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A coin always floats in stable equilibrium with its longitudinal axis normal to the
air–liquid interface. In contrast, a long thin cylindrical pin floats with its longitudinal axis
parallel to the air–liquid interface. In this context, we present a theoretical investigation
of the stability of small-scale hydrophobic cylinders floating in vertical and horizontal
orientations at various aspect ratios (length/diameter). The study is limited to cylinders
denser than water floating at the air–water interface. Our analysis shows that, unlike
large-scale vertically floating cylinders, the stability of vertically orientated small-scale
cylinders increases with an increase in aspect ratio. A similar trend is observed in the
stability of small-scale horizontal cylinders. We also explain the underlying mechanics that
leads to a rise in the stability of floating cylinders with an increase in aspect ratio. Unlike
large-scale floating cylinders with uniform density, we show that the effect of governing
forces (weight, buoyancy and surface tension) in small-scale cylinders changes from a
stabilising to a destabilising force with a change in the aspect ratio. For example, in the
case of a vertically floating cylinder, the buoyancy force acts as a stabilising force at a
small aspect ratio whereas, at large aspect ratios, the buoyancy force has a destabilising
influence. Likewise, the body’s weight has a destabilising influence at a small aspect ratio
and stabilising effect at a large aspect ratio. The reason behind this transformation is that,
above a particular aspect ratio, the centre of gravity of small-scale floating cylinders lies
below the centre of buoyancy.

Key words: instability

1. Introduction

As per Archimedes’ principle, only objects with an average density smaller than the
density of the water float at the air–water interface. However, even objects denser
than the water float at the air–water interface in some cases. For example, small
cylindrical metal pins, although denser than water, start floating when placed gently on the
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(a) (b) (c)

5 mm

Figure 1. Images showing small-scale cylinders floating at the air–liquid interface. (a,b) A coin (cylinder with
aspect ratio < 1) floating in the vertical orientation. (c) A cylindrical pin (aspect ratio > 1) floating with
longitudinal axis parallel to the interface.

air–liquid interface. The floating ability of a metal pin is attributed to the surface tension
force that acts on objects floating at the air–water interface (Keller 1998; Mansfield,
Sepangi & Eastwood 1997). That is, besides the buoyancy force, the vertical component
of surface tension supports the weight of the objects floating at the air–water interface.
While the surface tension force acts on every object floating at the air–water interface,
its influence on the floating ability of an object depends on the relative magnitude of the
surface tension force in comparison with the buoyancy force. The relative strength of these
forces is given by the Bond number, which is expressed as the ratio of buoyancy force to
surface tension force. Mathematically, the bond number is given by �ρL2g/γ , where γ is
surface tension, L is the length scale of the object, g is the acceleration due to gravity and
�ρ is difference between the densities of two fluids forming the interface. For small-scale
objects, that is, objects with a length scale of the order of the capillary length or smaller,
the magnitude of the surface tension force becomes comparable to the weight of the liquid
displaced by the floating object (Vella 2015). The capillary length is defined as the length
scale of the body at which the surface tension force acting on the body is comparable to the
weight of the liquid displaced by the body and is given by (γ /ρg)1/2. Due to this reason,
stable orientations of small-scale floating bodies differ from large-scale floating objects of
similar shape and geometry.

The ability of a floating body to regain its initial orientation after being disturbed is
defined as the stability of the floating body. Various studies (Bhatnagar & Finn 2006;
Janssens, Chaurasia & Fried 2017) have been carried out to investigate the stability of
small-scale floating objects. For example, Janssens et al. (2017) investigated the net torque
acting on a horizontally floating cylinder when subjected to a surface tension gradient. In
this study, the liquid on one side of the horizontal cylinder was treated with surfactants
while the liquid on the other side was kept surfactant free, thereby creating a surface
tension gradient. In a different study, Bhatnagar & Finn (2006) investigated the equilibrium
configuration of a horizontal cylinder of infinite length when subjected to a perturbation
along the vertical direction. These studies are limited to the investigation of the vertical
and rotational stability associated with infinite length cylinders with their longitudinal
axis parallel to the liquid–fluid interface. There are no studies that investigate the effect of
an angular perturbation about the lateral axis of the horizontal cylinder. Also, previous
studies do not address the stability of a horizontal cylinder when perturbed about the
lateral axis. In cases wherein the longitudinal axis of the finite-length floating cylinder
is perpendicular to the fluid–liquid interface. For example, a coin (cylinder with an aspect
ratio (length/diameter) < 1) floats with its longitudinal axis perpendicular to the water
surface, as shown in figures 1(a) and 1(b). Interestingly, the coin continues to float with
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Stable orientations of small-scale floating cylinders

a vertical orientation when perturbed, for example, by small waves on the water surface.
In contrast, a long, thin cylindrical metal pin floats on water with its longitudinal axis
parallel to the surface and remains in the same orientation when disturbed, as shown
in figure 1(c). These observations illustrate that certain orientations are more stable for
small-scale objects than others. This article presents an initial stability analysis of a
small-scale cylinder floating at an air–liquid interface. We mathematically investigate the
stable orientations of small-scale cylindrical floating bodies. In particular, we identify
at what aspect ratio a small-scale cylinder in a given orientation becomes unstable.
The identification of stable orientations of small-scale objects finds applications in the
formation and stability of small-scale floating rafts (Protière et al. 2017) and self-assembly
of particles floating at a liquid–fluid interface (Aubry et al. 2008).

2. Static equilibrium

We follow the classical approach used in initial stability analysis (Biran & López-Pulido
2013) and first calculate the position of static equilibrium. Using the static equilibrium
position, we calculate the moments of various forces acting on the floating body when the
body is perturbed by a small angular displacement β. In our investigation, we consider
a hydrophobic cylinder of length l, radius R, density ρs and uniform contact angle θ .
For our analysis, we make several simplifying assumptions that are regularly used while
analysing floatation of small-scale floating objects (Singh & Joseph 2005; Liu, Feng &
Wang 2007; Gao & Feng 2011). We assume the surface of the cylinder to be perfectly
smooth (zero contact angle hysteresis) with a fixed solid–liquid contact angle (Singh &
Joseph 2005; Liu et al. 2007; Gao & Feng 2011). Similar to the initial stability analysis
(Biran & López-Pulido 2013) of large-scale floating bodies, we assume the liquid is
inviscid and incompressible. The assumptions of a smooth surface and inviscid fluid ensure
that the three-phase contact line (TPCL) can move up and down relative to the cylinder
surface without any resistance. We also assume that the disturbing moment is applied very
gradually, and the angular perturbation is so small that the inertial moments due to the
inertia of fluid and floating cylinder can be neglected. This is because, in the presence of
fluid inertia, the liquid displacement due to horizontal displacement of the cylinder surface
will perturb the TPCL, leading to the generation of waves. The cylinder is floating at an
air–liquid interface with the liquid having density ρl and surface tension γ . As the density
of air ρa � ρl, we neglect the density of air in our calculations. A small-scale cylindrical
particle, when placed gently on the liquid–fluid interface, can float with its longitudinal
axis either (i) perpendicular or (ii) parallel to the liquid–fluid interface.

