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Abstract. We develop a dynamic economic model based on contemporary
understanding of learning and motivation. The model and resulting comparative
static analysis show the instructor’s role in providing a productive learning
environment. Instructors should set the complexity of course assignments and
assessments to be consistent with student preparedness. Learning is enhanced
when the rate of change in challenge is based on the rate of change of how rapidly
students are learning. Instructors steer students toward a productive trajectory
with tasks that cause students to work hard and by consistently providing
feedback and fostering a culture of learning.
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1. Introduction

Economic models have been used extensively to illuminate several areas of
teaching and learning. Becker and Baumol (1995) offer a collection of such
contributions, along with a history of the use of economic modeling in
the scholarship of teaching and learning. Economic research often involves
analyzing messy, observed data (as opposed to data from controlled, randomized
experiments) and identifying cause and effect relationships (Baumol and Becker,
199S5). Logistical and ethical concerns limit truly randomized experiments in
education, meaning that researchers rely on ex post facto design (Becker, 1983b),
making econometric tools of economists well suited for evaluating these data.
The majority of economic modeling related to the scholarship of teaching and
learning has used data of student outcomes to identify benefits of alternative
teaching methods or learning environments. There have been many useful
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findings from such endeavors even though there are limitations and challenges
with existing studies (Becker, 2004).

A common approach to evaluating student outcomes and teaching
effectiveness has been to specify a production function (Monk, 1989) using
data collected from classrooms (e.g., Bacdayan, 1997; Becker, 1983a; Charkins
et al., 1985; Dahlgran, 1990; Flyer and Rosen, 1996; Manahan, 1983). A
far less explored area of research, which economic tools are equally well
equipped to address, is applying conceptual economic models to teaching and
learning (Lima, 1981; Wetzstein and Broder, 1985). Lima (1981, p. 1056)
lamented that “it is virtually impossible to discover attempts to derive hypotheses
about determinants of good teaching from explicit models of behavior.”
There are exceptions. Becker (1983a) proposed an inventory model based on
money demand modeling in macroeconomics. Bacdayan (1997) expanded the
production function approach to address differences in the learning process
across individuals. These studies, however, follow the convention of equating
student outcomes with learning. Lima (1981) and Wetzstein and Broder (1985)
propose behavioral models and draw conclusions. Also rare in economic
educational models is consideration of contemporary psychology and education
research (Rauh and Seccia, 2006). In fact, understanding the learning process in
general remains an area of research that is rich with opportunity.

In 1995, Barr and Tagg challenged university teachers and administrators
to transform academic institutions from “instruction-centered” to “learning-
centered” campuses. Since then, a great deal of time and attention has been given
to improving teaching and learning at colleges and universities. New methods
of instruction have been developed and evaluated, and the assessment of student
learning outcomes has proliferated. In spite of this enhanced level of attention to
pedagogy, our understanding of how students learn remains weak (Smith, 1999;
Stage et al., 1998). The research presented here fills these voids by developing
a conceptual economic model of the learning process that is consistent with
psychological theories of learning and then drawing implications from the model
to guide teaching practices.

The objective of this study is to propose and specify a dynamic mathematical
model of learning that considers students’ psychological response to instruction,
the complexity of instruction, the rate of increasing difficulty of instruction,
and student-instructor interaction. The model demonstrates the importance
of calibrating how rapidly the complexity of material is increased with the
preparedness of students. Properly balancing the rate of increase of the challenge
presented to students with their readiness to meet the challenge effectively
motivates students and allows them to achieve a steady-state condition of
learning. Implications are derived for a variety of courses, including small
seminars, field-type courses, large required courses, and graduate courses.

The application of the theoretical model to individual students with
heterogeneous knowledge and ability levels is also explored. A case for pragmatic
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implementation of the model as a dynamic classroom is made. Further research
based on the theoretical model presented here is also discussed. The crux
of the theoretical model is for teachers to pay careful attention to student
learning and adjust the assignments, expectations, and course assessments to
better match where students are at the time. Brookfield (2015) concludes,
“The most important knowledge that skillful teachers need to do good work
is a constant awareness of how students are experiencing their learning and
perceiving teachers’ actions” (p. 15). This quote synthesizes and summarizes the
case for a dynamic classroom based on the theoretical model of dynamic learning,
as detailed in what follows.

