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Thin-sheet theory for soft materials
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Slender sheets of viscous liquid can show features characteristic of elastic materials,
such as buckling under compression. Likewise, thin sheets of solid material subject
to sufficiently high stress can deform plastically, i.e. flow. In this volume, Hewitt &
Balmforth (J. Fluid Mech., vol. 908, 2021, A5) explore the territory between these regimes,
by developing asymptotic theories for thin viscoelastic and elasto-viscoplastic sheets,
focusing primarily on regimes in which bending deformations dominate stretching. Their
results reveal a rich phenomenology and provide new theoretical tools with which to probe
thin layers of soft materials.
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1. Introduction

Thin-film approximations have been enormously successful tools for understanding a
wide range of flows. The slender geometry of a flow domain can be exploited not only
to highlight dominant physical processes, but also to simplify the flow’s mathematical
description very substantially. The celebrated pioneers of this approach used physical
insight to identify approximations describing, for example, high pressures generated by
viscous effects in lubricating bearings (Reynolds 1886) and the regulation of the thickness
of coating flows by viscosity and surface tension (Landau & Levich 1942). In each case,
the resulting theory yielded a low-dimensional description of the flow, formulated as an
ordinary or partial differential equation describing the film thickness or pressure field,
while still accommodating non-trivial nonlinearity.

More systematic approaches to deriving low-dimensional approximations emerged later
in the last century with the maturing of asymptotic methods. A small parameter ε,
capturing the flow’s extreme aspect ratio, is used to rescale the governing equations
(and relevant dimensionless parameters), and dimensionless variables are then expanded,
normally in algebraic powers of ε. Models of this kind can be grouped broadly into two
classes: those describing thin viscous films adjacent to solid surfaces for which the flow
is dominated by shear, and ‘free’ films in which stretching and bending deformations
(and the associated stresses) are dominant. In the former category Atherton & Homsy

† Email address for correspondence: oliver.jensen@manchester.ac.uk

© The Author(s), 2021. Published by Cambridge University Press 910 F1-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:oliver.jensen@manchester.ac.uk
https://doi.org/10.1017/jfm.2020.1077


O.E. Jensen

(1976), for example, showed how to derive systematically nonlinear evolution equations
which can accommodate a variety of physical effects such as weak inertia, surface tension,
substrate curvature and gravity; a wealth of discoveries exploiting this approach followed
(Craster & Matar 2009). At around the same time, Buckmaster, Nachman & Ting (1975)
derived evolution equations for the centreline of a thin sheet of viscous fluid (a ‘viscida’,
complementing treatment of the corresponding ‘elastica’ in the framework of solid
mechanics), an approach which subsequently found success in industrial applications such
as glass blowing (Van De Fliert, Howell & Ockenden 1995) and in describing fundamental
processes such as the buckling (Ribe 2001) and breakup (Eggers & Villermaux 2008) of
liquid columns.

In contrast, well-grounded theories for thin films or sheets of non-Newtonian liquids
have taken longer to develop. The additional physical complexity, such as history
dependence (for viscoelastic or thixotropic materials) and fine-grained physical structures
(such as internal plugs, wall slip or shear bands for yield-stress materials), described
by a diverse set of constitutive models, have often prompted ad hoc approximations at
the expense of more systematic approaches. Hewitt & Balmforth (2021) take the field
forward by developing new asymptotic descriptions for thin sheets of viscoelastic and
elasto-viscoplastic material, and solving a set of canonical problems that demonstrate how
these materials show a spectrum of fluid-like and solid-like properties.

2. Overview

Hewitt & Balmforth (2021) focus initially on the motion of a two-dimensional sheet
of incompressible material, ignoring the effects of inertia and surface tension, and
adopting the linear constitutive Oldroyd-B model of viscoelasticity. After formulating
governing equations in an intrinsic coordinate system (using arc-length s along the sheet
centreline and the direction normal to this), a scaling is identified that is appropriate to
the slender domain. Careful analysis reveals a regime in which axial stress dominates
shear stresses and, crucially, bending deformations dominate stretching, with negligible
change of sheet thickness. Within this framework, the sheet can curve over distances
comparable to its length, with its shape captured compactly at time t by the centreline
curvature κ(s, t). After integrating across the width of the sheet, the model reduces to
that resembling elastic (Euler–Bernoulli) beam theory, but with a modified constitutive
law (regulated by three independent parameters – two viscosities and an elastic modulus)
that relates bending moment (and its time derivative) to time derivatives of κ . This
neatly mirrors one-dimensional models for viscoelasticity, incorporating the Maxwell
formulation (allowing stress relaxation), the Kelvin formulation (allowing the buildup of
elastic stress) and their combination, generalising previous treatments for Newtonian liquid
sheets by Buckmaster et al. (1975), Ribe (2001) and others. Axial tension plays a role as a
Lagrange multiplier, enforcing effective inextensibility.