2.1. Vertical cylinder
We first calculate the static equilibrium position of a small-scale cylindrical body floating
with its axis perpendicular to the air–water interface. Static equilibrium refers to the state
when there is no net force and torque acting on the body. In other words, the cylinder is
statically floating at the air–liquid interface. Figure 2 shows the schematic of a small-scale
cylinder floating in the vertical orientation at the air–liquid interface. Under the conditions
of static equilibrium, the weight of the floating cylinder Fw = πR2 lρsg, is balanced by
the sum of the buoyancy force Fb = (πR2hρlg + πR2hcρlg) and the vertical component
of the surface tension force Fst = 2πRγ sin(φ), which is mathematically expressed as

πR2 lρsg = πR2hρlg + πR2hcρlg + 2πRγ sin(φ), (2.1)
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Figure 2. Schematic showing the orientation of a cylinder with its longitudinal axis perpendicular to the liquid
surface (a) under static equilibrium and (b) under small angular displacement β. (c) The three-dimensional
projection of volume displaced by the small-scale floating cylinder as per the generalised Archimedes principle.
(d) Comparison of TPCL before and after the perturbation of the small-scale floating cylinder. Here, γ denotes
the surface tension, φ represents the angle of inclination of the surface tension with respect to the horizontal
and θ is the contact angle.

where φ denotes the angle of inclination of the surface tension force with respect to the
horizontal at the TPCL, hc represents vertical deformation of the liquid–air interface from
the undisturbed interface at the TPCL (see figure 2) and h denotes the wetted length of the
cylinder below the TPCL. The buoyancy force is equal to the weight of the liquid displaced
by the floating body. The weight of the liquid displaced by a small-scale floating body
is given by the generalised Archimedes principle (Mansfield et al. 1997; Keller 1998).
As per the generalised Archimedes principle, the weight of the liquid displaced by the
small-scale floating body is equal to the sum of the weight of the liquid displaced in the
region ‘abcd’ and region ‘cdef ’ shown in figures 2(a) and 2(c). The volume of liquid
displaced in the region ‘abcd’ is equal to the volume of the cylinder, which would fill
the volume bounded by the wetted surface of the body and circles ‘ab’ at the bottom
and ‘cd’ at the top (cylindrical volume bounded by circles ‘ab’ at the bottom and ‘cd’ at
the top). The volume of liquid displaced in the region ‘cdef ’ is equal to the volume of
the vertical cylinder passing through the TPCL ‘cd’ or the circumference of circle ‘cd’),
and the original horizontal undisturbed free surface (surface bounded by circle ‘ef ’). The
region ‘gde’ shows the volume of liquid displaced by the curved air–liquid interface ‘gd’.
The weight of the liquid displaced by the curved air–liquid interface ‘gd’ is equal to the
vertical component of surface tension force acting along the TPCL. Rearranging (2.1)
gives the wetted length h of the cylinder as a function of ρs, ρl, l, hc, γ and φ, which is
expressed as

h = l
ρs

ρl
− hc − 2γ sin(φ)

Rρlg
. (2.2)
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Stable orientations of small-scale floating cylinders

From figure 2, the inclination angle φ = (θ − π/2). The vertical deformation of
the air–liquid interface hc around the cylinder is obtained from the solution of the
Young–Laplace equation. The Young–Laplace equation for an axisymmetric air–liquid
interface is given by (Fowkes & Hood 1998; Norbury, Sander & Scott 2005; Anderson,
Bassom & Fowkes 2006; Finn 2012)

γ

[
d2z/dr2

[1 + (dz/dr)2]3/2 + dz/dr
r[1 + (dz/dr)2]3/2

]
= g(ρl − ρa)z, (2.3)

where z and r denote axial and radial coordinates, respectively, with the origin located
at the point of intersection of the longitudinal axis (z) with the plane of the undisturbed
interface, as shown in figure 2. We solve (2.3) numerically with boundary conditions

dz
dr

= tanφ at r = R and
dz
dr

→ 0 at r → ∞. (2.4)

The solution of (2.3) gives the vertical position of the air–liquid interface z as a function
of r, from which we obtain hc by substituting r = R. Using hc in (2.2) gives the wetted
length h of the cylinder. From h and hc we obtain the position of the centre of buoyancy
dcob = (hc − h)/2 with respect to the TPCL. In the case of small-scale floating cylinders,
the centre of buoyancy is defined as the centre of mass of the fluid displaced by the floating
cylinder. The volume of liquid displaced by the cylinder is equal to the volume of the
cylinder in the region abfe, as shown in figure 2.

After obtaining the equilibrium position, we perturb the body by giving a small angular
displacement β. After that, we calculate the resulting net moment acting on the body due
to the surface tension, buoyant and gravitational forces. In our approach, we calculate
the restoring torque by taking moments of the forces about the centre of the TPCL. As we
consider the cylinder surface to be perfectly smooth, the TPCL slides on the curved surface
of the cylinder without pinning when we perturb the vertical cylinder with infinitesimal
angular displacement β (Singh & Joseph 2005; Liu et al. 2007; Gao & Feng 2011). Now,
when the cylinder is tilted infinitesimally in the clockwise direction, the TPCL moves
axially upwards in the right half and downwards in the left half relative to the cylinder
surface, as shown in figure 2(b). The sliding of the TPCL in opposite directions relative
to the lateral surface of the cylinder in the right and left halves of the cylinder changes
the shape of the TPCL from circular (represented by length dc in figure 2d) to slightly
elliptical (represented by length uv in figure 2d). Moreover, the slide of the TPCL results
in an equal depth of the TPCL hc around the cylinder, keeping the TPCL planar. As shown
in figures 2(b) and 2(d), the TPCL before perturbation (dc) is equal to the projection
of the TPCL after perturbation (uv) on the plane inclined at an angle β, which gives
dc = uv cos(β). For small β, uv � st, which means that the shape and length can be
assumed to remain constant after the vertical cylinder is perturbed by infinitesimally small
angular deflection. The infinitesimally small angular displacement and the assumption of
no contact line pinning means that the TPCL remains horizontal with the depth of the
TPCL (hc) remaining fixed. Therefore, we assume that the vertical force balance remains
unaffected when the cylinder is given a small angular displacement.

