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Abstract

Matching theorems, fixed point theorems and minimax inequalities are obtained in //-spaces
which generalize the corresponding results of Bae-Kim-Tan, Browder, Fan, Horvath, Kim, Ko-
Tan, Shih-Tan, Takahashi, Tan and Tarafdar to non-compact and/or non-convex settings.
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1. Introduction

In 1972, by applying his infinite dimensional generalization [11, Lemma 1] of
the classical Knaster-Kuratowski-Mazurkiewicz Theorem [18], Fan obtained
a minimax inequality [12, Theorem 1] which has numerous applications to
various and diverse branches of mathematics. Since then there are many
generalizations in topological vector space setting, for example, [1], [2], [4],
[5], [13], [20], [23], [24], [25], [26], [27] and [28]. In [14, 15, 16], Horvath
obtained minimax inequalities by replacing convexity with pseudo-convexity
or contractibility in a topological space but only in compact setting. In [3],
using Horvath's approach in [16], Bardaro and Ceppitelli obtained some min-
imax inequalities in non-compact setting for mappings taking values in an
ordered vector space.
This work was partially supported by NSERC of Canada under grant number A-8096.
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In this paper, we shall use Bardaro and Ceppitelli's notions of " //-space",
" //-convex", "weak- //-convex" and " //-compact" in [3] to first obtain some
generalizations of Fan's matching theorems [13, Theorems 2 and 3] and some
results of Horvath [16, Theorem 2], Kim [17, Theorem 2], Ko and Tan [19,
Theorem 7B] and Tarafdar [27, Lemma 2.1] to non-convex setting. Next by
applying our earlier results, some fixed point theorems are obtained gener-
alizing those of Browder [6, Theorem 2], Horvath [16, Theorem 2'], Kim
[17, Theorem 3] and Tarafdar [27, Theorems 2.2 and 2.3 and Corollaries 2.1
and 2.2] to non-convex and non-compact setting. Several very general min-
imax inequalities are also presented which improve those of Bae, Kim and
Tan [2, Theorem 1], Fan [12, Corollary 1], [13, Theorem 6], Horvath [16,
Propositions 1, 2 and 3], Shih and Tan [21, Theorem 1], Takahashi [25,
Theorem 3] and Tan [26, Theorem 1].

For further and related works and applications and for mappings taking
values in an ordered vector space, we refer to Ding, Kim and Tan [7] and
Ding and Tan [8, 9, 10].

2. Matching theorems

•y

Let X and Y be non-empty sets; we shall denote by 2 the family of
all non-empty subsets of Y and ^(X) the family of all non-empty finite
subsets of X. If F: X - 2Y , define F~x, F*: Y -+ 2*u{0} and Fc: X -»
2 y u { 0 } by

F'l(y) = {xeX:yeF(x)}, F*(y) = {x e X: y £ F(x)} and

Fc(x) = {yeY:y$F{x)}.

We shall denote by An the standard n dimensional simplex with the vertices
e0, ..., en. If J is a non-empty subset of { 0 , . . . , « } , Ay will denote the
convex hull of the vertices {e : j e J} . If E is a vector space and A c E,
we shall denote by co{A) the convex hull of A.

The following notions which were introduced by Bardaro and Ceppitelli in
[3] were motivated by an earlier work of Horvath [ 16] in generalizing Ky Fan's
infinite dimensional generalization of the Knaster-Kuratowski-Mazurkiewicz
theorem [18] and Fan's minimax inequality [12] to topological spaces without
convexity.

A pair {X, {FA}) is said to be an H-space if A" is a topological space
and {FA} is a given family of non-empty contractible subsets of X, indexed
by A e ^(X) such that FA c FA, whenever A c X. Let (X, {FA}) be
an //-space. A non-empty subset D of X is called (i) H-convex if FA c D
for each A e &{D); (ii) weakly H-convex if FA n D is non-empty and
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contractible for each A e ^(D) (this is equivalent to say that (D, {FAnD})
is an //-space); (iii) compactly open (closed) in X if Do C is open (closed)
in C for each non-empty compact subset C of X.

Let (Y, {FA}) be an //-space and X be a non-empty subset of Y. A
non-empty subset Xo of X is said to be H-compact in X if, for each
A e ^{X), there exists a compact, weakly //-convex subset CA of Y such
that X0UA c CA . A map F : X -f 2 r is called H-KKM if / ^ c U^€^ *"(*)
for each ^ e ^(A"). We remark here that our definition of " H-compact in
A"5 is slightly more general than that of " //-compact" in [3]; however, the
two notions coincide when X — Y.

The proof of the following useful result is contained in the proof of The-
orem 1 of Horvath in [16] and is thus omitted.

