ , (̃) and (L̃
+
, Δ̃+, (̃) be linking

localities such that

◦ F( (L
+) = F( (L), Δ ⊆ Δ+, L = L+ |Δ and

◦ F
(̃
(L̃

+
) = F

(̃
(L̃), Δ̃ ⊆ Δ̃+, L̃ = L̃

+
|
Δ̃

.

Then the map

Ψ : Iso((L+,Δ+, (), (L̃
+
, Δ̃+, (̃))

Δ ,Δ̃
−→ Iso((L,Δ , (), (L̃, Δ̃ , (̃))

Δ+ ,Δ̃+

with Ψ(W) = W |L is well defined and a bijection.

Proof. By Lemma 2.24, the map Ψ is well defined. If U ∈ Iso((L,Δ , (), (L̃, Δ̃ , (̃))
Δ+ ,Δ̃+ , then U

regarded as a map L −→ L̃
+

is a homomorphism of partial groups. Thus, by Corollary 3.3, U extends

to a unique homomorphism of partial groups W : L+ −→ L̃
+
. By Lemma 2.18, U−1 is a homomorphism

of partial groups from L̃ to L, which can be regarded as a homomorphism of partial groups L̃ −→ L+.

So again by Corollary 3.3, U−1 extends to a homomorphism of partial groups Ŵ : L̃
+
−→ L+. Then

WŴ : L+ −→ L+ and ŴW : L̃
+
−→ L̃

+
are homomorphisms of partial groups with (WŴ) |L = UU−1 = idL

and (ŴW) |
L̃
= U−1U = id

L̃
. It follows from Corollary 3.3 applied with idL in place of U that there is a

unique homomorphism of partial groups L+ −→ L+ that restricts to the identity on L. Thus, any such

homomorphism equals idL+ . Similarly, any homomorphism of partial groups L̃
+
−→ L̃

+
that restricts to

the identity on L̃ equals id
L̃

+ . This shows WŴ = idL+ and ŴW = id
L̃

+ ; that is, W is bijective with inverse map

Ŵ. So W : L+ −→ L̃
+

is an isomorphism of partial groups by Lemma 2.18. Because Δ+W = Δ+U = Δ̃+

and ΔW = ΔU = Δ̃ , it follows that W ∈ Iso((L+,Δ+, (), (L̃
+
, Δ̃+, (̃))

Δ ,Δ̃
with Ψ(W) = W |L = U. This

shows that Ψ is surjective. Because W is the unique homomorphism of partial groups L+ −→ L̃
+

that

restricts to U, the map Ψ is also injective. �

Theorem 5.2 (Linking system version). Suppose that T, T +, T̃ and T̃
+

are linking systems and F and F̃

are saturated fusion systems such that

◦ T and T + are linking systems associated to F, Ob(T ) ⊆ Ob(T +), T = T + |Ob(T ) ;

◦ T̃ and T̃
+

are linking systems associated to F̃, Ob(T̃ ) ⊆ Ob(T̃
+
), T̃ = T̃

+
|Ob(T̃ ) .

Then the map

Iso(T +, T̃
+
)Ob(T ) ,Ob(T̃ ) −→ Iso(T, T̃ )

Ob(T +) ,Ob(T̃
+
)
, U ↦→ U |T

is a bijection.

Proof. Because we are dealing with transporter systems, in this proof we will again write functions

from the left. Set Δ := Ob(T ), Δ+ := Ob(T +), Δ̃ := Ob(T̃ ) and Δ̃+ := Ob(T̃
+
),

L := LΔ (T ), L+ := LΔ+ (T +), L̃ := L
Δ̃
(T̃ ) and L̃

+
:= L

Δ̃+ (T̃
+
).

By [i] we denote the equivalence class of i in L if i ∈ Iso(T ) and the equivalence class of i in

L̃ if i ∈ Iso(T̃ ). Similarly, [i]+ denotes the equivalence class of i in L+ if i ∈ Iso(T +) and the

equivalence class of i in L̃
+

if i ∈ Iso(T̃
+
). By Lemma 4.5, the maps ] : L −→ L+ |Δ , [i] ↦→ [i]+ and

]̃ : L̃ −→ L̃
+
|
Δ̃
, [i] ↦→ [i]+ are isomorphisms of localities that restrict to the identity on S. In particular,

the map

Φ : Iso((L,Δ , (), (L̃, Δ̃ , (̃))
Δ+ ,Δ̃+ −→ Iso((L+ |Δ ,Δ , (), (L̃

+
|
Δ̃
, Δ̃ , (̃))