2. Flow Theory of Motivation

The psychology of motivation suggests that work is most productive and people
are most content while in a state of flow. The concept of flow was originally
defined by Csikszentmihalyi (1975) as a state of deep focus that occurs when
people engage in challenging tasks that demand intense concentration and
commitment. Flow is considered to occur when a person’s skill level is perfectly
balanced with the level of challenge for a task (Shernoff et al., 2003) that has
clear goals and provides immediate feedback. Flow experience is an enjoyable,
productive experience. Csikszentmihalyi (2003) states: “Our research shows that
teenagers who are in the flow more often develop more productive habits: Not
only are they much happier and more optimistic, and have higher self-esteem,
but they study more, are involved in active leisure more often, and spend more
time with friends—a finding that is independent of income, parental education,
and social status” (p. 69). The foundation of flow theory is that enjoyable
and productive experiences balance an individual’s capacity (or skill set) with
opportunity (or challenge).

The term “challenge” forms the foundation of the model presented in this
research and is broadly defined as the level of complexity of a task. Thus,
challenge incorporates student learning outcomes, instructional design, and
teaching strategies. This all-encompassing definition of challenge has been
extensively studied in many theories of human motivation, including effectance
motivation, perceived competence, flow states, and self-efficacy (Lepper et al.,
1993). Lepper et al. (1993) emphasize that challenge includes the relationship
between two subjective variables: the individual learner’s perceived difficulty of
success and the individual’s estimate of his or her own ability (readiness).

An individual student! can be considered to be “in the flow” (also called
“in the zone” in sports psychology) when his or her talents are fully employed
in a learning situation that is neither too stressful nor too boring. In this

1 The term “student” is used very generally here. Flow theory can be applied to an individual learning
any new task or concept. Everett and Raven (2015) apply the idea to university students.
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Figure 1. Flow Theory of Motivation (Note: This figure is based on
Csikszentmihalyi’s (1975, 1990, 2003) flow theory of motivation. The 45-degree
line where challenge equals readiness, C = R, corresponds with Csikszentmihalyi’s
concept of flow experience as learners master increasing complex tasks.
Instructors raise the level of C, causing initial anxiety and motivation to perform,
and, as students progress, these tasks become easier, and students drift toward
the right to boredom. The instructor, in turn, again raises C, and the cycle of flow
learning continues.)

state, the individual finds learning to be a deeply enjoyable experience. The
enjoyment or euphoria from being in the flow offers not only immediate benefits
of productivity, but also motivation to continue learning. We assert that college
students will have the most productive learning environment when the level of
complexity of course assignments is in line with each student’s level of knowledge,
or skill set. We define the degree of difficulty as the level of “challenge” (C),
and the skill set, or capability for learning a new concept or doing a task, as
“readiness” (R). The flow theory of learning is illustrated in Figure 1, based on
Csikszentmihalyi (1990, 2003).

Figure 1 captures the relationship between challenge (C) and readiness (R).
When challenge and readiness levels are equivalent, the student is located on the
45-degree line (C = R). In the case when C > R, the student is located above
the line, and anxiety (or stress) occurs. When C < R, students are located below
the line and are less engaged, or bored. To the extent that there are psychological
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costs associated with both anxiety and boredom, it is optimal to be located on the
C = R line.? This is true not only for the student, to avoid the costs of anxiety
and boredom, but also for society as a whole. Any extended amount of time
and energy spent in worry or idleness does not contribute to the attainment of
societal growth and development. This description of learning is consistent with
an “optimal” level of arousal (Hebb, 1955) and its connection to motivation
(Apter, 1989).

The dynamic nature of flow theory is captured by a sequence of events in
a learning process. Suppose that a student is learning any new and complex
activity or concept. At time ¢ = ¢y (Figure 1), the task is difficult because challenge
is greater than readiness (C > R), and anxiety occurs. In the short term, this
anxiety can motivate the student to higher achievement (Rauh and Seccia [2006]
explore this idea in the context of economic education). With experience, the
task becomes easier, and readiness increases until the C = R line is reached at
t = t1, when the task is mastered, and the student may experience flow, or a state
of euphoria. This experience is described by Csikszentmihalyi (2003): “Think of
how an athlete or a violinist feels when he is in flow: He is doing something
that is objectively extremely difficult, but to him it feels almost effortless”
(p. 67). Learning a new concept is often associated with this type of emotion, as
seemingly random words and ideas crystallize and become understandable—the
“aha” moment.? The student’s ability eventually outpaces the degree of difficulty,
and the student becomes bored at time ¢t = #; (C < R). The student is ready for a
higher level of complexity, and the learning cycle begins anew when the challenge
level is increased from %, to #4.