LEMMA 1. Let X be a topological space. For each non-empty subset J
of {0, . . . , « } , let Fj be a non-empty contractible subset of X. If J c J1

implies Fj c Fj,, then there exists a continuous map f:An—>X such that
f{Aj) c Fj for each non-empty subset J of { 0 , . . . , « } .

The following result is a variation of Theorem 1 of Horvath [16]:

LEMMA 2. Let X be a topological space and {/?,}"=o be a family of subsets
of X. Suppose

(i) for each non-empty subset J of {0, . . . , n), there exists a non-empty
contractible subset Fj of X such that Fj c \Jj€j Rj and Fj c Fj> > whenever
J cf;

(ii) for each i e { 0 , . . . , « } , F^o n^ n /?( is closed in F,Q , .

PROOF. By Lemma 1, there exists a continuous function f:An^X such
that f(Aj) c Fj for each non-empty subset / of {0, . . . , n}. For each
/ = 0 , . . . , n . l e t Si = f~1(F{0 > n } n / ? , ) , then 5, is a closed subset of the
simplex An . For each non-empty subset / of {0, . . . , n) , we have

\F{0 n}nFj)

Therefore
c o { e ; : ; e 7 } c

By the Knaster-Kuratowski-Mazurkiewicz theorem [ 18], n"=o ̂ ,•• ¥" 0 • Take

any p e (X=0
Si -then f(P) e iXo^o,...,,,} n*,0 so that | t = 0* , ^ 0-

https://doi.org/10.1017/S1446788700030275 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030275


114 Xie-Ping Ding and Kok-Keong Tan [4]

The following result is the dual of Lemma 2 and generalizes Theorem 2
of Kim in [17] to non-convex setting.

LEMMA 3. Let X be a topological space and {^,}"=0 be a family of subsets
of X. Suppose

(i) for each non-empty subset J of {0 , . . . , «}, there exists a non-empty
contractible subset Fj of X such that f , c ( J € / /? and Fj c Fj, whenever
7 c / ' ;

(ii) for each i e {0, ... , n}, F.Q . n R t is open in F,Q , .

l
PROOF. By Lemma 1, there exists a continuous function f:An-*X such

that f(Aj) c Fj for each non-empty subset / of { 0 , . . . , « } . For each
/ = 0 , ... , n, let St = f~l (F{0 > n} n Rt) , then 5( is an open subset of the
simplex An and for each non-empty subset / of {0, . . . , « } .

= f-\FJ)DAJ.

Therefore co{eji j e J} c \JjeJ Sj • It follows from Corollary 1 of Shih
and Tan [22] (also Theorem 1 of Kim [17]) that f\"=oSi ^ 0- T a k e

p e D-=0
 si'then fiP) e H -=0(^0,..., n} n Rt) so that 0"=o Ri * 0 •

As applications of Lemmas 2 and 3, we have the following matching the-
orems.

THEOREM 1. Let X be a topological space and A{, ..., An be n closed
subsets of X such that |J/=i At = X. For each non-empty subset J of
{1,...,«}, let Fj be a non-empty contractible subset of X such that Fj c

whenever J c J'. Then there exists a non-empty subset JQ of {1, . . . , «}
such that F, nfl.c/ Ai-± 0.

PROOF. Suppose the conclusion were not true, then Fj n f | ; e y ^ y = 0
for each non-empty subset / of { 1 , . . . , « } . For each j = 1 , . . . , « , let
Gj = S\Aj , then Gj is open in X. It follows that Fj c \JjeJ Gj for each
non-empty subset / of { 1 , . . . , « } . By Lemma 3, f|"=i Gj ^ 0, which
contradicts the assumption U"=i At= X. This completes the proof.

If X is a convex subset of a topological vector space and xl,..., xn e X,
let Fj be the convex hull of {Xj: j € J} for each non-empty subset / of
{ 1 , . . . , n} , we see then Theorem 1 generalizes Theorem 2 of Fan in [13].
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THEOREM 2. Let X be a topological space and Bx, ... , Bn be n open
subsets of X such that |J"=1 5(. = X. For each non-empty subset J of
{ 1 , . . . , «} , let Fj be a non-empty contractible subset of X such that Fj c
Fji whenever J c J'. Then there exists a non-empty subset Jo of {1, . . . , «}
such that F, n f | , c , B, ¥= 0 •

•'o v t J o J

PROOF. Suppose the conclusion were not true, then Fj n f l /g / B- = ®
for each non-empty subset J of { 1 , . . . , « } . For each j = 1 , . . . , « , let
Gj = X\Bj , then Gj is closed in X. It follows that Fj c U > € / Gj for each
non-empty subset J of { 1 , . . . , « } . By Lemma 2, f|"=i G-^ 0, which
contradicts the assumption \J"=l Bj = X. This completes the proof.