Δ+ ,Δ̃+ , V ↦→ ]̃ ◦ V ◦ ]−1
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is a bijection. By Lemma 2.24, there is also a bijection

Ψ : Iso((L+,Δ+, (), (L̃
+
, Δ̃+, (̃))

Δ ,Δ̃
−→ Iso((L+ |Δ ,Δ , (), (L̃

+
|
Δ̃
, Δ̃ , (̃))

Δ+ ,Δ̃+

given by restriction. Moreover, by Lemma 4.6, there are bijections

Λ : Iso(T, T̃)
Δ+ ,Δ̃+ −→ Iso((L,Δ , (), (L̃, Δ̃ , (̃))

Δ+ ,Δ̃+

and

Λ
+ : Iso(T +, T̃

+
)
Δ ,Δ̃

−→ Iso((L+,Δ+, (), (L̃
+
, Δ̃+, (̃))

Δ ,Δ̃
.

Here Λ is defined by

Λ(U) ([i]) = [U%,& (i)]

for all U ∈ Iso(T, T̃)
Δ+ ,Δ̃+ , all %,& ∈ Δ and all i ∈ IsoT (%,&), and Λ+ is defined by

Λ
+(U) ([i]+) = [U%,& (i)]+

for all U ∈ Iso(T +, T̃
+
)
Δ ,Δ̃

, all %,& ∈ Δ+ and all i ∈ IsoT + (%,&).

Now Ψ ◦Λ+ is a bijection from Iso(T +, T̃
+
)
Δ ,Δ̃

to Iso((L+ |Δ ,Δ , (), (L̃
+
|
Δ̃
, Δ̃ , (̃))

Δ+ ,Δ̃+ and Φ ◦Λ is a

bijection from Iso(T, T̃)
Δ+ ,Δ̃+ to Iso((L+ |Δ ,Δ , (), (L̃

+
|
Δ̃
, Δ̃ , (̃))

Δ+ ,Δ̃+ . Hence, Θ := (Φ ◦Λ)−1 ◦ (Ψ ◦Λ+)

is a bijection from Iso(T +, T̃
+
)
Δ ,Δ̃

to Iso(T, T̃)
Δ+ ,Δ̃+ . Fixing U ∈ Iso(T +, T̃

+
)
Δ ,Δ̃

, it only remains to

show that Θ(U) = U |T or, equivalently, Ψ(Λ+(U)) = Φ(Λ(U |T)). To prove the latter equality, recall that

] : L −→ L+ |Δ is bijective. So every element of L+ |Δ is of the form ]([i]) = [i]+ for some %,& ∈ Δ

and i ∈ IsoT (%,&). We then compute

Ψ(Λ+(U)) [i]+ = Λ
+(U) [i]+ = [U%,& (i)]+

and

Φ(Λ(U |T)) [i]+ = ( ]̃ ◦ Λ(U |T) ◦ ]
−1) [i]+

= ( ]̃ ◦ Λ(U |T)) [i]

= ]̃([U%,& (i)]) = [U%,& (i)]+.

This proves the assertion. �

The two preceding theorems seem most important in situations where we consider automorphisms

of linking localities or linking systems. In the next two theorems we state the results for automorphisms

explicitly.

Theorem 5.3 (Linking locality version). Let (L,Δ , () and (L+,Δ+, () be linking localities over the

same fusion system F such that Δ ⊆ Δ+ and L = L+ |Δ . Then the map

Ψ : Aut(L+,Δ+, ()Δ −→ Aut(L,Δ , ()Δ+ , W ↦→ W |L

is well defined and an isomorphism of groups. In particular, if Δ and Δ+ are Aut(F)-invariant, then the

map Aut(L+,Δ+, () −→ Aut(L,Δ , (), W ↦→ W |L is an isomorphism of groups.

Proof. By Theorem 5.1, the map Ψ is well defined and a bijection. Moreover, if V, W ∈ Aut(L+,Δ+, ()Δ ,

then Ψ(VW) = (VW) |L = (V |L) (W |L) = Ψ(V)Ψ(W). Hence, Ψ is an isomorphism of groups. By Lemma

2.21, if U is an element of Aut(L,Δ , () or of Aut(L+,Δ+, (), then U |( ∈ Aut(F). Hence, if Δ and Δ+
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are Aut(F)-invariant, then Aut(L+,Δ+, ()Δ = Aut(L+,Δ+, () and Aut(L,Δ , ()Δ+ = Aut(L,Δ , (). This

yields the assertion. �

Theorem 5.4 (Linking system version). Let T and T + be linking systems associated to the same fusion

system F such that Ob(T ) ⊆ Ob(T +) and T = T + |Ob(T ) . Then the map

Θ : Aut(T +)Ob(T ) −→ Aut(T )Ob(T +) , U ↦→ U |T

is an isomorphism of groups. In particular, if Ob(T ) and Ob(T +) are Aut(F)-invariant, then the map

Aut(T +) −→ Aut(T ), U ↦→ U |T is an isomorphism of groups.

