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A characterization of numerical ranges for
antilinear operators ∗

Boting Jia and Ting Liu

Abstract. This paper aims to study the problem of determining the numerical ranges of antilinear
operators on complex Hilbert spaces. First, we provide a concrete description of the numerical range
𝑊 (𝑅) for every bounded antilinear operator 𝑅 on a complex Hilbert spaceH, solving the preceding
problem. Second, given a bounded linear operator 𝑇 on H, we determine the possible value of the
numerical radius 𝑤 (𝐶𝑇 ) of𝐶𝑇 when𝐶 ranges over the collection of all conjugations on H.

1 Introduction

The chief aim of this paper is to study the problem of determining the numerical ranges
of antilinear operators on complex Hilbert spaces which was started in [7, 15, 17]. By
connecting the preceding problem to the theory of complex symmetric operators (as
well as their relatives), we shall give a concrete description of the numerical ranges of
antilinear operators on complex Hilbert spaces (see Theorem 1.1). To proceed, we first
recall some definitions and basic facts.

Throughout this paper, H denotes an infinite dimensional, complex Hilbert space
endowed with the inner product 〈·, ·〉, B(H) denotes the algebra of all bounded linear
operators onH and B𝑎 (H) denotes the collection of all bounded antilinear operators
on H . The adjoint of an operator 𝑇 ∈ B(H) is denoted by 𝑇∗. For 𝑅 ∈ B𝑎 (H), the
antilinear adjoint of 𝑅 is the unique operator 𝑅# ∈ B𝑎 (H) satisfying 〈𝑅#𝑥, 𝑦〉 = 〈𝑅𝑦, 𝑥〉
for all 𝑥, 𝑦 ∈ H .

We remark that antilinear operators are closely related to those linear ones. In fact,
if𝐶 is a conjugation onH , then

B𝑎 (H) = {𝐶𝑋 : 𝑋 ∈ B(H)} and B(H) = {𝐶𝑌 : 𝑌 ∈ B𝑎 (H)}.

Recall that a conjugation on H is a bijective operator 𝐶 in B𝑎 (H) with 𝐶−1 = 𝐶 and
〈𝐶𝑥, 𝐶𝑦〉 = 〈𝑦, 𝑥〉 for all 𝑥, 𝑦 ∈ H . We denote by B𝑐 (H) the collection of all con-
jugations onH . Conjugations are closely related to the study of several special classes
of operators such as complex symmetric operators [3, 5, 10, 11, 12, 14, 20, 21, 24, 26,
29, 30, 31], skew symmetric operators [4, 6, 18, 27, 28] and conjugate normal operators
[1, 13, 16, 19, 23, 25]. Recall that an operator 𝑇 ∈ B(H) is said to be complex symmetric

2020 Mathematics Subject Classification: Primary 47A12; Secondary 47A05, 47B35.
Keywords: Numerical ranges, conjugations, complex symmetric operators, skew symmetric opera-

tors, Toeplitz operators.
*The second author is the corresponding author and was partially supported by the National Natural Sci-

ence Foundation of China (Grant No. 12101114). The first author was partially supported by Jilin Provincial
Education Department (Grant No. JJKH20240193KJ).

2025/04/08 23:25

This is a ``preproof'' accepted article for Canadian Mathematical Bulletin
This version may be subject to change during the production process.
DOI: 10.4153/S000843952500044X

https://doi.org/10.4153/S000843952500044X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952500044X


2 B. Jia and T. Liu

if𝑇 = 𝐶𝑇∗𝐶 for some𝐶 ∈ B𝑐 (H), and𝑇 is said to be skew symmetric if𝑇 = −𝐶𝑇∗𝐶 for
some𝐶 ∈ B𝑐 (H). Recall that 𝑇 ∈ B(H) is said to be conjugate normal if |𝑇 | = 𝐶 |𝑇∗ |𝐶
for some 𝐶 ∈ B𝑐 (H). Recently, these special classes of operators have received much
attention.

The numerical range of a linear (or antilinear) operator 𝑇 onH is defined by

𝑊 (𝑇) := {〈𝑇𝑥, 𝑥〉 : 𝑥 ∈ H , ‖𝑥‖ = 1}.

The numerical radius of 𝑇 is 𝑤(𝑇) := sup{|𝑧 | : 𝑧 ∈ 𝑊 (𝑇)}. The notion of numerical
range, which arose from the study of quadratic forms, was initially defined for linear
operators on Hilbert spaces and plays important roles in operator theory. In particular,
the numerical radius𝑤(·) is a norm onB(H), which is equivalent to the usual operator
norm.

The numerical ranges of antilinear operators on Hilbert spaces and Banach spaces
were introduced and studied by M. Chō, I. Hur and J. E. Lee in [7, 15]. In particular, it
was proved that the numerical range 𝑊 (𝑅) of an antilinear operator 𝑅 is always cir-
cularly symmetric and connected. D. Kołaczek and V. Müller [17] improved the result
by showing that𝑊 (𝑅) is in fact a disc provided 𝑅 acts on an at least two-dimensional
Banach space. Also it was completely characterized when an antilinear operator 𝑅 on a
Hilbert space has a trivial numerical range, that is,𝑊 (𝑅) = {0}.

This paper concentrates on the basic problem of determining the numerical ranges
of antilinear operators on complex Hilbert spaces. For 𝑅 ∈ B𝑎 (H), D. Kołaczek and
V. Müller recently proved that𝑊 (𝑅) = 𝑊 ( 𝑅+𝑅#

2 ) (see [17, Corollary 2.8]), reducing the
problem of determining𝑊 (𝑅) to that of determining𝑊 ( 𝑅+𝑅#

2 ).
The main result of this paper is the following theorem, which gives a concrete

description of𝑊 (𝑅) for 𝑅 ∈ B𝑎 (H).

Theorem 1.1 If 𝑅 ∈ B𝑎 (H), then either

𝑊 (𝑅) =
{
𝑧 ∈ C : |𝑧 | < ‖𝑅 + 𝑅#‖

2

}
or

𝑊 (𝑅) =
{
𝑧 ∈ C : |𝑧 | ≤ ‖𝑅 + 𝑅#‖

2

}
,

and the latter holds if and only if 𝑅+𝑅# is norm-attaining (that is, ‖(𝑅+𝑅#)𝑥‖ = ‖𝑅+𝑅#‖
for some unit vector 𝑥 ∈ H ).

The preceding result improves that obtained byD. Kołaczek andV.Müller in [17].We
do not know whether the result has an analogue for antilinear operators 𝑅 on Banach
spaces, since in this case 𝑅 and 𝑅# act on different spaces.

The proof for Theorem 1.1 is inspired by the decomposition of antilinear operators
into the product of conjugations and linear operators. The reader will see that Theorem
1.1 is a direct consequence of the following theorem.

Theorem 1.2 Let 𝑇 ∈ B(H), 𝐶 ∈ B𝑐 (H) and 𝐴 = 𝑇 +𝐶𝑇 ∗𝐶
2 . Then either𝑊 (𝐶𝑇) =

{𝑧 ∈ C : |𝑧 | < ‖𝐴‖} or𝑊 (𝐶𝑇) = {𝑧 ∈ C : |𝑧 | ≤ ‖𝐴‖}, and the latter holds if and only if
𝐴 is norm-attaining.
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A characterization of numerical ranges for antilinear operators 3

Remark 1.3 (i) In Theorem 1.2, one can see that 𝑊 (𝐶𝑇) = {0} if and only if 𝑇 +
𝐶𝑇∗𝐶 = 0, that is, 𝑇 is skew symmetric relative to𝐶 .

(ii) The result of Theorem 1.2 can be viewed as an application of the theory of com-
plex symmetric operators. In fact, our proof for Theorem 1.2 depends on a result of
S. R. Garcia concerning approximate antilinear eigenvalues of complex symmetric
operators ([9, Theorem 2]).

As applications of Theorem 1.2, we shall describe in Section 2 the numerical ranges
of several concrete antilinear operators (see Proposition 2.3, Examples 2.4 and 2.5).

For 𝑇 ∈ B(H) and 𝐶 ∈ B𝑐 (H), the result of Theorem 1.2 illustrates how 𝑤(𝐶𝑇)
depends on both 𝑇 and 𝐶 . In fact, if 𝑇 is complex symmetric relative to 𝐶 , that is,
𝑇 = 𝐶𝑇∗𝐶 , then 𝑤(𝐶𝑇) = ‖𝑇 ‖. Then does the converse hold? More generally, we are
interested in the following natural question: For fixed𝑇 ∈ B(H), can one characterize all
possible values of 𝑤(𝐶𝑇) when 𝐶 ranges over B𝑐 (H)?

The second result of this paper answers the preceding question.

