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Abstract
A 10-week feeding trial was conducted to investigate the effect of dietary curcumin (CC) on growth antioxidant responses, fatty acid composition,
and expression of lipid metabolism-related genes of large yellow croaker fed a high-fat diet (HFD). Four diets (lipid level at 18 %) were formulated
with different levels of curcumin (0, 0·02, 0·04 and 0·06 %). The best growth performance was found in the 0·04 % curcumin group, with the body
and hepatic lipid levels lower than the control group (0 %CC). The content of TAG, total cholesterol and LDL-cholesterol was the least in the 0·06%
curcumin group. The lowest malondialdehyde and the highest superoxide dismutase, catalase and total antioxidant capacity were observed in the
0·04 % curcumin group. The 0·04 % curcumin group had higher expression of Δ6fad, elovl5 and elovl4 and showed higher hepatic n-6 and n-3
PUFA. Expression of ppara, cpt1, and aco was significantly increased, while expression of srebp1 and fas was dramatically decreased in curcumin
groups compared with the control group. Overall, 0·04 % curcumin supplementation could mitigate the negative effects caused by HFD and pro-
mote growth via reducing hepatic lipid deposition, improving antioxidant activity and increasing PUFAof large yellowcroaker. To conclude, abnor-
mal hepatic lipid deposition was probably due to increased fatty acid oxidation and reduced de novo synthesis of fatty acids.
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Abnormal hepatic lipid deposition, excessive TAG accumulation
in the liver, is increasingly prevalent in the farmed fish, due to the
wide use of high-fat diet (HFD) which has a cost-effective farm-
ing and protein-sparing effects(1). Hepatocyte lesion and lower
disease resistance are indicators of hepatic steatosis caused by
abnormal hepatic lipid deposition, resulting in considerable
losses in aquaculture(2,3). Collectively, it is meaningful to study
lipid metabolism and explore a way to mitigate the negative
effects of hepatic steatosis in the farmed fish.

Curcumin (CC, commonly known as turmeric), a polyphenolic
compound derived from theCurcuma longa, is well documented
for its medicinal properties in Chinese and Indian medicine sys-
tems(4,5). Its biological and pharmacological functions have been
well confirmed, such as antioxidative(6), anti-inflammatory(7) and
antimicrobial(8). Additionally, recent studies have found that CC
could alleviate liver diseases(9,10) and CVD(11) by regulating lipid
and cholesterolmetabolism(10–13). Meanwhile, CCplays a vital role
in the obesity andmetabolic diseases treatment throughmediating

lipid metabolism and inflammatory responses(14–17). Given the
medicinal properties and healthy benefits of CC in mammals,
CC has attracted significant attention to aquaculture. CC and its
active molecule have been confirmed to exert positive effects
on fish health and lipid metabolism, including hepatoprotective,
anti-inflammatory, immunomodulatory, antioxidant and anti-
stress(18–20). In tilapia, 50mg/kg CC remarkably improved growth
performance and immunity(20). Fish fed the diet supplemented
with 5 g/kg CC showed significantly higher final body weight
and antioxidant capacity in crucian carp(21). Therefore, CC has
the potential to mitigate the adverse effects caused by HFD in
farmed fish. In addition, plant species-based additives have no
or fewer residue concerns and the adverse effects on animal,
human and environment health(20,22), as potential growth and
health promoter in aquaculture(23,24).

Large yellow croaker (Larimichthys crocea), widely cultured
in southeast China, is an important economical marine fish due
to its delicious taste and high nutritional value(25). Furthermore,
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lipidmetabolisms among the large yellow croaker, other fish and
mammals are similar, and large yellow croaker could be consid-
ered as an appropriate model for regulation of lipid metabolism
in marine fish(3,26–28). Thus, this study was to investigate the pro-
tective effects of CC against hepatic steatosis. The underlying
mechanism of the beneficial effect of CC was also focused.

Materials and methods

Animal ethics

The present study was conducted in strict accordance with the
Management Rule of Laboratory Animals (Chinese Order No.
676 of the State Council, revised 1 March 2017) and approved
by the Institutional Animal Care and Use Committee of the
Ocean University of China.