The above result generalizes Theorem 7B of Ko and Tan in [19] to a non-
convex setting.

THEOREM 3. Let (X, {FA}) be an H-space and S: X -> 2X be such that
(a) \Jx€XS(x) = X;
(b) for some x0 € X, !?{x0) is compact and for each x e X, Sc (xo)nSc (x)

is closed in Sc(x0);
(c) for each xeX and for each Ae^{X), FAr\Sc{x) is closed in FA.
Then there exists A e 9~(X) such that FA n \Jx€A S(x) / 0 .

PROOF. Suppose the assertion is false; then for each A e ^{X), FA n
C]xeAS(x) = 0 so FA c X\f]x€AS(x) = \JxeASc(x). Define G: X - 2X

by G(x) = Sfix) for each x e X; then G is an H-KKM map. By (c), for
each x e ^ and for each A e ^(X), FA n G(x) is closed in FA . Thus by
Lemma 2 the family {G(x): x G X} has the finite intersection property. By
(b), G(x0) is compact and for each x&X, G(xo)nG(x) is closed in G(xQ).
It follows that f)x€X G{x) ^ 0 which contradicts (a). Hence the assertion
must hold.

Theorem 3 can be restated in its contrapositive form and in terms of the
complement G(x) of S{x) in X as follows.

THEOREM 4. Let (X, {FA}) be an H-space and G: X ->2X be such that
(a) G is an H-KKM map;
(b) for some xQ € X, G(xQ) is compact and for each x e X, G(x0) n G(x)

is closed in G(x0);
(c) for each xeX and for each A e &{X), FA n G(x) is closed in FA .
Then fl
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As an immediate consequence of Theorem 4, we have the following.

THEOREM 5. Let (X, {FA}) be an H-space and F, G: X -> 2X be such
that

(a) for each x e X, F(x) c G(x) and x e F{x);
(b) for each xeX, F*(x) is H-convex;
(c) for some x0 e X, G(x0) is compact and for each xeX, G(xo)nG{x)

is closed in G{x0);
(d) for each xeX and for each AeS^(X), FAnG{x) is closed in FA.
Then nxeXG(x)?0.

PROOF. By Theorem 4, we need only to show that G is an H-KKM map.
If G were not 7/-KKM, then there exists A e •P'(X) such that FA is not
contained in \JxeA ^{x) • l e t J> € i^ be such that y £ \}x€A G{x). It
follows that A c G*(y) c F*(y) by (a) so that FA c F*(y) by (b). As
y e FA , we must have y € F*(y) so that y £ F{y) which contradicts (a).
This completes the proof.

Theorem 5 generalizes Lemma 2.1 of Tarafdar in [27] to non-convex set-
ting and to a pair of maps and Theorem 2 of Horvath in [16] in several
aspects. As another immediate consequence of Theorem 4, we have the fol-
lowing.

COROLLARY 1. Let {X, {FA}) bean H-space and let G: X -> 2X be such
that

(a) G is H-KKM;
(b) for some x0 e X, G(x0) is compact and for each x e X, G{x) is

closed in X.

As another application of Lemma 2, we have the following

THEOREM 6. Let (X, {FA}) be an H-space and S: X -> 2X be such that
(a) for some x0 G X, S*(x0) is compact and for each x e X, S*(x0) n

S*(x) is closed in S*(x0);
(b) for each x e X and for each A e 9r{X'), FAC\S*(x), is closed in FA .
Then there exists A e 9~{X) such that FA n f\xeA S~\x)£<2.

PROOF. Suppose the assertion were false; then for each A e &~(X),
FAnr\x€AS-l(x) = 0 so that FA c X\nxeAS-\x) = \JxeAX\S~\x) =
\Jx€AS*(x). Define G: X -> 2X by G(x) = S*(x) for each x & X;
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then G is an //-KKM map. It follows from (b) and Lemma 2 that the
family {G(x): x G X} has the finite intersection property so that by (a)
f\xex G{x) ^ 0 . Take any y e f\xeX G(x), then for each x e X, ye
G(x) = S*(x) and hence x £ S(y). Thus S(y) = 0 , which is a contradic-
tion. Hence the assertion must hold.

LEMMA 4. Let (Y, {FA}) bean H-space and X be a non-empty subset of
Y. Let B: X — 2Y be such that

(a) for each x e X, B(x) is compactly open in Y;
(b) \Jx€XB(x) = Y;
(c) there exists a non-empty compact weakly H-convex subset C of Y such

that XcC.
Then there exists A e 9~{X) such that FA n f l*^ B{x) ^ 0 .