Theorem 1.4 Let 𝑇 ∈ B(H) and 𝜅(𝑇) = inf{‖𝑇 − 𝑋 ‖ : 𝑋 ∈ SSO}, where SSO denotes
the collection of all skew symmetric operators onH . Then

(𝜅(𝑇), ‖𝑇 ‖] ⊂ {𝑤(𝐶𝑇) : 𝐶 ∈ B𝑐 (H)} ⊂ [𝜅(𝑇), ‖𝑇 ‖] . (1.1)
Remark 1.5 (i) The result of Theorem1.4 exhibits the connections between skew sym-

metric operators and the numerical radius of antilinear operators. In Theorem 1.4,
one can see that 𝜅(𝑇) = 0 if and only if 𝑇 ∈ SSO, that is, 𝑇 is a norm limit of skew
symmetric operators. In Propositions 3.4 and 3.7, we provide concrete descriptions
of those normal operators𝑇 satisfying 𝜅(𝑇) = 0 or 𝜅(𝑇) = ‖𝑇 ‖. It is usually difficult
to calculate 𝜅(𝑇) for general 𝑇 ∈ B(H).

(ii) In Theorem 1.2, 𝑤(𝐶𝑇) = ‖𝑇 ‖ does not imply𝑇 = 𝐶𝑇∗𝐶 . In fact, given an operator
𝑇 ∈ B(H) that is not complex symmetric, by Theorem 1.4, we can find𝐶 ∈ B𝑐 (H)
such that 𝑤(𝐶𝑇) = ‖𝑇 ‖, that is, ‖𝑇 +𝐶𝑇 ∗𝐶 ‖

2 = ‖𝑇 ‖. However, since 𝑇 is not complex
symmetric, we have 𝑇 ≠ 𝐶𝑇∗𝐶 .

(iii) We remark that each inclusion relation in (1.1) might be proper. In fact, if𝑇 = 0, then
one can see that the first inclusion relation in (1.1) is proper. On the other hand, by
Example 3.5, we can find 𝑇 ∈ SSO \ SSO. Then 𝜅(𝑇) = 0 and 𝑇 ≠ −𝐶𝑇∗𝐶 for any
𝐶 ∈ B𝑐 (H). ByTheorem1.2, the latter implies that𝑤(𝐶𝑇) ≠ 0 for any𝐶 ∈ B𝑐 (H).
Thus {𝑤(𝐶𝑇) : 𝐶 ∈ B𝑐 (H)} ( [𝜅(𝑇), ‖𝑇 ‖] , that is, the second inclusion relation
in (1.1) is proper.

The rest of this paper is organised as follows. In Section 2, we shall give the proofs
of Theorems 1.1 and 1.2; also we shall describe the numerical ranges of several concrete
antilinear operators. Section 3 is devoted to the proof of Theorem 1.4. In addition, we
shall provide some results useful to estimate 𝜅(𝑇) for 𝑇 ∈ B(H) (see Propositions 3.4
and 3.7).

2 Proofs of Theorems 1.1 and 1.2

To prove Theorem 1.2, we need an extra result concerning complex symmetric opera-
tors.
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For 𝐴 ∈ B(H), we denote by |𝐴| the unique positive square root of 𝐴∗𝐴.

Lemma 2.1 ([9, Theorem 2]) Let 𝐴 ∈ B(H) and 𝐶 be a conjugation on H . Denote 𝜆 =

‖𝐴‖. If 𝐶𝐴𝐶 = 𝐴∗, then

(i) there exist a sequence of unit vectors 𝑓𝑛 such that ‖𝐴 𝑓𝑛 − 𝜆𝐶 𝑓𝑛‖ → 0.
(ii) 𝜆 is an eigenvalue of |𝐴| if and only if 𝐴 𝑓 = 𝜆𝐶 𝑓 for some nonzero 𝑓 ∈ H .

Proof The proof is divided into two steps.
Step 1. 𝑤(𝐶𝑇) = ‖𝐴‖.
We denote 𝐵 = 𝑇 −𝐶𝑇 ∗𝐶

2 . One can check that 𝑇 = 𝐴 + 𝐵, 𝐶𝐴𝐶 = 𝐴∗ and 𝐶𝐵𝐶 =

−𝐵∗. For each 𝑥 ∈ H , we have

〈𝐶𝐵𝑥, 𝑥〉 = 〈𝐶𝑥, 𝐵𝑥〉 = 〈𝐵∗𝐶𝑥, 𝑥〉 = −〈𝐶𝐵𝑥, 𝑥〉,

which implies that 〈𝐶𝐵𝑥, 𝑥〉 = 0. Hence

〈𝐶𝑇𝑥, 𝑥〉 = 〈𝐶𝐴𝑥, 𝑥〉 + 〈𝐶𝐵𝑥, 𝑥〉 = 〈𝐶𝐴𝑥, 𝑥〉,

which implies that 𝑊 (𝐶𝑇) = 𝑊 (𝐶𝐴) and 𝑤(𝐶𝑇) = 𝑤(𝐶𝐴). Denote 𝜆 = ‖𝐴‖. By
Lemma 2.1, we can find a sequence of unit vectors 𝑓𝑛 such that ‖𝐴 𝑓𝑛 − 𝜆𝐶 𝑓𝑛‖ → 0.
Thus

|〈𝐶𝐴 𝑓𝑛, 𝑓𝑛〉| = |〈𝐶 𝑓𝑛, 𝐴 𝑓𝑛〉|
=|〈𝐶 𝑓𝑛, 𝜆𝐶 𝑓𝑛〉 + 〈𝐶 𝑓𝑛, (𝐴 − 𝜆𝐶) 𝑓𝑛〉| → 𝜆 = ‖𝐴‖,

which implies that 𝑤(𝐶𝐴) ≥ ‖𝐴‖. Since the converse is obvious, we conclude that
𝑤(𝐶𝑇) = 𝑤(𝐶𝐴) = ‖𝐴‖.

Note that𝑊 (𝐶𝑇) is circularly symmetric. It follows from 𝑤(𝐶𝑇) = ‖𝐴‖ that either
𝑊 (𝐶𝑇) = {𝑧 ∈ C : |𝑧 | < ‖𝐴‖} or𝑊 (𝐶𝑇) = {𝑧 ∈ C : |𝑧 | ≤ ‖𝐴‖}.

Step 2.𝑊 (𝐶𝑇) = {𝑧 ∈ C : |𝑧 | ≤ ‖𝐴‖} if and only if 𝐴 is norm-attaining.
"=⇒". By Step 1, we have𝑊 (𝐶𝑇) = 𝑊 (𝐶𝐴). It follows that ‖𝐴‖ ∈ 𝑊 (𝐶𝐴). Then

there exists a unit vector 𝑥 ∈ H such that

〈𝐶𝑥, 𝐴𝑥〉 = 〈𝐶𝐴𝑥, 𝑥〉 = ‖𝐴‖.

Thus ‖𝐴‖ = 〈𝐶𝑥, 𝐴𝑥〉 ≤ ‖𝐴𝑥‖, which implies ‖𝐴‖ = ‖𝐴𝑥‖.
"⇐=". We assume that ‖𝐴𝑥‖ = ‖𝐴‖ for some unit vector 𝑥 ∈ H . This implies that

‖|𝐴|𝑥‖ = ‖𝐴‖ = ‖|𝐴|‖. Thus ‖𝐴‖ is an eigenvalue of |𝐴|. By Lemma 2.1, there exists a
unit vector 𝑓 ∈ H such that 𝐴 𝑓 = ‖𝐴‖𝐶 𝑓 . Thus

〈𝐶𝐴 𝑓 , 𝑓 〉 = 〈𝐶 𝑓 , 𝐴 𝑓 〉 = 〈𝐶 𝑓 , ‖𝐴‖𝐶 𝑓 〉 = ‖𝐴‖,

which implies that ‖𝐴‖ ∈ 𝑊 (𝐶𝐴) = 𝑊 (𝐶𝑇). Since𝑊 (𝐶𝑇) is circularly symmetric, we
conclude that𝑊 (𝐶𝑇) = {𝑧 ∈ C : |𝑧 | ≤ ‖𝐴‖}. This completes the proof. �

Theorem 1.1 follows readily from Theorem 1.2.
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Proof Choose a conjugation𝐶 onH and set 𝑇 = 𝐶𝑅. Then 𝑇 ∈ B(H) and 𝑅 = 𝐶𝑇 .
By Theorem 1.1, we have either

𝑊 (𝑅) =
{
𝑧 ∈ C : |𝑧 | < ‖𝑇 + 𝐶𝑇∗𝐶‖

2

}
or

𝑊 (𝑅) =
{
𝑧 ∈ C : |𝑧 | ≤ ‖𝑇 + 𝐶𝑇∗𝐶‖

2

}
,

and the latter holds if and only if 𝑇 + 𝐶𝑇∗𝐶 is norm-attaining. Note that 𝑅 = 𝐶𝑇 and
𝑅# = 𝑇∗𝐶 . Thus

𝑇 + 𝐶𝑇∗𝐶

2
=
𝐶 (𝐶𝑇 + 𝑇∗𝐶)

2
=
𝐶 (𝑅 + 𝑅#)

2
.

