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Abstract

In this paper we study the existence and uniqueness of a solution for minimization problems with generic
increasing functions in an ordered Banach space X. The standard approaches are not suitable in such
a setting. We propose a new type of perturbation adjusted for the problem under consideration, prove
the existence and point out sufficient conditions providing the uniqueness of a solution. These results
are proved by assuming that the space X enjoys the following property: each decreasing norm-bounded
sequence has a limit. We supply a counterexample, which shows that this property is essential and give a
modification of obtained results for the space C(T), which does not possess this property.
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1. Introduction

Consider the following optimization problem
(Pr) f(x) — min subjectto x € K

where K is a closed subset of a Banach space X and f is a lower semicontinuous
function defined on K. It is well known that this problem has a solution if K is a
compact set. For noncompact sets K it is quite natural the ‘generic’ setting of the
existence problem. Instead of an individual problem (P;) we consider a set of such
problems with functions f belonging to a metric functional space equipped with some
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natural metric and show that a solution exists for problems (P;) with f belonging to a
certain large set (for example a countable intersection of open everywhere dense sets).
Such approach when some property is studied not for a single object but for a class
of such objects is common in global analysis and in the theory of dynamical systems
(see, for example, [2, 3] and [7]).

The generic approach has been also applied in the optimization theory. Beer and
Lucchetti [1] considered minimization problems with objective functions belonging
to the space A of lower semicontinuous convex functions defined on a Banach space,
equipped with the completely metrizable topology of uniform convergence of distance
functions on bounded sets. They proved that there exists an everywhere dense G;
set Ag C A such that for each f € A, the problem (P;) has a unique solution.
Deville, Godefroy and Zizler [4] obtained an analogous result for a space of bounded
continuous functions on a Banach space with the topology which is not weaker then
the topology of the uniform convergence. The second author [9] established the
existence result for optimal control problems with a generic integrand without con-
vexity assumptions. Recently Ioffe [5] discovered the connection between variational
principles and generic existence resulits. In a joint paper with the second author [5]
they obtained a general variational principle (an extension of the variational principle
of Deville, Godefroy and Zizler [4]) and showed that generic existence results in
optimization theory and calculus of variations are obtained as a realization of this
principle.

We now describe the scheme of the generic approach in the study of optimization
problems. Consider problems (P;) with f belonging to a metric space M. For a
given function f € M and a small € > 0 we choose a positive number § which is
essentially smaller than € and a point x, € X such that f (xo) < inf, g f (x) + 8, such
a point is called the (f, 8)-solution. Then we construct a new function f € M which
belongs to a given neighborhood of f and show that all (f , 28)-solutions belong to
the closed ball B(x,, €) centered at the point xo with radius €. Finally we show that
the following holds:

Property (D): For g belonging to a small neighborhood of f all (g, §)-solutions
belong to B(xo, €).

By the variational principle in [5] property (D) implies the existence of a G; set
M, C M such that for each f € M, the problem (P ) has a unique solution.

In this procedure the crucial stage is constructing a proper perturbation f which
belongs to the space M and allows to establish property (D). Usually the function
x > f(x) + vllx — xo| or its modifications were taken as a perturbation of f .

This kind of perturbations is suitable for many spaces of convex functions, contin-
uous and lower semicontinuous functions but classes of objective functions arising in
applications are more various. For example maximization of either utility functions
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or production function is considered in many models of mathematical economics. As
arule both utility and production functions are increasing with respect to natural order
relations. Very often it is assumed that utility functions are quasiconcave (or even
concave), and production function either quasiconcave or quasiconvex.

In the present paper we study the existence of solutions of the problem (Py) for
some classes of increasing lower semicontinuous functions f defined on a closed
set K in an ordered Banach space. The perturbations which are usually used to
obtain a generic existence result are not suitable for such classes since they break the
monotonicity. Thus the problem arises to find appropriate perturbations of increasing
functions which are also increasing functions. We propose a new kind of perturbations,
which allows us to establish the following property:

Property (D'): For g belonging to a small neighborhood of f all (g, 8)-solutions
belong to B(xg, €) — X, where X, is a cone of positive elements of X.

Since property (D’) is only a weakened version of property (D), a generic existence
result for increasing functions cannot be obtained as a realization of the variational
principle in [5]. Nevertheless using property (D’) we establish the existence, in the
generic sense, and the following property (instead of uniqueness): the set of solutions
has a greatest element. Under some additional assumptions the uniqueness follows
from this property. These results are obtained only for ordered Banach spaces such
that each decreasing norm-bounded sequence has a limit. We supply a counterexample
which shows that this property plays the crucial role. We also give a modification of
the main theorem for the space C(T), which does not enjoy this property.