PROOF. By (a) and (c), B(x) n C is open in C for each x 6 S. By (b),
C = \JxeX{B{x) n C). Thus there exists {x0, ... , xn} e F{X) such that
C = UL)(5(*i)n c ) • F o r e a c h ' e {0, ... , n} , let G(x.) = C\(B(Xi) n C);
then G(x,) is closed in C. By (c), for each non-empty J c{x0, ... , , xn}
(c X c C), Fj n C is a non-empty contractible subset of C such that
Fj c F,/ whenever J c J'. Now suppose that the assertion were false, then
for each non-empty subset A of {x0, ... , xn), FAnC\x€A B(x) = 0 so that
(FA n C ) n f W ^ M n C) = 0 and hence

F, n C c C\ ( f| (B(x) n C)) = (J

By Lemma 2, H"=o G(x,.) ^ 0 ; but

n G{xt) = f](C\(B(Xi) n C)) - C\ \J(B(x() n C)
(=0 j=0 1=0

which contradicts the fact that C = U"=o(̂ (-xri) n ^) • Hence the conclusion
of Lemma 4 must hold.

THEOREM 7. Let (Y, {FA}) bean H-space and X be a non-empty subset
Y.LetB:X-+2Y be such that
(a) for each x e X, B(x) is compactly open in Y;

e

(c) there exists a non-empty subset Xo of X which is H-compact in X
such that Y\\JxeX B{x) is empty or compact.

Then there exists A e ^{X) such that FA n C\xeA
 B(x) ± 0 •
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PROOF. Case 1. Suppose Y = \Jx€X B(x), then the conclusion follows
from Lemma 4.

Case 2. Suppose Y\\Jx€X B{x) is non-empty and compact, then by (b),
Y = {Jx€X B(x) D Y\\JxeX °B(x) so that we can find A = {xl, ... , xn} c
X\X0 such that \Jx€AB(x) D Y\\Jx€XoB(x). Thus \jx€X^AB{x) = Y.
Since Xo is //-compact in X, by Lemma 4 again, we obtain the desired
result.

Theorem 7 may be restated in its contrapositive form and in terms of the
complement F(x) of B(x) in Y as follows.

THEOREM 8. Let (Y, {FA}) bean H-space and X be a non-empty subset
ofY.LetF:X->2Y be an H-KKM map such that

(a) for each x € X, F(x) is compactly closed in Y;
(b) there exists a non-empty subset XQ of X which is H-compact in X

such that f]xex F(x) is empty or compact.
Then f)xeXF(x)?0.

Lemma 4, Theorem 7 and Theorem 8 generalize Lemma 1, Theorem 3
and Theorem 4 of Fan in [13], respectively, to a non-convex setting. We
emphasize that our Theorem 8 is a true generalization of Theorem 4 of Fan
in [13] while Theorem 1 of Bradaro-Ceppitelli in [3] only generalizes a special
case (namely, when X —Y) of the corresponding result.

3. Fixed point theorems

We first shall apply Lemma 3 to obtain the following fixed point theorem
which generalizes Theorem 3 of Kim in [17] to a non-convex setting and to
a pair of maps.

T H E O R E M 9 . L e t X be a topological space, x 0 , ... , x n e X and S , T : X
-* 2 X be such t h a t

( a ) for each i = 0,...,n, S(x,) c T(xt);
(b) for each non-empty subset A of {x0, ... , xn}, there exists a non-empty

contractible subset FA of X such that FA c FA> whenever A c A';
(c) for each i = 0 , . . . ,n, F{XQ_ x^ nS(x t ) is closed in / ^ ^ } ;

(d) for each non-empty subset A of {x0, ... , xn) with A c T~l(y) for

some yeX, FAc T~\y);

(e) \JUs(xi) = x-
Then there exists x <= X such that x € T(x).
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PROOF. For each x e X, let F(x) = T°{x) and G(x) = Sc(x). Suppose
FA c \JxeA G(x) for each non-empty subset A of {xQ, ... , xn) . By (c), for
each i = 0 , ... , n , F, , nG(x,) is open in F,r r x. By Lemma 3,

n"=o ^(JC/) ^ ^ > which contradicts (e). Thus there must exist a non-empty
subset A of {x0, . . . , xn) such that F , is not contained in \Jx&AG{x).
Take any x <E FA with Jc £ Ux€y4 <?(•*) • It follows that for each x € A,
x e S(;c) c r(jc) by (a) so that x e T~l(Jc). Therefore A c r~ ' (x) and
hence FA c r~ ' (x) by (d). As x € FA, we have Jc e r~l(Jc) so that
Jc € T(x).

THEOREM 10. Let (X, {FA}) bean H-space and S, T: X ^2X be such
that

(a) for each xeX, S{x) c T(x);
(b)\JxexS(x) = X;
(c) for some x0 e X, Sc(x0) is compact and for each x € X, Sc (xo)nSc (x)

is closed in Sc(xQ);
(d) for each x€X and for each A € &{X), FA n S°(x) is closed in FA ;

(e) for each XGX, T~X(X) is H-convex.
Then there exists X€X such that x e T(x).