This implies that𝑇 +𝐶𝑇∗𝐶 is norm-attaining if and only if so is 𝑅+𝑅#. Thus the desired
result follows readily. �

Next, as applications of Theorem 1.2, we shall calculate the numerical ranges of
several concrete operators.

In the following, T denotes the unit circle, that is, T = {𝑧 ∈ C : |𝑧 | = 1}. We let
𝐻2 denote the classical Hardy space, a closed subspace of 𝐿2 (T, 𝜇) spanned by {𝑧𝑛 :
𝑛 = 0, 1, 2, · · · }. Here 𝜇 is the usual arc length measure on T. Let 𝑃 be the orthogonal
projection of 𝐿2 (T) onto𝐻2. For 𝜑 ∈ 𝐿∞ (T), the Toeplitz operator𝑇𝜑 on𝐻2 is defined
by 𝑇𝜑 ( 𝑓 ) = 𝑃(𝜑 𝑓 ) for 𝑓 ∈ 𝐻2. We call 𝜑 the symbol of 𝑇𝜑 .

Lemma 2.2 ([2, Theorem 4.1]) Let 𝜃 ∈ 𝐿∞ (T, 𝜇) with ‖𝜃‖∞ = 1. Then 𝑇𝜃 is norm-
attaining if and only if 𝜃 = 𝜃1𝜃2, where 𝜃1, 𝜃2 are inner functions; moreover,

{𝑥 ∈ 𝐻2 : ‖𝑇𝜃𝑥‖ = ‖𝑥‖} = 𝜃2𝐻2.

Proposition 2.3. Let 𝜑 ∈ 𝐿∞ (T, 𝜇) and 𝐶 be the canonical conjugation on 𝐻2 defined by
𝐶𝑧𝑛 = 𝑧𝑛 for 𝑛 = 0, 1, 2, · · · . Denote 𝜓(𝑧) = 𝜑(𝑧). Then

(i) 𝑤(𝐶𝑇𝜑) = ‖𝜑+𝜓 ‖∞
2 ;

(ii) 𝑊 (𝐶𝑇𝜑) is closed if and only if there exists an inner function 𝜁 and a complex number 𝛽
such that 𝜑+𝜓

2 = 𝛽𝜁 (𝑧)𝜁 (𝑧).

Proof (i) Assume that𝜑(𝑧) = ∑∞
𝑘=−∞ 𝑎𝑘 𝑧

𝑘 anddenote 𝜃 = 𝜑+𝜓
2 . For 𝑖, 𝑗 ≥ 0, compute

to see that 〈𝑇𝜓𝑧𝑖 , 𝑧 𝑗〉 =
〈∑

𝑘 𝑎𝑘 𝑧
−𝑘+𝑖 , 𝑧 𝑗

〉
= 𝑎𝑖− 𝑗 and

〈𝐶𝑇∗
𝜑𝐶𝑧

𝑖 , 𝑧 𝑗〉 = 〈𝐶𝑇∗
𝜑𝑧

𝑖 , 𝑧 𝑗〉 = 〈𝐶𝑧 𝑗 , 𝑇∗
𝜑𝑧

𝑖〉 = 〈𝑧 𝑗 , 𝑇∗
𝜑𝑧

𝑖〉 = 〈𝑇𝜑𝑧 𝑗 , 𝑧𝑖〉 = 𝑎𝑖− 𝑗 .

It follows that𝐶𝑇∗
𝜑𝐶 = 𝑇𝜓 . Then

𝑇𝜑 + 𝐶𝑇∗
𝜑𝐶

2
=
𝑇𝜑 + 𝑇𝜓

2
= 𝑇𝜃

and, by Theorem 1.2, we have 𝑤(𝐶𝑇𝜑) =
‖𝑇𝜑+𝐶𝑇 ∗

𝜑𝐶 ‖
2 = ‖𝑇𝜃 ‖ = ‖𝜃‖∞. Moreover,

𝑊 (𝐶𝑇𝜑) is closed if and only if 𝑇𝜃 is norm-attaining.
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(ii) Still we denote 𝜃 = 𝜑+𝜓
2 .

"⇐=". If 𝜃 (𝑧) = 𝛽𝜁 (𝑧)𝜁 (𝑧) for some inner function 𝜁 and some complex number 𝛽,
then it is easy to check that ‖𝜃‖∞ = |𝛽 |, 𝜁 (𝑧) ∈ 𝐻2 with norm one and

‖𝑇𝜃 (𝜁 (𝑧))‖ = ‖𝛽𝜁 ‖ = |𝛽 | = ‖𝜃‖∞ = ‖𝑇𝜃 ‖.

That is, 𝑇𝜃 is norm-attaining, which implies𝑊 (𝐶𝑇𝜑) is closed.
"=⇒". Assume that𝑊 (𝐶𝑇𝜑) is closed. By Theorem 1.2, we deduce that 𝑇𝜃 is norm-

attaining.Without loss of generality, wemay assume that ‖𝑇𝜃 ‖ = 1. By Lemma2.2, there
are inner functions 𝜃1, 𝜃2 such that 𝜃 = 𝜃1𝜃2 and

{𝑥 ∈ 𝐻2 : ‖𝑇𝜃𝑥‖ = ‖𝑥‖} = 𝜃2𝐻2.

Denote �̃�1 (𝑧) = 𝜃1 (𝑧) and �̃�2 (𝑧) = 𝜃2 (𝑧). Then

𝜃 (𝑧) = 𝜃1 (𝑧)𝜃2 (𝑧) = �̃�1 (𝑧)�̃�2 (𝑧).

Denote �̃� (𝑧) = 𝜃 (𝑧). Then, using Lemma 2.2 again, we obtain

{𝑥 ∈ 𝐻2 : ‖𝑇
𝜃
𝑥‖ = ‖𝑥‖} = �̃�1𝐻2.

On the other hand, since 𝜃 (𝑧) = 𝜑 (𝑧)+𝜓 (𝑧)
2 =

𝜑 (𝑧)+𝜑 (𝑧)
2 = 𝜃 (𝑧) = �̃� (𝑧), we deduce that

𝜃2𝐻
2 = �̃�1𝐻

2. Thus we can find a unimodular number 𝛽 such that

𝜃2 (𝑧) = 𝛽�̃�1 (𝑧) = 𝛽𝜃1 (𝑧).

It follows that 𝜑 (𝑧)+𝜑 (𝑧)
2 = 𝜃 (𝑧) = 𝛽𝜃1 (𝑧)𝜃1 (𝑧). �

Example 2.4 Let 𝜑 ∈ 𝐿∞ (T, 𝜇) with 𝜑(𝑧) = 1+∑∞
𝑛=1 𝑎𝑛 (𝑧𝑛− 𝑧−𝑛). Then

𝜑 (𝑧)+𝜑 (𝑧)
2 =

1 = 𝑧𝑧. By the preceding result,𝑊 (𝐶𝑇𝜑) = {𝑧 ∈ C : |𝑧 | ≤ 1} is closed, where 𝐶 is the
canonical conjugation on 𝐻2 satisfying𝐶𝑧𝑛 = 𝑧𝑛, 𝑛 = 1, 2, · · · .

Example 2.5 Let 𝜙 ∈ 𝐿∞ ( [0, 1], 𝑚), where 𝑚 denotes the Lebesgue measure. Define
two conjugations𝐶1 and𝐶2 on 𝐿2 ( [0, 1], 𝑚) as𝐶1 : 𝑓 (𝑡) ↦−→ 𝑓 (𝑡) and𝐶2 : 𝑓 (𝑡) ↦−→
𝑓 (1 − 𝑡). Denote 𝜙(𝑡) = 𝜙 (𝑡)+𝜙 (1−𝑡)

2 . One can check that

𝑀𝜙 + 𝐶1𝑀
∗
𝜙
𝐶1

2
= 𝑀𝜙 and

𝑀𝜙 + 𝐶2𝑀
∗
𝜙
𝐶2

2
= 𝑀𝜙 .

Then, by Theorem 1.2,

𝑤(𝐶1𝑀𝜙) =
‖𝑀𝜙 + 𝐶1𝑀

∗
𝜙
𝐶1‖

2
= ‖𝑀𝜙 ‖ = ‖𝜙‖∞

and

𝑤(𝐶2𝑀𝜙) =
‖𝑀𝜙 + 𝐶2𝑀

∗
𝜙
𝐶2‖

2
= ‖𝑀𝜙 ‖ = ‖𝜙‖∞.

Note that 𝑀𝜙 is norm-attaining if and only if |𝜙| = 𝛼 almost everywhere for some
𝛼 ∈ [0,∞). Then𝑊 (𝐶1𝑀𝜙) is closed if and only if |𝜙 | = 𝛼 almost everywhere for some
𝛼 ∈ [0,∞). Likewise, we deduce that𝑊 (𝐶2𝑀𝜙) is closed if and only if |𝜙| = 𝛽 almost
everywhere for some 𝛽 ∈ [0,∞).