2. Preliminaries

Let X be a Banach ordered space and X, = {x € X : x > 0} be the cone of
its positive elements. Assume that X, is a closed convex normal cone. (A cone of
positive elements is called normal if there exists an equivalent monotone norm |} - ||:
inequalities 0 < x < y imply |lx|| < |llyll.) We assume that the cone X, is completely
regular ([6], see also [8]) that is it enjoys the following property (A):

Property (A): If (x;)< is a decreasing sequence (x;,; < x; for all i) and sup; ||x; ||
< +4-oc¢ then the sequence x; converges.

Recall [6] that a normal closed cone in a reflexive Banach space is completely
regular; the cone of nonnegative functions (with respect to usual order relation) in the
space L, of all integrable on a measure space functions is also completely regular.

Let & : [0, +00) — [0, +00) be an increasing function such that ®(¢) — +00 as
t — +o0 and a be a real number. Let K be a closed subset of X. Denote by & the
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set of all lower semicontinuous functions K — R such that

) fx)>d(lIxl) —a forall x € K.

REMARK 2.1. If K is a bounded set then 2 can be taken to be the set of all lower
semicontinuous functions f defined on K such that f (x) > —a for all x € K for an
appropriate choice of a.

It follows directly from (1) that the following assertion holds.

PROPOSITION 2.1. For each real number c there exists a positive integer N such
that for each x € K and h € & we have h(x) < c implies ||x|| < N.

We consider & with the topology of uniform convergence on bounded subsets of
K. Namely, we consider the uniformity on K, which has the following base:

Q) {frgedxd |f(x) —g)<1/N,xeK,|x| <N}, N=1,2,....

Clearly the uniform space & is metrizable and complete.

We denote by B the set of all strictly increasing continuous functions f§ : {0, +00)
— [0, +00) such that B(0) = 0. For 8 € B denote by A the set of all functions X
defined on the set K — K and such that A(x) > inf{8(Jjz]|) : z > x}forallx € K — K
and A(0) = 0.

PROPOSITION 2.2. Let § € Band A : K — K — [0, oc). The following assertions
are equivalent:
(a) A€ Aﬂ,
(b) A(0) = 0 and for each ¢ > 0 and each x € K — K with A(x) < ¢ there exists
y > x such that 8(||y|l) < e.

PROOF. (a) implies (b): It follows from the definition of the class Az that A(0) = 0.
If A > inf{B(llz]l) : z = x} and A(x) < &, then inf{B(||z]]) : z = x} < ¢ as well,
hence a required y exists.

(b) implies (a): Letx € K — K and ¢’ > 0. Then there exists y > x such that
Blyl) < A(x) +¢&'. Thus inf,», B(llz[) < A(x) + &' .

Consider the simplest case when B(z) = t. In this case Ag = {A : A(0) =
0, AM(x) > M(x) forallx € K — K} where

© Nx) =inf |y,

Assume now that X is a Banach space with a trivial order relation x > y if and onl'y
ifx = y. Insuchacase X, = {0} and A’ (x) = ||x|.

We will consider various perturbations of functions belong to &« which are con-
structed by means of a function A € Ag with 8 € B.
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DEFINITION 2.1. Let 8 € B and A € Ag. Let f € &/. Consider sufficiently small
positive numbers y and § and a point x, € K such that f (x,) <inf,.x f (x) + 3. Let
1 be a nonnegative function defined on Kx and possibly depending on f and A such
that Supy, ., ,ex—x #(x) < +ooforall r > 0.

A function g : K — R is called a A-perturbation of a function f € &/ (determined
by the set (x,, y, 8), with respect to the function u) if:

@ g=f; 8)=f(x);
(b) (x € X, g(x) <inf,.x g(x) + 8) implies A(x — x,) < ¥;
() gx)—f(x) 2=yulx —x,)forallx € X.

REMARK 2.2. A A-perturbation g is actually a one sided perturbation. It follows
from (a) and (c) that

O0=g(x)—fx) <gx)~fx) <yulx —x.)

The simplest example of a A-perturbation is the sum g(x) = f (x) + yA(x — x,) (see
Proposition 5.1 for details); here . € Ag and X is bounded on the intersection of
K — K withthe ball {x : [[x|| < r} for each r. It is assumed that the function y which
appears in Definition 2.1 is equal to A. Unfortunately, sometimes this perturbation is
not suitable and we are forced to consider different kinds of perturbations.

Let f be areal-valued function defined on K. We shall use the following notation:
infg(f) = inf(f (x) : x € K}.