As the contact angle is fixed, the inclination angle of the surface tension force with
respect to horizontal φ decreases in the right half of the cylinder and increases in the left
half of the floating cylinder. The change in inclination angle varies from ±β at points on
the contact line that are normal to the axis of angular displacement to zero at points parallel
to the axis of angular disturbance. Figure 3 illustrates the variation of the inclination angle
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Figure 3. Schematic showing the variation of the inclination angle φ around the circumference of a vertical
cylinder when it is given a small angular displacement β. Under the small angular displacement β in the
clockwise direction, the inclination angle φ increases from φ − β in the direction perpendicular to the angular
displacement to φ in the direction of angular displacement.

along the TPCL when the floating cylinder is perturbed by smaller angular displacement
β. The inclination angle varies from φ − β at point A in figure 3 to φ at point B along
the TPCL in the anticlockwise direction. In the left half, the inclination angle varies from
φ + β at point C to φ at B along TPCL in the clockwise direction. This asymmetry in the
magnitude of vertical component of the surface tension force about the centre of the TPCL
gives rise to an unbalanced moment (see Appendix) given by

ms = 4
∫

0

π/2
Rγ bβ cosφ

(
1 − 2α

π

)
dα = 8R2γβ cosφ

π
= Msβ, (2.5)

whereas the torque due to horizontal components of the surface tension force cancels out.
The parameter b denote the perpendicular distance between the line of action of the vertical
component of the surface tension force from the axis passing through centre of the TPCL
and parallel to the axis of angular displacement. Similarly, the parameter a denotes the
perpendicular distance between the line of action of the vertical component of the surface
tension force from the axis passing through the centre of the TPCL and normal to the axis
of angular displacement.

From figure 2(b), we see that the vertical component of the surface tension force on the
left side of the inclined cylinder increases due to the increase in the inclination angle,
whereas on the right side it decreases due to the decrease in inclination angle. This
difference in vertical components of the surface tension force on the left and right sides of
the cylinder gives rise to a clockwise moment about the centre of the TPCL, thereby trying
to increase the clockwise angular deflection β. From the above analysis we can say that
the surface tension force always generates a destabilising moment in the case of a vertical
cylinder. The moment of weight of the body about the centre of TPCL is expressed as

mg = πR2 lρsgβdcg = Mgβ, (2.6)

here, dcg = (l/2 − h) is the vertical distance between the centre of gravity (CG) from the
TPCL, as shown in figure 4. Lastly, the moment of the buoyancy force about the centre of
the TPCL

mb = πR2ρlg(h + hc)db = Mbβ, where, db = (dnb + dcob) β, (2.7)
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dcg
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CB CBnew
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Figure 4. Schematic showing the distance of the CG and the CB of the floating body from the centre of the
TPCL. The lengths dcg and dcob denote the distance of the CG and the CB of the undisturbed body from the
centre of the TPCL, respectively. Whereas db denotes the distance between the CB of the tilted body from
the centre of the TPCL.
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Figure 5. Schematic showing equilibrium configuration of a cylinder floating with its longitudinal axis parallel
to the undisturbed interface. The angle φ denotes the inclination angle along the lateral surface, and φ1 denotes
the inclination angle at two ends of the horizontal cylinder. The inclination angle at the two flat ends of the
horizontal cylinder is given by φ1 = θ − π/2 whereas φ = ψ + θ − π.

is the horizontal distance between the centre of buoyancy (CB) and the TPCL after the
floating body is perturbed by small angular displacement β and dcob is the vertical distance
between the CB and the TPCL before the floating body is disturbed. The distance dnb =
R2/[4(hc + h)] is the distance of the new CB from the longitudinal axis of the tilted body
and is given by the ratio of the area moment of inertia of the body area at the undisturbed
interface (about an axis parallel to the interface) to the volume of liquid displaced by the
body in the hatched area.

2.2. Horizontal cylinder
Next, we investigate the stability of a small-scale floating cylinder with its axis parallel to
the undisturbed air–liquid interface. Figure 5 shows a schematic of a horizontal cylinder
floating at an air–liquid interface. As in § 2.1, we begin with the calculation of the position
of static equilibrium and then perturb the system by giving a small angular displacement β
about the lateral axis passing through the centroid of the floating body. Due to its circular
geometry, the cylinder is infinitely stable for any angular disturbance about the longitudinal
axis. However, the body may be statically unstable in the case of angular disturbance about
the lateral axis, as shown in figure 5. Under a static equilibrium condition, the balance of
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(a) (b)

Figure 6. Small-scale aluminium cylinder with D = 2 mm and θ = 152◦ floating at the air–liquid interface in
horizontal orientation. (a) The top view of the horizontal cylinder shows the curved air–liquid interface around
the contact line. (b) Front view of the horizontal cylinder showing the curved air–liquid along the lateral surface
of the solid cylinder (dark semi-circle) at the same depth below the undisturbed interface as the TPCL on the
flat end (dark edge of semi-circle parallel to horizontal direction) of the horizontal cylinder. The TPCL along
the flat end appears to be bent upwards due to the refraction of light by the curved air–liquid interface. The
image in (b) appears slightly blurred at the edges of the floating body and air–water interface due to high
magnification and enlargement.

forces acting on the cylinder is given by

Fw = Fs + Fb, (2.8)

where Fw = πR2 lρsg is the weight of the floating cylinder

Fst = 2lγ sin(φ)+ 4Rγ sin(φ1) sin(ψ), (2.9)

is the vertical component of the surface tension force and Fb = R2 lρlg[2(hc/R) sin(ψ)+
ψ − cos(ψ) sin(ψ)] is the buoyancy force. In (2.9), φ is the inclination angle of the
interface with respect to the horizontal along the lateral surface of the cylinder and φ1
is the angle of inclination of the interface at the two flat ends of the horizontal cylinder.
Note that the angle of inclination of the air–liquid interface at the contact line is different at
the flat ends from the inclination angle along the lateral surface of the horizontal cylinder.
Due to the difference in the curvature of the surface at the contact point, the inclination
angle at the flat ends is given by φ1 = θ − π/2 (see figure 5b) whereas φ = ψ + θ − π
(see figure 5c).

Figure 6 shows a horizontal cylinder made of aluminium with D = 2 mm and θ = 152◦
floating at an air–water interface in horizontal orientation. Figure 6(b) shows that the depth
at which the curved air–water interface along the longitudinal axis meets the cylinder
surface (curved edges of the dark semi-circle) is equal to the depth of the TPCL along
the flat end (upper edge of the dark semi-circle) of the horizontal cylinder. Therefore, as
shown in figure 5, in our analysis, we take the depth of the TPCL on the flat ends to be
equal to the depth of the TPCL (hc) along the lateral surface of the horizontally floating
cylinder. As shown in figure 5(c), ψ is the angle between the radial line joining the centre
of the cylinder with the TPCL and the vertical. Using expressions of Fw, Fb and Fst in
(2.8) gives

πR2 lρsg = 2lγ sin(φ)+ 4Rγ sin(φ1) sin(ψ)

+ R2 lρlg[2(hc/R) sin(ψ)+ ψ − cos(ψ) sin(ψ)]. (2.10)

