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The critical effect of the windward interior angles of elastically mounted trapezoidal
bodies on a galloping instability is numerically investigated in this paper using two
methodologies of high-fidelity computational fluid dynamics simulations and data-driven
stability analysis using the eigensystem realization algorithm. A micro exploration of the
dynamical response is processed to understand the mechanism underpinning the structural
amplification at the initial stage of the galloping instability and the competition between
wake and structural modes. It is observed that very small changes in the windward interior
angle of an isosceles-trapezoidal body can provoke or suppress galloping – indeed, a small
decrease or increase (low to 1◦) of the windward interior angle from a right angle (90◦)
can result in a significant enhancement and complete suppression, respectively, of the
galloping oscillations. This supports our hypothesis that the contraction and/or expansion
(viz., fore-aft tapering and/or widening) of the cross-section in the streamline direction
has potential influences on galloping triggering from the geometrical perspective. The
data-driven stability analysis is also applied to verify and analyse this phenomenon from
the perspective of modal analysis. The experimental measurements are also conducted in
the wind tunnel to support this hypothesis.

Key words: flow-structure interactions, instability control

1. Introduction

Flow-induced vibration (FIV), a common phenomenon of fluid–structure interaction (FSI),
is found everywhere and at all scales in the applications of marine, civil, aeronautical
and power engineering (Service 1942; Walker & Sibly 1977; Païdoussis, Price &
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De Langre 2010). The study of FIV phenomenology, ranging from fatigue and concomitant
damage of structures to its exploitation for energy extraction, has been an active area
of fundamental research (Pippard 1953; Billah & Scanlan 1991; Johns & Dexter 1998;
Zhang et al. 2016a; Tang et al. 2020). Flow-induced vibration is mainly categorized into
patterns of lock-in (resonance and flutter), galloping, buffeting and surge (Modi & Munshi
1998; Chen 2004; Waals, Phadke & Bultema 2007) according to the characteristics of the
structural response.

The lock-in phenomenon will occur only when the structural natural frequency is
comparable to the vortex-shedding frequency, leading to induced oscillations with limited
vibration amplitude. In marked contrast, the galloping instability – a special kind of
unbounded vibration – will appear over a broad range of the incident velocity of the
incoming flow (implying that the structural natural frequency does not have to be
comparable to the vortex-shedding frequency) and, moreover, the amplitude of vibration
for this phenomenon is known to increase with increasing incident flow velocity (Jaiman,
Sen & Gurugubelli 2015; Zhao 2015; Zhao, Hourigan & Thompson 2019). Furthermore,
galloping is generally a low-frequency oscillation (viz., occurring at frequencies that are
much lower than the vortex-shedding frequency).

1.1. Geometrical effect on galloping
It is known that the shape of the outline of a structure is an important factor that determines
whether a galloping instability occurs. Galloping behaviour is commonly encountered
for elastically mounted objects with non-circular cross-sections (such as crescent-shaped,
fan-shaped or D-shaped cross-sections) submerged in high-speed liquid or air (Païdoussis
et al. 2010; Huang & Li 2013). For instance, unlike the FIV response of a circular cylinder
that will transfer into desynchronization after the lock-in range with increasing inflow
velocity, the FIV response of a square cylinder will involve galloping instability (Zhao
2015; Zhao et al. 2019). Past experimental and numerical results also indicated that the
attack angle (or, direction of the incoming flow) of the elastically mounted bluff body
will significantly affect the accompanied structural stability situation (Zhao et al. 2014;
Seyed-Aghazadeh, Carlson & Modarres-Sadeghi 2017; Chen et al. 2022). In terms of
the FIV response of an asymmetrical bluff body, Zhao, Hourigan & Thompson (2018)
experimentally investigated the dynamic response (including lock-in and galloping) of the
flow past an elastically mounted forward- or backward-facing D section. It is noted that
the descriptor ‘forward’ or ‘backward’ correspond to the configurations when the flat face
of the half-cylinder is facing into (windward of) or away from (leeward of) the incident
wind direction, respectively, as shown in figure 1(a). While the forward-facing D section
exhibited lock-in and galloping regimes in turn as the reduced velocity was increased, the
backward-facing D section only exhibited the lock-in regime. This study (Zhao et al. 2018)
also applied Den Hartog’s stability criterion (Den Hartog 1956) (discussed later herein) in
order to explain the differences in response caused by the different facing orientations of
the obstacle in the flow. Chen et al. (2022) conducted the numerical investigation of a FIV
system consisting of a D-section prism with varied attack angles at a low Reynolds number.
The presented results were generally similar to those of Zhao et al. (2018) and displayed
a more detailed response differentiation with reference to the variations of maximum
amplitude envelope at different angles of attack. Another common geometry that has been
brought to study, the isosceles triangle (cf. figure 1b), has a similar FIV dynamics response
to the D section – the facing of the base side and the vertex angle (between the two waists)
to the incident flow lead to galloping triggering and suppression phenomena, respectively
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Figure 1. Forward and backward orientations of D section and triangular shapes investigated in the FIV
system.

Inflow

(a) (b)

Figure 2. Passive suppression devices investigated by Bukka et al. (2020) in one FIV system.
(a) Cylinder-splitter plate. (b) Cylinder connected C.

(Seyed-Aghazadeh et al. 2017). Similar observations on the relationship between galloping
stability and attack angles were reported by (Ding et al. 2015; Zhang et al. 2016b).

Bukka, Magee & Jaiman (2020) attempted to suppress the FIV response, especially the
galloping phenomenon, of the system through the inclusion of passive suppression devices
in the tail of the structure. The shapes of the suppression devices considered in this study
encompass a number of interesting configurations: namely, a fairing (two strips affixed
tangent to the upper and lower ends of the cylinder), a splitter plate (a strip attached
perpendicular to the tail section of the cylinder, cf. figure 2a), and a connected C (a
C-shaped foil of different radii fastened to the cylinder, cf. figure 2b). The cylinder-splitter
configuration resulted in a galloping instability at higher values of the reduced velocity.
This is one common phenomenon observed in other numerical and experimental works
(Tulsi et al. 2019; Zhang et al. 2022). Moreover, the FIV behaviour of the connected-C
device with its radius identical to the cylinder radius was observed to be similar to that of
a fairing in the sense that both devices were shown to suppress successfully the occurrence
of FIV. However, decreasing the radius of a C-shaped foil in a connected C was found to
provoke structural instability and lead to galloping – one interesting phenomenon did not
cause Bukka et al. (2020) to think and explore further.

Past works, whether simulations or experiments, focused on certain incremental changes
in certain shapes from earlier works and lacked further reflection – i.e. what do the
orientation differences in the D section and triangular bodies that bring about large
changes in structural response imply? It is difficult to derive from previous research
one general summary statement on the critical role of geometry changes in triggering
galloping. Consequently, we further dissect the above-discussed geometric changes that
trigger galloping. Whether it is changing the orientations of the D section and/or triangles
from backward to forward, attaching a splitter plate to the downstream tail of a cylinder
or reducing the radius of the connected-C device, there is a common/shared feature in
geometrical change – the lateral length of the lower end is made to be shorter than that of
the upper end in the streamline direction. What has been discussed above gives the most
intuitive feeling that geometry is potentially easier to cause galloping to occur when it is
in a contracting trend than when it is in an expanding trend in the streamline direction.
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Figure 3. Tiny geometrical changes from (b) square cylinder to (a,c) isosceles-trapezoidal shape will be
investigated in the present work with respect to its effect on galloping stability in the FIV system. TL, transverse
length of the body cross-section; SL, streamlined length of the body cross-section.

Therefore, in what follows, we will design a set of the most extreme cases (tiny shape
change from the square cylinder) to further verify and discuss this suggestion/assertion.

As exhibited in figure 3(b), the square cylinder, as a shape that has no tendency to
contract or expand geometrically in the streamline direction, is able to trigger typical
galloping behaviour at the large Ur range. Following the above conjecture, we slightly
increase or decrease the value of the interior angle of the square cylinder (with variation
value low to 1◦), making it an isosceles trapezoid that approximates a square column,
but with a very slight tendency to contract or expand (cf. with figure 3a,c). In spite of
the previous works (Mao et al. 2019; Wang et al. 2021a,b; Zhu et al. 2021) that focus
on the orientation effect of trapezoids (with considerable differences between forward
and backward end length) on the FIV system and also provide a detailed analysis of
the response, this paper designs a more critical set of geometric configurations based
on the perspective of completely novel inferences regarding contraction/expansion trends.
We will use the full-order model (FOM) (or, high-fidelity computational fluid dynamics
(CFD) simulations) for computing the FIV responses for this set of shapes to compare the
difference in their lock-in behaviour and to determine whether they exhibit the galloping
phenomenon.

1.2. Data-driven stability analysis
Insights directly obtained from experimental investigations and computational simulations
have still not provided a complete understanding of the complex FIV phenomenon.
As mentioned by Hollenbach, Kielb & Hall (2021) and Sanders (2004), the traditional
CFD method has no ability to provide physical insight into the generation of FIVs
including the galloping behaviour. Data-driven stability analysis is another effective and
efficient method to locate the structural instability regime and explore the underlying
modal mechanism underpinning flow-induced motion. In recent years the application
of data-driven stability analysis (Zhang et al. 2015; Navrose & Mittal 2016; Yao &
Jaiman 2017; Cheng et al. 2022) has provided deeper insights into the underlying physical
mechanisms underpinning the FIV phenomenon. Towards this objective, Zhang et al.
(2015) used a reduced-order model (ROM) within the context of a linear stability analysis
(LSA) to study the physical characteristics of FIV for the flow past a circular cylinder at
a Reynolds number of 60. The ROMs for the fluid dynamics could be obtained using the
autoregressive with exogenous input identification method (Zhang et al. 2015; Li et al.
2019) and eigensystem realization algorithm (ERA) (Yao & Jaiman 2017; Cheng et al.
2022). Using data-driven stability analysis, it was found that the modes can be identified
either as a structure mode (SM) or as a von Kármán or wake mode (WM) according
to the nature of the root loci in comparison with the results obtained from FOM/CFD.
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The dynamics effect of SM and WM on the structural stability situation and discrimination
of instability patterns will be introduced later herein.