2025/04/08 23:25
https://doi.org/10.4153/S000843952500044X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952500044X


A characterization of numerical ranges for antilinear operators 7

If 𝜙(𝑡) = 𝑡 for 𝑡 ∈ [0, 1] , then |𝜙(𝑡) | = 𝑡 and |𝜙(𝑡) | ≡ 1
2 . It follows immediately that

𝑊 (𝐶1𝑀𝜙) = {𝑧 ∈ C : |𝑧 | < 1} and𝑊 (𝐶2𝑀𝜙) = {𝑧 ∈ C : |𝑧 | ≤ 1
2 }.

3 Proof of Theorem 1.4

To prove Theorem 1.4, we need to make some preparations.

Lemma 3.1 ([30, Theorem 2.1]) Given two unit vectors 𝑥, 𝑦 ∈ H , there exists a conjugation
𝐶 onH such that 𝐶𝑥 = 𝑦.

For 𝛿 ≥ 0 and 𝜆 ∈ C, we denote 𝐵(𝜆, 𝛿) = {𝑧 ∈ C : |𝑧−𝜆 | < 𝛿}. For 𝐴 ∈ B(H), we
denote by𝜎(𝐴) and𝜎𝑝 (𝐴) the spectrumof 𝐴 and the point spectrumof 𝐴, respectively.
The essential spectrum of 𝐴 is denoted by 𝜎𝑒 (𝐴). We let ker 𝐴 and ran 𝐴 denote the
kernel of 𝐴 and the range of 𝐴, respectively.

Lemma 3.2 Let 𝑇 ∈ B(H). Then

(i) there exists 𝐶 ∈ B𝑐 (H) such that 𝑤(𝐶𝑇) = ‖𝑇 ‖;
(ii) there exists 𝐶 ∈ B𝑐 (H) such that𝑊 (𝐶𝑇) = {𝑧 ∈ C : |𝑧 | ≤ ‖𝑇 ‖} if and only if 𝑇 is

norm-attaining.

Proof (i) Let 𝑇 = 𝑈𝑃 be the polar decomposition of 𝑇 , where 𝑃 = |𝑇 | and 𝑈 is a
partial isometry. Denote 𝑟 = ‖𝑇 ‖.

Case 1. 𝑟 ∈ 𝜎𝑝 (𝑃).
Choose a unit vector 𝑥 ∈ ker(𝑃 − 𝑟) and set 𝑦 = 𝑈𝑥. Then ‖𝑦‖ = 1. By Lemma 3.1,

we can construct a conjugation𝐶 onH such that𝐶𝑥 = 𝑦. Hence

〈𝐶𝑇𝑥, 𝑥〉 = 〈𝐶𝑥,𝑇𝑥〉 = 〈𝐶𝑥,𝑈𝑃𝑥〉 = 〈𝑦,𝑈𝑃𝑥〉 = 𝑟 〈𝑦,𝑈𝑥〉 = 𝑟 〈𝑦, 𝑦〉 = 𝑟 = ‖𝑇 ‖,

which means that 𝑤(𝐶𝑇) = ‖𝑇 ‖.
Case 2. 𝑟 ∉ 𝜎𝑝 (𝑃).
Since 𝑟 = ‖𝑃‖ and 𝑟 ∈ 𝜎(𝑃), we deduce that 𝑟 is an accumulation point of 𝜎(𝑃).

Denote by𝐸𝑃 (·) the projection-valued spectralmeasure associatedwith𝑃. Thenwe can
find pairwise disjoint nonempty subsets Δ1,Δ2,Δ3, · · · of 𝜎(𝑃) \ {𝑟} such thatH𝑖 :=
ran 𝐸𝑃 (Δ𝑖) ≠ {0} and supΔ𝑖 ≤ infΔ𝑖+1 → 𝑟 for all 𝑖 ≥ 1. Clearly,H = ⊕∞

𝑖=1H𝑖 . For
each 𝑖, choose a unit vector 𝑒𝑖 ∈ H𝑖 and denote by 𝑃𝑖 the projection ofH onto ⊕𝑖

𝑗=1H 𝑗 .
Then one can check that ‖𝑃𝑒𝑖 ‖ → 𝑟 and 𝑃𝑖−→𝐼 in the strong operator topology.

Set 𝑛1 = 1. Denote by𝑄1 the projection ofH onto ∨{𝑒1,𝑈𝑒1}. Here ∨ denotes the
closed linear span.

Since both {𝑒𝑖}∞𝑖=2 and {𝑈𝑒𝑖}∞𝑖=2 are orthonormal, they converge to 0 in the weak
topology. Note that 𝑄1 is of finite rank. Then we deduce that lim𝑖 𝑄1𝑒𝑖 = 0 and
lim𝑖 𝑄1𝑈𝑒𝑖 = 0. We can choose 𝑛2 > 𝑛1 such that ‖𝑄1𝑒𝑛2 ‖ + ‖𝑄1𝑈𝑒𝑛2 ‖ < 1

2 .
Denote by 𝑄2 the projection of H onto ∨{𝑒𝑖 ,𝑈𝑒𝑖 : 𝑖 = 𝑛1, 𝑛2}. Clearly, 𝑄2 is of

finite rank. Then we can choose 𝑛3 > 𝑛2 such that ‖𝑄2𝑒𝑛3 ‖ + ‖𝑄2𝑈𝑒𝑛3 ‖ < 1
22 .

Recursively, we can choose a subsequence {𝑛𝑖}∞𝑖=1 of positive integers such that
‖𝑄𝑖𝑒𝑛𝑖+1 ‖ + ‖𝑄𝑖𝑈𝑒𝑛𝑖+1 ‖ < 1

2𝑖 for 𝑖 = 1, 2, · · · , where 𝑄𝑖 the projection of H onto
∨{𝑒 𝑗 ,𝑈𝑒 𝑗 : 𝑗 = 𝑛1, 𝑛2, · · · , 𝑛𝑖}.

2025/04/08 23:25
https://doi.org/10.4153/S000843952500044X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952500044X


8 B. Jia and T. Liu

DenoteK1 = ran𝑄1 andK𝑖 = ran𝑄𝑖 	 ran𝑄𝑖−1 for each 𝑖 ≥ 2. Moreover, denote
K0 = H 	 (⊕𝑖≥1K𝑖) . Denote

𝑥1 = 𝑒𝑛1 , 𝑦1 = 𝑈𝑒𝑛1 ; 𝑥𝑖 =
(𝐼 −𝑄𝑖−1)𝑒𝑛𝑖

‖(𝐼 −𝑄𝑖−1)𝑒𝑛𝑖 ‖
, 𝑦𝑖 =

(𝐼 −𝑄𝑖−1)𝑈𝑒𝑛𝑖
‖(𝐼 −𝑄𝑖−1)𝑈𝑒𝑛𝑖 ‖

, 𝑖 ≥ 2.

For each 𝑖 ≥ 1, define a conjugation𝐶𝑖 onK𝑖 satisfying𝐶𝑖𝑥𝑖 = 𝑦𝑖 . Arbitrarily choose
a conjugation 𝐶0 on K0 and set 𝐶 = ⊕∞

𝑖=0𝐶𝑖 . Then 𝐶 is a conjugation on H . Now it
remains to check that 𝑤(𝐶𝑇) ≥ ‖𝑇 ‖.

Compute to see that

〈𝐶𝑇𝑥𝑖 , 𝑥𝑖〉 = 〈𝐶𝑥𝑖 , 𝑇𝑥𝑖〉 = 〈𝐶𝑥𝑖 ,𝑈𝑃𝑥𝑖〉 = 〈𝑦𝑖 ,𝑈𝑃𝑥𝑖〉 = 〈𝑈∗𝑦𝑖 , 𝑃𝑥𝑖〉.

Note that ‖𝑥𝑖−𝑒𝑛𝑖 ‖+‖𝑦𝑖−𝑈𝑒𝑛𝑖 ‖ → 0. Hence lim𝑖 |〈𝑈∗𝑦𝑖 , 𝑃𝑥𝑖〉−〈𝑈∗𝑈𝑒𝑛𝑖 , 𝑃𝑒𝑛𝑖 〉| = 0.
Since it is obvious that 〈𝑈∗𝑈𝑒𝑛𝑖 , 𝑃𝑒𝑛𝑖 〉 = 〈𝑒𝑛𝑖 , 𝑃𝑒𝑛𝑖 〉 → ‖𝑃‖ = 𝑟 . We conclude that

〈𝐶𝑇𝑥𝑖 , 𝑥𝑖〉 = 〈𝑈∗𝑦𝑖 , 𝑃𝑥𝑖〉 → 𝑟.