Proof. By Theorem 5.2, Θ is a bijection, and it is easy to to see that Θ is an isomorphism of groups. As

explained in Remark 4.2(b), if Ob(T ) and Ob(T +) are Aut(F)-invariant, then Aut(T )Ob(T +) = Aut(T )

and Aut(T +)Ob(T ) = Aut(T +). �

Proof of Theorem A.1. Let (L,Δ , () and (L+,Δ+, () be linking localities over the same fusion systemF

such thatΔ andΔ+ are Aut(F)-invariant. By [14, Theorem A(b)], there exists a subcentric linking locality

(LB ,FB , () over F. Because F2A ⊆ Δ and F2A ⊆ Δ+, it follows that (LB |Δ ,Δ , () and (LB |Δ+ ,Δ+, () are

linking localities overF. Hence, by [14, Theorem A(a)], there exist rigid isomorphisms from (LB |Δ ,Δ , ()

to (L,Δ , () and from (LB |Δ+ ,Δ+, () to (L+,Δ+, (). By [14, Lemma 3.6],FB is Aut(F)-invariant. Hence,

applying Theorem 5.3 twice, we obtain

Aut(L,Δ , () � Aut(LB |Δ ,Δ , () � Aut(LB ,FB , () � Aut(LB |Δ+ ,Δ+, () � Aut(L+,Δ+, ().

So Theorem A.1 follows from Theorem 5.3. �

We will prove Theorem A.2 together with the following similar statement about outer automorphism

groups, which is a generalization of [2, Lemma 1.17].

Theorem 5.5. If T and T + are linking systems associated to F such that Ob(T ) and Ob(T +) are

Aut(F)-invariant, then

Outtyp(T
+) � Outtyp(T ).

If Ob(T ) ⊆ Ob(T +) and T = T + |Ob(T ) , then an isomorphism Outtyp(T
+)

�

−−−→ Outtyp(T ) is given by

sending the class of U ∈ Aut(T +) to the class of U |T ∈ Aut(T ).

Proof of Theorem A.2 and Theorem 5.5. Let T and T + be transporter systems over the same fusion

system F such that Ob(T ) and Ob(T +) are Aut(F)-invariant. As usual when dealing with transporter

systems, we write maps on the left side of the argument.

If Ob(T ) ⊆ Ob(T +) and T = T + |Ob(T ) , then by Theorem 5.4, the map Aut(T +) → Aut(T ), W ↦→

W |T is a group isomorphism. Because AutT (() = AutT + ((), one easily observes that it induces an

isomorphism between the group of inner automorphisms of T + and the group of inner automorphisms

of T. Hence, by Lemma 4.10, it induces an isomorphism Outtyp(T
+) → Outtyp(T ) that takes the class

of U ∈ Aut(T +) to the class of U |T.

Suppose now that T and T + are arbitrary. By [14, Theorem A], there exists a subcentric linking system

T B over F; moreover, T is rigidly isomorphic to T B |Ob(T ) , and T + is rigidly isomorphic to T B |Ob(T +) . If

U : T → T B |Ob(T ) is a rigid isomorphism, then the map Φ : Aut(T ) → Aut(T B |Ob(T ) ), V ↦→ U ◦ V ◦U−1

is an isomorphism of groups and so Aut(T ) � Aut(T B |Ob(T ) ). One can check now that, for any

W ∈ Aut(T ), we have U ◦ 2W ◦ U−1 = 2U( (W) ; to see that U ◦ 2W ◦ U−1 and 2U( (W) agree on objects,

one uses that c̃ ◦ U = c (cf. Remark 4.2(d)), and to see that the two functors agree on morphisms,

one uses that U takes inclusions to inclusions and thus commutes with taking restrictions. So Φ

induces an isomorphism between the group of inner automorphisms of T and the group of inner

automorphisms of T B |Ob(T ) . Thus, by Lemma 4.10, Outtyp(T ) � Outtyp(T
B |Ob(T ) ). Similarly, one
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shows that Aut(T +) � Aut(T B |Ob(T +) ) and Outtyp(T
+) � Outtyp(T

B |Ob(T +) ). So using Theorem 5.4

twice, we can conclude that

Aut(T ) � Aut(TB |Ob(T ) ) � Aut(TB) � Aut(TB |Ob(T +) ) � Aut(T +)

and, similarly,

Outtyp(T ) � Outtyp(T
B |Ob(T ) ) � Outtyp(T

B) � Outtyp(T
B |Ob(T +) ) � Outtyp(T

+).