With respect to the modal analysis on galloping behaviour using ROMs, Li et al. (2019)
sought to explain the underlying mechanism by utilizing the idea of modal competition
(viz., the interaction between SM and WM that can result in a ‘winning’ mode that
ultimately dominates the vibration). This work suggested that the instability of the SM
leads to large-amplitude and low-frequency vibrations of the structure, whereas the
instability of the WM leads to high-frequency vortex shedding from the blunt body.
Nevertheless, Li et al. (2019) did not provide an explanation for how the SM becomes
unstable and why a particular mode (either SM or WM) eventually dominates the
dynamics. Yao & Jaiman (2017) encapsulated their results in a stability phase diagram,
which provided a concise summary of the dominant lock-in type (resonance or flutter)
for the different cross-sectional body shapes (ellipse, forward triangle, diamond and
squares with various rounding radii at the corners) for the range of Reynolds numbers
30 < Re < 100. However, while investigating the influence of sharp-corner rounding on
the flow dynamics of an elastically mounted square cylinder, the range of Re used in the
study conducted by Yao & Jaiman (2017) was too low to observe the triggering of the
galloping instability and, in this sense, the study was limited primarily to the lock-in
behavioural characteristics of the square cylinder. This leaves an important gap in our
current knowledge of the effects of shape in the transition of the vibration response
characteristics from lock-in to galloping. Following on from the investigation of Yao &
Jaiman (2017), the above-introduced works by Bukka et al. (2020) also applied LSA using
ROM/ERA and demonstrated that a LSA based on ROM/ERA can be used to provide
physically insightful explanations for the FIV response of an elastically supported structure
from the perspective of modal mechanisms.

1.3. Summary and contribution of present work
Although past experiments and numerical simulations undertaken by the research
community have extensively explored the influence of various shapes on the galloping
response, there still remains much that is poorly understood regarding the physical
mechanisms that determine galloping from the geometrical perspective – what particular
characteristics in the cross-sectional shape of a body result in the generation of galloping
is currently an unanswered question. Despite galloping behaviour being closely associated
with many dynamical factors, in this paper, in the context of cross-sectional shape, it is
suggested that the presence of a distinctive tendency for the geometry to contract or expand
in the streamline direction sensitively determines whether galloping occurs.

To the best of the authors’ knowledge, this is the first time that the minute geometrical
change from a square cylinder (or, a very small change in the inner angle of a
trapezoid) has been proposed to lead to a significant difference in the galloping response
(amplification or suppression), which thereby verifies the authors’ original/innovative
inference – the contraction tendency of the cross-section in the streamline direction is
critically responsible on the galloping triggering. Moreover, using data-driven modal
analysis (via the ERA-based ROM) to explore the mechanism underpinning the structural
stability variation of the FIV systems is another novel aspect of the present work.
Besides, we further conduct experimental works using the subsonic wind tunnel at
Duke University to validate this new observation and original inference. This is also the
first time that the effect of the orientations of an elastically supported trapezoid on its
FIV response, especially galloping behaviour, has been experimentally studied at high
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Reynolds numbers. In addition, we mention the specific limitations of the Den Hartog
quasi-steady stability criterion when applied to present geometrical configurations.

In the present work the detailed characterization of the galloping response in one
FIV system with varying body geometries (shapes) is studied based on the mechanistic
insights and predictions of the complex dynamics provided by (1) a FOM obtained
using high-fidelity CFD, (2) the dynamics exploration of the initial stage in galloping
development, (3) a data-driven modal analysis undertaken using a ROM constructed
from the ERA, and (4) the measurements at high Reynolds numbers using a wind
tunnel at Duke University. The paper is structured as follows. Section 2 describes the
analytical and numerical methodology used in this study that includes the FOM based
on CFD and the ROM based on the ERA. The accuracy of the FOM and ROM used
herein is validated carefully and systematically in § 3. In § 4 the sensitive effects of the
tiny variation of windward interior angles on galloping instability are presented via the
analysis of FOM/CFD results. Section 5 provides a ‘time-energy evolution’ analysis of
the galloping response and further investigation of the micro mechanism underpinning
structural amplification at the galloping onset stage. Section 6 proceeds with the modal
analysis via the data-driven methodology. Section 7 conducts experimental measurements
to support our hypothesis. Finally, in § 8, the key results of this study are summarized.

2. Analytical and numerical methodology

2.1. Full-order model formulation based on CFD
The simulation of the fluid-interaction problem consisting of a bluff body elastically
supported on a linear spring and immersed in a two-dimensional (2-D) fluid flow (in the
x1 − x2 directions) is undertaken using a FOM based on CFD. The equations governing
this FIV system consist of the continuity and momentum transport equations governing
the fluid flow and the structural equation governing the motion of the elastically supported
bluff body. More specifically, the continuity and momentum transport equations assume
the form

∂ui

∂xi
= 0, (2.1)

and
∂ui

∂t
+ (

uj − ũjδj2
) ∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
. (2.2)

The structural equation for the motion of the bluff body in the transverse direction only is
given by

m
d2y
dt2

+ c
dy
dt

+ ky = Fy. (2.3)

In (2.1) and (2.2), xi is the ith component of a Cartesian coordinate vector x with i ≡ 1, 2
corresponding to the streamwise x and transverse y directions, respectively; t is the time,
δij is the Kronecker delta function, p is the pressure, ρ and ν are the density and kinematic
viscosity of the fluid, respectively, ui represents the ith component of fluid velocity and
ũj ≡ dxj/dt is the jth component of the grid velocity arising from the motion of the
body (structure) immersed in the flow. In (2.3), k is the linear spring (stiffness) constant
(N m−1), m is the mass of the bluff body (kg), c is the damping constant (kg s−1) (assumed
to vanish for all cases considered herein) and Fy is the hydrodynamic force (N) acting on
the bluff body in the transverse (or, y) direction.
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Couple state-space models for fluid flow (step 3) and structural

motion (step 4) to obtain a state-space model for the FIV system

Recast the structural equation of motion (with input CL and

output h) into state-space form

From impulse response data for CL (step 2), use ROM/ERA to

estimate state-space model for the fluid flow

Calculate impulse response for CL, by applying input pulse for h
to the stationary body immersed in base flow (step 1)

Obtain base flow past a stationary body at prescribed value of Re
using FOM/CFD

1

2

3

4

5

Figure 4. Flow diagram summarizing the five key steps in the workflow to obtain the ROM/ERA for a FIV
system involving the coupling of a fluid dynamics ROM (with input h and output CL) to a structural dynamics
model (with input CL and output h).

The open source CFD software OpenFOAM/v2006 (2019) developed by the
OpenFOAM Foundation is used to simulate the flow field for FOM/CFD. The
Navier–Stokes equations are discretized with the finite-volume method – the transient term
is discretized using a second-order accurate implicit Euler scheme, and the advection,
pressure gradient and diffusion terms are discretized using a second-order accurate
Gaussian integration scheme. The PIMPLE algorithm is used to solve the continuity
and momentum transport equations together in a segregated manner. The time step size
�t is adjusted to ensure that the maximum Courant–Friedrichs–Lewy (CFL) number,
CFLmax ≡ ‖u‖�t/�xmin (�xmin is the size of the smallest grid cell in the computational
domain and ‖u‖ is the magnitude of the fluid velocity u), is constrained to be 0.6 at
each time step of the PIMPLE algorithm. An explicit second-order symplectic method
(Dullweber, Leimkuhler & McLachlan 1997) is used to integrate the structural equation
of motion. The FSI that links the fluid flow equations (2.1) and (2.2) with the structural
equation of motion (2.3) is solved using the weakly coupled approach described by Wang
et al. (2019).

2.2. Data-driven stability analysis for FIV based on ERA
The ROM for the linear representation of the FIV system, consisting of the flow past an
elastically mounted body, is obtained using the ERA. A brief description of ROM/ERA
is provided in this subsection, but the reader is referred to Cheng et al. (2022) for more
details of the methodology. Figure 4 displays the five key steps in the construction of
a linear time-invariant input–output system (state-space model) for the FIV system using
ROM/ERA. The ROM for the coupled FSI is composed of two parts. The first part consists
of the linear fluid model with an input h ≡ y/D (where y is the transverse displacement
and D is the characteristic length of the body) and with an output CL (lift coefficient).
The linear fluid model here is obtained using ERA. The second part consists of recasting
the structural equation of motion, with an input CL and an output h, as a state-space
model. Finally, these two linear state-space models – one for the fluid flow obtained using
ROM/ERA and one of the structural dynamics – are coupled together to obtain the final
state-space model for the FIV system. The five key steps of the workflow used to provide
the ROM/ERA for the FIV system are described briefly below.
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In the first step of the workflow, an equilibrium base flow past a stationary body
(e.g. square cylinder) is obtained using FOM/CFD. This is achieved by using the procedure
described by Mittal (2008) involving solving the continuity and momentum transport
equations (viz., (2.1) and (2.2)) using a large dimensionless time step value of 10 with
a maximum of 30 iterations for each time step. The equilibrium base flow is obtained once
the lift force has stabilized in the iterative solution of these equations.

The stationary body in the equilibrium base flow can be interpreted as a dynamical
system with an input given by the normalized transverse displacement ur ≡ h = y/D of
the body and an output given by the lift coefficient or ≡ CL of the body. In the second step
of the workflow, this dynamical system is imparted with a discrete-time Kronecker delta
function input uδ

r (or, impulse function) with amplitude Aδ with the form

uδ
r (k) ≡ uδ

r(k�t) = Aδ

{
1, k = 0;
0, k = 1, 2, 3, . . . ,

(2.4)

where k denotes the kth discrete-time step (viz., tk ≡ k�t is the time corresponding to the
kth discrete-time step where �t is the time-step size). Following from this, the impulse
response ‘measurements’ of the dynamical system are obtained. These measurements
consist of the output response oδ

r(k) ≡ oδ
r(k�t) for k = 0, 1, 2, 3, . . . (viz., of the time

sequence of the lift coefficient CL after the stationary body is imparted with a pulse input
transverse displacement of (2.4)).