Feed ingredients and diet formulation

Ingredients and nutrient composition of four experimental diets
are shown in online Supplementary Table S1. Four isoproteic
(43 % crude protein) and isolipidic (18 % crude lipid) diets were
formulated to contain graded levels of CC (0, 0·02, 0·04 and
0·06 %; Beijing Solarbio Technology Co. Ltd; concentration≥ 95
%) (online Supplementary Table S1). The diet (18 % lipid con-
tent) without CC supplementation was the control diet.
Previous studies have been confirmed that 18 % lipid level diet
had the negative impacts on large yellow croaker, resulting in
abnormal hepatic lipid deposition and inflammatory
response(3,29).

Dietary ingredients were ground into fine powder through a
320 μm mesh. All the ingredients were thoroughly blended first
by hand and then by machine. After that, all ingredients were
thoroughly mixed with oil mixture and water, respectively.
The automatic fish granulator (F-26; South China University of
Technology) was used to make pellets (4 mm × 5 mm and
5mm × 5 mm. Pellets were dried for about 12 h in an oven at
55°C, placed in double plastic bags and stored at −20°C until
the trial.

Experimental procedure

Juvenile large yellow croaker was provided by the Fu Fa Aquatic
Products Co. Ltd. Before the start, fish were reared in floating sea
cages (2 m × 4 m × 2 m) and fed the control diet for 14 d to adapt
to the experimental conditions and diets.

At the initiation, fish were starved for 24 h and weighed. The
fish of similar sizes (15·92 (SEM 0·16) g) were distributed into
twelve sea cages (1 m × 1 m × 2 m). Each diet was randomly allo-
cated to three cages (sixty fish/each cage) and fed twice daily
(05.00 and 17.00 hours) for 10 weeks. During the experiment,
conditions were as followed: water temperature (26·5–31·0°C),
salinity (32–36‰) and dissolved oxygen (approximately 7 mg/l).

Sample collection

At the termination, fish were starved for 24 h and anaesthetised
with MS222 (1:10 000; Sigma). The body weight and total num-
ber of fish in each cage were recorded for analyses of survival

rate, final body weight, weight gain and specific growth rate.
Six fish (each cage) were collected to analyse whole-body com-
position. Thewet weight of the body, liver and visceral of six fish
(per cage) was measured to analyse morphometric parameters.
Muscle and liver tissue (at least six fish/cage) were collected and
mixed for fatty acid profile and lipid content analyses, respec-
tively. The blood was obtained from the caudal vein by 1 ml
syringes from ten fish (each cage) and placed to clot at 4°C
for 6–8 h. The clot and residual blood cells were removed by
centrifugation for 10 min (3500 r/min). The serum was placed
at−80°C for later analysis of biochemical and antioxidant param-
eters. Liver tissue (nine fish/each cage) was collected and mixed
in 1·5ml RNA-free tubes and then were immediately frozen in
liquid N2 which were stored at −80°C for gene expression
analyses.

Proximate composition, fatty acid profile and curcumin
analyses

Crude protein, crude lipid and moisture of the whole body and
the diet were analysed following the procedures of the
Association of Official Analytical Chemists (AOAC, 2005).
Briefly, themoisture contentwasmeasured by drying to constant
weight at 105°C for 6–8 h. The crude lipid and crude protein con-
tent (N × 6·25) were determined by the ether extraction using
Soxhlet method and Kjeldahl method, respectively. Lipid
contents of liver and muscle were extracted and measured by
chloroform–methanol (v/v, 2:1) as previously described(30).

The fatty acid profile of liver and muscle was determined
using the previously described procedures(31) with some modi-
fication(27,32,33). The liver andmuscle tissues were freeze-dried in
a lyophilized chamber (Alpha 1-4 LDplus; Christ). HP6890 gas
chromatograph (Agilents Technologies Inc.) with the capillary
column (007-CW; Hewlett Packard) and a flame ionization
detector were used to identify and quantify fatty acid methyl
esters.

CC was analysed using the previously described procedures(34)

and National Standards of the People’s Republic of China (GB1886.
76-2015) with some modification. Liquid chromatographic condi-
tions: Purospher C18 column (4·6mm× 250mm, 5 μmparticle size;
Merck Drugs & Biotechnology). The mobile phase was composed
of acetonitrile–4% acetic acid (55:45, v/v) at a flow rate of 1·0ml/
min. The wavelength of the detection was at 324 nm. The column
temperature was 35°C. The injection volume was 10 μl.

