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Abstract

Savin [‘C1 regularity for infinity harmonic functions in two dimensions’, Arch. Ration. Mech. Anal.
3(176) (2005), 351–361] proved that every planar absolutely minimizing Lipschitz (AML) function
is continuously differentiable whenever the ambient space is Euclidean. More recently, Peng et al.
[‘Regularity of absolute minimizers for continuous convex Hamiltonians’, J. Differential Equations 274
(2021), 1115–1164] proved that this property remains true for planar AML functions for certain convex
Hamiltonians, using some Euclidean techniques. Their result can be applied to AML functions defined in
two-dimensional normed spaces with differentiable norm. In this work we develop a purely non-Euclidean
technique to obtain the regularity of planar AML functions in two-dimensional normed spaces with
differentiable norm.
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1. Introduction

Let n ≥ 2 and Ω ⊂ Rn be a nonempty open and connected set, where Rn is
equipped with the Euclidean norm. Aronsson in [1] studied the class of C2-smooth
infinite-harmonic functions defined on Ω, that is, classical solutions of the equation
given by the infinity-Laplacian,

Δ∞u :=
n∑

i,j=1

uxi uxj uxixj = 0. (1-1)

This equation arises from considering the following optimal Lipschitz extension
problem. Let g : ∂Ω→ R be a continuous function. Find a function u : Ω→ R such
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that g = u|∂Ω and that, for every open set V compactly contained in Ω and for every
function h : V → R such that u|∂V = h|∂V , the following estimate holds:

Lip(u|V ) ≤ Lip(h|V ).

The above problem leads to the following definition.

DEFINITION 1.1. Let (X, ‖ · ‖) be a finite-dimensional Banach space and let Ω be
an open subset of X. We say that a locally Lipschitz function u : Ω ⊂ X → R is a
‖ · ‖-absolute minimizing Lipschitz function (‖ · ‖-AML function), if for every open set
V compactly contained in Ω and for every function g : V → R such that u|∂V = g|∂V ,
the following estimate holds:

Lip(u|V ) ≤ Lip(g|V ).

If no confusion arises from the underlying norm on X, we just write ‘AML function’.

Let us now present some results in the Euclidean setting. Aronsson showed that
C2-smooth infinity-harmonic functions coincide with C2-smooth AML functions. In
[9], Jensen proved that solutions of Equation (1-1) in the viscosity sense coincide with
AML functions. Further, Jensen proved the existence and uniqueness of a viscosity
solution of Equation (1-1) satisfying a given continuous boundary condition. Further
information about the existence and uniqueness of solutions of the equation governed
by the infinity-Laplacian operator can be found in [2]. A link between this theory and
the stochastic tug-of-war game theory is presented in [11].

The regularity of AML functions is one of the main issues in this field. In the
seminal paper [12] it is proven that planar ‖ · ‖2-AML functions are continuously
differentiable, where ‖ · ‖2 is a Euclidean norm. In [6] it is shown that each planar
‖ · ‖2-AML function is C1,α-smooth for some α > 0. Also, provided with tools from
capacity theory, in [13] we can find an alternative proof of the smoothness of planar
‖ · ‖2-AML functions. Further results assert that AML functions in (finite-dimensional)
Euclidean spaces are at least everywhere differentiable; see [7, 8]. However, the
continuity of the differential remains an open question in higher dimensions.

The main question we address here is as follows.

QUESTION 1.2. If (X, ‖ · ‖) is a finite-dimensional normed space, which property of the
norm guarantees the smoothness of all ‖ · ‖-AML functions defined on open subsets
of X?

In [10] we can find a different approach which encompasses Question 1.2. In that
paper, (X, ‖ · ‖) is considered as an n-dimensional Euclidean space and a Hamiltonian
formulation of the AML property is given. More precisely, let H : X → R be a
coercive, convex function. A locally Lipschitz function u : Ω ⊂ X → R is said to be an
AMLH function if for every open set V compactly contained in Ω and every absolutely
continuous function g : V → R such that u|∂V = g|∂V , the following estimate holds:

ess sup(H(u′|V )) ≤ ess sup(H(g′|V )),
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where this notion is well defined thanks to Rademacher’s theorem, which asserts that
Lipschitz functions in finite-dimensional spaces are differentiable almost everywhere.

In this notation, Question 1.2 is reinterpreted as follows. Let H be a norm on Rn.
Then u : Ω ⊂ Rn → R is an AMLH function if and only if u is an ‖ · ‖-AML function
such that H can be seen as the canonical dual norm of (Rn, ‖ · ‖).

To state the main results of [10], we need the following notation. Let u : Ω ⊂ X → R
be an AML function and x ∈ Ω. For r ∈ (0, dist(x, ∂Ω)), we set

S(x, r)+ = Su(x, r)+ := max
‖y−x‖=r

u(y) − u(x)
r

.

By Corollary 2.3,

S(x) = Su(x) := lim
r→0

S(x, r)+ exists and 0 ≤ S(x) ≤ S+(x, r).

So, the results of [10] applied to the case when H is a norm are stated in Theorems 1.3
and 1.4.

THEOREM 1.3 [10, Theorem 1.1]. Let X be a finite-dimensional Banach space with
differentiable norm and let Ω be an open subset of X. Let u : Ω ⊂ X → R be an AML
function. Then for each x ∈ Ω and 0 < r < dist(x, ∂Ω), there exists a vector e∗x,r ∈ X∗,
with ‖e∗x,r‖ = S(x), such that

max
y∈Br(x)

|u(y) − u(x) − e∗x,r(y − x)|
r

→ 0 as r → 0.

Observe that, thanks to Theorem 1.3, in order to prove that an ‖ · ‖-AML function
is differentiable at some x ∈ Ω, it is enough to prove that the net (e∗x,r)r converges as r
tends to 0. A nice example given by D. Preiss (mentioned in [4, 10]) shows that there
is a Lipschitz function from R to R which is nondifferentiable at 0 for which we can
find a net of linear maps (e∗0,r)r satisfying the conclusion of Theorem 1.3. However, the
convergence of the mentioned net and the continuity of the differential are guaranteed
by the following theorem.

THEOREM 1.4 [10, Theorem 1.2]. Let X be a two-dimensional Banach space. The
following statements are equivalent.

(a) The underlying norm is differentiable in X \ {0}.
(b) Every AML function defined on an open subset of X is continuously differentiable.
(c) Every AML function defined on an open subset of X is everywhere differentiable.

Even though the results of [10] can be applied to general finite-dimensional normed
spaces, the technique used to obtain these theorems relies on the Euclidean structure
of the ambient space.

The main contribution of this work is to provide a purely non-Euclidean technique
to prove Theorem 1.4. Moreover, for the sake of completeness, we present a proof of
Theorem 1.3 in a purely non-Euclidean fashion as well. A notable difference between
our approach and the one presented in [10] it is the fact that the latter avoids dealing
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with positively homogeneous convex functions (see [10, point (2) in Section 1.1]),
while we work directly with them.

Our main result is Theorem 1.4. Its proof relies on Theorem 1.3 and the following
result.

THEOREM 1.5. Let X be a two-dimensional normed space with differentiable norm.
There exists a function δ : (0,∞)→ (0,∞) satisfying the following property. Given an
AML function u : int(B1) ⊂ X → R such that S(0) � 0 and ε > 0, if there exists e∗1 ∈ X∗

such that

sup
x∈int(B1)

|u(x) − e∗1(x)| ≤ δ(ε)‖e∗1‖,

then lim sup
r→0

‖e∗0,r − e∗1‖ ≤ ε‖e
∗
1‖.

PROOF OF THEOREM 1.4. The implication from (b) to (c) is trivial and the implication
from (c) to (a) is given by Corollary 2.8, which asserts that the underlying norm of X,
restricted to X \ {0}, is an AML function. So, we only have to prove that (a) implies
(b). From now on, we denote by Br the closed ball of radius r centered at the origin.