In the third step of the workflow, the ERA is used to give a low-dimensional linear
input–output state-space model for the fluid dynamics system. This is accomplished by
constructing the (r × s) Hankel matrix by stacking the time sequences of the impulse
response ‘measurements’ oδ

r (obtained in the second step) to give

H =

⎡
⎢⎢⎢⎣

oδ
r(1) oδ

r(2) · · · oδ
r(s)

oδ
r(2) oδ

r(3) · · · oδ
r(s + 1)

...
...

. . .
...

oδ
r(r) oδ

r(r + 1) · · · oδ
r(s + r − 1)

⎤
⎥⎥⎥⎦ . (2.5)

Furthermore, the corresponding shifted Hankel matrix of the same size is constructed as
follows:

H̃ =

⎡
⎢⎢⎢⎣

oδ
r(2) oδ

r(3) · · · oδ
r(s + 1)

oδ
r(3) oδ

r(4) · · · oδ
r(s + 2)

...
...

. . .
...

oδ
r(r + 1) oδ

r(r + 2) · · · oδ
r(s + r)

⎤
⎥⎥⎥⎦ . (2.6)

Next, a singular value decomposition (providing a spectral decomposition) of the Hankel
matrix H is performed to give (superscript T denotes matrix transposition)

H = UΣVT = [U1 U2]
[
Σ1 0
0 Σ2

] [
VT

1
VT

2

]
, (2.7)

where U is a r × r orthonormal matrix with columns containing the left singular
vectors, Σ is a r × s rectangular ‘diagonal’ matrix with diagonal entries containing the
non-negative singular values in non-decreasing order, and V is a s × s orthonormal matrix
with columns containing the right singular vectors. Here, we select the rows and columns
of the spectral decomposition corresponding to the physical modes only, so the ‘noise
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modes’ represented by the very small (near-zero or zero) singular values in the diagonal
matrix Σ2 are ignored. As a result, only the first l singular values in Σ1, associated with
the physical modes, are retained.

The Hankel matrix representing the relevant physical modes is estimated using
the truncated singular value decomposition Ĥ = U1Σ1VT

1 = ∑l
k=1 σkkūkv̄

T
k where the

positive singular values σkk are the (k, k)th entries of the diagonal matrix Σ1 ordered
by their non-decreasing value, ūk is the kth column of U (left singular vector) and v̄k is
the kth column of V (right singular vector). This reduced decomposition of H provides a
rank-l approximation of the (r × s) Hankel matrix Ĥ. More specifically, the Hankel matrix
Ĥ provides a low-rank approximation for the dynamical system and, as such, represents
the significant temporal patterns in the time sequence impulse response data. Finally, the
system matrices (Ãr, B̃r, C̃r, D̃r) for the discrete-time state-space model (the ROM) are
estimated in accordance to

Ār = Σ
−1/2
1 UT

1 H̃V1Σ
−1/2
1 , (2.8)

B̄r = Σ
1/2
1 VT

1 Em, (2.9)

C̄r = EtU1Σ
1/2
1 , (2.10)

D̄r = oδ
r(0), (2.11)

where

Em = [
Iq 0

]T and Et = [
Ip 0

]
(2.12a,b)

are (s × q) and ( p × r) matrices (In is the identity matrix of order n) used to extract the
first q columns and first p rows in the construction of B̄r and C̄r, respectively. In the present
study the input ur and output or are the dimensionless transverse displacement h ≡ y/D
and lift coefficient CL, respectively, so p = q = 1.

Finally, the system matrices (Ãr, B̃r, C̃r, D̃r) for the discrete-time state-space model are
converted into the system matrices for the equivalent continuous-time state-space model
using the relationships Ar = �t−1 ln(Ār), Br = Ar[Ār − I]−1B̄r, Cr = C̄r and Dr = D̄r,
where I is an identity matrix with the same size as Ār (Shieh, Wang & Yates 1980).
Following from this, the continuous-time state-space model for the fluid flow system
assumes the following form (xr(t) is the state vector for the fluid flow system):

ẋr (t) = Arxr (t) + Brur (t) ,

or (t) = Crxr (t) + Drur (t) .

}
(2.13)

In the fourth step of the workflow, the dimensionless structural equation of motion for a
transversely oscillating body given by

ḧ + 4πFscḣ + (2πFs)
2 h = asCL

/
m∗ (2.14)

is converted to a continuous-time state-space representation. To this purpose, (2.14) can be
recast into a continuous-time state-space form (with input CL and output h) as

ẋs (t) = Asxs (t) + qBsor (t) ,

h (t) = Csxs (t) + qDsor (t) ,

}
(2.15)
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with the state vector xs ≡ (h, ḣ)T for the structural system, q ≡ as
/

m∗, and

As =
[

0 1
− (2πFs)

2 −4πFsc

]
, Bs =

[
0
1

]
, Cs = [1 0] , Ds = [0] . (2.16a–d)

Here, Fs = FnD/U0 ≡ U−1
r is the reduced natural frequency (Fn is the structural natural

frequency, D is the characteristic length of the vibrating body, U0 is the free-stream
velocity and Ur is the reduced velocity (≡ F−1

s )); m∗ = ρs/ρ is the mass ratio, which
is the ratio of the solid body density to the fluid density (ρs is the density of the body
and ρ is the density of the fluid); h is the non-dimensional transverse displacement (viz.,
the transverse displacement y normalized by the characteristic body length D) and c is the
structural damping. Finally, the geometry of the body determines a characteristic length
scale as (cf. (2.14)) in accordance to

as = 1
Ab

· D2

2
, (2.17)

where Ab and D are the area and the characteristic length of the cross-section of the bluff
body. For example, as = 1/2 and 2/π for a square and circular cylinder, respectively.

In the fifth (and final) step of the workflow, the state-space model for the fluid flow
system given by (2.13) is coupled to the state-space model for the structural dynamics
given by (2.15) and (2.16a–d) to give the linear and reduced-order coupled model for the
FIV system. In consequence, the linear and reduced coupled model for the FIV system has
the final form

ẋrs (t) = Arsxrs (t) ≡
[

As + qBsDrCs qBsCr
BrCs Ar

]
xrs (t) , (2.18)

h (t) = [Cs 0] xrs (t) , (2.19)

where xrs ≡ (xs, xr)
T is the state vector for the FIV system.

The FIV stability problem can be investigated by analysing the behaviour of the
eigenvalues of the system matrix Ars exhibited in (2.18). The two or three leading
eigenvalues (which depend on the Reynolds number) are associated with the most
dominant modes of the system that, necessarily, include both the SM and WM. The
methodology that we use for identifying the SM/WM and our interpretation of the physical
processes associated with the behaviour of these modes will be described later in the
paper. The complex eigenvalues of the system matrix Ars determine the growth/decay
rate and oscillatory characteristics of the associated (eigen)mode. More specifically, the
positivity or negativity of the real parts of the eigenvalues determine the growth or decay
rate of the mode, respectively. The imaginary part of each eigenvalue is associated with the
oscillatory (eigen)frequency of the associated mode. The (eigen)frequency of the mode (in
continuous time) is given by Im(λ)/2π, where λ is the (complex) eigenvalue and Im( · )
denotes the imaginary part of a complex number.

The resonance lock-in arises from the closeness in value of the frequency associated
with the SM with those associated with the WMs, whereas the flutter-induced lock-in and
galloping behaviours are correlated with an unstable SM (viz., when the real part of the
eigenvalue associated with the SM is positive) and arises from the interaction between
the SM and WM. Moreover, the modal behaviour of one FIV system is either coupled
or uncoupled, depending on whether there is a clear distinction between the root loci
associated with the SM and WM. For one FIV system with two coupled modes – which
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12D 36D

2
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2
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x

y

 = 0, uy = 0
∂ux
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 = 0, uy = 0
∂ux

∂y

 = 0,
∂ux

∂x
 = 0

∂uy

∂x89°

ux = U0,

uy = 0

Figure 5. The computational domain used for the simulations of the flow past a bluff body elastically mounted
on a linear spring. The prescribed boundary conditions on the flow velocity used in the simulations are shown.

we label herein as the first wake-structure mode in the coupled condition (WSMI) and
the second wake-structure mode in the coupled condition (WSMII) – it is necessary to
determine which of these two modes represents the hidden structure-dominated mode at
each value of the natural frequency Fs – indeed, the hidden structure dominated mode can
be WSMI at one value of Fs and switch to WSMII at another value of Fs (or vice versa), a
process that is described as ‘mode veering’ by Gao et al. (2017). The coupled mode that is
associated with an eigenfrequency that is closest in value to the reduced natural frequency
Fs is identified as the hidden structure-dominated mode SMc in this paper. The subscript
‘c’ in this identification of the dominated SM is used to remind the reader that this mode
is associated with the coupled condition.

3. Numerical set-up and validation

3.1. Computational domain and mesh sensitivity
Figure 5 shows the computational domain and the boundary conditions used for the
FOM/CFD simulations conducted in this study. A number of 2-D numerical simulations
of the FIV of a bluff body mounted on a linear spring are undertaken at low Reynolds
numbers Re. The computational domain is 48D in the streamwise (x) and 50D in the
cross-stream or transverse (y) directions, where D is the characteristic length of the bluff
body. The domain size used here is sufficiently large to allow for possible large-amplitude
vibrations of the body. To facilitate comparisons of the results of the simulations for the
different bluff body geometries, we use the same transverse length (TL) for every geometry
studied herein, i.e. the average lengths of the upper and lower bases of the isosceles
trapezoid. This TL is also taken to define the characteristic length D for each of the body
geometries.