A point x, € K is called a (f, §)-solution of a function f € & with § > 0 if
f(x,) <infg(f)+ 4. Thus if x, is a (f, §)-solution and g is a A-perturbation of
a function f determined by (x,, ¥, §) then each (g, §)-solution is close to x, in the
following sense: A(x — x,) < y.

Some examples of A-perturbations are given in Section 5.

In order to prove a generic existence result we need to have a fairly rich set
of functions which contains with each its element a certain A-perturbation of this
element. Actually we need to have only perturbations determined by sets (x,, y, &)
where y is rather small and § much smaller then y. We express this requirement in
the following form: we shall consider a closed subset .# of the topological space &
which possesses the following property:

Property (M): There exist 8 € B and A € A, such that for each f € .#, for each
fairly small ¥ > 0 and positive 8 < y? and for each (f, §)-solution x, the set .4
contains also a A -perturbation of the function f determined by (x,, y, 8) (with respect
to a certain function u depending on A and f ).

Some concrete examples of sets with the property (M) are given in Section 6. We
now present only the simplest example.
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EXAMPLE 2.1. Let K = X and .#, be a cone of functions defined on a set X with

the following properties:

(1) #, contains a function A € Ag with 8 € B such that A is bounded on each ball;

(2) if f € A and x € X then the function f, (x) = f (x — x,) belongs to .#, as
well.
Then the set .# = .#; N & enjoys property (M). Indeed if f € A, y > 0 and
x, € K then the function g(x) = f (x) + yA(x — x,) belongs to .#. We can consider
g as a A-perturbation (see Remark 2.2).

3. The main result

We will establish the following result.

THEOREM 3.1. If a set .#\ N & enjoys the property (M) then this set contains

a subset ¥, which is a countable intersection of open everywhere dense (in .#)
sets, such that for each h € ¥ there exists an element y" € K with the following
properties.

(1) h(y") = inf(h);

(2) ifx € K and infx(h) = h(x) then x < y*;

(3) for each € > O there exist § > 0 and a neighborhood U of h in .# with the
following property: for each h' € U and each (h', §)-solution x there exists a vector
u such that ||ul| < e andx < y" + u.

The proof of Theorem 3.1 is based on the use of special - perturbations g/*, which
we introduce below.

4. Proof of the theorem

Let the class .# be defined by means of a function A € Az with 8 € B. For each
integer { > 1 choose numbers y (i) and § (i) such that

\2
@) O<y(i)<min[1,,3(%)], 0<5(z‘)<”g) .
Let &(i) = 38(i) < y (i)*. Consider a function f € .# and a (f, §})-solution x (f, i).
By the definition
s) £ D) < inf(F) + 8.
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Since the set .# possesses the property (M) we can choose y (i), §(i) so small that
the set .# contains A-perturbation of the function f determined by the collection
x(f, ), y(@), &) for all natural numbers i. We will denote these perturbations by
g’ Since g/(x) > f (x) we have

- f_, .
(6) inf(g™") = inf(f).
1t follows from the definition of A-perturbation and (5) that
™ g (f, ) = f (&x(f, D) < inf(f) + 8.
The following assertion immediately follows from the definition of A-perturbation.

PROPOSITION 4.1. Ifx € K and g/ (x) < infx(g/") + &8 (i) then A(x — x(f, i)) <
y ().

For f € of set
® o) = (inf(f) +4,

where (infgx(f));, = max(infg(f), 0). It follows from Proposition 2.1 that there
exists a positive integer N = N (f) such that for each x € K and h € & we have

)] h(x) < c(f) implies |ix|| < N.
Let N = N(f) be a positive integer such that (9) holds and
10y U(f,iy=t(he # : |h(x) —gl'(x)| <8@), forall x e K, |x|| <N}

Clearly U(f, i) is an open neighborhood of the function g/ (in the topological space
M).

LEMMA 4.1. Foreach h € U(f, i) we have infx (h) =inf{h(x) :x € K, ||x|| < N}.
PROOF. Applying (6) and (7) we can conclude that

(1) inf(f) <inf(¢") < g"'(x(f, 1)) < inf(f) +§'() <inf(f) + 1.

Take y € K such that g¢/'(y) < infx(g’¥) + 1. We have from (11) that

(12) g"' ) < inf(g") +1 < inf(f) +2 < inf(f)+ +2.
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Thus g/(y) < infx(f)+ + 2 < ¢(f). The formula (9) shows that |[y|| < N. Let
h € U(f, i) thatis (10) holds for all y with |y|| < N. Then

(13) ir}f(h) <3 +g ) < ir}f(f)+ + 3.
Take x € K such that
(14) h(x) < irI}f(h) + 1.

