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Many authors have proved results deducing an asymptotic expansion of

F(z) = £/(w)z«

for large | z | from the behaviour of f(t), when/(<) is regular in an appropriate part of the com-
plex <-plane. For example, if, for some K > 0 and some Am, am,

for all large | t | such that &%(t) > C, then, as | z | -> oo in a suitable sector in the z-plane, we
have

( M \

F{z) = Zez< 2 AmZ~*m + O(Z "i*1)}, (2)
U>=i )

where Z is an appropriate value of z1'*.
Of course, the expansion (1) could be replaced by one of another form, but (1) has the

merit of displaying the actual coefficients which occur in (2). So far as I am aware, the first
notice of this phenomenon in special cases occurred in [1] and [6]; the general result was
found in [7] and, independently, in [2]. See also [8].

A particular case of the generalised hypergeometric function studied in [6] is

() £
n=0

where

g(t)=
r = l

and q ^ p > 0. If we write K = q +1 -p and

r=l r-0

we can deduce from the well-known asymptotic expansion of the T-function that

{ M KC / I

mm

for large | /1 and | arg t\ <n-e, where e > 0, c0 = 1 and a = (277)*~*/t«~*~ .̂ I t then follows
that, in a suitable sector of the a;-plane enclosing the positive half of the real axis, we have

where X =

m ( ) ) ( 3 )
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Recently Riney [4, 5] has found two linear recurrence relations satisfied by the cm. In
the one, cm is given in terms of all the preceding cn ; in the other, in terms of the preceding
7 + 1 terms of the sequence. His method in each case depends on fairly elaborate manipula-
tions of g(t). My purpose here is to point out that G(x) and its asymptotic expansion alike
satisfy a simple differentia] equation and that from this a finite recurrence formula for the cm

can be deduced fairly simply.
We write 6 = x d/dx and

P(t)= fl.(t + pr), Q(t)

and note that

Q(t)g(t + 1)

Again

xP(6)G(n) = 2 P(n)g(n)xn+1

«=o

= S Q(n

) ff
n=0

Hence, if R{t)' = Q(t -1) -xP(t), we have

R(6)G(x) =Q(-l)g(O) (4)

This is the linear differential equation of the {q + l)-th order satisfied by G{x).
We need not appeal to the general theory of asymptotic solutions of differential equations

to see that (4) is satisfied asymptotically for (say) large positive X, if the right-hand side of (3)
is substituted for G(x). For 6G{x) is a function of the same form as G(x) and so has a similar
asymptotic expansion.

Let us write <f>

and

i y (4) and (5),

for any positive M.

and so

= X(d/dX) =

T(t)= Yl(

S(t) = T(l -

S(<f>)ex

n

Now

= K0,

•* 1/1 " •

M

r=L

(5)

(6)

(7
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Since T (t) is a polynomial in t of degree q + 1, we have

T(t-m)= 2 Ts(-m)t(t-l)...(t-
j = 0

where

T(<f>-m) = 2 Ts(-m)X\djdX)'
«=o

in the usual notation of the difference calculus. Hence

and

Similarly

- m)ex = "sV^ - m)X'.
«=o

Hence

V9+1_s(-m)X-'- S ^_s(-m)-
o *=o

and so, by (6) and (7),

q+\ p

S 7Ws(s-™)cm_s- S ^-s(*-w)cm_s = 0, (8)

where cn = 0, when n < 0.
We shall see later that

TM(-m)-V9(-m) = 0, (9)

TQ(-m)-U,_x(-m) = -«» (10)

Hence, if we replace m by m +1 and s by 5 +1 in (8), we have

q J > - 1

«™cm = £ T8_s(*-m)cm_s- 2 [/„_,_!(«-m)cm_S) (11)
«=i «=i

where the second sum is empty if p = 0 or 1. This is the recurrence relation required.
If the largest m for which we wish to calculate cm is of about the size of q, the coefficients

in (11) can be most easily calculated by evaluating T(t) for t = q - 1 , q - 2 , ... , -m and then
differencing these values up to (q -1) times. If m is large compared with q, we remark that

T^(a-m)= 2 (-l)S+1~rTw.r(O)(q+l-r)\(m-r)\ /{(«-«- 1)! (q-s)\ (s + l -r)!},

so that we need only calculate Ts(0) (by differencing) for s = 0, ... , q + 1 . Similarly

tf,_,_! (5 - m) = I ? ( - l)s+1~r Uv_r(0)(P ~ r)! (m - r)! /. {(m - « - 1)! (p - s -1 ) ! (s +1 - r)!}.
r = 0
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If the largest m is small compared with q, these methods are not very efficient. In this
case, let

T{t) = *S Arl
Q+1-r, U(t) - f B/~r,

r=0 r=0

£ Yr, Bt-pb + KtPr (12)
r-0 r=l

so that Ao = Bo = 1 and

We have

T(t-m) = *S .

With the notation of Jordan [3], let us write Sn for the Stirling number of the second kind,
so that

s' = [jv/«i]M, s:-i, s r l = *»(»-i) (i4>
By (13), we have

» t — T

and similarly
« »—r

If m is small, these formulae provide a convenient method of calculating the coefficients in (11)
for s <: m ; no others are required. In particular, we can verify (9) and (10) very easily,
using (12) and (14).
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