The centre of the bluff body is located along the centreline of the computational domain
at y = 0 and at a distance of 12D downstream from the inlet boundary (left edge of
the domain). Along the lateral boundaries of the computational domain, a zero-gradient
streamwise velocity boundary condition is applied. A Neumann boundary condition is
prescribed for the velocity at the outflow boundary. A Dirichlet boundary condition
is imposed on the incident flow velocity along the inflow boundary at x = 0; namely,
u ≡ (ux, uy) = (U0, 0) at x = 0, where U0 is the incident constant wind speed in the
streamwise direction. The initial conditions for the motion of the centre of the bluff body
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Mesh Cell number Crms
L Crms

D

1 58 032 0.1786 0.0049
2 65 995 0.1812 0.0051
3 78 752 0.1895 0.0054
4 82 810 0.1898 0.0055
Zhao et al. (2013) — 0.1908 0.0057
Li et al. (2019) — 0.1817 0.0052

Table 1. Aerodynamic coefficients (r.m.s. lift and drag coefficients) of flow past a stationary square cylinder
at Re = 100 for four different meshes.

were prescribed as y = 0 and ẏ = 0 (viz., the centre of the bluff body was at rest at the
initial time t = 0). The initial conditions for the flow and gauge (relative to atmospheric)
pressure fields at t = 0 were specified as u(x, y, t = 0) = (U0, 0) and p(x, y, t = 0) =
0 Pa, respectively, for all locations (x, y) in the 2-D computational domain. In all our
simulations the characteristic length D of the bluff body, the incident wind speed U0 at
the inlet boundary and fluid density ρ are 0.1 m, 0.1 m s−1 and 1.2 kg m−3, respectively.

To investigate the galloping instability for which the amplitude of vibration of the body
is expected to be significantly larger than that for vortex-induced vibration, an overset mesh
(implemented in OpenFOAM/v2006 2019) is used with a computational domain size that
is large enough so that the entire motion of the elastically mounted body in the transverse
(y) direction is well contained within the domain. To begin, the simulation of the flow past
a stationary square cylinder is conducted and used to assess the sensitivity of the results
to the mesh used. For this assessment, we used four different mesh sizes with the number
of cells in the different meshes ranging from 58 032 to 82 810. The flow past a stationary
square cylinder at the Reynolds number Re = 100 was simulated using these four meshes.
For each of these simulations, we extracted the root-mean-square (r.m.s.) lift Crms

L and drag
Crms

D coefficients. The values for these two dynamical force coefficients are compared in
table 1 for each of the four meshes. In addition, these results are compared with those
reported by Zhao, Cheng & Zhou (2013) and Li et al. (2019) for the same case.

The percentage differences in the values of Crms
L and Crms

D obtained in going from mesh 1
(coarse) to mesh 2 (intermediate) are 1.4 % and 3.9 %, respectively. This discrepancy is
quite large. However, in going from mesh 3 (fine) to mesh 4 (very fine) the percentage
differences in the values of Crms

L and Crms
D are reduced considerably, being only 0.16 % and

1.8 %, respectively. Based on these considerations, mesh 3 is used for all the simulations
conducted herein. Mesh 3 provides the best compromise between numerical accuracy and
computational cost. Moreover, the values of Crms

L and Crms
D obtained for mesh 3 are in good

agreement with those obtained by Zhao et al. (2013) and Li et al. (2019). In particular, our
current values for the r.m.s. lift and drag coefficients lie between those obtained by these
previous investigators. Figure 6 displays mesh 3 – the hybrid overset mesh used in our
simulations of the flow past a square cylinder elastically supported on a linear spring. More
specifically, this figure shows the overall mesh used in the tessellation of the computational
domain and two increasingly expanded views of the mesh in the vicinity of the square
cylinder.
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Effect of geometrical contraction on galloping

(a) (b) (c)

Figure 6. The fine mesh (mesh 3) used for the simulation of the flow past a square cylinder: (a) tessellation of
the computational domain showing the overset and a partial background mesh surrounding the square cylinder;
(b) close-up view of the overset mesh around the square cylinder; and (c) expanded view of the mesh in the
immediate vicinity of the walls of the square cylinder.
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Li et al. (2019)

Present work

Figure 7. The normalized maximum transverse displacement ymax/D as a function of the reduced velocity Ur
of a FIV system consisting of the flow past an elastically mounted square cylinder at (Re, m∗) = (150, 10). The
results were obtained using FOM/CFD and compared with results obtained by Li et al. (2019).

3.2. Validation of the FOM
To validate the predictive accuracy of the FOM/CFD and its implementation, we will
simulate the flow past a square cylinder elastically mounted on a linear spring. The square
cylinder is free to move in the cross-stream (y) direction. The physical parameters for this
simulation are as follows: the structural damping c = 0, the mass ratio m∗ = 10 and the
Reynolds number Re = 150. The reduced velocity Ur is varied by changing the structural
natural frequency Fn.

Figure 7 shows the variation of normalized maximum transverse displacement ymax/D
as a function of the reduced velocity Ur for the FIV system consisting of the flow past an
elastically supported square cylinder. The normalized maximum transverse displacement
ymax/D exhibits a sudden increase to a value of 0.14 at Ur ≈ 5.75, and then decreases
slowly thereafter with increasing values of Ur. When Ur reaches a value of between 17
and 18, ymax/D exhibits a rapid increase in value with increasing Ur. The amplification of
ymax/D associated with this range of values of Ur is unbounded (viz., the motion here is
not self-limiting) and corresponds to a galloping instability. The variation of ymax/D as a
function of Ur predicted here for the elastically supported square cylinder is in excellent
conformance with the results reported by (Li et al. 2019). Based on these considerations, it
is concluded that our current FOM/CFD simulations provide good accuracy for providing
the high-fidelity FOM/CFD data sets needed for the analysis of the triggering of galloping
in structures and for securing the equilibrium base flow required for the application of
ROM/ERA to FSI problems studied herein.
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Figure 8. Distribution of the first 30 singular values of the Hankel matrix H with (r, s) = (500, 400) for flow
past a backward isosceles-triangular body at Re = 120.

3.3. Validation of the ROM
The ROM/ERA is constructed using an equilibrium base flow – in such a flow, the
relationship between a small transverse displacement h of the body and the resulting
dynamic force coefficient CL is linear. The linearity in this relationship will be
demonstrated later in the paper (cf. figure 20) by comparing the time series of the response
of the lift coefficient CL obtained from both FOM/CFD and ROM/ERA.

The choice of the amplitude Aδ for the input impulse signal is important for the
successful application of ROM/ERA. This amplitude must be chosen carefully so as to
satisfy two conflicting requirements (‘Goldilocks effect’). The first requirement is that
Aδ needs to be sufficiently large in order to excite the physical modes in the underlying
flow. The second requirement is that Aδ cannot be so large that the nonlinear processes
in the underlying flow begin to dominate the dynamics. In order to obtain a highly
structured low-dimensional linear input–output model of the fluid flow system from the
impulse response data using ROM/ERA, it is necessary to chose Aδ so that we are
operating in the flow regime where the linear dynamics of the system dominate. To
this purpose, we compared carefully the impulse response of the system output CL for
input impulse amplitudes of Aδ = 10−2, 10−3 and 5 × 10−4 for the normalized transverse
displacement h (viz., for h = uδ(k�t) ≡ Aδδk0, where δk0 is the Kronecker delta function).
The nonlinearity resulting from the choice of Aδ = 10−2 develops too quickly – it is
not possible to extract sufficient data for ERA identification for this choice. In contrast,
amplitude values of Aδ = 10−3 and 5 × 10−4 are appropriate for LSA because these
values for Aδ allow sufficient time for the dynamical response to evolve linearly to enable
enough data to be acquired for ERA identification. As a consequence, we used Aδ = 10−3

(normalized by the characteristic length D) for all our numerical experiments.
For the system matrix Ār (cf. (2.8)), the retention of the first l = 15 to 30 singular values

of H is sufficient to capture the dominant temporal patterns in the fluid flow. Figure 8
displays the first 30 singular values of the Hankel matrix constructed for a flow past an
elastically mounted square body at Re = 120. An examination of this figure shows that the
singular values decrease rapidly to zero. This implies that the dominant system dynamics
occur on a highly structured low-dimensional subspace (manifold). In consequence, a
ROM can be used to represent well the dynamics of the FIV system providing a good
low-rank approximation for the system. In this study we will choose the mode numbers for
each specific case based on the balanced consideration of numerical accuracy, calculation
efficiency and also avoiding the potential numerical noise generated by the algorithm.
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Figure 9. The growth rate as characterized by Re(λ) of the first WM as a function of the Reynolds number
Re. The current results for the growth rate of the first WM are compared with those reported by Li et al.
(2019).
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Figure 10. The root loci (parameterized by the reduced natural frequency Fs = U−1
r ) for the flow past a

forward equilateral triangular cylinder elastically mounted on a linear spring at (Re, m∗) = (60, 10). This result
is compared with that obtained by Yao & Jaiman (2017). The red solid square corresponds to the stationary
body.

Figure 9 exhibits the growth/decay rate Re(λ) versus the eigenfrequency Im(λ)/2π of
complex eigenvalue λ associated with the first WM parameterized as a function of the
Reynolds number Re for a square cylinder. The response of the first WM shown here in the
complex frequency plane as a function of Re agrees with that obtained by Li et al. (2019).
These results are also consistent with the fact that the minimum value of Re required for
periodic vortex street generation in the square cylinder wake is known to be 45.2 (Park &
Yang 2016; Yao & Jaiman 2017) – for Re � 45.2, the flow loses its stability through the
Hopf bifurcation and results in an increasing fluctuating amplitude of the lift coefficient
CL with increasing values of Re.

Since the work reported here focuses on the factors that trigger the galloping instability,
we validate ERA/ROM for the flow past a forward equilateral triangular cylinder (with
one flat side perpendicular to the incident flow, or, with the contraction trend in streamline
direction) mounted on a linear spring at (Re, m∗) = (60, 10). The root loci obtained for
this case are shown in figure 10. The root loci clearly show the coupling between the
SM and WM. Here, it is seen that either WSMI or WSMII alternately assumes the role
of the SM depending on the value of the reduced natural frequency Fs. The value of
Re(λ) over the interval where Im(λ) < 0.9 is strictly positive, which is in good agreement
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Figure 11. (a) Normalized maximum structural amplitude ymax/D, (b) r.m.s. value of the lift coefficient CL,rms
and drag coefficient CD,rms, (c) normalized structural oscillation frequency foscD/U0 and (d) phase difference
θ as a function of reduced velocity Ur. The lock-in regime for three interior angles and the galloping regime
for windward interior angles 89◦ are delineated with grey and red shading.

with the result reported Yao & Jaiman (2017). This implies that the SM is unstable as Fs
decreases (or, equivalently, as the reduced velocity Ur increases). Moreover, these modal
characteristics are indicative of the fact that a FIV system involving a forward equilateral
triangular cylinder will transition into galloping (distinguished by their large-amplitude
and low-frequency oscillations) after lock-out, in contradistinction to the dynamical
response of a circular cylinder at large values of Ur.