Expressing ψ in terms of φ, we eliminate ψ from (2.10). The resulting equation
has two unknowns φ and hc. The distance of the TPCL from the undisturbed interface
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Figure 7. Schematic showing variation of inclination angle φ along the length of a horizontal cylinder under
a small clockwise angular displacement β. As the contact angle is fixed, any variation in ψ leads to change in
φ. In the above case, the inclination angle increases from left to right along the line ab.

hc is obtained by solving the Young–Laplace equation. For simplicity, we assume
that the deformation of the liquid–fluid interface is a function z = z(r) and solve the
two-dimensional approximation of the Young–Laplace equation given by (Vella, Lee &
Kim 2006)

gρlz = γ
d2z/dr2

[1 + (dz/dr)2]3/2 , (2.11)

to obtain hc. Equation (2.11) is solved analytically using (2.4) as boundary conditions,
which gives, hc = 2lc sin(φ/2), where lc = [γ /(ρlg)]1/2 is the capillary length. Using hc
in (2.10) and then solving for φ gives the inclination angle at the TPCL under a static
equilibrium condition. We note that (2.10) is a transcendental equation having no explicit
solution and therefore we solve it numerically. From φ, we obtain ψ = φ − θ + π. Using
φ and ψ we obtain the distance of the CB from the CG as

Cb = (2/3)R3 sin3(ψ)+ R sin(ψ)(d2
cg − h2

o)

R2(ψ − sin(ψ) cos(ψ))+ 2R sin(ψ)hc
, (2.12)

where dcg = R cos(ψ) is the distance of the CG from the TPCL and ho = dcg − hc is the
distance of the CG from the undisturbed interface.

Next, we disturb the static equilibrium by introducing a small angular displacement
β about the lateral axis and then calculate the resulting moments acting on the floating
cylinder. We calculate the moments of various forces about the lateral axis passing through
the centre of the TPCL and lying in the plane TPCL. As the contact angle is fixed, a small
angular perturbation leads to a change in inclination angle at the TPCL along the lateral
and the two circular base surfaces of the cylinder. A small angular deflection about the
transverse axis in the clockwise direction causes ψ to change along the axial direction, as
shown in figure 7. The circular profile of the lateral surface of the cylinder ensures that
φ = ψ + θ − π. Therefore, any increase inψ leads to an increase in φ, which in turn leads
to a change in the vertical component of the surface tension force along the axial length
of the cylinder. This axial variation in the vertical component of the surface tension force
gives rise to an unbalanced torque given by

msl = 4
∫

0

l/2
γβ cosφ

x2

(R2 − dcg
2)1/2

dx = 4γ cos(φ)
3(R2 − dcg

2)1/2

l3

8
β. (2.13)

Besides changing the inclination angle along the lateral surface, the angular deflection
about the transverse axis also changes (i) φ at the TPCL and (ii) the length of the TPCL
along the flat base surfaces at the two ends of the horizontal cylinder. As shown in figure 7,
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a clockwise angular deflection leads to an increase in the length of the TPCL at one end
and a decrease in the length at the other. Similarly, a clockwise angular deflection results
in an increase in the inclination angle on the left base and a reduction in φ along the right
base of the horizontal cylinder. The net moment due to the change in the length of the
TPCL and φ along the two bases of the cylinder is given by

msb = γ lβ
(

hl
R sin(ψ)

sin(φ)+ 2R sin(ψ) cos(φ)
)
. (2.14)

The net moment on the tilted horizontal cylinder due to the vertical component of the
surface tension force is given by

ms = msb + msl = Msβ. (2.15)

The direction of the net torque generated by the surface tension force acting on the
horizontal cylinder depends on the magnitude and direction of msb and msl. The direction
of moment msl is governed by the value of φ before the body is perturbed by the small
angular displacement. For example, if initially φ < 90, then any increase in ψ (and
therefore in φ) due to clockwise angular perturbation results in an increase in the vertical
component of the surface tension along the longitudinal axis on the right side of the
floating cylinder. In contrast, the vertical component of the surface tension decreases along
the length, which is on the left side of the centre of the cylinder. As a result, msl acts
in an anticlockwise direction, thus acting as a restoring torque. The moment due to the
surface tension force acting along the flat ends of cylinder msb always acts as a destabilising
moment. This is because a small angular displacement in the clockwise direction decreases
the inclination angle from φ1 to φ1 − β along the TPCL on the right base of the horizontal
cylinder, as shown in figure 7(b). In contrast, the inclination angle increases from φ1 to
φ1 + β along the TPCL on the left base of the horizontal cylinder, as shown in figure 7(b).
Due to this difference in inclination angles, the vertical component of the surface tension
force increases on the left base and decreases on the right base, resulting in a moment in
the clockwise direction. Equations (2.13) and (2.14) show msb and msl respectively have
quadratic and cubic dependences on l. Therefore, at small cylinder lengths msl < msb,
whereas at large lengths msl > msb. As a result, in the case of a short horizontal cylinder (at
small aspect ratios), the surface tension force generates a destabilising torque Ms. Whereas,
in the case of a long cylinder (cylinder with a large aspect ratio), the moment due to the
surface tension has a stabilising effect. The moment due to the weight of the cylinder about
the centre of the TPCL is given by

mg = πR2 lρsgdcgβ = Mgβ. (2.16)

Lastly, the moment of the buoyancy force about the centre of the TPCL is expressed as

mb =
[
R2 (ψ − sin(ψ) cos(ψ))+ 2R sin(ψ)hc

]
ρlgldb = Mbβ, (2.17)

where

db = (dcob + dnb) β, dnb = l2 sin(ψ)
R (ψ − sin(ψ) cos(ψ))+ 2 sin(ψ)hc

and

dcob = dcg − Cb.

(2.18a–c)
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Stable orientations of small-scale floating cylinders

The net moment acting on the cylinder Mn = (Ms + Mb + Mg)β. A cylinder is stable in
the vertical or horizontal orientation if Mn > 0, which simplifies to

(Ms + Mb + Mg)β > 0. (2.19)

As β > 0, (2.19) can be further simplified by dividing the equation by β to give

(Ms + Mb + Mg) > 0. (2.20)

We non-dimensionalise the last equation by dividing the equation by γ l2c , which gives
M = (Ms + Mb + Mg)/γ l2c . The cylinder is in stable equilibrium if M > 0. Here, we note
that there are two approaches, (i) balance of forces and (ii) variational approach (energy
analysis) (Burton & Bush 2012), to obtain the equilibrium configuration of the floating
body. In this article, we have used the balance of forces approach to obtain (2.1) and
(2.20). In the variational approach (energy analysis), we strive to obtain a configuration
of the floating body that minimises the system’s total energy. Regardless of the approach,
we obtain identical equations ((2.1) and (2.20)) for the floating body system.