It follows from (13) then h(x) < infx (f )+ + 4 = c(f ). Applying again (9) we have
fix]l < N. Thus the inequality l{x| > N implies #(x) > infx(h) + 1. Thus the
desired result follows. a

REMARK 4.1. It has been proved that (14) implies |x| < N. In particular
lx(f, DIF < N.

COROLLARY 4.1. |inf (k) — infx (g/)| < 8(i) for each h € U(f, i).

COROLLARY 4.2. If h € U(f, i) and h(x) < infg(h) + 1 then |h(x) — g/(x)] <
§().

Indeed it follows from the inequality ||x|| < N and the definition of the neighbor-
hood U(f, i).

PROPOSITION 4.2. Let h € U(f, i). Then the following hold:

(1) h(x(f,i)) < infg(h) + 28'(i).
(2) Fora (h, §(i))-solution x the inequality A(x — x(f, i)) < y (i) holds.

PROOF. (1) The inequality [|lx(f, i)|| < N implies h(x (f, i)) < g/ (x(f, i))+8().
Applying (7), (6) and Corollary 4.1 we can deduce that

RGe(f, ) < inf(f) + 8G) +8'() < inf(g"") +8(0) + &) < inf(h) +28'(0).

(2) It follows from Remark 4.1 that ||x|| < N. Corollary 4.1 also shows that
infx (h) < infg(g’") + 8(i). Hence

g"'(x) < h(x) +8(i) < inf(h) +28(i) < inf(g/") +38(i) = inf(g"") + 8'(D).
The desired result now follows from Proposition 4.1. O

PROPOSITION 4.3. If f € .# then g/ — f (in the topological space M) as
i = 400.
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PROOF. It follows from the definition of the A-perturbation then there exists a
function . (x) such that sup ., .x_x u(y) < +ooforallr > Oand g/'(x)—f (x) <
y(Oux—x(f, i) forallx € K. Since ||x(f, i)|| < Nforalli,g/* > fandy (i) = 0
it follows that g/ — f. a

Foreach g = 1,2, ... consider the set

+00
A= ve.o,

i=q feM

where U(f, i) is defined by (10). Clearly %, is open in .# and g/ € &, for all
feAMadali>gq,q=12,.... Itfollowsfrom Proposition 4.3 that J, is
everywhere dense in /.

Let

+o0
(15) # =%,
q=1

Thus % is a countable intersection of open everywhere dense sets in ./# .

PROOF (of Theorem 3.1). We will show that the set /# enjoys the required prop-
erties. Let h € . It follows from the definition of S that there exists a sequence
(f )32 of elements of .# and a strictly increasing sequence of natural numbers (i,) ;2]
such that

(16) h e U(f,, iy), q=12,....
Extracting, if it is necessary, a subsequence, we can assume that
{17 28'(ig41) <8(iy), gq=1,2,....

Consider the sequence {x(f,, iq)}Z"=1 € K. It follows from Proposition 4.2 (1) and
(16) that x (f,, i,) is a (h, 28'(i;))-solution, that is

(18) h(x(fq. i) < ir;f(h) +28'(Gy), g=1,2,....
By (18) and (17) we have foreachg =1, 2, ...

(19) B (Fas1s igr)) < iDE(R) + 28 (igr) < inf () + 8.

Applying Proposition 4.2 (2) we can conclude that

(20) A (faa1s ige1) = x(fq, g)) < v (iy)-
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It follows from Proposition 2.2 and (4) that for each positive integer g there exists a
vector v, such that

1
(21) vq > x(fq+1v iq-H) —X(fq, iq))a ﬂ(“vq”) < y(lq) < ﬂ <W> .

Since B is strictly increasing we have

(22) lugll <

Yig+l’

Define

+00
y"=x(fnvin)+zvq’ n:1,2,....

q=n

It follows from (22) that the sequence (y,) is well-defined. The relations (1) and (18)
show that there exists a positive integer N = N (h) such that |lx(f,, i)l < N for all
q. Thus

(23) sup |lyall < +o00.

We have also

Ynt1 = Yn = x(fn+lv in+l) "'x(fm in) — VUp 5 0.

Thus the sequence (y,) is norm-bounded and decreasing. It follows from the property
(A) of the cone X that there exists lim, y, = y”. Clearly also y* = lim, x(f, i,).
Since h is lower semicontinuous it follows from (18) that #(y*) = infg (k). Thus the
first statement of Theorem 3.1 is proved. We now check the second statement.

Take a minimizer x of the function & thatis x € K such that h(x) = infg (k). Since
h € U(f,, i;) we have by applying Proposition 4.2 (2) that A(x — x(f,, iy)) < y(ip).
It follows from Proposition 2.2 that there exists a vector v, such that

v, 2 x —x(fg, i) and By ) < v ().