This shows that 𝑤(𝐶𝑇) ≥ ‖𝑇 ‖, which completes the proof.
(ii) If𝑇 = 0, then the result is clear. In the sequel, we only consider the case that𝑇 ≠ 0.
"=⇒". Assume that 𝐶 is a conjugation onH such that𝑊 (𝐶𝑇) = 𝐵(0, ‖𝑇 ‖)−. Then

there exists a unit vector 𝑥 ∈ H such that 〈𝐶𝑇𝑥, 𝑥〉 = ‖𝑇 ‖. Noting that |〈𝐶𝑇𝑥, 𝑥〉| =
|〈𝐶𝑥,𝑇𝑥〉| ≤ ‖𝑇𝑥‖, we obtain ‖𝑇 ‖ ≤ ‖𝑇𝑥‖, which implies ‖𝑇 ‖ = ‖𝑇𝑥‖.

"⇐=". We assume that ‖𝑇𝑥‖ = ‖𝑇 ‖ for some unit vector 𝑥 ∈ H . Set 𝑦 = 𝑇 𝑥
‖𝑇 𝑥 ‖ . By

Lemma 3.1, we can find a conjugation𝐶 onH such that𝐶𝑥 = 𝑦. Then

〈𝐶𝑇𝑥, 𝑥〉 = 〈𝐶𝑥,𝑇𝑥〉 = 〈 𝑇𝑥‖𝑇𝑥‖ , 𝑇𝑥〉 = ‖𝑇𝑥‖ = ‖𝑇 ‖.

It follows that ‖𝑇 ‖ ∈ 𝑊 (𝐶𝑇) and𝑤(𝐶𝑇) = ‖𝑇 ‖. Since𝑊 (𝐶𝑇) is circularly symmetric,
we conclude that𝑊 (𝐶𝑇) = 𝐵(0, ‖𝑇 ‖)−. �

For 𝑇 ∈ B(H), we denote dist(𝑇, SSO) = inf{‖𝑇 − 𝑋 ‖ : 𝑋 ∈ SSO}.

Proof Without loss of generality, we assume that 𝑇 ≠ 0. Denote Γ = {𝑤(𝐶𝑇) : 𝐶 ∈
B𝑐 (H)}. The proof is reduced to proving several claims.

Claim 1.maxΓ = ‖𝑇 ‖.
For each unit vector 𝑥 ∈ H , we have |〈𝐶𝑇𝑥, 𝑥〉| ≤ ‖𝐶𝑇𝑥‖ ≤ ‖𝑇 ‖, which implies

supΓ ≤ ‖𝑇 ‖. From Lemma 3.2 (i), one can see that ‖𝑇 ‖ ∈ Γ and supΓ ≥ ‖𝑇 ‖. Hence
we deduce thatmaxΓ = ‖𝑇 ‖.

Claim 2. inf Γ = 𝜅(𝑇).
For each 𝐶 ∈ B𝑐 (H), note that 𝐶 (𝑇 −𝐶𝑇 ∗𝐶

2 )𝐶 = 𝐶𝑇𝐶−𝑇 ∗

2 = −(𝑇 −𝐶𝑇 ∗𝐶
2 )∗, that is,

𝑇 −𝐶𝑇 ∗𝐶
2 ∈ SSO. Then, by Theorem 1.2, we have

𝑤(𝐶𝑇) = ‖𝑇 + 𝐶𝑇∗𝐶‖
2

=

𝑇 − 𝑇 − 𝐶𝑇∗𝐶

2

 ≥ dist(𝑇, SSO).

Since𝐶 is arbitrary, it follows that inf Γ ≥ dist(𝑇, SSO) = 𝜅(𝑇).
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On the other hand, we choose an operator 𝐴 ∈ SSO. Thus 𝐴 = −𝐶𝐴∗𝐶 for some
𝐶 ∈ B𝑐 (H). For 𝑥 ∈ H , we have

〈𝐶𝐴𝑥, 𝑥〉 = 〈𝐶𝑥, 𝐴𝑥〉 = 〈𝐴∗𝐶𝑥, 𝑥〉 = −〈𝐶𝐴𝑥, 𝑥〉,

which implies that 〈𝐶𝐴𝑥, 𝑥〉 = 0 and hence

〈𝐶 (𝑇 − 𝐴)𝑥, 𝑥〉 = 〈𝐶𝑇𝑥, 𝑥〉 − 〈𝐶𝐴𝑥, 𝑥〉 = 〈𝐶𝑇𝑥, 𝑥〉.

It follows that

inf Γ ≤ 𝑤(𝐶𝑇) = 𝑤(𝐶 (𝑇 − 𝐴)) ≤ ‖𝑇 − 𝐴‖.
Since 𝐴 was arbitrarily chosen in SSO, we conclude that inf Γ ≤ dist(𝑇, SSO) = 𝜅(𝑇).
This proves Claim 2.

Claim 3. B𝑐 (H) is arcwise connected.
Choose a conjugation 𝐶0 on H . Then, by [10, Lemma 1], we can find an orthonor-

mal basis {𝑒𝑛}∞𝑛=1 such that 𝐶0𝑒𝑛 = 𝑒𝑛 for all 𝑛. If 𝐶 ∈ B𝑐 (H) and { 𝑓𝑛}∞𝑛=1 is an
orthonormal basis ofH such that𝐶 𝑓𝑛 = 𝑓𝑛 for all 𝑛, then we can find a unitary opera-
tor𝑈 ∈ B(H) such that𝑈 𝑓𝑛 = 𝑒𝑛 for all 𝑛. Then one can verify that𝑈∗𝐶0𝑈 = 𝐶 . This
shows that B𝑐 (H) = {𝑈∗𝐶0𝑈 : 𝑈 ∈ B(H) is unitary }. Since all unitary operators on
H constitute an arcwise connected subset of B(H), it follows that B𝑐 (H) is arcwise
connected.

Claim 4. (𝜅(𝑇), ‖𝑇 ‖] ⊂ Γ.
We defineΦ : B𝑐 (H) −→ [0,∞) asΦ(𝐶) = 𝑤(𝐶𝑇) for𝐶 ∈ B𝑐 (H). By Theorem

1.2, we have Φ(𝐶) =
‖𝑇 +𝐶𝑇 ∗𝐶 ‖

2 for 𝐶 ∈ B𝑐 (H). This shows that Φ is continuous.
Since B𝑐 (H) is connected, it follows that

Φ(B𝑐 (H)) = {𝑤(𝐶𝑇) : 𝐶 ∈ B𝑐 (H)} ⊂ [0,∞)

is connected. In view of Claims 1 and 2, we conclude that Claim 4 holds. This completes
the proof. �

The rest of this section is devoted to the estimation of 𝜅(𝑇) for 𝑇 ∈ B(H). The
following result provides a lower bound for 𝜅(𝑇).

Lemma 3.3 Let 𝑇 ∈ B(H). Then 𝜅(𝑇) ≥ inf{|𝑧 | : 𝑧 ∈ 𝑊 (𝑇)}. If, in addition, 𝑇 is
positive, then 𝜅(𝑇) ≥ inf𝜎(𝑇).

Proof Arbitrarily choose a conjugation𝐶 onH . Thenwe can find a unit vector 𝑥 such
that𝐶𝑥 = 𝑥. Thus

|〈𝐶𝑇𝑥, 𝑥〉| = |〈𝐶𝑥,𝑇𝑥〉| = |〈𝑥, 𝑇𝑥〉| ≥ inf{|𝑧 | : 𝑧 ∈ 𝑊 (𝑇)}.

Since𝐶 is arbitrary, we deduce that 𝜅(𝑇) ≥ inf{|𝑧 | : 𝑧 ∈ 𝑊 (𝑇)}.
If𝑇 is positive, then it is well known that𝑊 (𝑇) = [inf𝜎(𝑇), ‖𝑇 ‖]. Then the desired

result follows readily. �

Given a subset Γ of C, we denote −Γ = {−𝑧 : 𝑧 ∈ Γ} and denote by isoΓ the set of
all isolated points of Γ.
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Proposition 3.4. If 𝑁 ∈ B(H) is normal, then 𝜅(𝑁) = 0 if and only if 𝜎(𝑁) = −𝜎(𝑁)
and dim ker(𝑁 − 𝜆) = dim ker(𝑁 + 𝜆) for each 𝜆 ∈ iso𝜎(𝑁).

Proof "=⇒". Since 𝜅(𝑁) = 0, that is, 𝑁 ∈ SSO, we can choose {𝑇𝑛}∞𝑛=1 ⊂ B(H)
and {𝐶𝑛}∞𝑛=1 ⊂ B𝑐 (H) such that 𝑇𝑛 + 𝐶𝑛𝑇

∗
𝑛𝐶𝑛 = 0 for all 𝑛 and 𝑇𝑛 → 𝑁 . It follows

immediately that 𝑁 + 𝐶𝑛𝑁
∗𝐶𝑛 → 0. For each 𝜆 ∈ C, we have

𝐶𝑛 (𝑁 + 𝜆)∗𝐶𝑛 → −(𝑁 − 𝜆), −𝐶𝑛 (𝑁 − 𝜆)𝐶𝑛 → (𝑁 + 𝜆)∗, (3.1)

which implies that 𝑁 − 𝜆 is invertible if and only if 𝑁 + 𝜆 is invertible. Hence 𝜎(𝑁) =
−𝜎(𝑁); moreover, 𝜆 ∈ iso𝜎(𝑁) if and only if −𝜆 ∈ iso𝜎(𝑁).