4. Dynamical response and wake pattern

In the introduction section we present the application of a small change in the interior
angle of the square cylinder to reformat it into an isosceles trapezoid and, consequently,
producing a slight tendency to contract or expand. As depicted in figure 3, the interior
angles of the windward flat face of the bodies have values of 89◦, 90◦ (square cylinder)
and 91◦ and the cross-sectional area of each trapezoidal body is equal to that of the
square cylinder (trapezoidal body with an interior angle of 90◦). The characteristic lengths
– TL and SL – of each isosceles-trapezoidal body are the same. The acute and obtuse
interior angles of the geometrical bodies correspond to either a contraction or expansion,
respectively, of the body in the streamwise direction. To resolve the question of how the
tiny interior angle change will affect the correlated galloping behaviours, we consider the
above-presented isosceles-trapezoidal bodies elastically mounted in a flow at (Re, m∗) =
(160, 10).

Figure 11 provides an overview of the fluid–solid response using a 2-D FOM/CFD
calculation for three elastically mounted trapezoidal bodies at (Re, m∗) = (160, 10), in
which the normalized structural maximum amplitude ymax/D, r.m.s. value of the dynamics
coefficients CL,rms and CD,rms, normalized structural oscillation frequency foscD/U0 and
phase differences θ (between structural displacements and lift coefficients) as a function
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Effect of geometrical contraction on galloping

of reduced velocity Ur are depicted in panels (a), (b), (c) and (d), respectively. The
lock-in regime for three interior angles and the galloping regime for windward interior
angles 89◦ are marked with grey and red background colours. The maximum amplitude
changes of transverse displacements ymax/D due to variations in the reduced velocity Ur
are shown in figure 11(a). The common feature of all three geometries is that they all show
lock-in phenomena around Ur = 6. The subplot in figure 11(a) indicates that the ymax/D
of the three geometries are all approximately equal to 0.1 around Ur = 6. A more careful
observation states that the maximum amplitude of 89◦ is slightly greater than 91◦ than
90◦. Furthermore, for the lock-in phenomenon, panels (b–d) present the FIV responses of
those three configurations that show similar characteristics in other aspects, i.e. decreasing
values of CL,rms, increasing values of CD,rms, locking of foscD/U0 by the structural natural
frequency (cf. with red dotted line), and a sudden jump in phase difference θ from near 0 to
180◦. All the above descriptions show that the appearance of the lock-in here is not related
to the small changes in the windward interior angle of the body. The lock-in behaviour
here comes from the resonance effect. More specifically, resonance lock-in arises when
the structural natural frequency approaches the original vortex-shedding frequency. Here
we refer to the vortex-shedding frequency for flows passing a fixed structure at the same
Reynolds number as the original vortex-shedding frequency. The modal analysis will be
performed later on in this paper.

However, a careful perusal of figure 11 shows that very small changes in the value of the
interior angle at the vertices of the upper and lower sides of the windward face of the body
can ultimately determine whether galloping does or does not occur. More specifically, it
appears that a windward interior angle of 90◦ is the tipping point for galloping stability,
with the result that galloping disappears suddenly when the windward interior angle of
the body increases ever so slightly from a right angle of 90◦ to an obtuse angle of 91◦
(leading to the expansion tendency in the streamline direction). On the other hand, when
the windward interior angle of the body decreases to be acute at 89◦, the response of
the FIV system becomes more unstable and prone to galloping with larger transverse
displacements of the body. More specifically, the onset Ur for the galloping instability
of the 89◦ is smaller than that of the 90◦, and ymax/D of the 89◦ is larger than that of the
90◦ at the same Ur in galloping regimes.

Figure 11(b) indicates that both CL,rms and CD,rms will increase in the galloping
regime. Additionally, the structural oscillation frequencies are also locked by the structural
natural frequency when a galloping instability appears (cf. with panel c). In contrast,
the FIV responses outside the lock-in and galloping regimes exhibit the forced-vibration
characteristic, i.e. the normalized vibration frequency foscD/U0 is dominated by the
original vortex-shedding frequency and maintains at a stable value. For the phase
difference change in panel (d), it is worth noting that the phase difference θ still maintains
at 180◦ when the FIV response escapes from the lock-in regime to desynchronization but
does not enter into galloping. Moreover, the θ appears to drop abruptly to about 60◦ when
a galloping instability is generated. However, it is reminded that there is no real physics
meaning for this dropping of phase differences because there is a considerable difference
between the most intense frequencies of lift and the structural vibration herein.

To further explore and validate the effect of the windward interior angle, the FIV
response (obtained using FOM/CFD simulations) for a FIV system consisting of the
flow past an elastically mounted isosceles-trapezoidal body at (Re, m∗) = (160, 10) for
the windward interior angle of 85◦ and 95◦ are exhibited in figure 12. To begin, the FIV
response at 95◦ is similar to the response characteristics at 91◦ in terms of amplitude
envelope, vibration frequency, phase and dynamics coefficient. A configuration of 95◦ also
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Figure 12. (a) Normalized maximum structural amplitude ymax/D, (b) r.m.s. value of the lift coefficient
CL,rms, (c) normalized structural oscillation frequency foscD/U0 and (d) phase difference θ as a function
of reduced velocity Ur. The lock-in regime for windward interior angles 95◦ and the galloping regime for
windward interior angles 85◦ are delineated with grey and red shading.

exhibits lock-in instability (delineated with grey shading) at Ur = 5, but with the higher
maximum structural amplitude ymax/D reaching around 0.25 compared with that of 91◦.
In contrast, the configuration with a windward interior angle of 85◦ demonstrates a more
notable structural instability compared with that of 90◦ and 89◦. More specifically, the
configuration of 85◦ exhibits a ‘vortex-induced vibration plus galloping’ pattern, implying
that there is no clear distinction between lock-in and galloping intervals. Additionally, due
to the complex dynamics underpinning the overlap of instability patterns, although the
amplitude starts to expand around Ur = 5, 6 for the 85◦ configuration, the phase difference
in figure 12(d) remains at a low level until it enters the galloping interval (marked with red
shading).

A notable discrepancy from the lock-in behaviour is that the initial state of the elastic
system can sometimes determine whether a galloping instability appears. Specifically
speaking, galloping can be classified as patterns of soft galloping or hard galloping
(Nakamura & Tomonari 1977; Park, Kumar & Bernitsas 2013). Soft galloping is thought
to be a self-initiated oscillation that requires no initial displacement, velocity or external
forces. In vast contrast, the triggering of hard galloping requires an initial structural
displacement (or, velocity) to exceed a certain threshold (Park et al. 2013). Furthermore,
past research implies that the after-body shape of an object is correlated to whether the
galloping instability belongs to either the hard or soft patterns (Novak & Tanaka 1974;
Weaver & Veljkovic 2005; Lian et al. 2017; Zhao et al. 2018). To further determine that
the geometry with an obtuse windward interior angle (viz., with a tiny expansion trend in
the streamline direction) is unable to exhibit a galloping instability, i.e. hard galloping will
also not occur, we performed the calculation shown in figure 13 indicating the time series
of the normalized transverse displacement y/D (obtained using FOM/CFD simulations).
For each of the three configurations considered here, the value of the reduced velocity Ur
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Figure 13. Time series of the normalized transverse displacement y/D obtained for a FIV system consisting
of the flow past an elastically mounted isosceles-trapezoidal body at (Re, m∗) = (160, 10) with a windward
interior angle of (a) 91◦, (b) 85◦ and (c) 95◦. For each configuration, the reduced velocity Ur is changed
(abruptly) in time in accordance to the sequence of values shown along the top of each panel.

was changed (abruptly) in time – the sequence of change points of Ur is shown in each
panel of the figure. The initial temporal segment for each configuration used an initial
condition of ( y, ẏ) = (0, 0) at t = 0. From a careful examination of figures 13(a) and
13(c) involving a windward obtuse interior angle, the FIV system at Ur = 14, 25 and 40
enters into the desynchronization region after the lock-in regime, demonstrating that the
two configurations with a windward obtuse interior angle exhibit neither soft nor hard
galloping. In stark contrast, the FIV system involving a windward acute interior angle of
85◦ switches quickly from galloping and lock-in patterns with varying Ur from 25, 6, to
14, sequentially. It is worth mentioning that the galloping stability situation may vary at
different Reynolds numbers, for example, the trapezoid with a windward interior angle of
91◦ will produce galloping as the Reynolds number increases to a certain value/threshold
larger than 160, but the tendency in the effect of geometrical expansion and/or contraction
on the galloping stability implied by present results should be consistent.

Figure 14 exhibits the contours of the vorticity field for a flow past a trapezoidal body
with the windward interior angle of 89◦ at (Re, m∗) = (160, 10) for various values of the
reduced velocity Ur that span regimes from desynchronization to galloping. Overall, the
wake dynamics before the FIV system enters into the galloping regime mainly display the
2S pattern. The values of Ur = 10 and 12 correspond to the desynchronization regime for
the FIV system and the WM is associated with a typical 2S pattern of vortex shedding.
When Ur reaches a value of 14, the system enters into the galloping regime. It is noted
that the associated reduced natural structural frequency in the galloping regime is much
smaller than the original vortex-shedding frequency and, as a result, the behaviour of the
vortex shedding is no longer locked into the natural structural frequency. In this case, the
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Figure 14. Contours of the vorticity field for a flow past a trapezoidal body with the windward interior angle
of 89◦ at (Re, m∗) = (160, 10) for various values of the reduced velocity Ur.

moving body can be regarded simply as a moving source of vortex shedding and, owing
to the relatively slow speed of motion of the body, the vortex-shedding pattern is similar
to the vortex-shedding pattern in the desynchronization regime, except for the fact that
the contours of the vorticity field are slightly deformed. The pattern is spatially displaced
as a whole in the transverse direction as the body moves. This kind of wake behaviour is
regarded as the mS + nS mode, and m + n � 5 for the galloping regime (Seyed-Aghazadeh
et al. 2017; Zhu et al. 2021; Chen et al. 2022). Although the structural amplitude of the
trapezoid concerned in figure 14 is not as significant as that of the D section and triangular
bodies for the same Ur (or, vibration frequency), a perusal could help to determine the
wake at Ur = 25 as the 5S + 5S pattern (cf. with the marks in figure 14).