Thus 0 = lim, v, > x—limg x(fg, i) = x —y". The second statement of Theorem 3.1
is proved.

‘We now prove the third statement. Let 0 < ¢ < 1 and g > 0 be a positive integer
such that y (i;) < B(¢/2). Since y"* = lim, x(f,, i,) we can assume without loss of
generality that ||y* — x(f,, i)l < &/2. Let B’ € U(f,, i;) and x be a (I, 8(i,))-
solution. It follows from Proposition 4.2 (2) that A(x —x (f;, i;)) < ¥ (i,). Hence, there
exists a vector v; such that v; > x —x(fq, ig) and ﬂ(llv;ll) < y(iy) < B(e/2). We
have ||v;|| < g/2. Letu, = v;—(y"—x(fq, ig)). Then [ju,|| < eandx < y"+uq. O
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5. Examples of \-perturbations

We now present two examples of A-perturbations. In this section we consider

functions A defined on the entire space X, generating perturbations which are suitable

for all closed sets K. We will define a function & which appears in the definition of

A-perturbation by means of the function A itself. So we will consider only functions
A with the following property:

24) sup A(x) < +o0 forall r > 0.

llxli=<r

PROPOSITION 5.1. Let A € Ag, y > 0, 8 < 1y* and let x, be a (f, 8)-solution.
Assume that (24) holds. Then

(25) gx) =f (x) +yAlx —x.)

is a A-perturbation of the function f, determined by (x,, y, ) with respect to the
Sunction . = A.

PROOF. It is clear that g > f and g(x,) = f (x,). We also have g(x) — f (x) =
yi(x —x,) =ypu(x —x,). Letx € K and g(x) < infg(g) + 4. Then

fx)+yAlx —x,) =gkx) < ir}f(g) +8<gkx,)+3
=f(x*)+8§ir1}f(f)+28 <fx)+2s.

SoyA(x —x,) <28 < y2 O

PROPOSITION 5.2. Let A € Ag, y € (0,1), 8 < y* and

(26) 8§ <n<y’

Assume that (24) holds. Further f € & and let x, be a (f, 8)-solution. Then the
Sfunction

(27 g(x) = max(f (x), min(f (x,) + yA(x —x,), f (x.) + 1))

is a A-perturbation of the function f determined by (x,., v, 8) withrespecttop = 1+A.

PROOEF. 1t is clear that g(x) > f(x) for all x € K and g(x,) = f (x.). We now
check that the inequality g(x) < infx(g) + & implies AL(x — x,) < y. Assume the last
inequality does not hold. Then

FRI)+yAx—x) > fx)+y2 > f )+
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Thus g(x) = max(f (x), f (x,) + n). We have
f &) +n <max(f (x), f(x.) +1n) =gkx) < illl(f(g) +06 <gx)+8=f(x)+8.
So n < &, which contradicts (26). Hence the inequality A(x — x,) < y holds for
(g, 6)-solutions.

We now estimate the difference g(x) — f (x). It is sufficient to consider only points

x such that f (x) < f (x,) + min(yA(x — x,), n). For such points we have:

g(x) = f (x) + min(yA(x —x.), m) < inf(f) + 8 + min(yA(x —x.),m)
< f(x)+ 8+ min(yA(x — x,), n).

Thus
gx) —f(x) <é+min(yAlx —x,),n) < y(1 +Alx —x,)) = yulx —x,).

a

REMARK 5.1. A perturbation close to (27) with A(x) = ||x}{| has been used in [5].

6. Examples

We now give some examples. First we consider the simplest case when B(t) = t.
In this case Ag = {A : A(0) = 0, A > A’} where the function A is defined by (3):
A (x) = inf{]ly|| : y = x}. We need the following assertion.

PROPOSITION 6.1. The function )’ defined on the space X by (3) is a sublinear
increasing function such that 0 < A'(x) < |\x|| for all x and M'(x) = 0 forx < 0.
If || - || is monotone on the cone X, (that is y > x > O implies ||yl > |x||) then
A'(x) = ||lx|l forx = 0.