Serum parameters and antioxidant capacity analysis

Serum total cholesterol, TAG, LDL-cholesterol, HDL-cholesterol,
alanine transaminase and aspartate transaminase were determined
by the automatic biochemical analyzer (Mindry BS-180; Mindry).

Serum superoxide dismutase (SOD), catalase (CAT), total anti-
oxidant capacity andmalondialdehyde (MDA)weremeasured by a
commercial kit (Nanjing Jiancheng Bio-Engineering Institute). SOD
activity was measured by the xanthine/xanthine oxidase method
based on the production of O2−, which oxidises hydroxylamine
to form nitrites, appearing purplish red in the presence of
chromogenic agents. The CAT decomposition of H2O2 is quickly
terminated by adding ammonium molybdate. The remaining
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H2O2 forms a yellow complex with ammonium molybdate, and its
variation is measured at 405 nm to calculate the CAT activity. Total
antioxidant capacity is determined by colourimetry, where antioxi-
dant substances reduce Fe3þ to Fe2þ, and Fe2þ and phenanthrene
substances form stable complexes. MDA is determined by the thi-
obarbituric acidmethod,whereMDAand thiobarbituric acid forma
red product with a maximum absorbance value at 532 nm.

Quantitative real-time PCR

Gene expression was determined by real-time reverse-
transcriptase quantitative PCR according to the previous
procedure(33). Total RNA was extracted from the liver of large
yellow croaker using a Trizol Reagent (Invitrogen). The quality
of isolated RNA was measured spectrophotometrically
(Nanodrop 2000; Thermo Fisher Scientific), and the integrity
was determined on a 1·2 % denaturing agarose gel. Then,
RNA was reverse-transcribed to cDNA by a Prime Script-RT
reagent Kit with gDNA Eraser (perfect real-time) (Takara).
Reverse-transcriptase quantitative PCR was performed in a
quantitative thermal cycler (CFX96™ Real-Time System; BIO-
RAD). The amplification was performed in a total volume of
25 μl, containing 1 μl of each primer (10 μmol), 1 μl cDNA prod-
uct, 12·5 μl SYBR-Premix ExTaqII (Takara) and 9·5 μl RNA-free
water. The real-time PCR programme was as follows: 95°C for
2 min, followed by forty cycles of 95°C for 10 s, 58°C for 10 s
and 72°C for 20 s. The primer sequences were obtained from
previous paper(3,26,28,35) (online Supplementary Table S2).
The amplification efficiencies of all genes were approximately
equal and ranged from 94 to 105 %. The mRNA levels were cal-
culated using the 2−ΔΔt method(36). Finally, data were expressed
as fold change relative to the control group.

Statistical analysis

SPSS 19.0 (SPSS) was used to analyse all data. Data are shown as
mean values with their standard errors. The one-way ANOVA
method was used to analyse all data. Statistical significance
was set at P< 0·05 using Tukey’s multiple range tests.

Results

Growth performance and survival rate

Final body weight, weight gain and specific growth rate in fish
fed the diet with 0·04 % CC were significantly higher than the
control group (fish fed the HFD) (P< 0·05) (Table 3). Therewere
no statistical differences in SR, hepato-somatic index and viscera-
somatic index among treatment groups (P> 0·05) (Table 1).

Whole-body composition and lipid deposition in liver and
muscle

The lipid levels of the whole body and liver were dramatically
affected by dietary CC (P< 0·05) (Table 2). Liver lipid content
decreased dose-dependently with increased CC, where liver
lipid levels of 0·04 and 0·06 % CC groups were remarkably lower
than the control group (P< 0·05). In the whole body, fish fed the
diet with 0·04 % CC had the lowest lipid content (P< 0·05). No
significant differences were observed in crude protein, moisture
and muscle lipid content among treatment groups (P> 0·05)
(Table 2).

Serum metabolite parameters

The levels of total cholesterol, TAG and LDL-cholesterol
decreased dose-dependently with the increased CC (Fig. 1).
Fish fed diets with 0·04 and 0·06 % CC hadmarkedly lower levels
of LDL-cholesterol and TAG than the control group (P< 0·05)
(Fig. 1), while HDL-cholesterol levels were significantly higher
in fish fed the diet with 0·04 % CC (P< 0·05) (Fig. 1). The activity
of alanine transaminase and aspartate transaminase was signifi-
cantly decreased in 0·04 % CC group compared with the control
group (P< 0·05) (Fig. 1).