For each function 𝑓 on 𝜎(𝑁), we define �̃� (𝑧) = 𝑓 (−𝑧) for 𝑧 ∈ 𝜎(𝑁).
Claim. If 𝑓 is a continuous function on 𝜎(𝑁), then lim𝑛 𝐶𝑛 𝑓 (𝑁)𝐶𝑛 = �̃� (𝑁).
Note that if 𝑔(𝑧) = 𝛼𝑧𝑖𝑧 𝑗 , then

𝐶𝑛𝑔(𝑁)𝐶𝑛 = 𝐶𝑛 (𝛼𝑁 𝑖𝑁∗ 𝑗 )𝐶𝑛 → 𝛼(−𝑁∗)𝑖 (−𝑁) 𝑗 = �̃�(𝑁).

Then one can see that𝐶𝑛 𝑓 (𝑁)𝐶𝑛 → �̃� (𝑁) for each continuous function 𝑓 on 𝜎(𝑁).
Choose a point 𝜆 ∈ iso𝜎(𝑁). Define a continuous function 𝑔 on 𝜎(𝑁) as

ℎ(𝑧) =
{
1, 𝑧 = 𝜆,

0, 𝑧 ∈ 𝜎(𝑁) \ {𝜆}.

Then

ℎ̃(𝑧) =
{
1, 𝑧 = −𝜆,
0, 𝑧 ∈ 𝜎(𝑁) \ {−𝜆}.

Then, by Claim, we deduce that lim𝑛 𝐶𝑛ℎ(𝑁)𝐶𝑛 = ℎ̃(𝑁). Since ℎ(𝑁) and ℎ̃(𝑁) are
orthogonal projections, it follows from [22, Lemma 6.2.1] that rank ℎ̃(𝑁) = rank ℎ(𝑁).
Noting that ran ℎ(𝑁) = ker(𝑁 − 𝜆) and ran ℎ̃(𝑁) = ker(𝑁 + 𝜆), we conclude that
dim ker(𝑁 − 𝜆) = dim ker(𝑁 + 𝜆). This proves the necessity.

"⇐=". We first consider the case that ker 𝑁 = {0}.
By the hypothesis, we can find a sequence {𝜆𝑖}∞𝑖=1 ⊂ 𝜎(𝑁) satisfying

(a) {𝜆𝑖 : 𝑖 ≥ 1} is dense in 𝜎(𝑁);
(b) if 𝑖 ≥ 1 and 𝜆𝑖 ∈ iso𝜎(𝑁), then card{ 𝑗 ≥ 1 : 𝜆 𝑗 = 𝜆𝑖} = dim ker(𝑁 − 𝜆𝑖), where

card(·) denotes cardinality;
(c) if 𝑖 ≥ 1 and 𝜆𝑖 ∉ iso𝜎(𝑁), then card{ 𝑗 ≥ 1 : 𝜆 𝑗 = 𝜆𝑖} = ∞;
(d) card{ 𝑗 ≥ 1 : 𝜆 𝑗 = 𝜆𝑖} = card{ 𝑗 ≥ 1 : 𝜆 𝑗 = −𝜆𝑖} for every 𝑖 ≥ 1.

Choose an orthonormal basis {𝑒𝑖}∞𝑖=1 ofH and define 𝑇 ∈ B(H) as

𝑇𝑒𝑖 = 𝜆𝑖𝑒𝑖 , 𝑖 = 1, 2, 3, · · · .

One can check that 𝜎(𝑇) = 𝜎(𝑁) and dim ker(𝑇 − 𝑧) = dim ker(𝑁 − 𝑧) for each 𝑧 ∈
iso𝜎(𝑁). Then, by [8, Proposition 39.10], we deduce that 𝑇 is approximately unitarily
equivalent to 𝑁 , that is, there are unitary operators𝑈𝑛 : H → H such that𝑈𝑛𝑇𝑈

∗
𝑛 →

𝑁 .
Next we shall show that 𝑇 is skew symmetric (which implies 𝜅(𝑁) = dist(𝑁, 𝑆𝑆𝑂)

= 0). In fact, in view of (a)-(d), we can find a bijective map 𝜏 on the set N of positive
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A characterization of numerical ranges for antilinear operators 11

integers such that 𝜏−1 = 𝜏 and 𝜆𝜏 (𝑖) = −𝜆𝑖 for every 𝑖 = 1, 2, 3, · · · . We define a
conjugation𝐶 onH as𝐶 (∑𝑖 𝑎𝑖𝑒𝑖) =

∑
𝑖 𝑎𝑖𝑒𝜏 (𝑖) . Then one can check that

𝐶𝑇𝐶𝑒𝑖 = 𝐶𝑇𝑒𝜏 (𝑖) = 𝐶 (𝜆𝜏 (𝑖)𝑒𝜏 (𝑖) ) = 𝜆𝜏 (𝑖)𝑒𝑖 = −𝜆𝑖𝑒𝑖 = −𝑇∗𝑒𝑖 , 𝑖 = 1, 2, · · · .

Hence 𝑇 is skew symmetric relative to𝐶 .
Now we consider the case that ker 𝑁 ≠ {0}. Assume that

𝑁 =

[
0 0
0 𝑁

]
ker 𝑁

(ker 𝑁)⊥.

Thus ker 𝑁 = {0}, 𝜎(𝑁) = −𝜎(𝑁) and

dim ker(𝑁 − 𝑧) = dim ker(𝑁 + 𝑧)

for every 𝑧 ∈ iso𝜎(𝑁).
By the proof in the case that ker 𝑁 = {0}, one can see that 𝑁 is a norm limit of skew

symmetric operators. Then so is 𝑁 . Hence we conclude that 𝜅(𝑁) = dist(𝑁, SSO) = 0.
This completes the proof. �

Next we provide a concrete operator 𝑇 ∈ SSO \ SSO.

Example 3.5 We define a function ℎ on [0, 1] as

ℎ(𝑡) =
{
𝑒4𝜋i𝑡 , 𝑡 ∈ [0, 12 ],
1, 𝑡 ∈ ( 12 , 1] .

Define𝑇 ∈ B(𝐿2 [0, 1]) as𝑇 ( 𝑓 ) = ℎ 𝑓 for 𝑓 ∈ 𝐿2 [0, 1]. Then𝑇 is normal and it is easy
to check that

𝜎(𝑇) = {𝑧 ∈ C : |𝑧 | = 1}, 𝜎𝑝 (𝑇) = {1}.

By Proposition 3.4, we have 𝑇 ∈ SSO. However, 𝑇 ∉ SSO. In fact, if not, then 𝑇 =

−𝐶𝑇∗𝐶 , which implies (𝑇 − 1) = −𝐶 (𝑇 + 1)∗𝐶 . Since 1 ∈ 𝜎𝑝 (𝑇), it follows that
−1 ∈ 𝜎𝑝 (𝑇∗) and −1 ∈ 𝜎𝑝 (𝑇), contradicting 𝜎𝑝 (𝑇) = {1}.

Lemma 3.6 If 𝐴, 𝐵 ∈ B(H) are approximately unitarily equivalent, then 𝜅(𝐴) = 𝜅(𝐵).

Proof Assume that {𝑈𝑛}∞𝑛=1 ⊂ B(H) are unitary operators with𝑈𝑛𝐴𝑈
∗
𝑛 → 𝐵. Note

that SSO is unitarily invariant. For any 𝑋 ∈ SSO, we have

‖𝐵 − 𝑋 ‖ = lim
𝑛

‖𝑈𝑛𝐴𝑈
∗
𝑛 − 𝑋 ‖ = lim

𝑛
‖𝐴 −𝑈∗

𝑛𝑋𝑈𝑛‖ ≥ dist(𝐴, SSO).

It follows that dist(𝐵, SSO) ≥ dist(𝐴, SSO). By the symmetry, one can see that
dist(𝐵, SSO) ≤ dist(𝐴, SSO), which implies 𝜅(𝐴) = 𝜅(𝐵). �

The following result characterizes those normal operators 𝑇 with 𝜅(𝑇) = ‖𝑇 ‖.