PROOF. We will check only that A’ is a sublinear function. It is clear that A'(cx) =
cA'(x) for ¢ > 0. Let x,,x; € X and vectors y; > x; such that ||y;]] < A'(x;) + ¢,

(i=1,2)withg > 0. Theny, + y; > x, + x, and
Ny +x2) 2 iy + y2ll < Il + lly2lb < A'(xy) + A (xp) + 26,

Thus A’ is a sublinear function. O
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EXAMPLE 6.1. Let the cone X, in the Banach space X enjoys the property (A)
and let X be a closed subset of X. Let .#,,.. be the set of all lower semicontinuous
increasing functions defined on K such that (1) holds and (if X is, in addition, convex)
A, be the subset of .4, consisting of convex functions. It is easy to check that
Theorem 3.1 holds for both of these classes. Indeed, the function A is increasing and
convex, so we can use the sum f (x) + yA(x — x,) as a perturbation (compare with
Remark 2.2 and Example 2.1).

We can use also the perturbation (27) for the class of all increasing functions, but
we can not use it for the class .4, ,, since it contains the operation of taking minima.

EXAMPLE 6.2. Consider now the set .#%° of all lower semicontinuous quasiconvex
functions defined on a closed convex set K and the set .41, of all lower semicon-
tinuous quasiconvex increasing functions defined on this set. Recall that a function
f is called quasiconvex if its level sets {x : f (x) < ¢} are convex for each c. Since
max(f(x), f2(x)) and min(f,(x), ¢) with f;, f, quasiconvex and ¢ € R are again
quasiconvex, it follows that the perturbation (27) can be used for study these classes.
We can choose again the function A’ for construction of perturbations. Thus Theo-
rem 3.1 holds for these classes. Note that the sum of quasiconvex functions is not

necessarily quasiconvex, so we cannot use the perturbation (25) in the case.
REMARK 6.1. A generic existence result for the set .#9¢ was established in [5].

EXAMPLE 6.3. Consider the sets .4 of all upper semicontinuous concave in-
creasing functions f defined on a bounded closed convex set K and such that
sup,.x f (x) < a < +4o0o. It is easy to check that a function f defined on K is
increasing and concave if and only if the function f,(x) = —f (—x) defined on the set
—K is increasing and convex. Consider the set .#, , of all lower semicontinuous con-
vex increasing functions defined on — K and such that inf,._x f (x) > —a. Condition
(1) holds for this class (see Remark 2.1). Applying Example 6.1 we can conclude that
Theorem 3.1 holds for .#;,.,. Therefore this theorem holds for .#Z<’, . In the same
manner we can show that Theorem 3.1 holds for the set .4, ., of all upper semicon-

qcv
tinuous quasiconcave increasing functions f such that sup, . f (x) < a < +00.

Now we consider the function B8(r) = * with @ > 0. It is easy to check that
Ag(x) ={A: A(0) =0, A = (A)*(x) where A’ is defined by (3). If X, = {0} then
A% (x) = x|

EXAMPLE 6.4. Let X be a Banach space with X, = {0}. Let £ be a closed convex
cone of lower semicontinuous functions, defined on a closed set K C X. Assume
4 contains the restriction functions x — ||x — x,||* to K for all x, € K. Let & be
the set of all functions f € % such that (1) holds. Then Theorem 3.1 holds for the
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class &/. Note that the assertions (2) and (3) of the theorem can be reformulated for
X+ = {0} in the following way:

(2) Ifinfg(h) = h(x) then x = y* (uniqueness);

(3") For each € > 0 there exist § > 0 and a neighbourhood of 4 in .# such that for
each (/' 8)-solution with &' € U the inequality [lx — y*|| < & holds (stability).

For the space of all lower semicontinuous functions satisfying (1) the generic
existence result was established in [5].

EXAMPLE 6.5. Let X be the space L, of all integrable functions defined on a
measurable space (T, T, 1) and let K be a closed subset of L;. Let At(x) =
fT xidp = ||x ||, where x, = sup(x,, 0) is a positive part of the element x. Let
B(t) = t. Clearly A* € Ay. Let & be the space of all functions f represented in
the form f (x) = f r Q(x)du where Q : L, — L, be a convex increasing operator.
Since the operator x > (x —x,); is convex and increasing it follows that the function
x — |j(x — x,)+| belongs to 8. Thus Theorem 3.1 holds for the class & of all
functions f € £ such that (1) is valid.

7. The uniqueness of a solution

For classes of increasing functions (see Example 6.1, Example 6.2 and Example
6.5) it is possible to establish stronger versions of Theorem 3.1 (under some additional
assumptions).

PROPOSITION 7.1. Assume that the set K possesses the following properties:

(i) foreachy € K there is a minimal element x of the set K such that x < y;
(ii) the set of all minimal elements of the set K is closed in norm-topology.