Let u : Ω ⊂ X → R be an AML function. Let x0 ∈ Ω. Let us first prove that u is
differentiable at x0. Since we are only interested in the differentiability of u, replacing
if necessary u by Ru(· − x0/R) − u(x0) for some R > 0, we can assume that x0 = 0,
u(0) = 0 and B1 ⊂ Ω. By Theorem 1.3, there exists (e∗r )r ⊂ X∗ such that ‖e∗r‖ = S(0) for
every r ∈ (0, 1) and

|u(x) − e∗r (x)| ≤ rσ(r), for all x ∈ Br,

where σ : R+ → R is a positive function such that σ(r) tends to 0 as r tends to 0. If
S(0) = 0, then e∗r = 0 for all r > 0, so u is differentiable at 0, u′(0) = 0 and ‖u′(0)‖ =
S(0). We now assume S(0) > 0. Let us prove that e∗r converges as r tends to 0. Let ε > 0.
We fix s = s(ε) such that σ(s) ≤ δ(ε)S(0). The function v := (1/s)u(s·) is well defined
on B1 and, for all x ∈ B1, we have |v(x) − e∗s (x)| ≤ δ(ε)‖e∗s‖. According to Theorem 1.5
applied to the function v, we get

lim sup
r→0

‖e∗r − e∗s‖ ≤ ε‖e∗s‖.

If � is any accumulation point of (e∗s(ε))ε, the above inequality implies that for every
ε > 0,

lim sup
r→0

‖e∗r − �‖ ≤ εS(0).

We have proved that (e∗r )r converges to �. Therefore, u is differentiable at 0 and
u′(0) = �. Moreover, since ‖e∗r‖ = S(0) for all r, we have that ‖u′(0)‖ = S(0). Using
Theorem 1.5 again, we make the following claim.

Claim. If u is any AML function defined on B1 such that S(0) > 0, e∗1 is a nonzero linear
form and |u(x) − e∗1(x)| ≤ δ(ε)‖e∗1‖ on B1, then ‖u′(0) − e∗1‖ = limr→0 ‖e∗r − e∗1‖ ≤ ε.
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Let us now check the continuity of u′. If S(0) > 0, fix ε > 0 and denote δ = δ(ε).
Let 0 < r0 < dist(0, ∂Ω) be such that, for all r ≤ r0, σ(r) ≤ δ(ε)S(0)/2. Fix r < r0. The
function v(·) = u(r·)/r restricted to B1 satisfies

|v(x) − e∗r (x)| ≤ δ
2

S(0) =
δ

2
‖e∗r‖ for all x ∈ B1.

By the above claim, we obtain that ‖u′(0) − e∗r‖ ≤ ε‖e∗r‖. Let y ∈ Br/2. If w : B1 → R
is defined by w(·) := (2/r)(u(r/2 · +y) − e∗r (y)), we have |w(x) − e∗r (x)| ≤ δ‖e∗r‖ on B1.
The above claim shows that ‖w′(0) − e∗r‖ = ‖u′(y) − e∗r‖ ≤ ε‖e∗r‖, and hence, that
‖u′(0) − u′(y)‖ ≤ 2εS(0). This proves the continuity of u′ at 0.

Let us prove the continuity of u′ in the case S(0) = 0. Let us fix ε > 0. By definition
of S(0), there exists 0 < r < dist(0, ∂Ω) such that S(0, r)+ < ε. By the continuity of
S(·, r)+, S(x, r)+ < ε in a neighborhood W of 0. Finally, ‖u′(x)‖ = S(x) ≤ S(x, r)+ < ε
for all x ∈ W. �

Furthermore, as a consequence of Theorem 1.5 we obtain the following two
corollaries. The proofs of these results follow without any significant change from the
proofs for Euclidean spaces X presented in [12, Theorems 3 and 4]. Corollary 1.7 is
also stated in [10, Theorem 1.2(D)] in the more general framework of AMLH functions.

COROLLARY 1.6 [12, Theorem 3]. Let X be a two-dimensional normed space
with differentiable norm. There exists a function ρ : [0, 1]→ R, satisfying
limt→0 ρ(t) = 0, such that for any AML function u : int(B1)→ R, with Lip(u) ≤ 1,
the following inequality holds:

‖u′(x) − u′(y)‖ ≤ ρ(‖x − y‖), if x, y ∈ B1/2.

The next result is a consequence of Corollary 1.6.

COROLLARY 1.7 [12, Theorem 4]. Let X be a two-dimensional normed space. The
underlying norm on X is differentiable if and only if every AML function u : X → R
satisfying

|u(x)| ≤ C(1 + ‖x‖), for all x ∈ X,

for some C > 0, is linear.

REMARK 1.8. The necessity of Corollary 1.7 follows from Savin’s proof in [12] and
the fact that AML functions defined on the whole space are Lipschitz (Proposition
2.11). For the sufficiency, if the norm is not differentiable, let u be any AML function
on X which is not differentiable everywhere; the existence of u is given by Corollary
2.9. This AML function has linear growth but is not linear.

This paper is organized as follows. In the next section we present some basic results
on AML functions, several examples to motivate Question 1.2 and we introduce two
moduli for the norm which turn out to be important tools to prove Theorem 1.5. Section
3 is devoted to Theorem 1.3. In Section 4 we prove Theorem 1.5.
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We require the following notation. We denote by X and X∗ a finite-dimensional
normed space and its dual space. By ‖ · ‖we denote the norm of the underlying Banach
space. Let Br(x) be the closed ball centered at x ∈ X with radius equal to r. If x is the
origin of X, we just write Br. For two functions u, v : Ω ⊂ X → R, we denote by {u < v}
the set {x ∈ Ω : u(x) < v(x)}. A function u : Ω ⊂ X → R is said K-Lipschitz if

|u(x) − u(y)| ≤ K‖x − y‖, for all x, y ∈ Ω.

The Lipschitz constant of a function u, denoted by Lip(u), is the lowest constant K ≥ 0
such that u is K-Lipschitz. For two sets V ,Ω ⊂ X, we write V ⊂⊂ Ω whenever V is
compactly contained in Ω. For a set U ⊂ X, we denote by U, int(U) and ∂U its closure,
interior and boundary, respectively.

2. Preliminaries

This section is divided into three parts: we summarize some results of AML
functions that can be found in the literature, we give some examples to motivate our
results and we introduce two moduli of the norm which are used to prove Theorem 1.5.
In the sequel, X denotes a finite-dimensional normed space and Ω a nonempty open
subset of X.

2.1. Comparison with cones. The following geometric property is the main tool for
working with AML functions.

DEFINITION 2.1. Let u : Ω ⊂ X → R be a function. We say that u satisfies comparison
with cones from above if for every bounded open set V ⊂⊂ Ω, every x0 ∈ X and every
a, b ∈ R for which

u(x) ≤ C(x) = a + b‖x − x0‖

holds in ∂(V \ {x0}), we have that u ≤ C in V as well. Analogously, we say that u
satisfies comparison with cones from below if −u satisfies comparison with cones
from above. A function satisfies comparison with cones if it does so from above and
below.

In fact, the property of comparison with cones characterizes AML functions.

PROPOSITION 2.2 [3, Theorem 6.4]. Let u : Ω ⊂ X → R be a function. Then u enjoys
comparison with cones if and only if it is AML.

The next result is a consequence of Proposition 2.2. Its proof follows without
changes from its Euclidean counterpart found in [5].

COROLLARY 2.3 [5, Lemmas 2.4 and 2.7(i)]. Let u : Ω ⊂ X → R be an AML function.
Then, for r < dist(x, ∂Ω), the quantities

S+(x, r) := max
y∈∂Br(x)

u(y) − u(x)
r

and S−(x, r) := − min
y∈∂Br(x)

u(y) − u(x)
r
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are nonnegative. Moreover, for all x ∈ Ω, the functions S+(x, ·) and S−(x, ·) are
nondecreasing in r and

lim
r→0

S+(x, r) = lim
r→0

S−(x, r).

If we denote by S(x) = Su(x) the common limit, we have

S(x) = lim
r→0

sup
y∈Br(x)

u(y) − u(x)
r

.

Notice that, since AML functions defined on open sets are locally Lipschitz, for any
r > 0, the functions S+(·, r) and S−(·, r) are continuous in {x ∈ Ω : dist(x, ∂Ω) > r}.

COROLLARY 2.4. Let u : Ω ⊂ X → R be an AML function and R > 0 be such that
BR ⊂ Ω. Assume that u = e∗0 on BR, where e∗0 ∈ X∗ and e∗0 � 0. If ‖x0‖ = R, then S(x0) >
0.

PROOF. Since int(B‖x0‖) ⊂ U, there exist y ∈ ∂B1 and t > 0 such that the segment
[x0, x0 + ty] is included in BR and e∗0(y) � 0. If e∗0(y) > 0, then

S(x0) = lim
r→0

max
x∈∂Br(x0)

u(x) − u(x0)
r

≥ lim
r→0

u(x0 + ry) − u(x0)
r

= e∗0(y) > 0.