Proposition 3.7. Let 𝑁 ∈ B(H) be a normal operator with ‖𝑁 ‖ = 1. Then 𝑤(𝐶𝑁) = 1
for every conjugation 𝐶 if and only if 𝜎𝑒 (𝑁) = {𝜆} for some 𝜆 ∈ C with |𝜆 | = 1.
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12 B. Jia and T. Liu

Proof "⇐=". Without loss of generality, we assume that 𝜎𝑒 (𝑁) = {1}. Since 𝑁 is
normal, then, by the BDF Theorem, we can find a compact operator 𝐾 such that 𝑁 =

𝐼 + 𝐾 .
Fix a conjugation𝐶 onH . We shall show that𝑤(𝐶𝑁) = 1. By [10, Lemma 1], we can

find an orthonormal basis {𝑒𝑖}∞𝑖=1 such that 𝐶𝑒𝑖 = 𝑒𝑖 for all 𝑖. Then {𝑒𝑖}∞𝑖=1 converges
in the weak topology to 0, that is, 〈𝑒𝑖 , 𝑥〉 → 0 for every 𝑥 ∈ H . Since 𝐾 is compact, we
deduce that lim𝑖 ‖𝐾𝑒𝑖 ‖ = 0. Hence

〈𝐶𝑁𝑒𝑖 , 𝑒𝑖〉 = 〈𝐶𝑒𝑖 , 𝑁𝑒𝑖〉 = 〈𝑒𝑖 , 𝑁𝑒𝑖〉 = 〈𝑒𝑖 , (𝐼 + 𝐾)𝑒𝑖〉 = 1 + 〈𝑒𝑖 , 𝐾𝑒𝑖〉 → 1.

It follows that 𝑤(𝐶𝑁) ≥ 1. Noting that ‖𝐶𝑁 ‖ = 1, we obtain 𝑤(𝐶𝑁) = 1.
"=⇒". Since 𝑤(𝐶𝑁) = 1 for every conjugation 𝐶 , we have inf𝐶 𝑤(𝐶𝑁) = 1.

By Lemma 3.6, we may directly assume that 𝑁 is a diagonal operator, say 𝑁 =

diag{𝜆1, 𝜆2, 𝜆3, · · · } relative to an orthonormal basis {𝑒𝑖} of H . For convenience, we
denoteD = {𝑧 ∈ C : |𝑧 | < 1}.

Claim 1. 𝜎𝑒 (𝑁) * D.
Otherwise, we have 𝑟 < 1, where 𝑟 := sup{|𝑧 | : 𝑧 ∈ 𝜎𝑒 (𝑁)}. So card{𝑖 ≥ 1 : |𝜆𝑖 | >

1+𝑟
2 } < ∞. Without loss of generality, we assume that |𝜆𝑖 | > 1+𝑟

2 for 𝑖 = 1, 2, · · · , 𝑠 and
|𝜆𝑖 | ≤ 1+𝑟

2 for 𝑖 > 𝑠.
We define a conjugation𝐶 onH satisfying

𝐶𝑒𝑖 =


𝑒𝑖+𝑠 , 1 ≤ 𝑖 ≤ 𝑠,

𝑒𝑖−𝑠 , 𝑠 + 1 ≤ 𝑖 ≤ 2𝑠,
𝐶𝑒𝑖 = 𝑒𝑖 , 𝑖 ≥ 2𝑠 + 1.

Then for any unit vector 𝑥 ∈ H with 𝑥 =
∑

𝑖 𝑎𝑖𝑒𝑖 , we have

𝐶𝑥 =

𝑠∑︁
𝑖=1

𝑎𝑖𝑒𝑠+𝑖 +
2𝑠∑︁

𝑖=𝑠+1
𝑎𝑖𝑒𝑖−𝑠 +

∞∑︁
𝑖=2𝑠+1

𝑎𝑖𝑒𝑖

and

|〈𝐶𝑁𝑥, 𝑥〉| = |〈𝐶𝑥, 𝑁𝑥〉| = |〈𝐶𝑥,
∑︁
𝑖

𝑎𝑖𝜆𝑖𝑒𝑖〉|

=

����� 𝑠∑︁
𝑖=1

𝑎𝑖𝑎𝑖+𝑠𝜆𝑖+𝑠 +
2𝑠∑︁

𝑖=𝑠+1
𝑎𝑖𝑎𝑖−𝑠𝜆𝑖−𝑠 +

∞∑︁
𝑖=2𝑠+1

𝑎𝑖
2𝜆𝑖

�����
≤

𝑠∑︁
𝑖=1

|𝑎𝑖𝑎𝑖+𝑠𝜆𝑖+𝑠 | +
𝑠∑︁
𝑗=1

��𝑎 𝑗+𝑠𝑎 𝑗𝜆 𝑗

�� + ∞∑︁
𝑖=2𝑠+1

|𝑎𝑖 |2 |𝜆𝑖 |

≤ 1 + 𝑟
2

𝑠∑︁
𝑖=1

|𝑎𝑖𝑎𝑖+𝑠 | +
𝑠∑︁
𝑖=1

|𝑎𝑖+𝑠𝑎𝑖 | +
1 + 𝑟
2

∞∑︁
𝑖=2𝑠+1

|𝑎𝑖 |2

≤ (1 + 1 + 𝑟
2

)
𝑠∑︁
𝑖=1

|𝑎𝑖𝑎𝑖+𝑠 | +
1 + 𝑟
2

∞∑︁
𝑖=2𝑠+1

|𝑎𝑖 |2

≤ 1
2
(1 + 1 + 𝑟

2
)

𝑠∑︁
𝑖=1

( |𝑎𝑖 |2 + |𝑎𝑖+𝑠 |2) +
1 + 𝑟
2

∞∑︁
𝑖=2𝑠+1

|𝑎𝑖 |2
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=
3 + 𝑟
4

2𝑠∑︁
𝑖=1

|𝑎𝑖 |2 +
1 + 𝑟
2

∞∑︁
𝑖=2𝑠+1

|𝑎𝑖 |2 ≤
3 + 𝑟
4

< 1.

Since 𝑥 is a unit vector arbitrarily chosen in H , this shows that 𝑤(𝐶𝑁) < 1, a
contradiction. This proves Claim 1.

Claim 2. 𝜎𝑒 (𝑁) ∩ D = ∅.
In fact, if not, then there exists 𝑟 ∈ (0, 1) such that dim ran 𝐸𝑁 (𝐵(0, 𝑟)) = ∞,

where 𝐸𝑁 (·) is the projection-valued spectral measure associated with 𝑁 and 𝐵(0, 𝑟) =
{𝑧 ∈ C : |𝑧 | < 𝑟}. By Claim 1, we also have dimH 	 ran 𝐸𝑁 (𝐵(0, 𝑟)) = ∞. Denote
𝑀 = ran 𝐸𝑁 (𝐵(0, 𝑟)). Then, relative to the decompositionH = 𝑀 ⊕ 𝑀⊥, 𝑁 can be
written as 𝑁 = 𝑁1 ⊕ 𝑁2, where 𝑁1 and 𝑁2 are normal. Clearly, 𝜎(𝑁1) ⊂ 𝐵(0, 𝑟) and
𝜎(𝑁2) ⊂ {𝑧 ∈ C : 𝑟 ≤ |𝑧 | ≤ 1}.

Choose an antiunitary operator 𝐷 : 𝑀 → 𝑀⊥ and define a conjugation𝐶 onH as

𝐶 =

[
0 𝐷−1

𝐷 0

]
𝑀

𝑀⊥.

For any 𝑥 ∈ 𝑀 and 𝑦 ∈ 𝑀⊥ with ‖𝑥‖2 + ‖𝑦‖2 = 1, we have

|〈𝐶𝑁 (𝑥 + 𝑦), 𝑥 + 𝑦〉| = |〈𝐶 (𝑥 + 𝑦), 𝑁 (𝑥 + 𝑦)〉|
=
��〈𝐷𝑥 + 𝐷−1𝑦, 𝑁1𝑥 + 𝑁2𝑦〉

��
=
��〈𝐷𝑥, 𝑁2𝑦〉 + 〈𝐷−1𝑦, 𝑁1𝑥〉

��
≤ ‖𝑁2‖‖𝑥‖‖𝑦‖ + ‖𝑁1‖‖𝑥‖‖𝑦‖
≤ ‖𝑥‖‖𝑦‖ + 𝑟 ‖𝑥‖‖𝑦‖ ≤ (1 + 𝑟)‖𝑥‖‖𝑦‖

≤ 1 + 𝑟
2

(‖𝑥‖2 + ‖𝑦‖2) = 1 + 𝑟
2

< 1.

This shows that 𝑤(𝐶𝑁) < 1, a contradiction. This proves Claim 2.
Since ‖𝑁 ‖ = 1, by Claims 1 and 2, we have 𝜎𝑒 (𝑁) ⊂ {𝑧 ∈ C : |𝑧 | = 1}.
Claim 3. card 𝜎𝑒 (𝑁) < ∞.
Otherwise, we can find 𝜃1, 𝜃2, 𝜃3, 𝜃4 ∈ [0, 2𝜋) with 𝜃1 < 𝜃2 < 𝜃3 < 𝜃4 such that

𝜎𝑒 (𝑁) ∩ Δ𝑖 ≠ ∅, 𝑖 = 1, 2, 3, 4, where Δ1 = {𝑒i𝜃 : 𝜃4 − 2𝜋 < 𝜃 < 𝜃1} and

Δ𝑖 = {𝑒i𝜃 : 𝜃𝑖−1 < 𝜃 < 𝜃𝑖}, 𝑖 = 2, 3, 4.