PROOF. By Theorem 3, there exists A e &~(X) such that FAnf]x€A S{x) /

0 . Take any Jc e FA^C\x€A
S(x) > t h e n x e FA and ^ C S~\X) C T~\X)

by (a). By (e), FA c T~\x); but then Jc e r-1(Jc) so that x e T(x).

The following is an immediate consequence of Theorem 10.

COROLLARY 2. Let (X, {FA}) bean H-space and S, T: X -> 2X be such
that

(a) for each xeX, S(x) C T{x);
(b) \Jx€XS(x) = X;
(c) for some x0 € S, Sc(x0) is compact and for each x e X, S(x) is open

in X;
(d) for each xeX, T~l(x) is H-convex.
Then there exists Jc e X such that x e T(x).

Theorem 10 and Corollary 2 generalize Theorem 2.3 and Corollary 2.2 of
Tarafdar in [27] respectively to a non-convex setting and to a pair of maps.

THEOREM 11. Let (X, {FA}) be an H-space and S, T: X -* 2X be such
that
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(i) for each x&X, S(x) c T(x);
(ii) for each y e X, S~' (y) is open in X;
(iii) for each x e X, T{x) is H-convex;
(iv) there exist a non-empty compact subset L of X and a point yo£ X

such that y0 € S(x) for all x e X\L.
Then there exists a point x e X such that x e T(x).

PROOF. Suppose the assertion is false, that is, x $ T{x) for all x e X.
For each x € X, let G(x) = S*(x) and F(x) = T*(x). Then we have the
following properties:

(a) by (i), for each yeX, F(y) c G{y);
(b) for each x e X, since x £ T(x), we must have x e F{x);
(c) by (ii), G{y) is closed in X for each y € X; by (iv), G(y0) is a subset

of L so that g(y0) is compact;
(d) since F*(x) = T(x) for each x e X, by (iii) F*(x) is //-convex for

each x & X.
Thus all hypotheses of Theorem 5 are satisfied. By Theorem 5, f)y€X G(y)

^ 0 . Take any u e f\y€X
 G&) > t h e n M £ U ^ e A - 5 ' ^ ) = *> wm'ch is

impossible. Therefore there must exist x G X such that Jc e T(jc).

As an immediate consequence of Theorem 11, we have

COROLLARY 3. Let X be a convex subset of a topological vector space E
and S, T: X -* 2X be such that

(i) for each xeX, S(x) C T(x);
(ii) for each y&X, S~l(y) is open in X;
(iii) for each x € X, T{x) is convex;
(iv) there exist a non-empty compact subset L of X and a point y0 e X

such that y0 € S(x) for all x e X\L.
Then there exists a point x e X such that x e T(x).

PROOF. For each A e &~(X), let FA = co(A); then all hypotheses of
Theorem 11 are satisfied; the conclusion follows from Theorem 11.

Even when S = T, Corollary 3 improves Theorem 2 of Browder in [6]
where X is also assumed to be closed.

THEOREM 12. Let (X, {FA}) bean H-space and S,T:X^2X be such
that

(a) for each x e X, S(x) C T(x);
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(b) for some x0 e X, S*{x0) is compact and for each x e X, S*(xQ) n
S*{x) is closed in S*(x0);

(c) for each x e X and for each A e ^(x), FA n S*(x) is closed in FA ;
(d) for each xeX, T(x) is H-convex.
Then there exists xeX such that x e T(x).

PROOF. By Theorem 6, there exists A e &(X) such that FAnf\xeA S~l(x)
/ 0 . Take any xeFAn f\xeA S~\x); then x e FA and A c S{x) c T(x)
by (a). By (d), FA c r(jc). Therefore Jc e T(x).

Theorem 12 generalizes Theorem 2.2 of Tarafdar in [27] to a non-convex
setting and to a pair of mappings. The following result is an immediate
consequence of Theorem 12.

COROLLARY 4. Let (X, {FA}) bean H-space and S, T: X -> 2X be such
that

(a) for each xeX, S{x) c T(x);
(b) for some xQ e X, S*(xQ) is compact and for each x e X, S*(x) is

closed in X;
(c) for each x e X, T(x) is H-convex.
Then there exists x eX such that x € T(x).

Corollary 4 generalizes Corollary 2.1 of Tarafdar in [27] to a non-convex
setting and Theorem 2' of Horvath in [16] to a non-compact setting.