On the other hand, if e∗0(y) < 0, then

S(x0) = − lim
r→0

min
x∈∂Br(x0)

u(x) − u(x0)
r

≥ − lim
r→0

u(x0 + ry) − u(x0)
r

= −e∗0(y) > 0. �

COROLLARY 2.5. Let u : Ω ⊂ X → R be an AML function. Assume that there exist
x ∈ Ω, W ⊂ Ω a neighborhood of x and a function f : W → R satisfying u ≤ f in W.
Then S(x) ≤ Lip( f ) in the following cases:

(1) f (·) = u(x) + c‖ · −x‖ for some c > 0, or
(2) f is an affine function on W and f (x) = u(x).

PROOF. Both cases follow directly by computing S(x) in terms of S(x, ·)+. �

2.2. Examples of AML functions. Although simple, the following proposition
allows us to give several examples of AML functions.

PROPOSITION 2.6. Let u : Ω ⊂ X → R be a Lipschitz function. Assume that for every
open set V ⊂⊂ Ω and for each x ∈ V, there exist x1, x2 ∈ ∂V, with (x1, x2) included in
V, such that x ∈ (x1, x2) and u|[x1,x2] is an affine function with slope equal to Lip(u).
Then u is AML.

PROOF. If Lip(u) ≡ 0, the conclusion follows trivially. So, we assume that Lip(u) > 0.
Let V ⊂⊂ Ω be a bounded open set. Let g : V → R be a function such that g and
u coincide in ∂V . If g � u, without loss of generality there exists x ∈ V such that
g(x) > u(x). Let x1, x2 ∈ ∂V be two vectors such that x ∈ (x1, x2) ⊂ V , u|[x1,x2] is an affine
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function of slope Lip(u) and u(x2) > u(x) > u(x1). Then we get

Lip(g) ≥ g(x) − g(x1)
‖x − x1‖

>
u(x) − u(x1)
‖x − x1‖

= Lip(u).

Therefore, u is an AML function. �

COROLLARY 2.7. Let P : Rn → R and Q : Rn → Rn−1 be the projections onto the first
coordinate and onto the last n − 1 coordinates, respectively. Let u : (Rn, ‖ · ‖1)→ R
be a function defined by u(x) = P(x) + g ◦ Q(x), where g : (Rn−1, ‖ · ‖1)→ R is a
1-Lipschitz function. Then u is AML.

PROOF. It is enough to apply Proposition 2.6 at segments included in lines of the form
x + Re1, with x ∈ Rn. �

COROLLARY 2.8. Let C ⊂ X be a closed convex set. Then the function u : X \ C → R
defined by u(x) = dist(x, C) is AML. In particular, the restriction of the norm ‖ · ‖ to
X \ {0} is ‖ · ‖-AML.

PROOF. Let x ∈ X \ C and let yx ∈ C be one projection of x to C. That is, ‖x − yx‖ =
min{‖x − z‖ : z ∈ C}. It is enough to apply Proposition 2.6 at segments included in
half-lines of the form yx + R+(x − yx), with x ∈ X \ C. �

COROLLARY 2.9. Let X be a finite-dimensional normed space with nondifferentiable
norm. Then there exists a ‖ · ‖-AML function u : X → R such that u(x) ≤ ‖x‖ for all
x ∈ X and u is not everywhere differentiable.

PROOF. Since the norm is not differentiable, we can find a vector z ∈ X of norm
1 and two distinct functionals, u∗1, u∗2 ∈ X∗, of norm 1 such that u∗1(z) = u∗2(z) = 1.
The function u := max{u∗1, u∗2} : X → R is not differentiable in the whole line Rz and
satisfies u(x) ≤ ‖x‖ for all x ∈ X. To see that u is AML, it is enough to apply Proposition
2.6 at segments included in lines of the form x + Rz, with x ∈ X. �

Our final example shows that the set of smooth AML functions depends on the
underlying norm.

PROPOSITION 2.10. Let p > 2. The function u : R2 \ {0} → R defined by u(x, y) =
‖(x, y)‖p is ‖ · ‖p-AML but not ‖ · ‖2-AML.

PROOF. By Corollary 2.8, we already know that u is ‖ · ‖p-AML. Let us prove the
second part of the proposition. Since p > 2, u is a C2 function. Then u is ‖ · ‖2-AML
only if Δ∞u ≡ 0 in the classical sense. However,

Δ∞u((1/3)1/p, (2/3)1/p) = 3−4((p−1)/p)2(p − 1)(1 + 22−4/p − 22−2/p),

which is 0 only if p = 2. �

The following proposition can be found in [10, Corollary 2.10] in the framework of
AMLH functions.
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PROPOSITION 2.11. Let X be a finite-dimensional normed space. Let u : X → R be an
AML function. Assume that there is C > 0 such that |u(x)| ≤ C(1 + ‖x‖) for all x ∈ X.
Then u is Lipschitz.

PROOF. Let us fix x ∈ X. Then we have that

|u(y) − u(x)| ≤ C(2 + ‖y‖ + ‖x‖) ≤ C(3 + 2‖x‖) ≤ 3C‖x − y‖, for all y ∈ ∂B(x, ‖x‖ + 1).

Therefore, by comparison with cones (Proposition 2.2), we have that

|u(y) − u(x)| ≤ 3C‖x − y‖, for all y ∈ B(x, ‖x‖ + 1).

Since x ∈ X is arbitrary, it follows that u is 3C-Lipschitz. �

2.3. The moduli α and ρ. For x∗ ∈ X∗ with ‖x∗‖ = 1, the face of the unit ball defined
by x∗ is the set

Fx∗ := {x ∈ X : x∗(x) = 1} ∩ B1,

and for β > 0, the slice of the unit ball defined by x∗ and of depth β is the set

S(x∗, β) := {x ∈ X : x∗(x) > 1 − β} ∩ B1

For x∗ ∈ X∗ with ‖x∗‖ = 1 and α > 0, we consider the following union of faces:

H(x∗,α) :=
⋃
{Fh∗ : ‖h∗ − x∗‖ ≤ α, ‖h∗‖ = 1} ⊂ ∂B1.

For x∗ ∈ X∗ \ {0}, we define H(x∗,α) := H(x∗/‖x∗‖,α). The set H(x∗,α) is a compact
subset of X∗. We now define, for x∗ a unit vector of X∗ and β > 0,

α(x∗, β) := sup{α ∈ R : H(x∗,α) ⊂ S(x∗, β)}

and α(β) := inf{α(x∗, β) : ‖x∗‖ = 1}. Also, for x∗ ∈ X∗, with ‖x∗‖ = 1, and σ > 0, we
define

ρ(x∗,σ) := sup{ρ : S(x∗, ρ) ∩ ∂B1 ⊂ H(x∗,σ)}

and ρ(σ) := inf{ ρ(x∗,σ) : ‖x∗‖ = 1}.
Let us present two examples. If X is a Euclidean space, then α(x∗, β) = (2β)1/2 for

every unit vector x∗ and β ∈ (0, 2). If X = (R2, ‖ · ‖∞) and x∗ is the unit linear form
defined by x∗((x1, x2)) = x1, then α(x∗, β) = 2 for every β > 0. The next proposition
generalizes the first example.

PROPOSITION 2.12. Let X be a finite-dimensional normed space with differen-
tiable norm. Then, for any unit vector x∗ ∈ X∗, limβ→0 α(x∗, β) = 0. In particular,
limβ→0 α(β) = 0.

PROOF. Let x∗ ∈ X∗ of norm 1 and let ε > 0. Let y∗ ∈ X∗ be such that ‖x∗ − y∗‖ = ε
and ‖y∗‖ = 1. Since X is a finite-dimensional normed space, Fy∗ is compact. Moreover,
since the norm is differentiable, Fx∗ ∩ Fy∗ = ∅. By continuity of x∗ and compactness of
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Fy∗ , there exists c > 0 such that

max{x∗(y) : y ∈ Fy∗ } = 1 − c.

Thus, if β < c, Fy∗ � S(x∗, β), and since Fy∗ ⊂ H(x∗, ε), we get

H(x∗, ε) � S(x∗, β).

Thus, α(x∗, β) ≤ ε whenever β < c. �

The following propositions are used in the proof of Theorem 1.5.