The local stability of the FIV system is known to be influenced by structural damping,
hence, the effect of structural damping on galloping triggering is further explored here. It is
mentioned above that the isosceles trapezoid with a windward interior angle of >90◦ does
not produce galloping when the structural damping is 0, therefore, further increasing the
damping will make the structure more stable (or, galloping will not be produced). In this
case, we choose the square cylinder here to test the critical effect of structural damping on
galloping, since the square cylinder is the geometric tipping point for galloping triggering.
As shown in figure 15, the FIV configuration consisting of the square cylinder with
(Re, m∗, Ur) fixed at (160, 10, 30), and the structural damping coefficient ζ(= c/2

√
km)

decrease abruptly with time during calculation (annotated at the top of the panel). It is
observed that the small fluctuations of the structural displacements are gradually obvious
as ζ keeps getting smaller. Specifically, when ζ decreases to 0.05, the structure becomes
unstable, the amplitude increases and galloping is generated. This implies that there is a
threshold in the presented effect of a tiny interior angle change (low to 1◦) on the galloping
trigger. In spite of this, the relationship between the tendency of contraction/expansion and
the occurrence of galloping proposed in this paper is still valid. It is noted again that the
structural damping still keeps vanishing in the previous as well as in the later analysis of
the present work.
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Figure 15. Time series of the normalized transverse displacement y/D obtained for the FIV system consisting
of the flow past a square cylinder at (Re, m∗, Ur) = (160, 10, 30) with structural damping varying abruptly in
time (in accordance to the sequence of values shown along the top of each panel).

5. Initial stage in triggering process of galloping

Here we outline a method to depict and analyse the structural instability in the galloping
triggering process by using the idea of ‘time-energy evolution’. The instability encountered
by the structure submerged in the fluids is owing to the fluid–structure interaction effect,
accompanied by the energy transfer between the elastic system and the surrounding flow.
Over a fixed-width time domain (t − n�t, t + n�t) spanning one specific time point t, the
average normalized energy E∗(t) extracted from fluids to the elastic system is defined as

E∗(t) = 1
2n

∫ t+n�t

t−n�t
CL(t)ẏ∗(t) dt. (5.1)

Regarding one FIV system with zero structural dampings, previous research indicated
that positive and negative values of E∗ are associated with the amplified and suppressed
oscillation amplitude, respectively, whereas the stationary state is maintained at E∗ = 0
(Morse & Williamson 2009; Menon & Mittal 2019; Zhu, Su & Breuer 2020; Menon &
Mittal 2021). Unlike the lock-in behaviour where both the structural and kinetic responses
are relatively regular (accompanied by a single peak in the spectrum), the structural
vibration of galloping brings a more complex kinetic response (accompanied by multi
peaks in the spectrum). As a result, the energy conversion in a single vibration cycle is
not representative. In this paper our study will disregard the energy conversion in one
vibration cycle as the criterion of evaluation in previous studies but will be based on the
average energy conversion in multiple vibration cycles. The value of n is chosen as 60 and
600 for the lock-in and galloping regimes herein, respectively.

Figure 16 displays the ‘time-energy evolution’ in which the upper two panels depict the
real-time structural displacement changes with continuously varying Ur, and the bottom
two panels show the average normalized energy E∗(t) varying as a function of t (or,
with varying Ur). The simulation was conducted with the reduced velocity Ur changing
abruptly in time. The normalized time range of (1200, 1500) corresponds to the lock-in
regime with Ur = 6, whereas those of (3000, 3800), (3800, 4500) and (4500, —) are
affiliated with the galloping regime with Ur = 14, 16 and 18, respectively. The data
associated with lock-in and galloping phenomena are marked with ‘blue’ and ‘red’ colours,
respectively, whereas the desynchronization regime is stained by a ‘black’ colour. The
corresponding inset plot in each panel provides a closer view of the instability developing
process of the FIV system transferring from desynchronization to the lock-in and/or
galloping regimes. In the initial stage of the instability developing process at Ur = 6, the
structural amplitude gradually amplifies accompanied by positive E∗. As the elastic system
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Figure 16. Time series of the normalized transverse displacement y/D (a,b) and average normalized energy
E∗(t) (c,d) for the windward interior angle of 89◦. Two situations with the system transferring from
desynchronization to lock-in and galloping regimes are depicted in the left and right panels, respectively.

thereby achieves the limit-cycle situation, the E∗ returns to near zero. This indicates that
the energy transfer between the elastic system and the fluid reaches a stable equilibrium
during the periodic vibration of the structure in the background of the limit cycle. In vast
contrast, the escaping process of the FIV system from lock-in to desynchronization regime
is accompanied by negative E∗, implying that the fluid field absorbs energy from the elastic
system. It is presented from the above discussion that for the FIV system of trapezoidal
bodies with an internal angle of 91◦, the structural response completes the transfer from
desynchronization to the galloping regime during the increase of Ur from 12 to 14. Indeed,
it is observed that the absolute value of E∗ maintains a tiny value at Ur = 12, implying
that the energy transfer between fluids and the elastic system is weak. The galloping
triggering process starting from tU0/D of 3000 is accompanied by a large amount of
energy absorption by the elastic system from the fluid, leading to the value increase of
E∗. However, when the structural response in the galloping regime enters the limit-cycle
status, unlike the lock-in behaviour, although the average value of E∗ is maintained near
0, the overall fluctuation is drastic and accompanied by switching between positive and
negative values.

Unlike the spectrum of structural vibration where the primary frequency is always
locked by the structural natural frequency, the spectrum of the lift coefficient is more
complicated for the galloping instability. More specifically, the frequency of structural
vibration decreases as Ur increases, and when the structural frequency is small enough to
be far from the original vortex-shedding frequency, the vortex mechanism escapes from
the complete locking of the structure frequency. As a result, the intense peak of the CL
spectrum is thereby dominated by the original vortex-shedding frequency, and several
complete vortex-shedding cycles occur in one complete cycle of structural vibrations.
Besides this, the CL variation is still affected by structural vibration. Consequently, the
variation of normalized energy E∗(t) in the galloping regime will inevitably be affected.

However, we are still curious as to how the mechanism of force interactions between
the fluid and solid makes such a small interior angle change have a strong effect on the
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Figure 17. The triggering and suppression evolution of the galloping instability for a FIV system consisting of
flow passing a trapezoidal body with the interior angle of (i) 90◦ and (ii) 91◦. Here Ur is changed from 10 to
20 at T = 1650. Dynamics responses (CA, CL, Ẏ, Y) and time-frequency spectrum are displayed in subfigures
(a,b), respectively.

structural response and directly determines whether galloping is generated or not. Next, we
try to explore the critical evolution of forces in the initial stage of the galloping developing
process from a more microscopic perspective. For this purpose, we designed a set of
comparative calculations between 90◦ and 91◦, with the parameters of the FIV system
kept identical for both shapes. When the FIV system achieves the equilibrium status at
Ur = 10, and the spring stiffness is suddenly reduced to make Ur increase to 20, and then
the evolution of the dynamics response is observed. The dimensionless displacement Y and
velocity Ẏ of the structure as well as the lift coefficient CL, and the overall force coefficient
CA are depicted in figure 17(a). Here CA is defined as CL + ky/(1

2ρU2D), representing the
coefficient of the overall combined force acted on the object in the transverse direction.

The displacement of the FIV will contain both components of the vortex-shedding
frequency as well as the structural natural frequency owing to the combined effect of
the shedding vortex as well as the mounted spring (Zhang et al. 2015; Cheng et al.
2022). As can be observed in figure 11(c), the structural natural frequency (0.05 Hz)
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at Ur = 20 is much smaller than the original vortex-shedding frequency (≈0.16 Hz).
Thus, at the initial stage of the structure evolution at Ur = 20 for both 90◦ and 91◦ in
figure 17(a), the displacements Y (demarcated with the red line), besides being mainly
influenced by the vortex shedding, both also exhibit a slight modulation corresponding to
the structural natural frequency. For configuration of 91◦, this kind of modulation gradually
disappears and the displacements are gradually dominated by the original vortex-shedding
frequency. In complete contrast, the modulation plays an increasingly important role in the
structural displacements for 90◦ and gradually pulls the structural displacements to larger
amplitudes. This interpretation is also corroborated by the variation of the time-frequency
spectrum in figure 17(b). The initial stages at Ur = 20 for configurations of 90◦ and
91◦ both involve two frequency components foscD/U0 of 0.05 and 0.16. In the case of
the progressively aggravated component of foscD/U0 = 0.05 for the 90◦ configuration,
this frequency component fades away for 91◦, demonstrating the mechanism of modal
competition (Li et al. 2019; Cheng et al. 2022).

A perusal of the structural displacements for 90◦ shows that the gradual amplification of
the structural displacements is caused by the behaviour that a structural stroke length in one
direction is accompanied by a shorter stroke length in the opposite direction that follows.
The continuous superposition of this behaviour causes increasing structure destabilization.
We select several specific time points (marked by the red vertical lines in figure 17a) to
study the dynamics evolution between those points. A close view of the change of CL
(demarcated with the blue line) indicates that the vortex-shedding mechanism completes
a complete cycle between T1 and T4. Meanwhile, the body motion moves upward and
completes stroke 1 from T1 to T3, during which it passes through the structural equilibrium
position at T2. Following this, the system moves downward and completes stroke 2 from
T3 to T4. It is obvious that the length of stroke 2 is shorter than that of stroke 1. The
variation of displacement is determined by the velocity, and underpinning the velocity
variation is the acceleration as well as the overall force acting on the body. Consequently,
we could find that area 1 enclosed by the velocity envelope (demarcated with the yellow
line) and x axis among (T1, T3) is larger than area 2 among (T3, T4). This is because the
overall force variation during the process from T3 to T4 changes more rapidly than that
from T1 to T3 (viz., with CA(T4) > CA(T1)), resulting in area 2 being smaller than area 1
and the length of stroke 2 being smaller than the length of stroke 1. In marked contrast, for
a trapezoid body with a windward internal angle of 91◦ (cf. with the bottom panel), even
if the length of stroke 2 (from T3 to T4) is shorter than that of stroke 1 (from T1 to T3), the
length difference is not comparable to that of 90◦. Consequently, with the initial impulse
of stiffness change, the trapezoidal bodies with windward interior angles of 90◦ (square
cylinder) and 91◦ gradually demonstrate significantly different structural responses.