4. Minimax inequalities

Throughout this section, X denotes a topological space and h: XxX —>R
denotes a fixed real-valued function. For each (JC , r) € X x R, let H(x, r) =
{y € X: h(y, x) < r} . We shall assume that the function h has the following
property: For each A e &(X), the set FA = f){H(x, r): A c H(x, r) and
(JC, r) e X x R} is contractible. Clearly, we have FA c FA,, whenever
A c A'. Hence (X, {FA}) becomes an //-space.

THEOREM 13. Let f,g:XxX-*R be such that
(i) g(x, y) < f(x, y) for each (x, y) € X x X;
(ii) for each y,zeX and for each A 6 &~{X), if f(z, y) < f(x, y) for

each x e A, then there exists w € X such that h(x, w) < h(z, w) for each
xeA;

(iii) for each fixed x e X and for each A e &~(.X), g(x, y) is a lower
semi-continuous function of y on FA.
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For any X e K, if there exist a non-empty compact subset L of X and
x0 e L such that

(iv) g(x0 ,y)>X for all y e X\L,
(v) g(x, y) is also a lower semi-continuous function of y on L,

then either there exists y e L such that g(x, y) < X for all x e X or there
exists x e l such that f(x, x) > X.

PROOF. Suppose f(x, x) < X for all x eX. For each x e X, let

F(x) = {yeX:f(x,y)<X} and G{x) = {y e X: g(x, y) < X} .

(a) For each x G X, F(x) c G{x) by (i) and x e F(x) by the assumption.
(b) Suppose A c F*{y) for some y eX, then AnFl(y) = 0 so that for

any fixed z €F~l{y),

f(z,y)<X<f(a,y) for all a e A ;

by (ii), there exists w € X such that

h(a, w) < h(z, w) for all a G A.

Choose rQ e R such that /?(a, i«) < r0 < /?(z, to) for all a e A; then
^ C H(w, rQ) and z ^ //(it;, rQ) so that z € FA for any z e r ' f y ) . It
follows that FA c F*(y). Thus F*(y) is //-convex for each y € X.

(c) By (iv), G(x0) c L and by (v) G(x0) is closed in L; thus G(JC0) is
compact. Moreover, for each x e l , G(x)r\L is closed in L by (v) so that
G(x0) n G(jt) = G(x0) n (G(x) n L) is closed in G(JC0) .

(d) By (iii), for each x e X and for each A e &(X), FA n G(x) is closed
in FA.

Therefore all hypotheses of Theorem 5 are satisfied. By Theorem 5,
C\x€X

 G(x) ¥> 0 • Let y e f\xex G{x). Then y e L as G(x0) c L and
g(x, y) < X for all x e X.

Theorem 13 generalizes Proposition 1 of Horvath in [16] to non-compact
topological spaces and hence also generalizes the corresponding results of
Ben-El-Mechaiekh, Deguire and Granas in [4] and of Fan in [12].

COROLLARY 5. Let (f>, i//: X x X -* R be such that
(i) 4> < ¥ on the diagonal A = {(x, x): x e X} and <j> > ly on (XxX)\A;
(ii) for each fixed x e X, y —> <j>(y, y) - <f>(x, y) is lower semi-continuous

on X;
(iii) for each y, z e X and for each A e ^(X), if y/(a, y) < y/(z, y)

for all a e A, then there exists w € X such that h(a, w) < h(z, w) for all
aeA;
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(iv) there exist a non-empty compact subset L of X and x0 6 L such that
<t>(y,y)><t>(xo,y) for ally GX\L.

Then there exists yeL such that <p(y, y) < ^(x, y) for all x e X.

PROOF. Define / , g: X x X -> R by

fix, y) = y(y, y) - IJ/(X , y), g(x, y) = <f>{y, y) - <f>{x, y).

Then / and g satisfy the hypotheses of Theorem 13 with X — 0 and
f(x, x) = 0 for all x e X. By Theorem 13 there exists y € L such
t h a t g ( x , y ) < 0 f o r a l l x e X ; t h a t i s , <f>(y, y ) < <f>(x, y ) f o r a l l x e X .

The above result generalizes Proposition 2 of Horvath in [16] and Theorem
1 of Shih and Tan in [21] which in turn generalizes Corollary 1 of Fan in
[12].

COROLLARY 6. Let a: X -> R and / , ^ : I x I - » R be such that
(i) for each r e R, the set {y e X: a{y) < r} is empty or contractible;
(ii) g(x, y) < f(x ,y) for all x,y€X;
(in) for x,y, zeX, if f(z,y) < f(x,y), then a(x) <a(z);
(iv) for each fixed x € X and for any r e R , g(x, y) is a lower semi-

continuous function of y on {y e X: a(y) < r}.
For any X e R, if there exist a non-empty compact subset L of X and

xo€L such that
(v) g(x0,y)>Xforall yeX\L.
(vi) g(x, y) is also a lower semi-continuous function of y on L,

then either there exists yeL such that g{x, y) < X for all x e X or there
exists x e X such that f(x, x) > X.