PROPOSITION 2.13. Let X be a finite-dimensional normed space. Then α(β) ≥ β > 0
for every β ∈ (0, 2).

PROOF. Let x∗, y∗ ∈ X∗ be unit linear forms such that ‖x∗ − y∗‖ < β. Then

x∗(y) = y∗(y) + (x∗ − y∗)(y) > 1 − β, for all y ∈ Fy∗ .

Thus, Fy∗ ⊂ S(x∗, β) and therefore, α(x∗, β) ≥ β. �

PROPOSITION 2.14. Let X be a finite-dimensional normed space with differentiable
norm. For any σ > 0, ρ(σ) > 0. Therefore, for any unit vector x∗ ∈ X∗, and for any
unit vector x ∈ X \ H(x∗,σ), x∗(x) ≤ 1 − ρ(σ) holds.

PROOF. Letσ > 0. Notice that, ifσ ≥ 2, there is nothing to prove since H(x∗,σ) = ∂B1
for any ‖x∗‖ = 1. So, we assume that σ < 2. Let x∗ ∈ X∗ with ‖x∗‖ = 1.

Step 1: ρ(x∗,σ) > 0. Let us define

G :=
⋃
{Fy∗ : ‖y∗‖ = 1 and ‖x∗ − y∗‖ ≥ σ}.

Clearly, G is a compact set which depends on x∗ and σ. Since X has differentiable
norm, we have that Fx∗ ∩ G = ∅. Therefore, there exists ρ > 0 such that

max{x∗(h) : h ∈ G} := 1 − ρ.

Thus, ρ(x∗,σ) ≥ ρ > 0.

Step 2. For any x∗ ∈ X∗ unit linear form, there exist δ > 0 and c > 0 such that

ρ(y∗,σ) > c for all y∗ such that ‖y∗ − x∗‖ < δ and ‖y∗‖ = 1.

Indeed, let x∗ ∈ X∗ with ‖x∗‖ = 1. Let ε ∈ (0,σ). By Step 1, we know that ρ :=
ρ(x∗,σ − ε) > 0 and that S(x∗, β) ∩ ∂B1 ⊂ H(x∗,σ − ε) whenever β < ρ. Define δ :=
min{ρ/2, ε}. If ‖x∗ − y∗‖ < δ, with ‖y∗‖ = 1, and if β = ρ/2 + ‖x∗ − y∗‖, we get that

S(y∗, ρ/2) ∩ ∂B1 ⊂ S(x∗, β) ∩ ∂B1 ⊂ H(x∗,σ − ε) ⊂ H(y∗,σ).

Therefore,

ρ(y∗,σ) ≥ ρ
2
> 0, whenever ‖x∗ − y∗‖ < δ.
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Step 3: ρ(σ) > 0. Since X is finite-dimensional, the conclusion follows directly from
the compactness of the unit sphere of X∗ and Step 2. �

3. Proof of Theorem 1.3

This section is devoted to proving Theorem 1.3. In our proof we mainly follow the
ideas of [4] where we can find the proof of the theorem whenever X is a Euclidean
space. Let us start with some geometric facts which allow us to avoid the Euclidean
arguments used in the aforementioned work. We point out that Propositions 3.1 and
3.3 below hold true in general Banach spaces. Recall that, for x ∈ X and r > 0, Br(x)
and Br stand for the closed ball of radius r centered at x and at the origin, respectively.

PROPOSITION 3.1. Let X be a normed space. Let x ∈ ∂B1 and let V = ∂B1 ∩ ∂B2(x).
Then, for all y ∈ V, the segment [−x, y] is contained in V.

PROOF. Let y ∈ V . Since B1 ⊂ B2(x), there exists a closed hyperplane { f ∗ = 1} which
is tangent at y to both B1 and B2(x) simultaneously. Observe that this implies that
‖ f ∗‖ = 1, f ∗(y) = 1, ‖y‖ = 1 and f ∗(y − x) = 2. Hence, we conclude that f ∗(−x) = 1.
Now let z ∈ [−x, y]. Therefore, there is λ ∈ [0, 1] such that z = λ(−x) + (1 − λ)y. By the
triangle inequality, we obtain that ‖z‖ ≤ 1 and ‖z − x‖ ≤ 2. By linearity of f ∗, we get
that f ∗(z) = 1 and f ∗(z − x) = 2. Therefore, z ∈ V . �

REMARK 3.2. In Proposition 3.1, if X has a differentiable norm, then f ∗ is unique.
Indeed, it must be the support functional of −x. Therefore, V is contained in { f ∗ = 1}.

Before stating the next proposition, we recall that in finite-dimensional normed
spaces the notions of Gâteaux differentiability and Fréchet differentiability coincide
for convex functions. Therefore, the following proposition can be used, for instance, in
finite-dimensional normed spaces with differentiable norm.

PROPOSITION 3.3. Let X be a Banach space. Let u+, u− ∈ SX be such that the norm
is Gâteaux differentiable at u+ and u− with differentials u∗ and −u∗, respectively. Let
f : X → R be a 1-Lipschitz function such that f (tu+) = t and f (tu−) = −t for all t ≥ 0.
Then f ≡ u∗.

PROOF. First case. Let us start with v ∈ ker(u∗). By the differentiability of the norm,
there exists a sequence (εn)n ⊂ R+ which tends to 0 as n tends to infinity and such that
the expression

max{|‖nu+ − v‖ − ‖nu+‖|, |‖nu− − v‖ − ‖nu−‖|} ≤ εn

holds true for all n ∈ N. Now, if n is large enough, n > f (v) and then

1 ≥ f (nu+) − f (v)
‖nu+ − v‖ ≥ n − f (v)

n + εn
,
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which implies f (v) ≥ −εn for all large n. Thus, f (v) ≥ 0. For the reverse inequality,
observe that

1 ≥ | f (nu−) − f (v)|
‖nu− − v‖ ≥ n + f (v)

n + εn

holds true for all n > 0. Finally, we arrive at f (v) ≤ εn, for all n > 0. Therefore,
f (v) ≤ 0, implying that f (v) = 0.

Second case, Let v ∈ X \ ker(u∗). Without loss of generality, assume that u∗(v) = α
> 0. Let us consider the function g : X → R defined by g(x) = f (x + αu+) − α. Clearly,
g is a 1-Lipschitz function such that g(tu+) = t for all t ≥ 0. We claim that g(tu−) = −t
for all t > 0. Indeed, let us fix t > 0. For s > 0, we have that u∗(−αu+ + su−) = −α − s.
Thus, ‖ − αu+ + su−‖ = α + s. Also, since g(0) = 0, g(−αu+ + su−) = −α − s and g is
1-Lipschitz, g must be linear along the segment [0,−αu+ + su−], that is,

g(λ(−αu+ + su−)) = −λ(α + s), for all λ ∈ [0, 1], for all s > 0.

If s > t, we can set λ = t/s. Using the continuity of g, sending s to infinity, we get that
g(tu−) = −t. Finally, the function g satisfies the hypothesis to apply the first case at the
vector v − αu+ ∈ ker(u∗). Hence, we get that g(v − αu+) = 0. Thus, by definition of g,
f (v) = α, finishing the proof. �

The next corollary corresponds to the property used in [4], where X is a
finite-dimensional Euclidean space.

COROLLARY 3.4. Let X be a Banach space. Let u ∈ ∂B1 be such that the norm is
Gâteaux differentiable at u with differential u∗. Let f : X → R be a 1-Lipschitz function
such that f (tu) = t for all t ∈ R. Then f ≡ u∗.

Let us continue with the following lemma.

LEMMA 3.5. Let X be a finite-dimensional Banach space and let Ω be a nonempty
open subset of X. Let u : Ω ⊂ X → R be an AML function and let x ∈ Ω. Then the
following assertions are equivalent.

(i) For each r ∈ (0, dist(x, ∂Ω)), there exists a vector e∗x,r ⊂ X∗, with ‖e∗x,r‖ = S(x),
such that

max
y∈Br(x)

|u(y) − u(x) − e∗x,r(y − x)|
r

→ 0 as r → 0.

(ii) For any decreasing sequence (rj)j, convergent to 0, there are a subsequence
(rj(k))k and e∗ ∈ X∗, with ‖e∗‖ = S(x), such that

max
y∈Brj(k) (x)

|u(y) − u(x) − e∗(y − x)|
rj(k)

→ 0 as k → ∞.