If M consist of increasing functions then it is possible to replace assertion (2) of
Theorem 3.1 by the following assertion:

(2") the vector y" is the unique minimizer of a function h € €.
y q

PROOF. We will do some changes in the proof of Theorem 3.1. Since functions
g’ are increasing for all i it follows from (i) that we can choose a vector x (f, i) as
a minimal element of XK. Define y, and y” like in the proof of the theorem. Then
y* = lim, x (f,, i,). It follows from (ii) that y* is a minimal element of K. Together
with assertion (2) of Theorem 3.1 this implies assertion (2”). O

PROPOSITION 7.2. Assume that all conditions of Proposition 7.1 hold and moreover

the set Q of all minimal points of the set K is compact. Then the following assertion
holds:
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(3") for each h € S and each € > O there exists § > 0 and a neighborhood
U of h in A with the following properties: for each ' € U and x € Q with
K (x) < infx (k') + & the inequality ||x — y*|| < ¢ holds.

A proof easily follows from assertion (3) of Theorem 3.1 and the following lemma.

LEMMA 7.1. Assume the set of Q of minimal points of the set K is compact. Then
for each ¢ > O there exists § > 0 with the following property. if x,y € Q and
x <y +uwith |ul| <Sthen|x —y| <e.

PROOF. Assume the contrary. Then there is ¢ > 0 and sequences (x,) € Q,
(y») € Q and (u,) such that y, < x, + u,, |u,]l < 1/nand |x, — y.ll > €. Since Q
is compact we can assume without loss of generality that there exist limx, = x and
limy, =y. Wehavex € Q,y € Q and x < y. Since y is a minimal element it
follows that x = y. We obtain a contradiction. O

8. A modification of the main theorem for the space C(T)

The complete regularity of the cone X, (in other words the property (A)) plays
the crucial role in the proof of Theorem 3.1. The example below shows that there
exists a class .# with the property (M) in a Banach lattice without property (A) such
that infimum of each function f € . is not attained. Nevertheless we can consider
modifications of this theorem for some special cases where the property (A) does not
hold. We consider one of these cases in this section.

Let X = C(T) be the space of all continuous functions defined on the compact
topological space T, equipped with the uniform norm and X, be the cone of all
nonnegative functions. It is clear that X, does not possess in general the property (A).
First we show that Theorem 3.1 is not valid for this space.

EXAMPLE 8.1. Let T be a finite dimensional compact space and let x be a bounded
upper semicontinuous discontinuous function defined on 7. Let K = {x € C(T) :
x > X, x|l < c} where c is a sufficiently large number. Then

(28) x(t)=inf{x(#):t € K} forall teT.

Clearly K is closed. Since K is bounded it follows that & is the set of all lower
semicontinuous functions f defined on K with the property f (x) > —a where a
is a real number. The topology generated in the set &/ by uniformity with the base
(2) is the usual normed topology of the uniform convergence on K. Take a strictly
increasing function h € & (that is h(y) > h(x) if y > x); the simplest example of
such a function is A(x) = fodu where 1 is the Lebesgue measure. Consider the
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set .# of all functions f of the form f = h + g where g is a nonnegative lower
semicontinuous increasing function defined on K. This set is closed in the topological
space . Since the function A(x) = inf{||y|| : y > x} is increasing it follows that
the function x — f (x) + yA(x — x,) (x € K) belongs to .# if f € .#. Thus .#
enjoys the property (M). It is clear that each function f € .# is strictly increasing.
Letf € .# andx € K. Since x # x it follows from (28) that there exists x’ € K such
that x’ < x. Since f strictly increases it follows that f (x’) < f (x). Thusinf,cx f (x)
is not attained for each f € .#.

We will show that a minimizer for a generic increasing function exists if we consider
increasing functions defined on a certain upper semicontinuous hull of the given set
K of continuous functions.

Let T be a compact topological space. We denote by C(T) the set of all bounded
upper semicontinuous functions defined on the space 7. Let f be an increasing
function defined on C(T). If (x,) is a decreasing bounded sequence of continuous
functions on T then the pointwise limx,(¢) = infx,(¢) belongs to C‘(t) and there
exists lim f (x,). We will consider increasing functions f which possess the following
continuous-like property (C):

Property (C): if y, € C(T) is a decreasing bounded sequence and x, € C(T) is a
sequence such that either

x, is decreasing, x, < y,, n=1,2,..., limx,(¢) =limy,(¢t) forallt € T;
or
Xn=Yn—6,1, n=12,..., with ¢, =0,

then lim f (y,) = lim f (x,). (Here 1 is a constant function, equal to 1.)

Denote by fA the natural extension of the function f to the set C(T) : f O =
inf{f (y) : y € C(T), y > $} for § € C(T). Clearly f (x) = f (x) forx € C(T) and
fA is an increasing function.