We next give a criterion to classify a cylinder with a density higher than water and
floating at the air–water interface as a large-scale or small-scale cylinder. For a cylinder
floating at the air–liquid interface, the weight of the cylinder Fg is balanced by the
sum of the buoyancy force FB and the surface tension force FS. For a cylinder in a
horizontal orientation, Fg = πr2

ch lρsg, Fs ≈ γ l (l > r) and FB ≈ πr2
ch lρlg. Here, rch is

the characteristic radius of the cylinder. Under the condition of static equilibrium

Fg ≈ FS + FB, (2.21)

πr2
ch lρsg ≈ γ l + πr2

ch lρlg, (2.22)

rch ≈
√

γ

(ρs − ρl)g
. (2.23)

A cylinder in horizontal orientation can be classified as small scale if the radius of the
cylinder r ≈ rc or smaller. Now, for a cylinder in vertical orientation FS ≈ γ rch.

A similar balance of forces acting on a vertical cylinder gives

rcv ≈ γ

l(ρs − ρl)g
. (2.24)

Like a horizontal cylinder, a cylinder in the vertical orientation can be classified as a
small-scale cylinder if the radius of the cylinder r ≈ rcv or smaller. Equation (2.24) shows
that rcv is inversely proportional to the length and density of the cylinder. This means that
the larger the radius the smaller would be the length of the vertical cylinder that can float at
the air–water interface. Similarly, the higher the density of the vertical cylinder the smaller
would be the thickness at which the cylinder will float at the air–water interface.

3. Results and discussion

We begin by analysing the stability of the vertical cylinder floating at an air–water interface
at various aspect ratios. Unlike large-scale cylinders, the stability of a small-scale floating
cylinder not only depends on the aspect ratio but also on the absolute value of the radius
of the cylinder. This is because the surface tension force varies linearly with the radius
of the cylinder whereas the weight of the cylinder varies as the square of the radius, as
shown in (2.1). Consequently, for a fixed length, as the radius of the cylinder increases, the
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Figure 8. Net moment M acting on the vertical cylinder with contact angle θ = 150◦ and density ρs =
4000 kg m−3 floating at an air–water interface at various aspect ratios. (a) Vertical cylinder with D = 15 mm.
(b) Vertical cylinder with D = 1.5 mm. Net moment M > 0 shows that the cylinder is in stable equilibrium.

proportion of the surface tension force in the upward thrust supporting the body’s weight
diminishes rapidly, which in turn breaks the static equilibrium. Therefore, we investigate
the stability of the vertical cylinders with two different diameters, D = 15 mm and D =
1.5 mm. Figure 8 shows the variation of non-dimensional moment M with aspect ratio
l/D for vertical cylinders with solid–liquid contact angle θ = 150◦, ρs = 4000 kg m−3,
floating on a liquid with γ = 0.0715 N m−1 and ρl = 1000 kg m−3.

The cylinder with D = 15 mm is in static equilibrium only below the aspect ratio of
0.095. Beyond the aspect ratio of 0.095, the vertical cylinder with D = 15 mm is not able to
attain static equilibrium and therefore sinks. In other words, the cylinder with D = 15 mm
is not able to float on the air–liquid interface at l/D > 0.095. In figure 8(a), we show the
stability of the vertical cylinder only above the aspect ratio of 0.074. This is because, at
l/D ≤ 0.074, the wetted length h = 0 for a vertical cylinder with D = 15 mm. In other
words, the TPCL coincides with the sharp edge of the lower base of the cylinder. At the
sharp edges, the contact angle is not defined by the Young–Dupre law and changes with the
weight of the cylinder (θ decreases with the weight of the cylinder) (Singh & Joseph 2005;
Burton & Bush 2012). As the wetting condition at the sharp edge is unknown, the slope
of air–liquid interface φ at the TPCL that forms the first boundary condition (see (2.4))
also becomes an unknown. Consequently, the Young–Laplace (2.3) cannot be solved to
obtain hc. Therefore, we have shown the stability of the vertical cylinder for those lengths
for which contact angle can be predicted by the Young–Dupre law.

Such small aspect ratios for a cylinder floating in vertical orientation are expected
because the maximum weight of the vertical cylinder (ρs > ρl) of given diameter D that
the surface tension and buoyancy forces can support is fixed. As the mass is distributed to a
large extent in the radial direction, there is a very small value of the thickness at which the
vertical cylinder can attain static equilibrium. Importantly, from figure 8(a), we see that
the vertical cylinder is stable at all the aspect ratios within the range 0.074 < l/D < 0.095.
Moreover, the stability of the cylinder increases with an increase in aspect ratio. The
stability of the cylinder with D = 15 mm in vertical orientation can be attributed to the
larger distance of the CB from the TPCL compared with the distance of the CG from the
TPCL. Figure 9 shows a schematic that illustrates the relative locations of the CB and CG
of a vertical cylinder floating at the air–water interface. The distance of the CB from the
TPCL is larger because the volume of liquid displaced in the region cdef (see figure 9a)
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Figure 9. Schematic showing the relative positions of the CG, CB and TPCL at different aspect ratios.
(a) Vertical cylinder with D = 15 mm. (b) Vertical cylinder with D = 1.5 mm.

that lies outside the body is larger than the volume of liquid displaced in the region abcd,
which is nothing but the volume of the floating body. The CB of the floating cylinder lies
at the centroid of abfe, whereas the CG lies at the centroid of abcd, which clearly shows
the larger distance of the CB from the TPCL compared with the distance of the CG from
the TPCL. As a result, the anticlockwise moment created by the buoyancy force more than
balances the destabilising moments created by surface tension and weight of the body. In
cases wherein the TPCL lies above the CG, the body’s weight creates an anticlockwise
moment, thereby creating a stabilising effect.

Next, we analyse the stability of the vertical cylinder with D = 1.5 mm floating at the
air–water interface. Figure 8(b) shows the stability of a vertical cylinder with D = 1.5 mm
at aspect ratios ranging between l/D = 3.1 and 4.1. Like the cylinder with D = 15 mm,
the vertical cylinder with D = 1.5 mm is in static equilibrium at l/D ≤ 3.1. However, the
TPCL coincides with the edge of the lower base of the cylinder at l/D ≤ 3.1. Therefore,
we limit our analysis to l/D > 3.1. However, before we discuss the stability of a floating
vertical cylinder, we first describe what happens when the length of the cylinder is
increased while keeping the radius constant. As the radius and contact angle of the cylinder
is fixed, the vertical component of surface tension remains constant. For the vertical
cylinder to remain in static equilibrium, a unit increase in length (�l) is accompanied
by an increase in wetted length of the cylinder (h in figure 2) in the ratio of ρs : ρl. That
is, the increase in wetted length�h = (ρs/ρl)�l. The increase in wetted length causes the
vertical cylinder to settle lower into the liquid, which leads to a fall in the vertical position
of the CG and CB, as shown in figure 9(b). As the CG and CB are located at the centroid
of the volume of the body and the volume of liquid displaced by the body, respectively,
the downward displacement of the CG is more than the downward displacement of CB.