Antioxidant parameters

MDA content was remarkably lower in CC supplementation
groups compared with the control group (P< 0·05) (Fig. 2);
moreover, the lowest MDAwas observed in fish fed the diet with
0·04 % CC (P< 0·05). The activity of CAT and SODwas strikingly
higher in CC groups than the control group. In addition, fish fed

Table 1. Growth response and survival of large yellow croaker fed diets with graded levels of curcumin level (n 3)
(Mean values with their standard errors)

Curcumin level (% dry weight)

0 0·02 0·04 0·06

Mean SEM Mean SEM Mean SEM Mean SEM

Initial body weight (g) 15·85 0·02 15·85 0·16 15·90 0·14 15·72 0·09
Final body weight (g) 35·59a 0·66 35·36a 2·70 38·11b 2·38 35·71a 1·91
WG (%)* 124·58a 4·48 123·17a 19·28 139·86b 16·64 127·15a,b 11·76
SGR (%/d) † 1·16a 0·03 1·15a 0·01 1·25b 0·04 1·17a,b 0·04
SR (%)‡ 86·67 1·67 88·89 0·96 85·00 1·67 86·11 2·55
HSI (%)§ 3·31 0·25 2·81 0·30 3·18 0·21 2·95 0·56
VSI (%)|| 8·56 8·56 8·15 0·37 8·55 0·40 8·36 0·12

WG, weight gain; SGR, specific growth rate; SR, survival rate; HSI, hepato-somatic index; VSI, viscera-somatic index.
a,b Mean values within a row with the same superscript letters were not significantly different among dietary treatments by Tukey’s test (P> 0·05).
* WG (%)= 100 × (final weight − initial weight)/initial weight.
† SGR (%/d)= 100 × (Ln final weight − Ln initial weight)/experiment period.
‡ SR (%)= 100 × final number/initial number.
§ HSI (%)= 100 × liver weight/body weight.
|| VSI (%) =100 × visceral weight/body weight.
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the diet with 0·04 % CC had the highest activity of SOD and CAT
(P< 0·05) (Fig. 2). Similarly, fish fed diets with 0·04 % and 0·06 %
CC had significantly higher total antioxidant capacity than the
control group (P< 0·05) (Fig. 2).

Fatty acid profiles

The ratio of hepatic SFA:C18 : 1n-9 decreased gradually with the
increased CC. However, C20 : 4n-6, C20 : 5n-3, C22 : 6n-3, n-6
PUFA and n-3 PUFA increased dose-dependently when CC

increased (Table 3). In the liver, SFA and C18 : 1n-9 were signifi-
cantly lower in 0·04 % CC group than the control group
(P< 0·05). The C20 : 4n-6, C20 : 5n-3, C22 : 6n-3, n-3 PUFA,
n-6 PUFA, n-3:n-6 PUFA andn-3 Lc-PUFAweremarkedly higher
in fish fed the diet with 0·04 % CC than the control group
(P< 0·05). There was an upward trend of C22 : 6n-3, n-3
PUFA, n-3:n-6 PUFA and n-3 Lc-PUFA in the muscle, and no sig-
nificant differences were observed among treatment groups
(P> 0·05) (Table 4).

Table 2. Effects of curcumin on whole body composition of large yellow croaker (n 3) (% wet weight)
(Mean values with their standard errors)

Index

Curcumin level (% dry weight)

0 0·02 0·04 0·06

Mean SEM Mean SEM Mean SEM Mean SEM

Moisture (%) 72·22 1·62 72·11 0·79 71·46 0·31 71·84 0·64
Crude protein (%) 15·14 0·46 15·23 0·54 15·81 0·25 15·33 0·14
Crude lipid (%) 9·36b 0·17 8·89a,b 0·17 8·55a 0·32 8·80a,b 0·35
Liver lipid content (%) 40·70c 0·71 39·24b,c 0·93 37·80b 0·73 35·01a 0·83
Muscle lipid content (%) 9·65 0·70 9·41 0·26 9·24 0·43 9·11 0·28

a,b,c Mean values within a row with the same superscript letters were not significantly different among dietary treatments by Tukey’s test (P> 0·05).