PROOF. (i)⇒ (ii). This is due to the compactness of closed bounded subsets of X∗.
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(ii)⇒ (i). Reasoning by contradiction, if (i) does not hold true, then there are ε > 0
and a sequence (rj)j, convergent to 0, such that

max
y∈Brj (x)

|u(y) − u(x) − e∗(y − x)|
rj

≥ ε for all j ∈ N, for all e∗ ∈ X∗, ‖e∗‖ = S(x).

This clearly contradicts statement (ii). �

We can now provide the proof of Theorem 1.3.

PROOF OF THEOREM 1.3. Let x ∈ Ω. We prove Lemma 3.5(ii). Let (rj)j ⊂ R+ be a
sequence that converges to 0. For each j ∈ N, let us define vj : r−1

j (Ω − x)→ R∗ by

vj(y) =
u(x + rjy) − u(x)

rj
.

For each compact subset K of X, the functions vj are well defined on K for j large
enough. Since u is a locally Lipschitz function, the (vj)j|K form an equi-Lipschitz
family vanishing at 0. So by the Arzelà–Ascoli theorem, up to a subsequence, we can
assume that the sequence (vj) converges uniformly on compact subsets of X towards a
Lipschitz function v vanishing at 0, that is, v(y) = limj vj(y) for any y ∈ X. If v is linear,
then we can take e∗ = v.

So, to prove Theorem 1.3, it remains only to show that v is necessarily linear. Let
S(x) be computed with the function u (see Corollary 2.3). Since a locally uniform limit
of functions satisfying comparison with cones satisfies comparison with cones, we can
apply Corollary 2.3 on v as well. From now on, we define the quantities

L+(y, r) := max
z∈∂Br(y)

v(z) − v(y)
r

, L−(y, r) := − min
z∈∂Br(y)

v(z) − v(y)
r

,

for y ∈ X and r > 0. Also, we define the corresponding values

L+(y) = lim
r→0

L+(y, r), L−(y) = lim
r→0

L−(y, r),

where L(y) = L+(y) = L−(y), by Corollary 2.3.

PROPOSITION 3.6. Assume that max{L−(y, r), L+(y, r)} ≤ S(x) for all r > 0 and for all
y ∈ X. Further, assume that L+(0) = S(x) = L−(0). Then v is linear. �

PROOF. The first assumption implies that Lip(v) ≤ S(x). Thanks to the monotonicity
of L±(0, ·) (see Corollary 2.3) and the second assumption, we get that S(x) ≤
min{L−(0, r), L+(0, r)}, and therefore, S(x) = L+(0, r) = L−(0, r). Further, this implies
that Lip(v) ≥ S(x), and then Lip(v) = S(x). By continuity of v and compactness of
closed bounded sets, we can find z+r , z−r ∈ ∂Br such that

L±(0, r) = ±
v(z±r ) − v(0)

r
= ±

v(z±r )
r

.
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Therefore,

L+(0, r) = L−(0, r) = S(x) =
v(z+r ) − v(z−r )

2r
.

Observe that the function v is an S(x)-Lipschitz function such that

v(z+r ) − v(z−r ) = 2S(x)r ≤ S(x)‖z+r − z−r ‖. (3-1)

Since z+r , z−r ∈ ∂Br, ‖z+r − z−r ‖ ≤ 2r, and applying (3-1), we get that ‖z+r − z−r ‖ = 2r and
that v is an affine function on [z−r , z+r ]. Moreover, since v(0) = 0, we have that v(z+r ) =
S(x)r and v(z−r ) = −S(x)r.

Let u∗ ∈ X∗ be the linear form of norm 1 such that u∗(z+1 ) = 1. By Proposition
3.1 and Remark 3.2, we deduce that u∗(z−1 ) = −1. Indeed, if u∗(z−1 ) < −1, then z−1 �
∂B1 ∩ ∂B2(z+1 ). Thus, ‖z+1 − z−1 ‖ < 2, a contradiction since Lip(v) = S(x). Let r > 1. Let
us show that u∗(z+r ) = r. Indeed, since v(0) = 0, v(z+r ) = S(x)r and v is S(x)-Lipschitz,
v must be linear along the segment [0, z+r ]. Therefore, the vector z+r /‖z+r ‖ may take
the place of z+1 because v(z+r /‖z+r ‖) = S(x). If u∗(z+r ) < r, then u∗(z+r /‖z+r ‖) < 1. By
Proposition 3.1 and Remark 3.2, we get that∥∥∥∥∥z−1 − z+r

‖z+r ‖

∥∥∥∥∥ < 2,

a contradiction since Lip(v) = S(x). As a direct consequence of u∗(z+r ) = r we get that
u∗(z−r ) = −r.

Since X is a finite-dimensional space, there exist a sequence (r(n))n ⊂ R+ which
goes to infinity and two vectors q+, q− ∈ ∂B1 such that

lim
n→∞

z±r(n)

‖z±r(n)‖
= q±.

Clearly u∗(q+) = 1 and u∗(q−) = −1. As a consequence of the continuity of v and its
linear behavior along the lines [0, z+r(n)], with slope S(x), we get that v(tq+) = tS(x) for
all t ≥ 0. Analogously, we get that v(tq−) = −tS(x). Finally, applying Proposition 3.3,
we conclude that v = S(x)u∗. �

To finish the proof of Theorem 1.3, it remains only to prove the hypotheses of
Proposition 3.6. We point out that this part of the proof follows as in the proof given
in [4], where X is a Euclidean space.

To this end, let us start with the case of the superscript +. Let y ∈ X and z ∈ ∂Br(y)
be such that

L+(y, r) =
v(z) − v(y)

r
= lim

j→∞

u(rjz + x) − u(rjy + x)

rjr
. (3-2)

Since rjz ∈ ∂Brjr(rjy), we get that

u(rjz + x) − u(rjy + x)

rjr
≤ S+(rjy + x, rjr) ≤ S+(rjy + x, R), (3-3)
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for rjr < R < dist(rjy + x, ∂U). Notice that in (3-3), the first and second inequalities are
due to the definition of S+ and to Corollary 2.3, respectively. Combining (3-2), (3-3)
and using the continuity of the function S+(·, R), we get that

L+(y, r) ≤ lim
j→∞

S+(rjy + x, R) ≤ S+(x, R).

Finally, sending R to 0, we obtain that L+(y, r) ≤ S(x). To prove the second hypothesis,
let us consider y = 0. Then we compute

L+(0, r) = max
z∈∂Br

v(z)
r
= max

z∈∂Br

lim
j→∞

u(rjz + x) − u(x)

rjr
.

By compactness of ∂Br and continuity of u, for each j there exists zj ∈ ∂Br satisfying

u(rjzj + x) = max
z∈∂Br

u(rjz + x).

Let us consider any cluster point z of (zj)j ⊂ ∂Br. Let (j(n)) be a subsequence such that
zj(n) → z. Using the fact that u is Lipschitz in a neighborhood of x, we prove that

L+(0, r) ≥ lim
n→∞

u(rj(n)z + x) − u(x)

rj(n)r

= lim
n→∞

max
z∈∂Br

u(rj(n)z + x) − u(x)

rj(n)r
= lim

n→∞
S+(x, rj(n)r) = S(x).

Therefore, sending r to 0, we get that L+(0) ≥ S(x). Thus, L+(0) = S(x). The case with
superscript − is analogous. This concludes the proof of Theorem 1.3. �

4. Proof of Theorem 1.5

Savin, in [12], has shown that every planar AML function is continuously differ-
entiable whenever the underlying space is endowed with a Euclidean norm. In what
follows, we generalize the technique developed in the aforementioned paper to prove
Theorem 1.5. For the sake of completeness, we provide the proofs of Proposition 4.1
and Lemma 4.4 which follow without significant changes from the work [12].

From now on, X denotes a two-dimensional Banach space endowed with a
differentiable norm. The proof of Theorem 1.5 uses Theorem 1.3 and the following
two propositions.

PROPOSITION 4.1 [12, Lemma 1]. Let u : Ω ⊂ X → R be an AML function where Ω is
an open and convex set containing 0, and u does not coincide with an affine function
on any neighborhood of 0. Then, for every open subset W of Ω containing 0. there
exist y ∈ W and an affine function g := e∗ + u(y) − e∗(y), where e∗ ∈ X∗ satisfies ‖e∗‖ =
S(y), such that one of the sets {u > g} and {u < g} has at least two distinct connected
components intersecting W.