The contour of pressure coefficients and vorticity at T1,2,3,4,5 for the windward interior
angles of 90◦ (square cylinder) are shown in figure 18. Comparative observation of the
first and second columns of the panel reveals that the vortex location will also be the
centre of the negative pressure region. Alternating shedding vortices on the upper and
bottom sides of the column are accompanied by the alternating formulation of negative
pressures. Those negative pressure areas acting on the surface of the object will result in a
periodically varying fluid force. In addition, as can be observed in figure 18, it is difficult
for the vortex dislodged from the two corners of the windward side of the square column to
reattach to the geometric surface. It could be further deduced intuitively from the physical
point of view that for isosceles trapezoids with smaller windward interior angles (<90◦),
the vortex reattachment is more difficult. In contrast, vortex reattachment on the upper and
lower surfaces is prone to appear for geometries with a tendency to expand, and it will
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Figure 18. Contour of pressure coefficients and vorticity at T1,2,3,4,5 (demarcated in figure 17a) for a FIV
system consisting of flow passing a trapezoidal body with the interior angle of 90◦ (square cylinder).

be expected that this vortex reattachment behaviour facilitates the dynamic stability of
the elastically mounted structure. This conjecture should be further verified by designing
special configurations of geometries in the future.

6. Modal analysis

In this section we first try to apply the widely used Den Hartog stability criterion (Den
Hartog 1956) to explore the observed critical geometrical effect in this study. A detailed
introduction to the Den Hartog stability criterion is given in Appendix A. The base flow
for one specific configuration is obtained as in the above in the ERA identification (cf. with
the first step in figure 4) and applied here for obtaining CL and CD to avoid the dynamics
coefficients’ fluctuations. Figure 19 summarizes the stability characteristics for the FIV
system consisting of a flow past an elastically mounted isosceles-trapezoidal body at Re =
160 for various values of the windward interior angle. Interestingly, it is observed that the
absolute values of dCL/dα and CD both become smaller with increasing windward interior
angles. However, the Den Hartog function H(α) (= −dCL/dα + CD) at α = 0◦ is negative
for the concerned trapezoidal bodies regardless of the value of the windward interior angle
(implying the body exhibits a galloping instability that does not depend on the windward
interior angle). The quasi-steady stability analysis here is inaccurate as it has been shown
above that a galloping instability does not occur for the isosceles-trapezoidal body with
a windward interior angle of 91◦ and 95◦ (in contradistinction to predictions provided
by the Den Hartog stability criterion). Nevertheless, the increasing trend of the H(α)
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Figure 19. The lift CL and drag CD coefficients for the base flow past an elastically mounted
isosceles-trapezoidal body at Re = 160 for various values of the windward interior angle. The body is oriented
relative to the incident wind direction with a rotation angle α = −1◦ and 1◦. The Den Hartog function H(α) is
provided for a rotation angle of α = 0◦.
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Figure 20. The predictions of the CL impulse response obtained using FOM/CFD and the corresponding
ROM/ERA at Re = 20, 45 and 60 for a square cylinder (symbols displayed correspond to every tenth point
in the ROM/ERA response). The cases at Re = 20 and 45 correspond to stable wake flows, whereas that at
Re = 60 corresponds to an unstable wake flow. The lower panel displays an expanded view of the temporal
development of the CL impulse response over the first 20 time steps.

value does demonstrate that the system is becoming more stable with increasing windward
interior angle. Although the Den Hartog stability criterion has been successfully applied
previously for the D-section and isosceles-triangular bodies (Zhao et al. 2018), it cannot be
used to assess the system stability for the isosceles-trapezoidal body and especially with
respect to how very small variations in the geometry of the body (e.g. windward interior
angle) affect the stability (and, more specifically, whether galloping occurs). This section
thereby focuses on investigating the mechanism underlying the above-introduced problems
from the modal point of view using the ERA-based data-driven model.

To construct one coupled state-space form for the FIV system, the accurate flow
ROM needs to be obtained in advance as introduced in § 2.2. With respect to the flow
passing a square cylinder (or, isosceles-trapezoidal body with interior angles of 90◦), the
impulse response of CL (arising from imposing an impulse input signal on the normalized
transverse displacement h = uδ) is shown in figure 20. This impulse response was obtained
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Figure 21. (a) The root loci and (b) the variation of the growth/decay rate Re(λ) and eigenfrequency Im(λ)/2π

as a function of Fs for a FIV system consisting of the flow past an elastically mounted isosceles-trapezoidal
body at (Re, m∗) = (160, 10) with windward interior angles of 85◦, 89◦, 90◦, 91◦ and 95◦. The SM SMc that
is hidden in the coupled WSMI/WSMII modes is demarcated with crossed open symbols. The dotted line
corresponds to the relationship f = Fs. The solid red points represent the stationary situation of corresponding
geometries.

from FOM/CFD over 1000 time steps and from the corresponding ROM/ERA over
700 time steps. There is a very good agreement in the impulse response obtained from
the FOM and the ROM. Moreover, the system identification method based on ROM/ERA
has a high predictive accuracy for the time development of the dynamic coefficient CL for
both the stable and unstable behaviours in the square cylinder wake. In particular, the first
20 time steps obtained from both FOM/CFD and ROM/ERA at Re = 20, 45 and 60 are
shown in the right panel of figure 20, demonstrating that there is excellent conformance
between these two predictions.

Figure 21(a) shows the root loci for a FIV system consisting of the flow past an elastically
mounted isosceles-trapezoidal body at (Re, m∗) = (160, 10) for windward interior angles
of 85◦, 89◦, 90◦, 91◦ and 95◦. The results were obtained from a ROM/ERA of the
FIV system. The solid red points are correlated to the stationary case of corresponding
geometries. A perusal of the figure shows that even small changes around the balance (90◦)
of contraction/expansion trend has significant effects on the trajectory of the associated
root loci. The root loci for the isosceles-trapezoidal body with windward interior angles
of 85◦, 89◦ and 90◦ imply that after leaving the resonance lock-in region with increasing
values of Ur, the growth rate (characterized by Re(λ)) associated with the SM is positive,
so the trapezoidal body here has an unstable SM that leads to a galloping instability.
Moreover, we note that Re(λ) for the SM associated with the trapezoidal body with a
windward interior angle of 85◦ is larger than that associated with the square cylinder
(or, trapezoidal body with a windward interior angle of 90◦). Hence, the structural
amplification response of a trapezoidal body with a windward acute interior angle is faster
than that with a right angle (viz., a square cylinder) and, in consequence, the former body
geometry is more prone to exhibit large-amplitude oscillations in the response than the
latter body geometry. Our FOM/CFD simulations shown in figure 11(a) provide further
support for this assertion – here, it is seen that the normalized maximum transverse
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displacement ymax/D for the trapezoidal body with a windward interior angle of 89◦ is
about two times larger than that for the square cylinder with a windward interior angle of
90◦.

As Ur increases beyond the range of values associated with the resonance lock-in regime
for the flow past an isosceles-trapezoidal body with a windward interior angle of 85◦, 89◦
and 90◦, there will be a value of Ur at which galloping will be initiated. The precise
value of Ur at which this occurs depends critically on the mode switching behaviour
of SMc. The locations at which mode switching occurs for the trapezoidal body with
a windward interior angle of 85◦ and 90◦ are marked as S85 and S90 in the top panel
of figure 21(b), respectively. The values of Ur corresponding to the onset of galloping
for the trapezoidal body with a windward interior angle of 85◦ and 90◦ are 8.5 and
16, respectively. The variation of the maximum transverse displacement (obtained using
FOM/CFD simulations) for the trapezoidal body with a windward interior angle of 85◦,
shown in figure 12, suggests that the onset of galloping occurs at Ur ≈ 8. Similarly, a
perusal of figure 11(a) indicates that for the square cylinder, the onset of galloping occurs
at Ur = 17. These results for the value of Ur associated with the onset of galloping are
generally consistent with those obtained using ROM/ERA. Interestingly, this result seems
to contradict the assertion of Li et al. (2019) that the use of LSA will lead to a significant
underestimation of the value of Ur associated with the onset of galloping. The discrepancy
here would be expected to be owing to the fact that Li et al. (2019) did not identify the
correct structure-dominated mode in their LSA of the square cylinder. In more detail, it is
supposed that Li et al. (2019) treats a particular coupled mode (i.e. WSMI or WSMII) as a
structural mode for all Ur values and ignores the mode switching behaviour.

For an isosceles-trapezoidal body with a windward obtuse interior angle, the response
of the FIV system is stable – even when the difference between the obtuse angle and a
right angle is as small as either 1◦ or 5◦. An examination of figure 21(a) shows that the
root loci associated with the isosceles-trapezoidal body with a windward interior angle of
95◦ is located in the left half-side of the complex frequency plane over the entire range
of values of the reduced velocity Ur – so, the SM corresponds to a negative growth rate
(Re(λ) < 0). As a result, this trapezoidal body will exhibit a resonance lock-in region,
but no flutter-induced lock-in or galloping. Moreover, a perusal of figure 21(b) shows that
for the isosceles-trapezoidal body with a windward interior angle of 91◦, the SM first
transitions from a stable to an unstable state with increasing values of Ur (or, equivalently,
with decreasing values of Fs) and then switches back to a stable state at an even larger value
of Ur (viz., the transition back to the stable state occurs at Fs ≈ 0.025). The ROM/ERA
results here are at variance with the FOM/CFD simulations where it can be seen that
the isosceles-trapezoidal body with a windward interior angle of 91◦ does not appear
to exhibit a galloping instability. In spite of this discrepancy, both the FOM/CFD and
ROM/ERA results suggest that even a small increase in the windward interior angle of an
isosceles-trapezoid body beyond a right angle (square cylinder) can greatly enhance the
structural stability of the body, and the slight geometrical expansion trend will critically
suppress the galloping instability. Additionally, as already mentioned, the effects of the
geometrical contraction/expansion in the downstream direction that we have observed on
the D section, isosceles triangle, cylinder connected C, etc. are also verified in the case of
specially designed trapezoidal cases in this paper. Therefore, we infer that geometries with
an overall expansion tendency are more likely to stabilize due to the squeezing effect of
the incoming flow.
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Figure 22. Diagram of wind tunnel measurements. (a) The trapezoidal cylinder in Duke University low-speed
wind tunnel. The flow speed is determined by a hot wire, located upstream of the test section. (b) Schematic
of the experimental configuration: the cylinder is supported by four springs and is restricted to moving in the
transverse direction. An accelerometer is attached to one end of the cylinder to measure the structural response.
(c) Two-dimensional schematic of the cross-section. Forward and backward orientations are tested.