Figure 8(b) shows that the stability of the vertical cylinder with D = 1.5 mm increases
with an increase in aspect ratio. However, unlike the vertical cylinder with D = 15 mm, the
cylinder with D = 1.5 mm is in stable equilibrium only above the aspect ratio l/D = 3.6.
Figure 10 shows the variation of moments of the three forces with the aspect ratio of the
vertical cylinder. The plot shows that Mg has a positive slope, Mb has a negative slope and
Ms remains constant with increase in aspect ratio. At small aspect ratios, the CG and CB
of the floating body lie above the TPCL. In the case wherein the CG and CB are above the
TPCL, the weight of the cylinder generates a destabilising moment, whereas the moment
due to buoyancy force has a stabilising effect. This is evident from Mb > 0 and Mg < 0
(see figure 10) at small aspect ratios of the vertical cylinder.

As discussed above, with an increase in the cylinder’s length, the CG and CB slide
down the vertical axis, with the CG dropping more than the CB. Due to this difference
in downward displacement, there is larger reduction in dcg compared with db, resulting in
a larger reduction in the magnitude (absolute value) of Mg in comparison with Mb. This
larger reduction in the magnitude of Mg than Mb is apparent from the larger slope of Mg
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Figure 10. Variation of non-dimensional moments due to surface tension (Ms), gravity (Mg) and buoyancy
(Mb) forces with aspect ratio acting on a vertical cylinder with θ = 150◦, D = 1.5 mm and ρs = 4000 kg m−3

floating at an air–water interface at various aspect ratios.
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Figure 11. Net moment M acting on the vertical cylinder with contact angle θ = 120◦ and D = 15 mm floating
at an air–water interface. (a) Vertical cylinder with density ρs = 4000 kg m−3 and (b) with ρs = 3000 kg m−3.

than Mb in figure 10. As the weight of the cylinder generates a destabilising moment for the
case when the CG is above the TPCL, a larger reduction in the magnitude of Mg increases
the body’s stability. Hence, the stability of the vertical cylinder with D = 1.5 mm rises
with an increase in the aspect ratio. When the CG and CB fall below the TPCL, the
body’s weight generates stabilising torque, whereas the buoyancy force gives rise to the
destabilising moment. The CB and CG fall below the TPCL corresponding to aspect ratios
at which Mb = 0 and Mg = 0, respectively. The stabilising effect of the body’s weight and
destabilising action of the buoyancy force are evident from positive and negative values of
Mg and Mb respectively at l/D > 3.5.

Next, we analyse the effect of the contact angle and density on the stability of a
vertical cylinder. Figures 11(a) and 11(b) show the variation of non-dimensional moment
M with aspect ratio l/D for vertical cylinders with D = 15 mm, solid–liquid contact angle
θ = 120◦, but having ρs = 4000 kg m−3 and ρs = 3000 kg m−3, respectively. The plots
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Figure 12. Net moment M > 0 shows that the cylinder is in stable equilibrium. Net moment M acting on
horizontal cylinder with θ = 150◦, D = 1.5 mm and ρs = 4000 kg m−3 floating at an air–water interface at
various aspect ratios. The inset shows the enlarged view of moment M at small aspect ratios.

show that the variation of the net moment with aspect ratio follows the same trend as we
observe in vertical cylinders with θ = 150◦. However, the maximum aspect ratio at which
the vertical cylinder is in static equilibrium is lower for θ = 120◦ than for the vertical
cylinder with θ = 150◦. Likewise, the stability of the cylinder with θ = 120◦, which we
characterise by the magnitude of net moment M at the highest aspect ratio, is also lower
than the cylinder with θ = 150◦. These lower values can be attributed to the reduction in
inclination angle φ. As the inclination angle φ = θ − π/2, the reduction in contact angle
reduces the vertical component of the surface tension and depth of the TPCL hc below
the undisturbed air–water interface. This, in turn, reduces the maximum weight of the
cylinder of a given radius that can float at the air–liquid interface and therefore results
in a lower maximum aspect ratio. The reduction in hc leads to a decrease in the distance
between the CB and TPCL dcob, resulting in a lower restoring torque compared with the
cylinder with θ = 150◦. Therefore, a reduction in contact angle lowers the stability of the
cylinder floating in the vertical orientation. In contrast, a reduction in the density of a
vertically floating cylinder increases the stability and maximum aspect ratio at which the
cylinder attains static equilibrium. The increase in the maximum aspect ratio and stability
is expected as lower density means the surface tension and buoyancy forces can support a
larger length (thus higher aspect ratio) of a cylinder with a given radius r. The variation
of moment M with aspect ratio in the cylinder with ρs = 3000 kg m−3 follows the same
trend as we see in the cylinder with ρs = 4000 kg m−3.

We have now discussed the stability of the vertical cylinder floating at the air–water
interface. Next, we analyse the stability of the cylinder floating in horizontal orientation.
For our analysis, we consider a horizontal cylinder with D = 1.5 mm and ρs =
4000 kg m−3. Figure 12 shows that the stability of the horizontal cylinder increases with
an increase in aspect ratio. However, the horizontal cylinder is in unstable equilibrium
below l/D = 1.2. At small aspect ratios, the CG and CB of the floating body lie above
the TPCL. Therefore, the weight of the floating body generates a destabilising moment,
whereas the buoyancy force generates a stabilising torque about the centre of the TPCL.
The distance between the CB and the centre of the TPCL db depends on dcob and dnb
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Figure 13. Domains of floatation of a small-scale cylinder in the non-dimensional parameter space of aspect
ratio and Bond number. (b) The enlarged view of the plot in (a). The calculations are performed for a small-scale
cylinder with density ρs = 4000 kg m−3 and θ = 150◦. The region below the dashed grey line shows the
domain wherein a small-scale cylinder can float in a vertical orientation. In comparison, a small-scale cylinder
can float horizontally in the region above the solid grey line.

(see (2.18a–c)) which in turn are functions of l. At low aspect ratios l is very small, which
results in dnb < dcg. Besides the weight of the cylinder, at small aspect ratio, the surface
tension force also gives rise to a destabilising moment (see discussion in § 2.2). Therefore,
due to the larger destabilising effect of weight and surface tension, a horizontally floating
cylinder is in unstable equilibrium at small aspect ratios. From (2.18a–c), we see that dnb
is directly proportional to the square of the cylinder length. Therefore, with an increase in
the length of the cylinder, dnb becomes greater than dcg, resulting in a larger stabilising
moment due to the buoyancy force. Additionally, and as discussed in § 2.2, with an increase
in length the effect of surface tension changes from a destabilising force to a stabilising
force. As a result, the horizontally floating cylinder becomes more stable with an increase
in aspect ratio. Note that, although we have only shown results for a horizontal cylinder
with D = 1.5 mm and θ = 150◦, a similar trend is observed for the horizontal cylinder of
different radii and contact angles with a shift in the aspect ratio at which it attains stable
equilibrium.