TA
G

 (m
m

ol
/l)

0

2

4

6

a a,b

b

a,b

0 0·02 0·04 0·06
0

LD
L-

ch
ol

es
te

ro
l (

m
m

ol
/l)

H
D

L-
ch

ol
es

te
ro

l (
m

m
ol

/l)

TC
 (m

m
ol

/l)
AL

T 
(U

/m
l)

AS
T 

(U
/m

l)

1

2

3

4

5

0

1

2

3

4

5

10

15

20

25

30

30

40

50

60

80

70

0

2

4

6

8

10

Curcumin level (% dry weight)
0

b b b b

a

a
a

b

0·02 0·04 0·06
Curcumin level (% dry weight)

0 0·02 0·04 0·06
Curcumin level (% dry weight)

0 0·02 0·04 0·06
Curcumin level (% dry weight)

0 0·02 0·04 0·06
Curcumin level (% dry weight)

0 0·02 0·04 0·06
Curcumin level (% dry weight)

c
b,cb

b
a,b

a
a,b

b,c
c

a

b

a

(F)(D) (E)

(C)(B)(A)

Fig. 1. Serum biochemical indexes and enzyme activities. (A) TAG, (B) total cholesterol (TC), (C) LDL-cholesterol, (D) HDL-cholesterol, (E) alanine transaminase (ALT)
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Table 3. Fatty acid profiles (% total fatty acids) in the liver of large yellow croaker (n 3)
(Mean values with their standard errors)

Curcumin level (% dry weight)

0 0·02 0·04 0·06

Mean SEM Mean SEM Mean SEM Mean SEM

14 : 00 2·98 0·11 3·09 0·09 3·12 0·04 3·29 0·33
16 : 00 16·97 0·78 16·57 0·69 15·83 0·38 16·72 0·34
18 : 00 5·80 0·61 4·97 0·03 4·70 0·61 5·31 0·34
20 : 00 1·18 0·05 1·14 0·05 1·16 0·03 1·16 0·08
∑SFA 26·93b 0·36 25·77a,b 0·74 24·80a 0·92 26·48b 0·46
16 : 1n-7 7·85 0·35 7·91 0·18 7·83 0·06 8·11 0·37
18 : 1n-9 20·32b 0·86 19·83a,b 0·29 19·05a 0·22 19·39a,b 0·15
∑MUFA 27·90 1·08 27·75 0·12 26·87 0·25 27·50 0·51
18 : 2n-6 24·27 0·72 25·01 0·58 25·50 1·17 24·18 0·75
20 : 4n-6 0·49a 0·01 0·53b 0·02 0·57c 0·01 0·54b,c 0·01
∑n-6 PUFA 24·76 0·72 25·54 0·59 26·07 0·68 24·73 0·75
18 : 3n-3 2·36 0·01 2·45 0·11 2·45 0·05 2·58 0·40
20 : 5n-3 2·69a 0·19 3·04b 0·12 3·33b 0·11 3·14b 0·06
22 : 6n-3 2·07a 0·28 2·30a,b 0·15 2·55b 0·07 2·25a,b 0·08
∑n-3 PUFA 7·11a 0·48 7·72b 0·21 8·40c 0·23 7·76b 0·21
n-3:n-6 PUFA 0·29a 0·29 0·30a,b 0·01 0·32b 0·01 0·31b 0·01
∑n-3 LC-PUFA 4·76a 0·47 5·34b 0·23 5·89b 0·18 5·40b 0·13

LC-PUFA, long-chain PUFA.
a,b,c Mean values within a row with the same superscript letters were not significantly different among dietary treatments by Tukey’s test (P> 0·05).
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different among dietary treatments by Tukey’s test (P> 0·05).
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mRNA levels of genes related to lipid metabolism

The transcript levels of pparα, carnitine palmitoyltransferase I
(cpt1) and acyl-CoA oxidase (aco) notably increased in CC treat-
ment groups compared with the control group (P< 0·05); fur-
thermore, fish fed the diet with 0·04 % CC had the highest
expression of pparα, cpt1 and aco (P< 0·05) (Fig. 3(A)). The
mRNA levels of sterol-regulatory element-binding protein 1
(srebp1) and fatty acid synthase (fas) in CC treatment groups dra-
matically decreased comparedwith the control group (P< 0·05).
No significant differences were observed in diacylglycerol
O-acyltransferase 2 (dgat2) mRNA levels among dietary treat-
ment groups (P> 0·05) (Fig. 3(B)). The three genes, consisting
of elongation of very long-chain fatty acids protein 4 (elovl4),
elovl5 and Δ6 fatty acyl desaturase (Δ6fad), were involved in
the LC-PUFA biosynthetic pathway. These genes significantly
up-regulated in CC treatment groups compared with the control
group (P< 0·05), and fish fed the diet with 0·04 % CC had the
highest expression of elovl4 and elovl5 (Fig. 3(C)).