PROOF. Define h: X x X —* R by h(x, y) = a(x); then for each A e
&{X), FA = C\{H(x, r): A c H{x, r) and (x, r) e X x R} = (]{{y e
X: a(y) < r): A c {y e X: a(y) < r} and r e R} = {y e X: a(y) < 7}
where r = inf{r e R: A c {y € X: a(y) < r}. Thus Theorem 13 can be
applied to obtain the desired conclusion.

Corollary 6 generalizes Proposition 3 of Horvath in [16] to a non-compact
setting.

THEOREM 14. Let f,g:Xx.X^>R be such that
(a) g(x, y) < f(x, y) for each x, y e X;
(b) for each fixed x € X, g(x, y) is a lower semi-continuous function of

y on C for each non-empty compact subset C of X;
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(c) for each y, z eX and for each A e &(X), if f{z, y) < f(x, y) for
each x € A, then there exists w e X such that h{x, w) < h(z, w) for each
x eA.

For any A G I , if there exist a non-empty subset Xo of X and a non-empty
compact subset K of X such that for each B e &~(X), there is a compact
weakly H-convex subset CB of X having the following properties:

(d) XouBcCB;
(e) for each y e CB\K, there is x e CB such that g(x, y) > X,

then either there exists y e K such that g{x, y) <X for all x e X or there
exists x e X such that f(x, x) > X).

PROOF. Suppose f{x, x) < X for all x e X. For each x e X, let

K(x) = {y&K:g(x,y)<X};

then K(x) is closed in K by (b). Let B e &(X) be given. By hypotheses,
there exists a compact weakly //-convex subset CB of X satisfying (d) and
(e).

Now for each x GCB, let

F(x) = {yeCB: f(x,y) < X}, G(x) = {y e CB: g(x, y) < A}.

Then we have
(i) for each x e CB , F(x) c G(x) by (a) and x e F(x) by assumption;
(ii) since CB is weakly //-convex, (CB, {FA nCB}) is also an //-space;

let A e &{CB) be an arbitrarily given set such that A c F*(y); then A n
F~\y) = 0 s o t h a t f o r a n y fixed z e F ~ \ y ) , f{z,y) <X< f(a,y) f o r
all a € A. By (c), there is w € X such that h{a, w) < h{z, w) for all
a € A. Choose r0 e K such that h{a, w) < r0 < h{z, w) for all a e A;
then A c H{w, r0) and z <£ H(w, r0) so that z <£ FA for all z e F~\y).
It follows that FAn CB c F*(y) and hence F*(y) is /^-convex for each
yeCB.

(iii) by (b), for each x e CB , G(x) is closed in CB and is therefore also
compact.

By Theorem 5 with X = CB, fl^ec ^ M ^ 0 • I n other words, there
exists a point y0 € CB such that g(x,y0) < X for all x e CB. By (e),
we must have y0 G K so that y0 e flxcB^^) ^v (d). This shows that
{K(x): x e X} has the finite intersection property. By the compactness of
K, we have f]x€X K(x) / 0 . Take any y e f]x&x K(x), then y e K and
^(•^ > y) < X for all x € X. This completes the proof.

As an immediate consequence of Theorem 14, we obtain the following
very general minimax inequality in a topological vector space.
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THEOREM 15. Let X be a non-empty convex subset in a topological vector
space E. Let f,g:XxX^R be such that

(a) g(x, y) < f{x, y) for each x, y e X;
(b)for each fixed x e X, g(x, y) is a lower-semicontinuous function of y

on C for each non-empty compact subset C of X.
For any X e R, / /
(c) for each fixed y € X, the set {x e X: F(x, y) > A} is convex,
(d) there exist a non-empty compact convex subset Xo of X and a non-

empty compact subset K of X such that for each y e X\K, there exists
x € 00(^0 u {y}) such that g(x,y)> k,
then either there exists y eK such that g(x, y) < A for all x e X or there
exists xeX such that f(x, x) > X.

PROOF. For each (JC , y) e X x X, let h(x, y) = -f{x, y); then we have

H(y, r) = {xG X: h(x, y) <r} = {xeX: f(x,y) > -r}.

By (c) , f o r e a c h y € X a n d f o r e a c h r e R , H(y, r) i s c o n v e x , so t h a t
for each A e f(X), FA = f){H(y, r):AcH(y, r) and (y, r) e X x K}
is convex and hence FA is a non-empty contractible subset of X. Thus
(X, {FA}) is an 7/-space. For each B e ^(X) let CB = co(X0 u B). It
is easy to see that all hypotheses of Theorem 14 are satisfied so that the
conclusion follows.