Next, we present the floatation and stability domains of a small-scale cylinder in
the non-dimensional parameter space of the aspect ratio and Bond number (Bo). We
perform calculations for a small-scale cylinder with density ρs = 4000 kg m−3 and
θ = 150◦. Figure 13(a) shows the domains of floatation of a small-scale cylinder in the
non-dimensional parameter space of aspect ratio and Bond number. Figure 13(b) shows
the enlarged view of the plot shown in figure 13(a). The dashed grey line gives the upper
aspect ratio limit for a given Bond number at which a small-scale cylinder can float in
a vertical orientation. The solid grey line corresponds to the lowest aspect ratio value at
which a cylinder can float horizontally. The plot in figure 13(a) shows that the maximum
Bond number at which a small-scale cylinder can float in horizontal orientation is much
smaller than in vertical orientation. This is because the maximum radius of a cylinder that
can float in vertical orientation is inversely proportional to the length of the cylinder (see
(2.24)). Therefore, the radius and thus the Bond number at which a cylinder can float in
vertical orientation can be made larger by lowering the length of the cylinder. In contrast,
the maximum radius of the cylinder that can float in horizontal orientation is independent
of its length and is a function of the physical properties of the cylinder and liquid
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Figure 14. Stability domains of a small-scale cylinder floating at the air–liquid interface in the
non-dimensional parameter space of aspect ratio and Bond number. The calculations are performed for
a small-scale floating cylinder with density ρs = 4000 kg m−3 and θ = 150◦. The cylinder in horizontal
orientation is unstable in the shaded region bounded by solid grey and black lines. The domain of stability
for a cylinder in vertical orientation lies in the region bounded by hashed grey and black lines.

(see (2.23)). The plot further shows that a cylinder with a given Bond number can float in
a vertical orientation for all aspect ratio values below the dashed grey line. In comparison,
a cylinder in horizontal orientation can float at all aspect ratios above the solid grey line
(see figure 13b).

Figure 14 shows the stability domain of a small-scale floating cylinder in the
non-dimensional parameter space of aspect ratio and Bond number. A cylinder in
horizontal orientation is unstable in the region below the solid black line. As the
small-scale cylinder in horizontal orientation cannot float below the solid grey line, the
cylinder in horizontal orientation is unstable in the shaded region bounded by solid grey
and black lines. Similarly, a cylinder in vertical orientation is in stable equilibrium in the
region above the dashed black line. As the cylinder cannot float above the dashed grey
line, the domain of stability for a cylinder in vertical orientation lies in the region bounded
by hashed grey and black lines. Figure 14 further shows that a small-scale cylinder is
stable in both horizontal and vertical orientations in the area bounded by the dashed grey
and black lines for Bond number Bo < 0.2. For Bo > 0.2 and aspect ratio (l/D) > 2 the
small-scale floating cylinder is in stable equilibrium only in horizontal orientation. In the
case of Bo > 0.2 and (l/D) < 2, a small-scale cylinder is in stable equilibrium only in
the vertical orientation, as illustrated by the region between dashed lines which extends
to higher Bond numbers with a smaller aspect ratio. We note that, as mentioned earlier
in this section, our stability calculations for the vertical cylinder do not include the aspect
ratios at which wetted length h = 0. This is because, for h = 0, the TPCL coincides with
the sharp edge of the lower base of the vertical cylinder, due to which the contact angle
cannot be defined by the Young–Dupre law.

4. Discussion

The above results show why a cylinder with a large aspect ratio is in stable equilibrium
when floating in a horizontal orientation. Stated in other words, our analysis shows why a
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cylinder with a large aspect ratio continues to float in the horizontal orientation even after
being perturbed by small angular disturbances. Likewise, our analysis also shows why a
cylinder with a small aspect ratio (such as a coin) is in stable equilibrium when floating
with its axis perpendicular to the undisturbed air–liquid interface. Besides these important
results, some interesting points differentiate the stability of small-scale floating bodies
from the stability of large-scale floating bodies. To begin with, the stability of small-scale
vertically floating cylinders increases with an increase in aspect ratio. In contrast, the
stability of uniformly dense large-scale floating cylinders in vertical orientation decreases
with an increase in aspect ratio (White 1979; Dugdale 2004). Furthermore, unlike
large-scale floating cylinders with uniform density, the CG of uniformly dense small-scale
floating cylinders may lie below the CB. Lastly, the effect of the three governing forces
(surface tension, buoyancy force and weight of the body) changes with the aspect ratio of
the floating body.

If we take into account the inertia of a cylinder floating in an inviscid fluid, then the
motion of the cylinder is governed by the balance of the inertia force and restoring force
that is expressed as

Iβ̈ + Mrβ = 0, (4.1)

where I is the moment of inertia of the floating cylinder about the axis of rotation passing
through the centre of the TPCL and perpendicular to the longitudinal axis, Mr is the
restoring moment and β̈ is the angular acceleration of the cylinder. The restoring moment
Mr = Ms + Mb + Mg (or Mr = Mn/β for Mn, see (2.19)). When disturbed, the small-scale
floating cylinder will begin to oscillate infinitely about its equilibrium position with a
natural frequency given by ω = √

Mr/I. Here, we note that, if the net restoring moment
Mr > 0, the cylinder will oscillate about its initial static equilibrium position. Stated in
another way, if the floating cylinder is initially in stable equilibrium, as determined from
the static analysis, it will oscillate about its initial equilibrium position. For Mr < 0, when
the cylinder is in unstable equilibrium, there will be no net restoring moment towards the
initial equilibrium position, and the floating cylinder will move towards a new equilibrium
position (toward stable orientation). In contrast, if the cylinder’s inertia is negligible, the
floating cylinder will move towards a stable orientation without oscillation. As described
in § 2, the inertia of the floating cylinder can be neglected if the disturbing moment
is applied gradually and the angular perturbation is infinitesimally small. Including the
effect of viscosity of the liquid will result in damping of the oscillations through viscous
dissipation. The pattern of damped oscillation depends on the damping coefficient’s
magnitude, which is proportional to the fluid’s viscosity.