�

Remark 5.6. Theorem A.2 and Theorem 5.5 were shown for linking systems whose objects are quasi-

centric in [2, Lemma 1.17] and its proof via more direct arguments. As we will briefly indicate now, the

proof could be adapted to give a proof of Theorems A.2 and 5.5 that does not use linking localities:

◦ Using the notation in the proof of [2, Lemma 1.17], Lemma 4.9(b) is needed to conclude that P is

properly contained in %̂. The reference to [2, Theorem 1.12] needs to be replaced by a reference to

Lemma 4.9(c).

◦ The references to Proposition 1.11(b),(b’) and Proposition 1.11(d) in [2] need to be replaced by

references to Lemma 3.2(c) and Proposition 3.4(a) in [21], respectively.

◦ References to [2, Proposition 1.11(e)] could be replaced by references to Axiom II in the definition

of a transporter system [21, Definition 3.1] and to [21, Lemma 3.3].

◦ The reference to [2, Lemma 1.15] can be replaced by a reference to [12, Proposition 2.5] (cf.

Remark 4.2(d)).

It seems that the arguments could also be adapted to give direct proofs of the more general Theorems

5.2 and 5.4.

Proof of Theorem B. If T and T + are linking systems associated to the same saturated fusion system F

such that Ob(T ) ⊆ Ob(T +) and T = T + |Ob(T ) , then by [14, Theorem A], the inclusion map ] : T ↩→ T +

induces a homotopy equivalence |]| : |T | → |T + | and thus a homotopy equivalence |]|∧? : |T |∧? → |T + |∧? .

Moreover, if Ob(T ) and Ob(T +) are Aut(F)-invariant and W ∈ Aut(T +), then the commutative square

T + W
// T +

T
?�

]

OO

W |T
// T
?�

]

OO

induces a commutative square after applying the functor | · |∧? . Thus, if Ob(T ) and Ob(T +) are Aut(F)-

invariant, then by Theorem 5.5, the conclusion of Corollary B is true for T if and only if it is true with

T + in place of T.

Suppose now that T is an arbitrary linking system associated to F such that Ob(T ) is Aut(F)-

invariant. By [14, Theorem A], there exists a subcentric linking system T B associated to F such that

T B |Ob(T ) = T; moreover, T 2 := T B |F2 is a centric linking system associated to F. By [3, Theorem 8.1]

and its proof, the statement in Theorem B is true for T 2 in place of T. The object sets Ob(T 2) = F2 and

Ob(T B) = FB are Aut(F)-invariant (cf. [14, Lemma 3.6]). Hence, as remarked above, the conclusion of

Theorem B is true for T B and thus also for T. �

6. Partial normal subgroups

This section is mainly devoted to the proof of Theorem C. We will, however, start in the first subsection

with some background on partial normal subgroups of localities. Most important, we prove with Lemma

6.2 a result that seems to be of general interest and can be considered as a version of Alperin’s fusion
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theorem for partial normal subgroups. This lemma is also applied in [10]. Using Lemma 6.2 we will

then prove Theorem C and a corollary in Subsection 6.2.

6.1. General results

If U : L −→ L̃ is a homomorphism of partial groups, then by [7, Lemma 1.14], ker(U) is a partial normal

subgroup of L. The other way around, if (L,Δ , () is a locality and N is a partial normal subgroup of L,

then one can construct a partial group L/N and a projection of partial groups

U : L −→ L/N

with ker(U) = N. We refer the reader to Lemma 3.16 and the preceding explanations in [7, Section 3]

for details of the construction. We will often adopt a ‘bar notation’ similarly as for groups. This means

that, setting L = L/N, for every element or subset X of L, we write - for the image of X in L under U.

Moreover, for any set Γ of subgroups of L, we set Γ := {% : % ∈ Γ}. By [7, Corollary 4.5], (L,Δ , () is

a locality and U is a projection of localities from (L,Δ , () to (L,Δ , ().

Lemma 6.1. Let (L,Δ , () be a locality with a partial normal subgroup N. Then the following hold:

(a) The triple (N(,Δ , () is a locality.

(b) For every % ∈ Δ , $ ? (#N( (%)) = $ ? (#N (%)).