The model is then used to address a set of representative problems, notably a cantilever
(clamped at one end, with the other free to sag under gravity), allowing creep to develop
at long times (although the model does not incorporate subsequent stretching). Buckling
is induced by bringing the two ends of the clamped beam together, with creep promoting
instability. A third example involves ‘snap through’, induced by rotation of the ends of a
beam in a buckled configuration, allowing it to jump towards another buckled state, with
the rate of transition regulated by viscous dissipation. Sufficient viscosity suppresses the
snap through altogether, although some hysteresis remains.

A variant of the model is then presented in which there is a balance between stretching
and curvature: small lateral deflections induce stretching that in turn induces a spatially
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uniform axial tension in the sheet. The problem is formulated as a high-order partial
differential equation for the lateral beam displacement, coupled to an evolution equation
for the tension that is a nonlinear function of the displacement. Solutions are illustrated
for the viscous catenary (a sheet clamped at either end, held initially horizontally in
a vertical gravitational field). When the solvent viscosity ηs is small, and the polymer
viscosity η (regulating the relaxation rate of elastic stresses) is large, initial deflection of
the catenary is controlled by viscous bending at a rate determined by ηs. Elastic stresses
then accumulate and the catenary lingers close to an elastic equilibrium; finally over longer
times, the catenary starts to creep at a rate regulated by η, with bending and then stretching
dominating the motion.

Strong nonlinearity is added to the constitutive law in the final section of the
study, through the introduction of a yield stress above which stresses can relax
through irreversible plastic deformation. Prior studies in this area have offered divergent
predictions, because of a focus on different parameter regimes but also as a result of
different modelling approaches. Kamrin & Mahadevan (2012) developed an approximate
theory for a slender Bingham–Norton (elasto-viscoplastic) catenary based on an
assumption that stress varies linearly across the cross-section; their model was successful
in identifying regions of yield in three-dimensional finite-element simulations. In a study
of a ribbon being curled by passing it under high axial tension over a sharp blade, Prior
et al. (2016) (developing an elasto-viscoplastic model that assumed instead a linear strain
profile across the cross-section) predicted that internal yield surfaces emerge that are
almost parallel to the centreline of the ribbon, so that plastic deformations along one
edge of the ribbon lead to a permanent curl, capturing key features of experimental
measurements. Neither of these approaches, however, involved systematic asymptotic
reduction of a higher-dimensional model. First steps in that direction had been taken
by Balmforth & Hewitt (2013), who investigated slender Herschel–Bulkley (purely
viscoplastic) sheets and threads (using toothpaste extruded from its tube as motivation),
proposing that yielded (flowing) regions are separated from unyielded (plug) regions by
surfaces orthogonal to the axis of the thread.

Hewitt & Balmforth (2021) explore the ground between these studies by adopting the
Bingham–Maxwell elasto-viscoplastic model (in a properly invariant formulation due to
Saramito 2007) again considering a regime in which axial tension is weak enough to
avoid significant stretching. They derive a new reduced constitutive model relating bending
moment to curvature, modified by the first moment of plastic strain across the cross-section
of the sheet. For a sheet that bends without stretching significantly, stresses are largest
near the lateral surfaces of the sheet, being tensile at the outer surface of the bend and
compressive at the inner, causing yielded regions to propagate inwards toward the sheet
centreline. This behaviour is illustrated for a cantilever (undergoing small deflections for
which the bending moment is known), with the migration of the yield surfaces through
the material being coupled to the evolution of bending moment and curvature. The model
illustrates elegantly how the rate and degree of droop of the cantilever is regulated by yield
stress.

3. Future

Thin-sheet flows of viscoelastic and viscoplastic materials appear in a variety of
applications, from the domestic environment (such as curling hair or ribbons) to the natural
world (growing plant cell walls in Boudon et al. (2015) or flowing lung airway mucus in
Lai et al. (2009), for example). The highly idealised constitutive models mentioned so far
will likely over-simplify the complex rheology of many natural or manufactured materials.
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Beyond identification of appropriate parameter values, and the introduction of material
nonlinearities, lie challenging questions over the representation of yielding behaviour in
materials with complex microstructure (Balmforth, Frigaard & Ovarlez 2014; Bonn et al.
2017), which new generations of constitutive models are starting to address (Dimitriou &
McKinley 2019). Nevertheless, Hewitt & Balmforth (2021) make clear predictions that can
be tested experimentally, and the theoretical framework they have developed will support
analysis of more complex constitutive models and a wider range of deformations.
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