Discussion

HFD have been widely used due to cost-effective farming and
protein-sparing effects in aquaculture(1). Suitable feed additives
are effective to alleviate the adverse effects of HFD in farmed
fish. The recent studies have found that dietary CC supplemen-
tation increased protein content and inhibited lipid peroxidation
in the climbing perch liver(37,38). In other fish, 50 mg/kg CC sig-
nificantly improved the growth performance of tilapia fed the
standard diet(20). Fish fed the diet with 5 g/kg CC showed remark-
ably higher final bodyweight of crucian carp(21). Previous studies
have been confirmed that 18 % lipid levels diet (HFD) could
cause hepatic lipid deposition with lower antioxidant capacity
and immunity in large yellow croaker(3,29,39). This study found

that 0·04 % CC supplementation markedly improved the growth
performance of large yellow croaker fed HFD. Therefore, these
suggested that CC could mitigate the adverse effects of HFD and
further promote the growth of large yellow croaker.

The present study showed that lipid levels of the whole body
and liver significantly decreased in 0·04 % CC group, indicating
that CC had a lipid-lowering effects on fish. Similar results were
found in mammals that CC plays a role in lipid lowering and anti-
obesity(15,40–42). The serum lipid profiles were measured to
explore effects of dietary CC on lipid metabolism of large yellow
croaker. Reduced total cholesterol, TAG and LDL-cholesterol
and increased HDL-cholesterol were observed in CC supple-
mentation groups of this study, consistent with effects of CC
on hypercholesterolaemia, hyperlipidaemia and non-alcoholic
fatty liver(43–46). Collectively, lipid-lowering effects of CC on large
yellow croaker might be shown in serum lipid profiles and lipid
content of body and liver.

To further investigate how CC regulated lipid metabolism,
expression of genes related to lipid metabolism in the liver
was detected. PPARα has been shown to play a crucial role in
reduced lipid accumulation via increasing oxidation and lipoly-
sis of fatty acid(47–49). The activation of PPARα up-regulates
expression of aco and cpt1, which are involved in oxidation
of fatty acids(50,51). In this study, mRNA expression of pparα,
cpt1 and aco significantly up-regulated in CC supplementation
groups, suggesting that CC might increase oxidation of fatty
acids. Similar results were found in mammals that CC promotes
expression of pparα and further activates cpt1 and aco(13,52).
SREBP positively participates in synthesising fatty acids, activat-
ing SREBP and then triggering FAS which is a critical lipogenic
enzyme catalysing terminal steps in the de novo biogenesis of
fatty acids(13,53–55). In the present study, CC reduced expression
of srebp1 and fas, implying that de novo synthesis of fatty acids
may be inhibited. Overall, CC reduced hepatic lipid deposition

Table 4. Fatty acid profiles (% total fatty acids) in the muscle of large yellow croaker (n 3)
(Mean values with their standard errors)

Curcumin level (% dry weight)