Proof. Part (a) is true by [7, Lemma 4.1]. In particular, #N( (%) is a subgroup of L. Moreover, we

may consider the canonical projection U : N( −→ N( := N(/N. Then N( = ( is a p-group and U

induces a group homomorphism U |#N( (%) : #N( (%) −→ (. Thus, $ ? (#N( (%)) ≤ ker(U |#N( (%) ) =

ker(U) ∩ #N( (%) = #N (%). This implies (b). �

For the next lemma recall that a subgroup H of a finite group G is called strongly p-embedded if

� ≠ �, p divides |� | and � ∩ �6 is a ?′-group for all 6 ∈ �\�.

Lemma 6.2. Let (L,Δ , () be a locality. If N is a partial normal subgroup of L and = ∈ N, then there

exist : ∈ N, '1, '2, . . . , ': ∈ Δ and (C, =1, =2, . . . , =: ) ∈ D such that the following hold:

(i) (= = ( (C ,=1 ,...,=: ) and = = C=1=2 · · · =: ;

(ii) =8 ∈ $ ? (#N ('8)), (=8 = '8 , $ ? (#N( ('8)) = '8 and #( ('8) ∈ Syl? (#N( ('8)) for all 8 =

1, . . . , :; and

(iii) C ∈ N ∩ (.

In fact, '1, . . . , ': can be chosen such that #N( ('8)/'8 has a strongly p-embedded subgroup for all

8 = 1, . . . , : .

Proof. By Lemma 6.1(a), (N(,Δ , () is a locality. So by Alperin’s fusion theorem for localities [16,

Theorem 2.5], there exist : ∈ N, &1, &2, . . . , &: ∈ Δ and (61, 62, . . . , 6: ) ∈ D such that the following

hold:

◦ (= = ( (61 ,...,6: ) and = = 6162 · · · 6: ;

◦ 68 ∈ #N( (&8), (68 = &8 , #N( (&8)/&8 has a strongly p-embedded subgroup; and

#( (&8) ∈ Syl? (#N( (&8)) for all 8 = 1, . . . , : .

Because #( (&8) ∈ Syl? (#N( (&8)), it follows from Lemma 6.1(b) that #N( (&8) =

#( (&8)$
? (#N (&8)). So for all 8 = 1, . . . , =, we can write 68 = B8<8 with B8 ∈ #( (&8) and

<8 ∈ $ ? (#N (&8)). By Lemma 2.8, we have &8 = (68 = ( (B8 ,<8) for all 8 = 1, . . . , : . In particular,

(= = ( (61 ,62 ,...,6: ) = ( (B1 ,<1 ,B2 ,<2 ,...,B: ,<: ) and

F := (B1, <1, B2, <2, . . . , B: , <: ) ∈ D via (=.
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Note also that = = Π(61, . . . , 6=) = Π(F). Set

G8 := B8B8+1 . . . B: for all 1 ≤ 8 ≤ :,

=8 := <
G8+1

8
for all 1 ≤ 8 < : and =: := <: .

Notice that

G8G
−1
8+1 = B8 for 1 ≤ 8 < : and G: = B: .

Because F ∈ D via (=, it follows that

E := (G1, G
−1
2 , <1, G2, G

−1
3 , <2, G3, . . . , G

−1
: , <:−1, G: , <: ) ∈ D via (=

and so, setting C := G1, also

D := (C, =1, =2, . . . , =:−1, =: ) ∈ D via (=.

Observe, moreover, that, by axiom (PG3), we have

= = Π(F) = Π(E) = Π(D).

Using Lemma 2.7(f), it follows that (= = (D . So (i) holds. Set

'8 := &
G8+1

8
for 1 ≤ 8 < : and ': := &: .

Recall that <8 ∈ $ ? (#N (&8)), #N( (&8)/&8 has a strongly p-embedded subgroup and #( (&8) ∈

Syl? (#N( (&8)). Therefore, Lemma 2.7(b) gives that =8 ∈ $ ? (#N ('8)), #N( ('8)/'8 has a strongly p-

embedded subgroup and #( ('8) ∈ Syl? (#N( ('8)) for 8 = 1, . . . , : . In particular,$ ? (#N( ('8)/'8) = 1

and thus $ ? (#N( ('8)) = '8 (cf. [1, Proposition A.7(c)]).

For all 8 = 1, . . . , : it follows from Lemma 2.8 that &8 = (68 = (
B−1
8
<8

. Because B8 ∈ #( (&8), this

implies

&8 = (<8
for all 8 = 1, . . . , : .

In particular, ': = &: = (<:
= (=: . Moreover, because (<8 , &8) is conjugate to (=8 , '8) under G8+1 ∈ (

for 1 ≤ 8 < : , Lemma 2.8 gives also '8 = (=8 for 1 ≤ 8 < : . So (ii) holds. Note now that D′ :=

(C−1, C, =1, . . . , =: , =
−1) ∈ D via (C= and C−1 = Π(C−1, =, =−1) = Π(D′) = Π(=1, . . . , =: , =

−1) ∈ ( ∩ N.