Set Δ̃1 = {𝑟𝑒i𝜃 : 𝜃4 − 2𝜋 < 𝜃 ≤ 𝜃1, 𝑟 ∈ [0, 1]} and

Δ̃𝑖 = {𝑟𝑒i𝜃 : 𝜃𝑖−1 < 𝜃 ≤ 𝜃𝑖 , 𝑟 ∈ (0, 1]}, 𝑖 = 2, 3, 4.

Then {Δ̃𝑖}4𝑖=1 is a partition of the closed unit disc D; moreover, one can see that
dim ran 𝐸𝑁 (Δ𝑖) = ∞, 𝑖 = 1, 2, 3, 4. Hence

Γ𝑖 := { 𝑗 ≥ 1 : 𝜆 𝑗 ∈ Δ̃𝑖}

is infinite for each 1 ≤ 𝑖 ≤ 4. We choose a bijective map 𝜏 on the set N of positive
integers satisfying 𝜏−1 = 𝜏, 𝜏(Γ1) = Γ3 and 𝜏(Γ2) = Γ4. It is not difficult to verify that

𝛿 := sup
{ |𝜆𝑖 + 𝜆𝜏 (𝑖) |

2
: 𝑖 ≥ 1

}
< 1.
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For each 𝑥 =
∑

𝑖 𝑎𝑖𝑒𝑖 ∈ H , we define 𝐶𝑥 =
∑

𝑖 𝑎𝑖𝑒𝜏 (𝑖) . Then one can verify that 𝐶
is a conjugation onH . Then for any unit vector 𝑥 ∈ H with 𝑥 =

∑
𝑖 𝑎𝑖𝑒𝑖 , we have

|〈𝐶𝑁𝑥, 𝑥〉| = |〈𝐶𝑥, 𝑁𝑥〉| =
�����
〈∑︁

𝑖

𝑎𝑖𝑒𝜏 (𝑖) ,
∑︁
𝑖

𝑎𝑖𝜆𝑖𝑒𝑖

〉�����
=

�����
〈∑︁

𝑖

𝑎𝜏 (𝑖)𝑒𝑖 ,
∑︁
𝑖

𝑎𝑖𝜆𝑖𝑒𝑖

〉����� =
�����∑︁

𝑖

𝜆𝑖𝑎𝑖𝑎𝜏 (𝑖)

�����
≤
����� ∑︁
𝑖∈Γ1∪Γ3

𝜆𝑖𝑎𝑖𝑎𝜏 (𝑖)

����� +
����� ∑︁
𝑖∈Γ2∪Γ4

𝜆𝑖𝑎𝑖𝑎𝜏 (𝑖)

�����
=

�����∑︁
𝑖∈Γ1

(𝜆𝑖 + 𝜆𝜏 (𝑖) )𝑎𝑖𝑎𝜏 (𝑖)

����� +
�����∑︁
𝑖∈Γ2

(𝜆𝑖 + 𝜆𝜏 (𝑖) )𝑎𝑖𝑎𝜏 (𝑖)

�����
≤

∑︁
𝑖∈Γ1

|𝜆𝑖 + 𝜆𝜏 (𝑖) | |𝑎𝑖𝑎𝜏 (𝑖) | +
∑︁
𝑖∈Γ2

|𝜆𝑖 + 𝜆𝜏 (𝑖) | |𝑎𝑖𝑎𝜏 (𝑖) |

≤
∑︁
𝑖∈Γ1

|𝜆𝑖 + 𝜆𝜏 (𝑖) |
2

( |𝑎𝑖 |2 + |𝑎𝜏 (𝑖) |2) +
∑︁
𝑖∈Γ2

|𝜆𝑖 + 𝜆𝜏 (𝑖) |
2

( |𝑎𝑖 |2 + |𝑎𝜏 (𝑖) |2)

≤
∑︁
𝑖∈Γ1

𝛿( |𝑎𝑖 |2 + |𝑎𝜏 (𝑖) |2) +
∑︁
𝑖∈Γ2

𝛿( |𝑎𝑖 |2 + |𝑎𝜏 (𝑖) |2) = 𝛿 < 1.

This shows that 𝑤(𝐶𝑁) < 1, a contradiction. This proves Claim 3.
Nowwe shall conclude the proof for the necessity by proving card 𝜎𝑒 (𝑁) = 1. For a

proof by contradiction, we assume that card 𝜎𝑒 (𝑁) > 1. Then we can choose 𝜃1, 𝜃2 ∈
[0, 2𝜋) with 𝜃1 < 𝜃2 such that 𝑒i𝜃1 , 𝑒i𝜃2 ∈ 𝜎𝑒 (𝑁). Without loss of generality, we may
assume that 𝜃1 = 0.

By Claim 3, card 𝜎𝑒 (𝑁) < ∞. Thus we can find real numbers 𝜃3, 𝜃4, 𝜃5, 𝜃6 with
𝜃1 < 𝜃3 < 𝜃4 < 𝜃2 < 𝜃5 < 𝜃6 < 2𝜋 such that

𝜎(𝑁) ∩ {𝑟𝑒i𝜃 : 𝜃 ∈ (𝜃3, 𝜃4) ∪ (𝜃5, 𝜃6), 𝑟 ∈ (0, 1]} = ∅.

Denote

Ω1 = {𝑟𝑒i𝜃 : 𝜃 ∈ [𝜃6 − 2𝜋, 𝜃3], 𝑟 ∈ [0, 1]}
and

Ω2 = {𝑟𝑒i𝜃 : 𝜃 ∈ [𝜃4, 𝜃5], 𝑟 ∈ (0, 1]}.
Then Ω1 ∩ Ω2 = ∅, 𝜎(𝑁) ⊂ [Ω1 ∪ Ω2] and one can see that dim ran 𝐸𝑁 (Ω𝑖) = ∞,
since 𝑒i𝜃𝑖 ∈ 𝜎𝑒 (𝑁) ∩Ω𝑖 for 𝑖 = 1, 2. Hence

Λ𝑖 := { 𝑗 ≥ 1 : 𝜆 𝑗 ∈ Ω𝑖}

is infinite for each 𝑖 = 1, 2. We choose a bijective map 𝜏 on the setN of positive integers
satisfying 𝜏−1 = 𝜏, 𝜏(Λ1) = Λ2. It is not difficult to verify that

𝛾 := sup
{ |𝜆𝑖 + 𝜆𝜏 (𝑖) |

2
: 𝑖 ≥ 1

}
< 1.
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For each 𝑥 =
∑

𝑖 𝑎𝑖𝑒𝑖 ∈ H , we define 𝐶𝑥 =
∑

𝑖 𝑎𝑖𝑒𝜏 (𝑖) . Then one can verify that 𝐶
is a conjugation onH . Then for any unit vector 𝑥 ∈ H with 𝑥 =

∑
𝑖 𝑎𝑖𝑒𝑖 , we have

|〈𝐶𝑁𝑥, 𝑥〉| = |〈𝐶𝑥, 𝑁𝑥〉| =
�����
〈∑︁

𝑖

𝑎𝑖𝑒𝜏 (𝑖) ,
∑︁
𝑖

𝑎𝑖𝜆𝑖𝑒𝑖

〉�����
=

�����
〈∑︁

𝑖

𝑎𝜏 (𝑖)𝑒𝑖 ,
∑︁
𝑖

𝑎𝑖𝜆𝑖𝑒𝑖

〉����� =
�����∑︁

𝑖

𝜆𝑖𝑎𝑖𝑎𝜏 (𝑖)

�����
=

�����∑︁
𝑖∈Λ1

𝜆𝑖𝑎𝑖𝑎𝜏 (𝑖) +
∑︁
𝑖∈Λ2

𝜆𝑖𝑎𝑖𝑎𝜏 (𝑖)

�����
=

�����∑︁
𝑖∈Λ1

𝜆𝑖𝑎𝑖𝑎𝜏 (𝑖) +
∑︁
𝑖∈Λ1

𝜆𝜏 (𝑖)𝑎𝜏 (𝑖)𝑎𝑖

�����
=

�����∑︁
𝑖∈Λ1

(𝜆𝑖 + 𝜆𝜏 (𝑖) )𝑎𝑖𝑎𝜏 (𝑖)

�����
≤

∑︁
𝑖∈Λ1

|𝜆𝑖 + 𝜆𝜏 (𝑖) |
2

( |𝑎𝑖 |2 + |𝑎𝜏 (𝑖) |2)

≤
∑︁
𝑖∈Λ1

𝛾( |𝑎𝑖 |2 + |𝑎𝜏 (𝑖) |2) = 𝛾 < 1.

This shows that 𝑤(𝐶𝑁) < 1, a contradiction. This completes the proof. �
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