PROOF. Let W be an open subset of Ω containing 0. Then there exists a segment
[z1, z2] ⊂ W such that u is not an affine function on [z1, z2]. Thus, there is an affine
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function � on [z1, z2] and a point y ∈ (z1, z2) such that u(y) = �(y) and

u ≥ � in [z1, z2] and u(zi) > �(zi), for i = 1, 2, or
u ≤ � in [z1, z2] and u(zi) < �(zi), for i = 1, 2.

We treat the first case; the second is similar. From Theorem 1.3, there exist vectors e∗y,r
such that ‖e∗y,r‖ = S(y) and

lim
r→0

max
x∈Br(y)

|u(x) − u(y) − e∗y,r(x − y)|
r

= 0.

By compactness, there is a sequence (ri)i, which converges to 0, such that e∗y,ri
→ e∗.

Therefore, ‖e∗‖ = S(y) and

lim
i→∞

max
x∈Bri (y)

|u(x) − g(x))|
ri

= 0, (4-1)

where g is the affine function defined by g(x) = e∗(x) − e∗(y) + u(y). Since u ≥ � in
[z1, z2] and u(y) = �(y), the limit (4-1) implies that g coincides with � in [z1, z2], and
then z1, z2 ∈ {u > g}.

Reasoning by contradiction, suppose that there exists a polygonal line γ ⊂ {u > g}
connecting the points z1 and z2. Let Γ be the union of γ with the segment [z1, z2],
and U be the union of all bounded connected components of X \ Γ. Let h∗ ∈ X∗ be a
nonzero linear form such that h∗(z2 − z1) = 0. Using the fact that y � γ and replacing
h∗ by −h∗ if necessary, there exists δ > 0 such that Bδ(y) ∩ {h∗ > 0} ⊂ U. Since γ is
compactly contained in {u > g}, there exists ε > 0 such that u ≥ g + εh∗ on γ, hence
also on Γ. We have u ≥ g + εh∗ on ∂U ⊂ Γ. Since u is an AML function, u ≥ g + εh∗

on U, so u − g ≥ εh∗ on Bδ(y) ∩ {h∗ > 0}. This contradicts the limit (4-1), finishing the
proof. �

The assumptions of the following proposition are explained by the conclusions of
Theorem 1.3 and Proposition 4.1.

PROPOSITION 4.2. Let ρ > 0. Let u : int(Bρ) ⊂ X → R be an AML function and let
e∗1 ∈ X∗ such that

sup{|u(x) − e∗1(x)|, x ∈ int(Bρ)} ≤ λρ‖e∗1‖.

Further, assume that there exists e∗ ∈ X∗ such that {u > e∗} has at least two distinct
connected components that intersect Bρ/6. Then, for ε > 0, there exists λ(ε) > 0 such
that if λ ≤ λ(ε), then

‖e∗ − e∗1‖ ≤ ε‖e
∗
1‖.

PROOF. If e∗1 = 0, then u is identically 0 in int(Bρ). Therefore, the second hypothesis
cannot occur. So, without loss of generality, we assume that e∗1 � 0. Let R = C(ε, X) >
0 be given by Lemma 4.3. Let us define λ(ε) := 1/6C(ε, X). If w : int(B6R)→ R is the
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function defined by

w(x) :=
6R
ρ‖e∗1‖

u
(
ρx
6R

)
,

and if λ < λ(ε), the function w satisfies the following assertions.

(a) sup{|w(x) − e∗1(x)/‖e∗1‖| : x ∈ int(B6R)} ≤ 1.
(b) The set {w > e∗/‖e∗1‖} has at least two distinct connected components that

intersect BR.

Therefore, Proposition 4.2 follows from Lemma 4.3. �

LEMMA 4.3. For every ε > 0, there exists a constant C(ε, X) > 0 with the following
property. Let ε > 0, R ≥ C(ε, X) and u : int(B6R)→ R be an AML function satisfying
the following assertions.

(H1) sup{|u(x) − e∗1(x)| : x ∈ int(B6R)} ≤ 1 for some ‖e∗1‖ = 1,
(H2) There exists a linear form e∗ ∈ X∗ such that the set {u > e∗} has at least two

distinct connected components that intersect BR.

Then

‖e∗ − e∗1‖ ≤ ε.

PROOF OF LEMMA 4.3. Let f ∗ = e∗1 − e∗ and let ε > 0. Without loss of generality,
assume that f ∗ � 0. By (H1), we have that

{ f ∗ < −1} ∩ int(B6R) ⊂ {u < e∗},
{ f ∗ > 1} ∩ int(B6R) ⊂ {u > e∗}.

Thus, by hypothesis (H2), we can find a connected component U of {u > e∗} that
intersects BR and that is included in the strip S := {| f ∗| ≤ 1} of width 2‖ f ∗‖−1. If R >
‖ f ∗‖−1, the set S ∩ ∂BR is the union of two disjoint arcs of ∂BR. Observe thatU cannot
be compactly contained in int(B6R). Otherwise, it would contradict the AML property
of u (comparing against e∗ onU). Consider a polygonal line Γ ⊂ U ⊂ S that starts in
BR and exits B6R. Let x0 ∈ X be a vector such that ‖x0‖ = 3R and f ∗(x0) = 0. Replacing
x0 by −x0 if necessary, we can assume that Γ intersects the two distinct arcs of S ∩
∂BR(x0). Let v : B2R → R be the function defined by v(·) := u(· + x0) − e∗1(x0). Observe
that by (H1),

|v(x) − e∗1(x)| ≤ |u(x + x0) − e∗1(x0 + x)| ≤ 1, for all x ∈ B2R,

and that, due to the fact that f ∗(x0) = 0, y ∈ {v > e∗} if and only if y + x0 ∈ {u > e∗}.
Therefore, replacing u by v (and x0 by −x0 if necessary), hypotheses (H1) and (H2)
imply the following assertions.

(H1′) max{|u(x) − e∗1(x)| : x ∈ B2R} ≤ 1 for some ‖e∗1‖ = 1.
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(H2′) If R > ‖ f ∗‖−1 = ‖e∗1 − e∗‖−1, the set {u > e∗} ∩ B2R has a connected component
U, included in S = {| f ∗| ≤ 1}, that contains a polygonal line Γ connecting the
two distinct arcs of S ∩ ∂BR.

Lemma 4.3 follows from the next two lemmas.

LEMMA 4.4 [12, Lemma 3]. Let 0 < γ < 1. If R ≥ C1(γ) := 20γ−2, then

‖e∗‖ ≥ 1 − γ.

LEMMA 4.5. Let u be AML satisfying (H1′) and (H2′), let ‖e∗‖ ≥ γ > 0 and β > 0.
There exists C2 = C2(γ, β) such that if R ≥ C2, then

inf
{
| f ∗(h)| : h ∈ H

(
e∗,
β

2

)}
< γ.

Let us finish the proof of Lemma 4.3. Since X is a finite-dimensional space with
differential norm, X∗ is uniformly convex. Hence, there exists σ(ε) > 0 such that for
any two unit vectors x∗, y∗ in X∗ satisfying ‖(x∗ + y∗)/2‖ > σ(ε), we have ‖x∗ − y∗‖ < ε.
If γ, β > 0 are small, we have

β + γ < 1 − σ(ε/2) (4-2)

and
β

2
+
γ + β

1 − β <
ε

2
. (4-3)

Let us fix β = β(ε) and γ = γ(ε) satisfying (4-2) and (4-3), and define C(ε, X) :=
max{C1(γ), C2(γ, β)}. Assume that R ≥ C(ε, X). Lemma 4.4 implies that

‖e∗‖ ≥ 1 − γ, (4-4)

and Lemma 4.5 implies the existence of a unit vector h∗ ∈ X∗ satisfying the
condition‖h∗ − e∗/‖e∗‖‖ ≤ β/2 and a vector h ∈ Fh∗ such that | f ∗(h)| ≤ γ. So h ∈
H(e∗, β/2), and since Proposition 2.13 implies β/2 < β ≤ α(e∗/‖e∗‖, β), we have

(1 − β)‖e∗‖ < e∗(h). (4-5)

The condition | f ∗(h)| ≤ γ implies that

e∗(h) ≤ e∗1(h) + γ ≤ 1 + γ. (4-6)

Conditions (4-4), (4-5) and (4-6) imply

‖e∗1 + h∗‖ ≥ (e∗1 + h∗)(h) ≥ e∗(h) − γ + 1
≥ (1 − β)‖e∗‖ + 1 − γ ≥ (1 − β)(1 − γ) + 1 − γ.