This simple model of learning highlights a cycle of anxiety when difficult
new concepts are introduced (#y), followed by a state of flow when expectations
are met (t;, C = R), and finally a state of boredom when the level of student
readiness outgrows the level of challenge (¢;). According to Csikszentmihalyi
(2003), “Those who are able to find the middle way weave opportunities and
ability together in an enjoyable progress toward complexity” (p. 69). If the
learning environment can maintain appropriately balanced levels of challenge
and readiness, students can progress more rapidly and enjoyably toward higher
levels of complexity, represented by the northeast direction in Figure 1. Any
action or policy that minimizes time spent off of the C = R line will lower

2 The 45-degree line is a result of scaling the two variables C and R. Different scaling would result
in different slopes, with the qualitative results unchanged. The linear relationship is a result of assuming
constant marginal challenge. A more general, realistic model could include diminishing marginal challenge.
Here, we assume constant marginal challenge in the relevant range of challenge and readiness; thus the
true relationship is approximated with linearity.

3 Psychologists have uncovered the nature of how the brain discovers new insights. Bowden et al.
(2005, p. 325) found that insight is achieved in the right hemisphere of the brain, which “engages in
relatively coarse semantic coding, and is therefore more likely to maintain diffuse activation of alternative
meanings, distant associations and solution-relevant concepts.”
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costs and enhance welfare for both the individual student and society as a
whole. The role of the teacher is to attempt to move the student to higher levels
of task complexity by properly balancing challenge and complexity of course
requirements with student readiness levels in a dynamic framework.

3. A Simple Model of Learning: The Learning Adjustment Mechanism

The mechanics of the learning adjustment mechanism are outlined in this section,
and then expanded to a more complete dynamic model in the next section. Let
K be the total level of knowledge (a stock variable) attained by a student over a
given time interval, t = ¢y ... T. The rate of learning is k (a flow variable*), equal
to the percentage rate of change in knowledge, as in the learning adjustment
equation (1), where both stress and boredom have a negative impact on the
learning rate:’

k = (3K/t) /K = kmax — BI(R — C) /CI* = kmax — BL(R/C) — 11%, (1)

where k. is defined to be a maximum level of the learning rate that occurs
when R = C. The parameter 8 is a positive constant (8 > 0), and the variables
R and C maintain their previous definitions. The term [(R — C)/C] represents
the proportion of a student’s ability, or readiness, that is left unchallenged. The
greater the proportion of untapped student ability (i.e., boredom), the slower the
rate of learning. Similarly, too much challenge creates stress and also reduces the
learning rate. More specifically, whenever C diverges from R, the learning rate (k)
decreases from the maximum rate of learning (kmax). When challenge is greater
than student readiness (C > R), or when a student’s level of readiness to learn is
greater than the level of challenge (R > C), the rate of learning is smaller than
the maximum learning rate (kmax). Restated, a balanced level of challenge and
readiness (R/C = 1) results in a maximum learning rate (Rmax).

To allow for the possibility that the optimal learning rate takes place at a
ratio of readiness to challenge that differs from 1, the parameter S is included in
equation (2). For example, Nilson (2016) emphasizes “desirable difficulties,” or
the idea that “people can remember what they have learned longer when they
have to work harder to learn it” (p. 5). The parameter S reflects the level of R/C
that causes the learning rate (k) to be at a maximum (kpyax)-

k = Rmax — BL(R/C) — SI? (2)

4 The term “flow” is used here in the mathematical sense to mean rate of change of a stock variable.
The fact that Csikszentmihalyi (1990, 2003) chose the same term to describe the optimal learning pathway
is coincidental.

5 Note that equation (1) assumes that the learning process takes place within the relevant range, where
0 <R <hand 0 < C < h, where b is a positive constant. This assumption provides for a finite level of
learning.
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Figure 2. A Simple Model of Learning: The Learning Adjustment Mechanism
(Note: The term k,,,, is the maximum learning rate; ® is the readiness-to-challenge
ratio, R/C. The variable S is the equilibrium level of ®, associated with the
maximum learning rate, kpx.)