5. Conclusion

We have theoretically investigated the stability of small-scale floating cylinders in vertical
and horizontal orientations at various aspect ratios. To examine the stability of the
cylinder in the vertical orientation, we considered (i) a cylinder with a large diameter
(D = 15 mm), which is akin to a coin floating at an air–water interface and (ii) a cylinder
with a small diameter (D = 1.5 mm). We limit our analysis to cylinders floating at an
air–water interface that are denser than water and have a hydrophobic surface. We have
not considered hydrophilic cylinders because hydrophilic vertical cylinders that are denser
than water cannot float at the air–water interface without the pinning of the TPCL. Also,
we assume the surface of the cylinder to be perfectly smooth with fixed contact angle. Our
results show that the cylinder with a large diameter is in stable equilibrium within the range
of aspect ratios at which it attains static equilibrium and the stability increases with an
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increase in aspect ratio. We further show that the stability of the vertical cylinder with the
small diameter also increases with an increase in aspect ratio, although stable equilibrium
is achieved only above l/D = 3.6. This rise in the stability with aspect ratio in small-scale
vertical cylinders is unlike large-scale cylinders with density ρs < ρl, wherein the stability
of vertical cylinders decreases with an increase in the aspect ratio. A large-scale body is
that which is governed by the conventional Archimedes principle wherein surface tension
force has negligible effect on the floatation and stability of the body. Our analysis shows
that a decreasing solid–liquid contact angle leads to a decrease in stability, whereas a
reduction in the density increases the stability of the vertical cylinder. In the case of
a horizontal cylinder, our calculations show that the cylinder’s stability rises with an
increase in aspect ratio with the cylinder in unstable equilibrium below the aspect ratio
of l/D = 1.2. The rise in the stability of the small-scale horizontal cylinder with aspect
ratio is similar to the large-scale cylinders (ρs < ρl) wherein the stability increases with
an increase in aspect ratio. This, in principle, explains why a long thin cylindrical pin is in
stable equilibrium in horizontal orientation.

We have also explained why the stability of small-scale cylinders rises with the increase
in aspect ratio. Our results show that the stabilising or destabilising effect of the governing
forces (weight, buoyancy and surface tension) changes with the aspect ratio of the
cylinders. For example, in the case of a vertical cylinder, the weight of the cylinder has a
destabilising effect at a small aspect ratio. In contrast, at a higher aspect ratio, it generates
a restoring torque. Likewise, surface tension has a destabilising influence at small aspect
ratios. However, the surface tension causes a stabilising moment at large aspect ratios.

Lastly, we have also provided a criterion to classify a floating cylinder as a small-scale or
large-scale one. Although limited to smooth surfaces, the present analysis may be extended
to surfaces with contact angle hysteresis θh. The contact angle hysteresis can be included
by increasing the contact angle at points on the TPCL that move in the upward direction
and reducing the contact angle at points that move in the downward direction relative to
the cylinder surface. The change in contact angle due to hysteresis will not be uniform
along the TPCL. For β > θh/2, the change in contact angle will be equal to θh/2 at points
along the TPCL that are radially perpendicular to the axis of rotation. Whereas the change
in contact angle will be zero at points on the TPCL that are parallel to the axis of rotation.
This is because the points on the TPCL radially parallel to the axis of rotation remain
stationary with respect to the cylinder surface when the cylinder is perturbed by a small
angular disturbance. The axis of rotation is a line passing through the centre of the TPCL
and lying in the plane of the TPCL. A radially perpendicular line to the axis of rotation is
a line that is drawn in a radially outward direction from the centre of the circle formed by
the TPCL and perpendicular to the axis of rotation.

Declaration of interests. The author reports no conflict of interest.

Author ORCIDs.
Manjinder Singh https://orcid.org/0000-0003-0996-6488.

Appendix A. Moment due to surface tension force on vertical cylinder

Vertical component of surface tension force acting on elemental length dl along the TPCL
is given by

F = γ sin(φ) dl. (A1)
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Change in the vertical component of the surface tension force due to a small change in the
inclination angle dφ

dF = ∂F
∂φ

dφ = γ dl cos(φ) dφ. (A2)

The change in inclination angle varies from ±β at points on the contact line that are
normal to the axis of angular displacement to zero at points parallel to the axis of angular
disturbance. Assuming linear variation of dφ along the TPCL in the upper right quadrant
of the circle formed by the TPCL

dφ = β

(
1 − 2α

π

)
, (A3)

where α is angular position of length dl in the plane of TPCL as shown in figure 3. Now
dl = R dα, where dα is the angle subtended by length dl at the centre of the TPCL. Using
dφ and dl in (A2) gives

dF = γR cos(φ)β
(

1 − 2α
π

)
dα. (A4)

The moment generated due to a change in the vertical component of the surface tension
force on the elemental length dl is given by

dms = γR cos(φ)β
(

1 − 2α
π

)
dα, (A5)

where b = R cos(α) is the perpendicular distance of the line of action of the vertical
component of the surface tension force. Finally, substituting b = R cos(α) in (A5) and
then integrating along the TPCL from α = 0 to α = π/2 gives the net moment due to one
quadrant of the circle formed by the TPCL as

ms =
∫

0

π/2
R2γ cos(α)β cos(φ)

(
1 − 2α

π

)
dα. (A6)

Appendix B. Moment due to surface tension force msl on horizontal cylinder

The vertical component of the surface tension force acting on a elemental length dl along
the TPCL is given by

F = γ sin(φ) dx. (B1)

Here, x is the variable along the longitudinal length of the horizontal cylinder. Now, a
change in the vertical component of surface tension force due to a small change in the
inclination angle dφ

dF = γ cos(φ) dx dφ. (B2)

The circular profile of the lateral surface of the cylinder gives φ = ψ + θ − π, which in
turn gives

dφ = dψ. (B3)

Now, ψ = cos−1(dcg/R), where dcg is the vertical distance of the TPCL from the CG of
the cylinder. Taking the total derivative of above equation gives

dψ = 1
(R2 − dcg

2)1/2
d(dcg). (B4)
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From figure 7, we have d(dcg) = βx. Using this in (B4) and then substituting the resulting
equation in (B2) gives

dF = γ cos(φ)
(R2 − dcg

2)1/2
βx dx, (B5)

dmsl = dFx = γ cos(φ)
(R2 − dcg

2)1/2
βx2 dx. (B6)

Moment due to surface tension force acting along the length of the cylinder in the right
half of the horizontal cylinder is given by

msl = 2
∫

0

l/2 γβ cosφ
(R2 − dcg

2)1/2
x2 dx. (B7)

Appendix C. Buoyancy force due to weight of liquid displaced by the horizontal
cylinder

The volume of liquid displaced by the cylinder floating in horizontal orientation is equal
to the area of region ‘ABCDE’ (see figure 5) times the length of the cylinder.

Volume of ABCDE = (Area of ABCD + Area of segment ADE)l
Area of ABCD = AD × AB.

Now AB = hc,AD = 2R sin(ψ),which gives
Area of ABCD = 2hcR sin(ψ)

Area of segment ADE = R2(ψ − sin(ψ) cos(ψ))

Therefore, the volume of ABCDE = lR2(2(hc/R) sin(ψ)+ ψ − sin(ψ) cos(ψ)) and
buoyancy force, Fb = ρlglR2(2(hc/R) sin(ψ)+ ψ − sin(ψ) cos(ψ)).
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