Thus, ‖(e∗1 + h∗)/2‖ ≥ 1 − γ − β ≥ σ(ε/2), and therefore, ‖e∗1 − h∗‖ ≤ ε/2. Conditions
(4-4), (4-5) and (4-6) also imply

1 − γ ≤ ‖e∗‖ ≤ 1 + γ
1 − β .
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So,

‖h∗ − e∗‖ ≤
∥∥∥∥∥h∗ − e∗

‖e∗‖

∥∥∥∥∥ + |‖e∗‖ − 1| ≤ β
2
+
γ + β

1 − β ≤ ε/2.

Finally, we get that ‖e∗ − e∗1‖ ≤ ε, finishing the proof of Lemma 4.3.

In the sequel, we prove Lemmas 4.4, 4.5 and Theorem 1.5.

PROOF. Reasoning by contradiction, let us assume that ‖e∗‖ < 1 − γ. Since f ∗ =
e∗1 − e∗ and ‖e∗1‖ = ‖e1‖ = e∗1(e1) = 1, we have that 2 ≥ ‖ f ∗‖ ≥ f ∗(e1) > γ. Let y0 :=
−4γ−1e1, and let y1 be the point of intersection of {te1 : t ≥ 0} with the line { f ∗ = 1}.
We have ‖y1‖ = f ∗(e1)−1 < γ−1, so

4γ−1 < ‖y1 − y0‖ < 5γ−1.

Since R ≥ C1 := 20γ−2 > ‖ f ∗‖−1, we can apply (H2′), and we also have y0 ∈ BR and
y1 ∈ BR(y0) ⊂ B2R.

For c ≥ 0, let Vc be the function defined on X by

Vc(x) := e∗1(y0) + 1 + c‖x − y0‖.

Notice that, for c > ‖e∗‖, the set

Ec := {x ∈ X : Vc(x) ≤ e∗(x)}

is convex and compact. We claim that u(y0) ≤ Vc(y0) < e∗(y0). Indeed, y0 ∈ BR, so
condition (H1′) implies the first inequality. On the other hand, Vc(y0) = e∗1(y0) + 1 =
e∗(y0) + f ∗(y0) + 1 = e∗(y0) + 1 − 4 f ∗(e1)/γ, which implies the second inequality.

Let m := max{c > ‖e∗‖ : Ec ∩ ∂({u < e∗} ∩ B2R) � ∅}. The claim implies y0 ∈ Ec for
every c > 0. Since the diameter of Ec tends to 0 as c tends to infinity, we conclude that
Ec converges to {y0} in Hausdorff distance. The claim also implies u(y0) < e∗(y0), so
m < ∞. Now we set

c0 := 1 − 2
‖y1 − y0‖

> 1 − γ
2
> ‖e∗‖.

The equality ‖y1 − y0‖ = e∗1(y1 − y0) implies Vc0 (y1) = e∗1(y0) + ‖y1 − y0‖ − 1 =
e∗1(y1) − f ∗(y1) = e∗(y1). Therefore, y1 ∈ Ec0 , and we know that y0 ∈ Ec0 , so the
segment [y0, y1] is included in the convex setEc0 . Since [y0, y1] crosses the strip S,
it must intersect the polygonal line Γ given by (H2′) which is included in {u > e∗}.
Therefore, Ec0 ∩ ∂({u < e∗} ∩ B2R) � ∅, which shows that m ≥ c0. The compact Em
(see Figure 1) is included in the interior of B2R. Indeed, let x ∈ Em. Since ‖e∗‖ < 1 − γ,
we get

0 ≤ e∗(x) − Vm(x) ≤ e∗(y0) − Vm(y0) + (1 − γ − m)‖x − y0‖.

Using the inequalities m > 1 − γ/2 and e∗(y0) − Vm(y0) ≤ 8/γ, we obtain ‖x − y0‖ <
16γ−2, and so ‖x‖ < 20γ−2 ≤ R. Therefore, if xm ∈ Em ∩ ∂({u < e∗} ∩ B2R), then ‖xm‖ <
R, and so xm ∈ ∂{u < e∗}, and by continuity of u, we have that u(xm) = e∗(xm). Notice
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FIGURE 1. Lemma 4.4: The set Em.

now, by definition of m, that we have that u ≤ Vm in ∂(Em \ {y0}). Hence, by comparison
with cones, u ≤ Vm in Em. Since Vm is an affine function restricted to [xm, y0] and
u(xm) = Vm(xm) ≥ Vm(y0), we get

S(xm) = − lim
r→0

min
y∈∂Br(xm)

u(y) − u(xm)
r

≥ − lim
r→0

Vm(yr) − Vm(xm)
r

= m > c0 ≥ 1 − γ
2

,

(4-7)

where yr is the point of intersection of ∂Br(xm) with [xm, y0]. However, we claim that
S(xm) ≤ ‖e∗‖ + 2R−1. To this end, let r > 0 be small and let U′ be the open set relative
to BR(xm) defined as the union of all connected components of {u > e∗} ∩ BR(xm) that
intersect Br(xm). If U′ = ∅, then u ≤ e∗ in Br(xm). Therefore, since u(xm) = e∗(xm),
by Corollary 2.5 we get that S(xm) ≤ ‖e∗‖, which proves the claim in this case. If
U′ � ∅, (H2′) implies that we have that U′ ⊂ S provided that r < dist(xm, Γ). For
x ∈ ∂U′ ∩ int(BR)(xm), we have that u(x) = e∗(x). For x ∈ U′ ∩ ∂BR(xm),

u(x) ≤ e∗(x) + 2 ≤ e∗(xm) + R‖e∗‖ + 2,

where the first inequality follows as in (4-9), in the proof of Lemma 4.5. Therefore,
comparison with cones implies

u(x) ≤ e∗(xm) + (‖e∗‖ + 2R−1)‖x − xm‖, for all x ∈ U′ ∩ BR(xm). (4-8)

Combining (4-8) and the fact that u ≤ e∗ in Br(xm) \ U′, we get that the inequality (4-8)
holds in Br(xm). By Corollary 2.5, we conclude that

S(xm) ≤ ‖e∗‖ + 2R−1.

Since R ≥ C1 ≥ 5γ−1, we arrive at S(xm) ≤ 1 − γ/2. The last inequality contradicts
(4-7), finishing the proof of Lemma 4.4. �
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FIGURE 2. Lemma 4.5: Ball of radius R centered at x0.

PROOF OF LEMMA 4.5. If ‖ f ∗‖ ≤ γ, the conclusion is direct. For this, let us assume
that ‖ f ∗‖ > γ. If we further assume that C2 ≥ 3/γ, since R ≥ C2, the conclusion of
hypothesis (H′2) is available for us. Reasoning by contradiction, we have

inf
{
| f ∗(h)| : h ∈ H

(
e∗,
β

2

)}
≥ γ.

Let e be a unit vector in X such that e∗(e) = ‖e∗‖, and let x0 be the point of intersection
of ∂S with the half line {−te : t > 0}. See Figure 2. We have that x0 = −t0e, where t0
satisfies

1 = t0| f ∗(e)| ≥ t0γ.

So, ‖x0‖ = t0 ≤ 1/γ ≤ C2 ≤ R. Thus −x0 ∈ BR(x0) ⊂ B2R. Hypotheses (H1′) and (H2′)
imply

|u(x) − e∗(x)| ≤ |u(x) − e∗1(x)| + |e∗(x) − e∗1(x)| ≤ 2, for all x ∈ U ∩ BR(x0).
u(x) = e∗(x) for all x ∈ ∂U ∩ BR(x0).

Hence, if x ∈ U ∩ ∂BR(x0), then

u(x) ≤ e∗(x) + 2 ≤ e∗(x0) + sup
x∈S∩∂BR(x0)

e∗(x − x0) + 2. (4-9)

Since R ≥ C2, | f ∗(Rh)| ≥ 3 for every h ∈ H(e∗, β/2). Therefore, | f ∗(Rh − x0)| ≥ 2 >
1 for every h ∈ H(e∗, β/2), that is,

(S ∩ ∂BR(x0)) ∩ (RH(e∗, β/2) − x0) = ∅.