Hence, C ∈ N ∩ ( and the proof is complete. �

6.2. Partial normal subgroups of linking localities

In this subsection, we will first prove Theorem C. Afterwards, we prove as a corollary that any two

linking localities over the same fusion system have the same number of partial normal subgroups.

Against our usual convention, we will use the left-hand notation for the map ΦL+ ,L from Theorem C.

Recall that N(L) denotes the set of partial normal subgroups of a partial groups L. We first show the

following lemma.

Lemma 6.3. Let (L,Δ , () and (L+,Δ+, () be linking localities over the same fusion system F such

that Δ ⊆ Δ+ and L = L+ |Δ . Assume that every proper overgroup of an element of Δ+\Δ is in Δ . Let

N+ ∈ N(L+), N := N+ ∩ L ∈ N(L) and set ) := N+ ∩ ( = N ∩ (. Then the following hold.

(a) N+
= 〈NL+

〉, where 〈NL+

〉 denotes the smallest partial subgroup ofL+ containing all of the elements

of the form = 5 with 5 ∈ L+ and = ∈ N ∩ D+ ( 5 ).
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(b) If F(∩N (N) is F-invariant, then F) (N) = F) (N
+).

(c) Let K+ ∈ N(L+) and K := K+ ∩ L ∈ N(L). Then K+) = N+ if and only if K) = N.

Proof. Observe that, for any : ∈ L+ and C ∈ (, we have (:C = ( (:,C) = (: . Hence, :C ∈ L if and only

if : ∈ L. With K+ and K as in (c), it follows that K+) ∩ L = (K+ ∩ L)) = K) . Hence, if K+) = N+,

then N = N+ ∩ L = (K+)) ∩ L = K) . On the other hand, if K) = N and (a) holds, then K ⊆ N and

so K+
= 〈KL+

〉 ⊆ 〈NL+

〉 = N+. Thus, because N+ is a partial subgroup, it follows in this case that

K+) ⊆ N+. Hence, it remains to prove (a), (b) and the following property:

If K+ and K are as in (c) and K) = N, then N+ ⊆ K+). (6.3.1)

Set E := F) (N). Because N ⊆ N+
E L+, we have 〈NL+

〉 ⊆ N+. Moreover, clearly, E = F) (N) ⊆

F) (N
+). So fixing = ∈ N+, we need to show that = ∈ 〈NL+

〉 and, if E isF-invariant, then 2= : (=∩) −→

) is a morphism in E. Furthermore, fixing K+ and K as in (c) such that K) = N, we need to show that

= ∈ K+) .

Because ( (:,C) = (:C for all : ∈ K+ and C ∈ ) , using the Frattini calculus [7, Lemma 3.4], one sees

that K+) = )K+ is a subgroup of L+. So by Lemma 6.2 applied with L+ and N+ in place of L and

N, we may assume that % = (= ∈ Δ+ and = ∈ $ ? (#N+ (%)). If % ∈ Δ , then #L+ (%) = #L (%) and

= ∈ #N+ (%) = #N (%) becauseN+∩L = N. So in this case, = ∈ 〈NL+

〉, the conjugation homomorphism

2= |%∩) is a morphism in E and = ∈ N = K) ⊆ K+) .

Suppose now that % ∈ Δ+\Δ . Then by Lemma 2.10(a), there exists 5 ∈ L+ such that % ≤ ( 5 and ' :=

% 5 is fully F-normalised. By Lemma 2.7(b), the conjugation map 2 5 : #L+ (%) −→ #L+ (') is defined

and an isomorphism of groups. In particular, = 5 ∈ $ ? (#N+ (%)) 5 ⊆ $ ? (#N+ (')) = $ ? (#N (')),

where the last equality uses L ∩N+
= N and #L+ (') = #L (') by Lemma 2.26. Hence, using Lemma

2.7(c), we see that = = (= 5 ) 5
−1

⊆ #N (') 5
−1

⊆ 〈NL+

〉, proving (a).

Because N = K) ⊆ K(, Lemma 6.1(b) applied with K in place of N gives that = 5 ∈ $ ? (#N (')) ⊆

$ ? (#K( (')) = $ ? (#K (')). Hence, we have = = (= 5 ) 5
−1

∈ 〈KL+

〉 ⊆ K+ ⊆ K+) , proving (6.3.1) and

thus (c).

For the proof of (b), note that 2= 5 |'∩) ∈ AutE (' ∩)). Define i := 2 5 |%∩) ∈ HomF(% ∩), ' ∩)).