7. Experimental validation at high Reynolds number

A set of experiments are also conducted to support our conjecture. All measurements were
conducted in the low-speed wind tunnel of the Aeroelasticity Group at Duke University
(cf. with figure 22a). As summarized in table 2 introducing the experimental parameters,
the closed circuit wind tunnel has a cross-sectional test area of 0.75 × 0.53 m2 and a test
section length of 1.52 m (cf. with figure 22b). The operating air speed ranges from 5 to
35 m s−1 (error: 1 m s−1), recorded by a hot wire located upstream of the test section.
The bluff body used in the present measurements is produced via the three-dimensional
printer located in the new Technology Engagement Center at Duke University. The
measured trapezoidal bluff body has a span length of 0.728 m. Distinguished from the
above calculations where the inner angle of an isosceles trapezoid varies only by 1◦ with
respect to a square, this experiment increases the interior angle discrepancy to 10◦ (cf. with
figure 22c) owing to the precision control of the three-dimensional printer machine tool. In
spite of this, from the point view of practical engineering, the isosceles trapezoids with the
interior angle of 100◦ could also be regarded as a small geometrical change from the square
cylinder, and consequently, its FIV response could be used to validate our suggestions –
the tiny geometrical variation from balanced status to expansion trend will suppress the
galloping phenomenon whereas contraction trend amplifies the galloping instability. Both
sides of the column are connected to the universal rollers (located outside of the wind
tunnel) by a thin rod, and the rollers are supported on the groove on the slide bar with
lubricant applied to the rollers and contact surfaces to reduce friction. The trapezoidal
column is elastically mounted by four identical linear springs with each end linked by two
springs, and the column motion is limited to the transverse (y) direction. An accelerometer
(model: PCB Piezotronics J352C34) with the sensitivity of (±10 %)10.2 mV (m s−2) is
placed on the spanwise end of the column to measure the real time-series variation of
structural response.

The natural frequency and damping of the FIV system in the air are measured by
conducting free decay tests individually without incident flow. The practical measured
structural natural frequency Fe

n (obtained by the test and displayed in table 2) of 11.2 Hz
highly agrees with the calculated structural natural frequency Fs

n(= 1/2π
√

k/m) of
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Experimental system parameters Value

Characteristics length D (= SL = TL) 0.05 m
Spanwise length L 0.728 m
Incident flow velocity 5 m s−1–35 m s−1

Structural mass m (column mass plus one-third of spring mass) 0.579 kg
Stiffness of one spring k0 786 N m−1

Overall structural stiffness k (= 4k0) 3144 N m−1

Measured structural natural frequency Fe
n 11.2 Hz

Measured structural damping ratio ζ 0.0023
(Re, m∗, m∗ζ ) (16 667–116 667, 260.8, 0.60)

Table 2. Measured parameters in the experiments.
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Figure 23. Maximum amplitude envelops and frequency spectrum of structural displacements for a FIV
system consisting of wind passing the tested trapezoidal cylinder with a (a) backward and (b) forward
orientation in measurements. (c) Time series of the structural displacement for the forward configuration at
three representative reduced velocities.

11.7 Hz. It is noted that the effect of added mass is ignored herein owing to the large mass
ratio. The structured damping ratio derived from the experimental test results is 0.0023.

Figure 23 shows the variation of the maximum amplitude with incident wind speed
for both backward and forward orientation cases (left two panels) and the frequency
spectrum of structural displacements for several specific wind speeds (right two panels).
It can be seen from the two right panels that the structural vibration frequencies are
locked by the structural natural frequency when the elastic system is located at the
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lock-in or galloping regime. In addition, the maximum amplitude response proves our
conjecture. More specifically, the structure with a backward configuration, accompanied
by the tendency of the shape to expand in the downstream direction, gradually stabilizes
at high wind speeds. On the contrary, the forward configuration, accompanied by the
geometrical contract tendency, displays a galloping characteristic and the maximum
amplitude of the vibration increases continuously with rising wind speeds. In terms of
the forward configuration, time histories of normalized structural displacement y/D at
inflow velocities of 7.1 m s−1 (lock-in), 22.5 m s−1 (desynchronization) and 39.8 m s−1

(galloping) are exhibited in figure 23(c). The time-series response of lock-in and galloping
contains, in addition to the component corresponding to the structural natural frequency,
a weak modulation behaviour. The work presented herein shows that a contraction of the
trapezoidal body in the streamwise direction (viz., in the direction of the incident wind)
is correlated with the presence of a galloping instability, and this trend has also been
experimentally seen for the D-section and isosceles-triangular bodies (Lian et al. 2017;
Zhao et al. 2018).

8. Conclusion

In this paper detailed investigations were conducted to determine the mechanisms
responsible for triggering galloping in a flow past an elastically mounted trapezoidal body,
with a particular emphasis on the critical influence of the geometrical contraction and
expansion on the initiation of galloping instability. Besides the experimental exploration,
two numerical methodologies have been used to address this problem: namely, FOM/CFD
simulations, and the application of data-driven stability analysis based on the use of a
ROM obtained using the eigenvalue realization algorithm.

A novel result of the present paper concerns the fact that very small changes in the
windward interior angle of an isosceles-trapezoidal body can have a significant effect
on the appearance or disappearance of galloping in the case of the specific parameter
setting of (Re, m∗) = (160, 10). Using an isosceles-trapezoidal body with a windward
interior right angle (square cylinder) as the reference, it was found that even a small
increase in the value of the windward interior angle (say, from 90◦ to 91◦) can lead to
a complete suppression of the galloping instability. Alternatively, a small decrease in the
windward interior angle of an isosceles-trapezoidal body to a value below 90◦ can result
in a significant enhancement of the galloping oscillations.

We then analysed the detailed response of the initiation stage of the galloping triggering
with the micro perspective and demonstrated that the gradual structural amplification is
owing to the length differences of the adjacent strokes in the displacement variation. The
continuous superposition of stroke length differences leads to galloping instability and
the dominance of the structural nature frequency. From a macroscopic perspective, the
geometry with an expansion trend in the streamline direction is prone to remain stable due
to the squeezing effect of the incoming flow. Owing to the very large amplitude and very
low frequency of the oscillations of the galloping regime, the vortex-shedding pattern
corresponds to a slow transverse displacement of a 5S + 5S mode (as if the 2S vortex
pattern were frozen into the flow at any particular time in this spatial displacement).

The observation provided by FOM/CFD was supported by our data-driven stability
analysis (and, more specifically, ROM/ERA). The variation of the windward interior angle
of the trapezoid from 90◦ to 91◦ leads the structural-dominated mode SMc to become
stable in the large Ur regime. This suggests that the presence of a certain tendency for
whether the geometry contracts or expands in the streamline direction determines whether
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Figure 24. The total fluid force acting on a downward-moving body can be resolved into two components: a
lift force FL and a drag force FD.

galloping occurs from the geometrical perspective. Additionally, these conclusions were
also supported by our experimental measurements in the subsonic wind tunnel. We
note that there still exists possible attempts to further validate the present hypothesis.
Future work could be done investigating the difference in the galloping response between
expansion and contraction tendencies for the geometries with smooth outlines (or without
sharp corners).
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Appendix A. Den Hartog stability criterion

Den Hartog (1956, pp. 370–371) proposed a stability criterion to determine the potential
susceptibility of a FIV system to develop a galloping behaviour from the equilibrium
position. Figure 24 shows a bluff body that is moving in the downward direction
(transverse to the incident flow U) and, as a result of this motion, the incoming flow Urel
relative to the moving body is incident from below at an angle α = tan−1(v/U), where v

is the downward (transverse) velocity of the body.
The lift FL and drag FD forces acting on the downward-moving body have y components

(opposite of the direction of the moving body) given by FL cos α and FD sin α, respectively,
which results in a total upward force FY acting on the body that retards its downward
motion:

FY = FL cos α + FD sin α. (A1)

The condition for aerodynamically unstable behaviour for the moving (vibrating) body is
given by

dFY

dα
< 0, (A2)
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which, in view of (A1), can be recast in terms of the static force coefficients for a unit
spanwise length as

dFY

dα
= cos α

(
dFL

dα
+ FD

)
+ sin α

(
−FL + dFD

dα

)

≈
(

dFL

dα
+ FD

)

= 1
2
ρU2D

(
dCL (α)

dα
+ CD (α)

)
< 0, (A3)

where the penultimate line follows from the assumption that α � 1 so cos α ≈ 1 and
sin α ≈ 0. Here, CL and CD are the lift and drag coefficients, respectively, and U is the
flow speed.

From (A3), it is seen that a positive value for the derivative of the lift coefficient
with respect to α corresponds to an aerodynamically stable behaviour for the vibrating
body, whereas a negative value for the derivative of the lift coefficient with respect to
α can potentially lead to an aerodynamically unstable behaviour for the body. The Den
Hartog stability condition can only be used to assess the stable behaviour of a body with
a specific shape at a certain angle of attack α and, from this perspective, the parameters
that define the elastically supporting device that may be attached to the body are not taken
into consideration. Clearly, the Den Hartog stability condition has limitations, and the
above conducted analysis also clarifies some of these restrictions in the application of this
stability criterion (based on a quasi-steady theory for addressing aerodynamic problems).
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