By Proposition 2.14, with σ = β/2, we obtain ρ ∈ (0, 1) depending on β, such that

e∗(x − x0) ≤ (1 − ρ)‖e∗‖ ‖x − x0‖, for all x ∈ S ∩ ∂BR(x0). (4-10)

Let us assume now that C2 ≥ 3/(γρ) > 3/γ. Since R ≥ C2 and ‖e∗‖ ≥ γ, we get
R‖e∗‖ρ ≥ 2. Combining (4-9) and (4-10), we get

u(x) ≤ e∗(x0) + ‖e∗‖ ‖x − x0‖, for all x ∈ U ∩ ∂BR(x0).
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From comparison with cones, we obtain

u(x) ≤ e∗(x0) + ‖e∗‖ ‖x − x0‖, for all x ∈ U ∩ BR(x0).

In particular,

u(x) ≤ e∗(x), for all x ∈ U ∩ BR(x0) ∩ {x0 + te : t > 0}.

This is a contradiction with (H′2) since U ∩ BR(x0) ∩ {x0 + te : t > 0} necessarily
intersects Γ. �

We are now in a position to present the proof of Theorem 1.5.

PROOF OF THEOREM 1.5. If ‖e∗1‖ = 0, there is nothing to prove. If ‖e∗1‖ � 0, by
homogeneity, we can assume ‖e∗1‖ = 1. By Theorem 1.3, there exists (e∗0,r)r ⊂ X∗ such
that ‖e∗0,r‖ = S(0) for every r and

|u(x) − u(0) − e∗0,r(x)| ≤ rσ(r), for all x ∈ Br, (4-11)

where σ : R+ → R is a positive function such that σ(r) tends to 0 as r tends to 0.
Let us fix ε > 0. We need to find δ := δ(ε) > 0 such that, if |u(x) − e∗1(x)| ≤ δ in

int(B1), then

lim sup
r→0

‖e∗0,r − e∗1‖ ≤ ε. (4-12)

First case. Suppose that u is not identical to an affine function in any neighborhood
of 0. We show that if δ ≤ δ1(ε) = min{λ(ε/4)/4, 1/2}, where λ is the function given in
Proposition 4.2, then (4-12) holds. Let r ∈ (0, 1/2) be such that σ(r) ≤ λ(ε/4)S(0)/4.
Thanks to Proposition 4.1, replacing u by −u if necessary, there exist y ∈ int(Br/24) and
a linear form e∗ ∈ X∗ satisfying ‖e∗‖ = S(y), such that the set

O = {u > e∗ + u(y) − e∗(y)} ∩ int (B1)

has at least two distinct connected components intersecting int(Br/24). The function
v(·) := u(· + y) − u(y) is well defined on int(B1/2). Let us check that v satisfies the
hypotheses of Proposition 4.2. The set {v > e∗} = (O − y) ∩ int(B1/2) has at least two
distinct connected components intersecting Br/12 ⊂ B1/12. On the other hand, for x ∈
B1/2 we have

|v(x) − e∗1(x)| ≤ |u(x + y) − e∗1(x + y)| + |u(y) − e∗1(y)| ≤ 2δ.

Since 2δ ≤ λ(ε/4)/2, thanks to Proposition 4.2 applied with ρ = 1/2, we get

‖e∗ − e∗1‖ ≤
ε

4
. (4-13)

Since |u(x) − e∗1(x)| ≤ δ in int(B1) and ‖e∗1‖ = 1, we obtain

‖e∗0,r‖ = S(0) ≤ S+
(
0, 1

2
)
= 2 max

x∈∂B1/2

u(x) − u(0) ≤ 1 + 4δ.
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We now apply Proposition 4.2 to the function v on Br/2. The set {v > e∗} ∩ int(Br/2)
has at least two distinct connected components that intersect Br/12. On the other hand,
thanks to (4-11), for x ∈ Br/2 we have that

|v(x) − e∗0,r(x)| ≤ |u(x + y) − u(0) − e∗0,r(x + y)| + |u(y) − u(0) − e∗0,r(y)| ≤ 2rσ(r).

Since 2σ(r) ≤ λ(ε/4)‖e∗0,r‖/2, we get that

|v(x) − e∗0,r(x)| ≤ r
2
λ(ε/4)‖e∗0,r‖, for all x ∈ Br/2.

Finally, we can apply Proposition 4.2 with ρ = r/2 to obtain

‖e∗ − e∗0,r‖ ≤
ε‖e∗0,r‖

4
≤ (1 + 4δ)ε

4
≤ 3ε

4
. (4-14)

Combining (4-13) with (4-14), we get that ‖e∗1 − e∗0,r‖ ≤ ε. Thus (4-12) is satisfied in
this case whenever δ ≤ δ1(ε).

Second case. Suppose that there exists e∗0 ∈ X∗ such that u = e∗0 in a neighborhood of
0. Let

R = max{r ∈ (0, 1]; {u = e∗0} ⊂ Br}.

If R ≥ 1/2, notice that e∗0,r = e∗0 satisfies (4-11) whenever r ≤ 1/2. Assume δ ≤ ε/2
and |u(x) − e∗1(x)| < δ in int(B1). Since u = e∗0 in B1/2, we get lim supr→0 ‖e∗0,r − e∗1‖ =
‖e∗0 − e∗1‖ ≤ ε.

If R < 1/2, there exists x0 ∈ ∂BR such that u is not identical to an affine function in
any neighborhood of x0. Let us define the AML function v : B1 → R by

v(·) := u
( ·
2
+ x0

)
− u(x0).

Since v is not affine in any neighborhood of 0, we wish to apply the first case to the
function v. According to Theorem 1.3, there exists (e∗x0,r)r ⊂ X∗ such that ‖e∗0,r‖ = S(x0)
for every r ∈ (0, 1) and

|u(x) − u(x0) − e∗x0,r(x − x0)| ≤ rσ̃(r), for all x ∈ Br(x0),

where σ̃ : R+ → R is a positive function such that σ̃(r) tends to 0 as r tends to 0. So,
for r ∈ (0, 1/2), we have∣∣∣∣∣v(x) − v(0) −

e∗x0,r

2
(x)
∣∣∣∣∣ =
∣∣∣∣∣u
( x
2
+ x0

)
− u(x0) − e∗x0,r

( x
2

)∣∣∣∣∣ ≤ rσ̃(r), for all x ∈ Br.

(4-15)

Let us suppose that δ ≤ δ1(ε/2)/2. Since |u(x) − e∗1(x)| ≤ δ in int(B1), we have, for every
x ∈ B1,∣∣∣∣∣v(x) −

e∗1
2

(x)
∣∣∣∣∣ ≤
∣∣∣∣∣u
( x
2
+ x0

)
− e∗1
( x
2
+ x0

)∣∣∣∣∣ + |u(x0) − e∗1(x0)| ≤ δ1
(
ε

2

)
. (4-16)
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Let us check that Sv(0) > 0. We know that ‖e∗0‖ = Su(0) � 0. Since ‖x0‖ = R and u = e∗0
on BR, we can apply Corollary 2.4 to get

Sv(0) =
Su(x0)

2
> 0.

Conditions (4-15) and (4-16) allow us to apply the first case to v. We get

lim sup
r→0

∥∥∥∥∥e
∗
1

2
−

e∗x0,r

2

∥∥∥∥∥ ≤ ε2 . (4-17)

Let us now show that e∗x0,r tends to e∗0 as r tends to 0. Reasoning by contradiction,
assume that there exists a null sequence (ri)i such that e∗x0,ri

converges to some h∗ � e∗0.
So, there exist z ∈ ∂B1 and t > 0 such that the open segment (x0, x0 + tz) is included in
U and (e∗0 − h∗)(z) � 0. Finally, we compute

lim
i→∞

u(x0 + riz) − u(x0)
ri

− e∗x0,ri
(z) = e∗0(z) − h∗(z) � 0,

which contradicts Theorem 1.3. Hence, e∗x0,r converges to e∗0, and from (4-17) we get

lim sup
r→0

‖e∗0,r − e∗1‖ = ‖e
∗
0 − e∗1‖ = lim sup

r→0
‖e∗x0,r − e∗1‖ ≤ ε.

Thus, (4-12) is satisfied whenever

δ(ε) = min{δ1(ε/2)/2, ε/2} = min{λ(ε/8)/8, 1/4, ε/2}.

This completes the proof of Theorem 1.5. �
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