For every G ∈ ', we have ( 5 −1, =, 5 , G, 5 −1, =, 5 ) ∈ D+ via R, and so G=
5

= ((G 5 −1

)=) 5 . Hence,

i−1 (2= |%∩) )i = 2= 5 |'∩) ∈ AutE (' ∩ )). If E is F-invariant, using the characterisation of F-invariant

subsystems given in [1, Proposition I.6.4(d)], we can conclude that 2= |%∩) = i(2= 5 |'∩) )i
−1 ∈

AutE (% ∩ )). This shows (b) and completes the proof. �

Proof of Theorem C. For every partial normal subgroup N+ of L+, it is easy to see that the intersection

N+ ∩ L is a partial normal subgroup of L. Hence, the map

ΦL+ ,L : N(L+) −→ N(L), N+ ↦→ N+ ∩ L

is well defined. Moreover, this map is clearly inclusion preserving.

Without loss of generality, assume that Δ ≠ Δ+. Let ' ∈ Δ+\Δ be of maximal order. Because Δ+ and

Δ are closed under F-conjugacy, Δ∗ := Δ ∪ 'F is closed under F-conjugacy and contained in Δ+. If P

is a proper overgroup of an element of 'F, then % ∈ Δ+ as Δ+ is overgroup closed, so the maximality

of |' | yields % ∈ Δ . Because Δ is overgroup closed, this shows that Δ∗ is F-closed and L∗ := L+ |Δ∗ is

well defined. Notice that F2A ⊆ Δ ⊆ Δ∗ and #L∗ (%) = #L+ (%) is of characteristic p for every % ∈ Δ∗.

Therefore, (L∗,Δ∗, () is a linking locality over F. So, similarly, we have maps

ΦL+ ,L∗ : N(L+) −→ N(L∗), N+ ↦→ N+ ∩ L∗

and

ΦL∗ ,L : N(L∗) −→ N(L), N∗ ↦→ N∗ ∩ L
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defined. Notice thatΦL+ ,L = ΦL∗ ,L◦ΦL+ ,L∗ . By induction on |Δ+\Δ |, we may assume that the assertion

is true with (L∗,Δ∗, () in place of (L,Δ , (). That means that ΦL+ ,L∗ is a bijection such that Φ−1
L+ ,L∗ is

inclusion preserving; moreover, given N+
EL+ and N∗ = N+ ∩L∗

EL∗ such that F(∩N∗ (N∗) is normal

in F, we have F(∩N∗ (N∗) = F(∩N+ (N+); also, if N+,K+ ∈ N(L+), K∗
= K+ ∩ L∗, N∗

= N+ ∩ L∗ and

) = ( ∩N+ = ( ∩N∗, then K+) = N+ if and only if K∗) = N∗.

As noted above, every proper overgroup of an element of Δ∗\Δ = 'F is in Δ . Hence, by Lemma

6.3(b),(c), properties (b) and (c) hold with (L∗,Δ∗, () in place of (L+,Δ+, (). Suppose now that N+

is a partial normal subgroup of L+ and N := N+ ∩ L E L such that F(∩N (N) is F-invariant. Then

N∗ := N+ ∩ L∗
E L∗ with N∗ ∩ L = N+ ∩ L = N. Because (b) is true with (L∗,Δ∗, () in place of

(L+,Δ+, (), it follows that F(∩N∗ (N∗) = F(∩N (N) and, in particular, F(∩N∗ (N∗) is F-invariant. So

F(∩N+ (N+) = F(∩N∗ (N∗) = F(∩N (N). This proves (b).

If N+,K+ ∈ N(L+) are arbitrary, N∗ := L∗ ∩N+, K∗ := L∗ ∩N+, N := L ∩N+, K := L ∩ K+ and

) := ( ∩N, then we see similarly that

K+) = N+ ⇐⇒ K∗) = N∗ ⇐⇒ K) = N

and (c) holds. Hence, it remains to prove (a).

If (a) is true with (L∗,Δ∗, () in place of (L+,Δ+, (), then ΦL∗ ,L is a bijection and Φ−1
L∗ ,L

is inclusion

preserving. Hence, ΦL+ ,L = ΦL∗ ,L ◦ ΦL+ ,L∗ is a bijection and ΦL+ ,L = Φ−1
L+ ,L∗ ◦ Φ−1

L∗ ,L
is inclusion

preserving. Thus, replacing (L+,Δ+, () by (L∗,Δ∗, (), we may assume from now on that

Δ
+
= Δ ∪ 'F.