The property (C) allows us to show that the following assertion holds:

PROPOSITION 8.1. Let § € C(T) and $(t) = inf, y,(¢t) for all t € T with a
decreasing sequence y,(t). Then f (3) = inf, f (y,).

PROOF. Let y and y, be as above. Furtherlet y’ € C(T), and y’ > y. The sequence
y, = inf(y,, ¥"), (n = 1,2...) is decreasing. We have

inf y, () = inf inf(y,(#), y'(1)) = inf(inf y, (1), y'(1)) = y(©).
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Since y, is decreasing it follows that y, () — y(#). Since also y,(t) — y(z), the
sequence y, is decreasing and y, > y,. We can conclude, by applying the property
(C), that limf (y,) = limf(y,,)A. Since y’ > y! for all n we have that f (y') >
lim, f (y,) = lim f (y,). Hence f (3) = infccry.y»5 f () = inf, f (¥a). 0O

Let K be a closed subset of C(T). Denote by & the set of all increasing functions
defined on C(T), which enJoy the property (C) and satisfy the inequality (1).

Consider the set K c C (T) defined in the following way: An element X € ¢ (T)
belongs to K if there exists a sequence of elements x, € K and a sequence of positive
numbers ¢, — 0 that the sequence x, + ¢,1 is decreasing and

(29) x(t) = inf(x,(¢) + &,) = limx,(t) forall teT.
If f possesses the property (C) then

(30) inf(f) = inf f (x) = inf £ (£).
K xek iek

Indeed let £ € K and sequences x, and g, are chosen so that (29) holds and y, =
x, + &,1 is a decreasing sequence. Since the property (C) holds we have lim f (x,) =
lim f (y,). Since x(¢) = inf, y,(¢) and (y,) is a decreasing sequence it follows from
Proposition 8.1 that

f@ =inf f (y,) = limf (ya) = lim f (x,) = i0f(f).

Thus (30) holds.
For x € C(T) define A* (x) by the formula:

3D AT (x) =inf{A > 0: A1 > x}.

Let x, be the positive part of an element x. It is easy to check that A*(x) =
maX,er x4 (t) = x4 (#)|| and At > Ag with B(z) = 1.

We use the definitions, notation and results from the Section 2, by assuming that
X = C(@Q), X, is the cone of nonnegative functions, & is the defined above set and
A > A%, The following Proposition will be used instead of Proposition 2.2.

PROPOSITION 8.2. Let Ag be a function defined on C(T). Then Aq > LY if and only
if for each ¢ > 0 and each x € C(T) with Ao(x) < & there exists a positive number
such that A1 > x.

The proof is similar to the proof of Proposition 2.2.
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THEOREM 8.1. Let a set # € & enjoy the property (M) (with respect to a function
A > A%). Then this set contains a set 3¢, which is a countable intersection of open
everywhere dense (in ) sets, such that for each h € 3¢ there exists an element
yh e K with the Jollowing properties:
() k(") = infg (h);
(2) ifx € K and infg(h) = h(x) then y < y".

PROOE. For the proof we can use results from Section 3; then we can argue like in
the first part of the proof of Theorem 3.1, up to (20), by assuming that 8(¢) = . Using
Proposition 8.2 we can find a positive number 7, for each positive integer g, such that

(32) Mgl = x(fgr1, igr1) = x(fg, ig)s  Ng < ¥, < %

Define

(33) Yn =x(fn, in) + €41,

where &, = Z::f, ng, n=1,2,.... Clearly &, — 0. The sequence (y,) is well-

defined and bounded. It follows from (32) and (33) that this sequence is decreasing.
We have also y, > x(f,, i,) for all n. Let

y'(t) = inf y,(t) = lim y,(¢t) = limx(f,, i,)(t) forall teT.

It follows from the definition of the set K that y* € K. Since the function h enjoys
the property (C) we have, by applying (17), that

h(y") = lim h(y) = lim f, (x (fu, i))(0) = inf(R).

Thus the first assertion of the theorem is proved.

Let £ be a minimizer of the function / over the set K. Then there exist sequences
x, € K and ¢, > 0, &, — 0 such that z, = x, + ¢,1 is a decreasing sequence
and X = inf, z,. Proposition 8.1 shows that infx (k) = inf K(fz) = inf h(z,). Let i
be a positive integer. Then h(z,) < infg(h) + §(i) for sufficiently large n. Since
h € U(f.,, i,) we have by applying Proposition 4.2 (2) that A(z, — x (fn, in)) < V().
Since A > A* we can find a positive number 1), — 0 such that n'1 > z, — x(f,, i»)
We have

0 > lim z,(¢) — limx (fn, in)(t) = £(t) — y*(¢).

The second statement of the theorem is proved. d
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