0 0·02 0·04 0·06

Mean SEM Mean SEM Mean SEM Mean SEM

14 : 00 3·79 0·42 3·74 0·24 3·58 0·05 3·52 0·10
16 : 00 18·73 1·26 18·62 0·28 18·44 0·33 17·54 0·17
18 : 00 4·98 0·04 4·97 0·23 5·04 0·28 5·06 0·50
20 : 00 1·13 0·10 1·15 0·06 1·25 0·80 1·32 0·11
∑SFA 28·64 1·56 28·49 0·66 28·30 0·30 27·44 0·38
16 : 1n-7 6·37 0·31 6·44 0·27 6·21 0·26 6·05 0·15
18 : 1n-9 17·64 0·54 17·70 0·56 17·55 0·55 17·09 0·26
∑MUFA 24·01 0·74 24·13 0·67 23·76 0·81 23·14 0·11
18 : 2n-6 23·78 0·54 22·54 1·45 22·61 1·17 22·15 0·81
20 : 4n-6 0·66 0·02 0·72 0·04 0·73 0·02 0·70 0·08
∑n-6 PUFA 24·44 0·53 23·26 1·44 23·35 1·19 22·86 0·84
18 : 3n-3 2·35 0·10 2·33 0·03 2·27 0·03 2·26 0·18
20 : 5n-3 4·02 0·37 4·40 0·13 4·26 0·16 4·34 0·17
22 : 6n-3 3·59 0·29 4·00 0·39 4·26 0·16 4·14 0·28
∑n-3 PUFA 9·79 0·68 10·72 0·50 10·79 0·23 10·75 0·49
n-3:n-6 PUFA 0·41 0·03 0·46 0·05 0·46 0·03 0·47 0·01
∑n-3 LC-PUFA 7·61 0·63 8·40 0·52 8·52 0·25 8·49 0·37

LC-PUFA, long-chain PUFA.
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via promoting oxidation of fatty acids and decreasing de novo
synthesis of fatty acids.

In addition to the lipid-lowering effects of CC, this study also
found that CC could regulate the synthesis of PUFA in large
yellow croaker. Dietary CC increased the ratio of n-6 PUFA:
n-3 PUFA, while decreased SFA in the liver of large yellow
croaker. These changes were probably due to improved SFA
lipolysis(56). Reduced SFA might result in increased n-3 PUFA
andn-6 PUFA in the liver. In addition, CCmight promote the syn-
thesis of PUFA. In this study, CC could up-regulate expression of
elovl4, elovl5 and Δ6fad in the liver, which are speed limiting
enzymes in the synthesis of PUFA(57,58). This function of CC
was firstly found in fish. In the muscle, n-3 PUFA and n-6
PUFAwere dose-dependently increased by dietary CC and there
were no statistical differences among treatment groups.
However, it is expected that PUFA of the muscle would be
remarkably increased with the farming period extending. This

finding is important because the fish muscle is an important
source of PUFA for human beings.

The effects of dietary CC on alleviating liver damage and
improving antioxidant capability also were investigated. aspar-
tate transaminase and alanine transaminase are released from
hepatocytes into the blood during liver injury; therefore, their
activities are biomarkers of liver damage(59). Reduced serum
aspartate transaminase and alanine transaminase was observed
in this study, indicating that CCwas able to alleviate liver damage
induced byHFD. Its protective effects on the liver have also been
found on other fish(38,60,61). In addition, previous studies have
confirmed that CC could improve antioxidant capacity in
mammals(11,62,63). In this study, MDA (the biomarker of lipid
peroxidation) levels were significantly decreased in CC supple-
mentation groups, similar to results that dietary CC supplemen-
tation inhibited lipid peroxidation, and reduced MDA content in
climbing perch(38), rainbow trout(64), crucian carps(21) and nile
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Fig. 3. Effects of dietary curcumin (CC) on relative mRNA levels of genes involved in lipid metabolism pathways including (A) catabolism, (B) anabolism and (C) long-
chain PUFA biosynthesis in the liver of large yellow croaker. Results are means with their standard errors (n 3). a,b,c,d Mean values with the same letters were not sig-
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tilapia(20). Furthermore, this study also found that dietary CC
increased total antioxidant capacity and the activity of SOD
and CAT, which are crucial parameters in the antioxidant system.
Similar results were found in climbing perch and rainbow trout
that dietary CC increased activity of SOD and/or CAT(20,37).
Collectively, these indicated that CC supplementation was likely
to improve the health and function of the piscine liver through
alleviating liver damage and improving antioxidant capacity. In
addition, the increasedn-6 PUFA andn-3 PUFA of the livermight
be beneficial to the health of fish(27,65). Therefore, the lower liver
damage and higher antioxidant capacity might promote growth
performance of large yellow croaker.

In conclusion, the present study showed that 0·04 % CC
supplementation could mitigate the adverse effects of HFD
and promote growth of large yellow croaker. The positive per-
formance of CC might attribute to its role in reducing liver lipid
deposition, improving the antioxidant activity and increasing the
PUFA contents. Reduced abnormal hepatic lipid deposition was
probably due to increased fatty acid oxidation and decreased de
novo synthesis of fatty acids.
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