Theorem 15 is equivalent to a minimax inequality of Bae, Kim and Tan
[2, Theorem 1] which in turn generalizes minimax inequalities of Tan [26,
Theorem 1], Allen [1, Theorem 2], Yen [28, Theorem 1] and Fan [13, Theo-
rem 6]. For applications of Theorem 15 to variational inequalities and fixed
point theorems, we refer to Bae, Kim and Tan [2].

We now observe the following.

LEMMA 5. Let (Y, {FA}) bean H-space, X be a non-empty subset of Y,
^:Afxy-»Ru{±oo} and aeR.

(1) If y/(x, x) < a for all x e X and for each y e Y, the set {x e
X: y/(x, y) > a} is H-convex, then for each A e^(X) and for each y e FA,

y/{x, y) < a.
(2) / / ij/(x,x) < a for all x e X, define F: X -> 2Y by F{x) = {y e

Y: y/(x, y) < a) for all x e X. Then F is an H-KKM map if and only if
for each A e ^(x) and for each y e FA, min^g^ y/(x, y) <a.

PROOF. (1) Let A 6 ^{X) and y e FA be given. Suppose min^^ y/(x, y)
> a; then A c {x e X: i//(x, y) > a} so that by assumption FA c {x e
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X: y/{x, y) > a]. As y e FA, it follows that y/(y, y) > a which is a
contradiction. Hence we must have min^^ i//(x, y) <a.

(2) Suppose F is H-KKM. Let A e &{X) and y € FA; as y e FA c
(Jxe/4 -F(x), we must have y/(x, y) <a for some x & A and hence

min i//(x, y) <a.
€A

Conversely, if F is not H-KKM, then there exists A e &(X) such that
FA <£ \JxeA F(x). Let y e FA be such that y £ \JxeA F(x); it follows that
y/{x, y) > a for all x EA SO that minxg^ y/(x, y) > a.

We remark here that the condition "for each A e ^{X) and for each
y £ FA, min^^ y/(x, y) < a " is a generalization of the notion " a-DQCV
in x " introduced by Zhou and Chen in [29].

As an application of Theorem 8, we present another very general minimax
inequality:

THEOREM 16. Let (Y, {FA}) bean H-space, X be a non-empty subset of
Y, ^ : I x y - t R u { ± , o o } and a G R be such that

(a) for each fixed x e X, <j>{x, y) is a lower semi-continuous function of
y on C for each non-empty compact subset C of Y;

(b) for each A e ̂ (X) and for each y e FA, min^^ <j>(x, y) < a ;
(c) there exists a non-empty subset XQ of X which is H-compact in X

such that the set {y € X: 4>{x, y) < a for all x € ^ 0 } is compact.
Then either there exists a point y eY such that (j>{x, y) < a for all x e X

or there exists a point x e X such that <f>(x, x) > a.

PROOF. Suppose </>(x, x) < a for all x G X. Define F : I - » 2 y by
F ( x ) = { y & Y - . ( j ) ( x , y ) < a } f o r e a c h xeX. T h e n b y ( b ) a n d L e m m a 5, F
is an / / -KKM map and by (a), for each JC e X, F(x) is compactly closed in
Y and by (c), f\x€X F(x) is compact. Thus by Theorem 8, f)x€XF(x)^0.

Take any y € r\x€x
F(x) > t h e n ^ ( x > V) ^ a f o r a11 x ^ x •

As an application of Theorem 16, we have the following new minimax
inequality:

THEOREM 17. Let (Y, {FA}) bean H-space, X be a non-empty subset of
Y, <f>, ^ : I x 7 - » R u { ± , o o } and a e R be such that

(a) 4>(x, y ) < yf{x, y ) for all (x,y)eXxY;
(b ) for each fixed x e X, (f>(x, y) is a lower semi-continuous function of

y on C for each non-empty compact subset C of Y;
(c) for each fixed y e Y, the set {x e X: y/{x, y) > a} is H-convex;
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(d) there exists a non-empty subset Xo of X which is H-compact in X
such that the set {y GY: <f>(x, y) <a for all x e Xo} is compact.

Then either there exists a point y eY such that <f>{x ,y)<a for all x e X
or there exists a point x e X such that y/(x, x) > a.

PROOF. Suppose y/(x ,x)<a for all x eX. Then by (c) and Lemma 5,
for each A e &(X) and for each y eFA, min^^ y/(x, y) < a, so that by
(a), min^g^<p(x, y) <a. Hence by (a) and Theorem 16, there exists y € Y
such that <f>(x, y) <a for all x e X.

Even when Y is a subset of a topological vector space, Theorem 17 gen-
eralizes a minimax inequality of Takahashi [25, Theorem 3] in several ways.
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