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Abstract. This is a study about the dynamical stability of the GJ 876 exoplanetary system. The
phase space of initial conditions (ICs) is characterized using the MEGNO indicator of chaos
and the Shannon entropy approach for estimations of diffusivity. The results are compared to
analyze correlations between the chaotic layers and the instability timescales. The long-term
dynamical behavior of the system is reminiscent of the stable chaos, at least within the system’s
lifetime.
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1. Chaotic diffusion and instability times

Chaos and (macroscopic) instability constitute two different concepts that sometimes
present intrinsic correlations among general dynamical problems. This may be the reason
why there are some occasions in which both are wrongly used as synonyms. One can
find systems where the existence of the first one does not implicate the occurrence of
the second one, a scenario that has been reported in the case of the GJ 876 system
(Batygin et al. 2015).

In our work, we applied the orbital parameters established in the work of
Millholland et al. (2018) as the nominal condition of the real system (see Table 4, p. 7
therein), disregarding the dynamical contribution of the innermost planet due to both its
reduced mass with respect to the others, and its proximity to the host star (Batygin et al.
2015; Mart́ı et al. 2016). Hence, we modeled the system’s architecture as a 4-body prob-
lem, with the Hamiltonian written using Jacobi angle-action variables (Alves Silva et al.
2021).

In Fig. 1, we plotted the results of our analysis. The first panel (left-hand frame)
exhibits a MEGNO dynamical map, obtained from integrations of a grid of 300× 300
ICs in the (a3, e3)-plane of the outermost mass. Each solution was integrated for a
maximum timespan of T1 = 104 yr (the yellow region indicates unstable orbits within
times t < T1). For each solution of such a map, the respective values of the MEGNO
〈Y 〉 (Cincotta & Simó 2000) were computed numerically. We used them to obtain the
respective Lyapunov times TL of the trajectories, as it is indicated in the color bar.

The middle panel exhibits an instability dynamical map constructed from a grid of
200× 200 ICs integrated within the same timespan T1. At this opportunity, each solution
was solved together with another five shadow trajectories to enhance statistically the
outcomes. Then, for each one of this set of six trajectories, our numerical routine was
able to compute the normalized Shannon entropy S associated with that orbital solution
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Figure 1. (Left frame): MEGNO map, with each solution associated to its respective Lyapunov
time TL. The nominal condition appears near the inner core of the resonance, where 10 yr <∼
TL <∼ 500 yr. (Center frame): instability time map, given in terms of the logarithm of tinst(S):
dark red regions are unstable in fast times. Dark blue region (A) is a domain of low diffusivity,
with instability times of orders of tens of Gyr; (B) indicates domains where the instabilities
manifest within tens of Myr. (Right frame): long-term integration of the nominal condition,
displaying a stable evolution of the Laplace angle ΦLap for 0.1 Gyr.

(see Cincotta et al. (2020a) and Cincotta et al. (2020b) for detailed explanations of the
Shannon entropy approach). Using ergodic arguments, from the time derivative of S one
can estimate a diffusion coefficient DS , to which is possible to associate a macroscopic

instability time† tinst(S) = Δ2

DS
, where Δ2 denotes a given mean-square displacement, the

squared distance between the initial and boundary values of actions-like variables (see
Cincotta et al. (2020a,b); Alves Silva et al. (2021)).

In the right-hand panel, we show a long-term integration of the nominal condition
(identified by the white dot in both previous frames) run for T2 = 0.1 Gyr. The plot
presents the evolution of the Laplace angle ΦLap = λ1 − 3λ2 + 2λ3 (λi designates the
mean longitude of the i-th body), since it is known that the GJ 876 system is currently
inside a three-body resonant chain among its most massive planets (Batygin et al. 2015;
Mart́ı et al. 2016; Millholland et al. 2018). The system displayed stability within T2, with
ΦLap oscillating around zero with an amplitude of ≈ 96 deg.

2. Discussion

Using numerical methods to solve the equations of motion, we obtained a chaotic
profile of the phase space surrounding the nominal condition in terms of 〈Y 〉, noticing
that the system is immersed in a highly chaotic domain, for which TL is no greater than
hundreds of years. Despite the strong chaoticity, we verified that the system is expected
to last over billions of years since it is located in a region of slow diffusion according
to our Shannon entropy estimations. The most exciting characteristic of such measures
is that they have run within the same timespan T1 as the Lyapunov time simulations.
The long-term behavior of the system was checked with integration of 0.1 Gyr, which is
one-tenth of the instability times tinst estimated for the small vicinity (A) of the nominal
solution. In the current stage of our work, we are carefully analyzing the stable chaos
scenario of the system.
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† The instability time tinst shall be interpreted as an expectation of the time within which
dynamical instabilities would manifest on a large-scale, making the disruption of the original
system likely.
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