Then, in particular, every proper overgroup of an element of Δ+\Δ = 'F is an element of Δ . So by

Lemma 2.26, #L (') = #L+ (') is a subgroup of L.

Note that Lemma 6.3(a) implies that ΦL+ ,L is injective. Moreover, if M+ and N+ are partial normal

subgroups of L+ with M+ ∩L ⊆ N+ ∩L, then Lemma 6.3(a) gives that M+ = 〈(M+ ∩L)L
+
〉 ⊆ N+ =

〈(N+ ∩L)L
+
〉. So if ΦL+ ,L is a bijection, then Φ−1

L+ ,L
is inclusion preserving. Hence, it remains to show

that ΦL+ ,L is surjective.

For the remainder of this proof let N be a partial normal subgroup of L and set ) := ( ∩N. We will

show that there exists N+
E L+ with N+ ∩ L = N. For the proof we set L := L/N and consider the

natural projection

U : L −→ L.

By [7, Corollary 4.5], using the ‘bar notation’, the triple (L,Δ , () is a locality. Observe also that

#L (')U ⊆ #
L
('). We consider two cases now.

Case 1: ) � '. Because T is strongly closed in F by [7, Lemma 3.1], it follows then that ) � &

for every & ∈ 'F. Thus, for any such Q, we have &) ∈ Δ and &U = & = &) ∈ Δ . This proves

Δ+U ⊆ Δ . Applying Corollary 3.3 with (L,Δ , () in place of (L̃, Δ̃ , (̃), we conclude that there exists

a homomorphism of partial group W : L+ −→ L with W |L = U. By [6, Lemma 3.3], N+ := ker(W) is a

partial normal subgroup of L+. Moreover, N+ ∩ L = ker(U) = N.

Case 2: ) ≤ '. In this case, by Lemma 2.21(a), #L (')U = #
L
('). Because #L (') = #L+ (')

is a subgroup of L, it follows now from Lemma 2.19 that " := #
L
(') is a subgroup of L and

U |#L (') : #L (') −→ " is a surjective group homomorphism. Because #( (') ∈ Syl? (#L (')) by

Lemma 2.10(b), this yields that #
(
(') = #( (')U is a Sylow p-subgroup of M. Moreover, because

#F (') = F#( (') (#L+ (')) = F#( (') (#L (')) by Lemma 2.10(c), it follows from Lemma 2.15 that

U |#( (') induces and epimorphism from #F (') to F
#

(
(') (").

By Lemma 2.21(b), U |( induces an epimorphism from F = F( (L) to F := F
(
(L). Hence, Lemma

2.14 yields that Δ+U = Δ ∪ '
F

, the subgroup ' is fully F-normalised and U |#( (') induces an
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epimorphism from #F (') to #
F
('). The latter fact implies that #

F
(') = F

#
(
(') ("). By Lemma

2.26, '∗ := $ ? (#L+ (')) ∈ Δ and '∗
E#L ('). Hence, settingΔ

'
= {% ∈ Δ : 'E%}, we have '∗ ∈ Δ

'

and '∗ E " , which implies L
Δ
'
(") = " = #

L
('). Now [6, Hypothesis 5.3] holds with F, (L,Δ , (),

' and id" in place of F, (L,Δ , (), T and _. So by [6, Theorem 5.14], setting Δ̃ := Δ+U, there exists a

locality (L̃, Δ̃ , () such that L ⊆ L̃, #
L̃
(') = " , and the inclusion map L ↩→ L̃ is a homomorphism

of partial groups. Hence, U regarded as a map L −→ L̃ is a homomorphism of partial groups, which

by Corollary 3.3 extends to a homomorphism W : L+ −→ L̃ of partial groups. Then N+ := ker(W) E L+

and N+ ∩ L = ker(U) = N. This proves the assertion. �

Corollary 6.4. Let (L,Δ , () and (L+,Δ+, () be linking localities over the same fusion system F. Then

|N(L) | = |N(L+) |.

Proof. Suppose that (L,Δ , () and (L+,Δ+, () are linking localities over the same fusion system F.

By Proposition 3.3 and Theorem 7.2(a) in [14], there exist subcentric linking localities (L̂,FB , () and

(L̂
+
,FB , () over F such that L̂|Δ = L and L̂

+
|Δ+ = L+. Moreover, by [14, Theorem A(b)], there

exists a rigid isomorphism U : L̂ −→ L̂
+
. Then U induces a bijection N(L̂) −→ N(L̂

+
),N ↦→ NU.

So by Theorem C (applied twice), we have |N(L) | = |N(L̂) | = |N(L̂
+
) | = |N(L+) |. This shows the

assertion. �
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