This could be attributable to optimal learning rates that occur when C > R, or
higher rates of anxiety than readiness. To simplify further, we define ® to be the
ratio of challenge to readiness: ® = R/C.

k = kmax — Bl® — ST (3)

The model described here is shown in Figure 2. The first derivatives of equation
(3) with respect to student readiness (R) and instructor challenge (C) illustrate
the foundational assumptions of the simple model of the learning adjustment
mechanism, as shown in equations (4a) and (4b).

dk/dC = —2B[® — S] (—R/C*), 9k/3C > 0 if and only if (iff) & > S,
and 9k/9C < 0 iff &<S (4a)

9k /OR = —2B[® — S] (1/C), 9k/OR > 0iff ® < S, and 9k/R < 0iff & > S
(4b)

The derivatives show that the learning rate depends on the relationship
between ® and S. This relationship corresponds directly to psychological theory
of motivation and educational psychology theories of learning. Specifically,
cognitive load theory (Artino, 2008) asserts that short-term memory (defined as
“working memory”) is very limited in both capacity and duration, whereas long-
term memory is virtually limitless. The implication is that learning is slowed if
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instructional materials overwhelm a learner’s limited working memory resources
(® < S). Thus, the theory focuses on reducing all unimportant information
presented to students (Artino, 2008). In the terminology of this article, properly
balancing challenge with student readiness brings ® into equality with S.

Student readiness is related to prior knowledge (K), together with the external
motivation (or drive) to learn new knowledge, represented as M. Thus, the
motivation level can be considered to be an “efficiency coefficient” on knowledge.
Motivation levels are complex and vary widely across individual students.
Individual differences in motivation will be explored in greater detail later.
For now, we assume an exogenous level of M for a representative student. If
we assume that readiness is directly proportional to knowledge, adjusted by
motivation, equation (5) results, where the parameter a is a constant, representing
the degree to which ability is transferred into learning.

® = R/C = aKM/C (5)

This formulation is consistent with cognitive construction theory, which
emphasizes the idea that the learner builds on preexisting knowledge to acquire
new information (Loyens and Gijbels, 2008). Thus, the learner is helping herself,
rather than just memorizing facts presented by the teacher. Because knowledge
is increasing over time, readiness (supply) is also increasing, and challenge
(demand) shifts to maintain the model equilibrium. Therefore, the simple model
depicted previously does not fully capture the flow theory of learning, and a more
complete dynamic flow model is described in the next section.

4. A Flow Model of Learning

Obst (1978) observed that current economic models of the money supply were
inconsistent with real-world events, and developed a dynamic model that more
closely matched real-world conditions. The base model of money supply is an
inventory model. That is, it models a stock of something that changes over time.
Learning can be modeled in much the same way (Becker, 1983a). That is, learning
is seen as some level of knowledge that students accumulate over time. Following
this intuition, we adapt Obst’s (1978) dynamic model to the learning process over
time, considering the previously discussed concepts of Csikszentmihalyi’s (1990,
2003) flow theory of motivation. The simple model of the learning adjustment
mechanism captures the major features of the flow model of learning and how the
relationship between readiness and challenge affect the learning rate at a given
moment in time. The simple learning adjustment mechanism described previously
implies that the maximum achievable level of learning (kyax) is also the steady-
state equilibrium level of learning that occurs when R = C. However, because
kmax does not consider future learning, the model is myopic, and k. in the
simple model cannot be considered a realistic steady state. Thus, the learning
adjustment mechanism model is counter to reality, because students (or athletes)
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can achieve their maximum learning rate for a single examination (or event), but
this maximum level is not sustainable over time. The dynamic model discussed
subsequently will expand the learning adjustment mechanism to allow for this
more realistic possibility.

A second limitation of the simple model in the previous section is that it
does not capture the dynamic nature of the learning process. As learning (k)
occurs, knowledge (K) grows. Therefore, the model of learning must be altered
to accommodate an ever-increasing knowledge base (K), which results in an
increasing level of readiness (R, equation 5): students with more knowledge
are capable of handling an increasing level of complexity and challenge (Reiser,
2004). Following Obst (1978), the dynamic model of learning can be formulated
with the behavioral equation (6). In the dynamic flow model of learning
developed subsequently, we will be interested not only in the level or rate of
learning (k), but also the rate of change of learning, k’, where k> = 9k/dt.
Note that the behavioral equation presented in equation (6) is formulated to
address the limitations of the simple model in equation (3). We will demonstrate
that the dynamic learning adjustment mechanism presented in equation (6)
is consistent with economic theory, psychological theory of motivation, and
practical classroom experience.

k= —B[® —S] (6)

To explore how the system behaves over time, the rates of growth of the variables
in equation (5) are found through differentiation, as in equation (7).

(90 /dt)/D = (da/dt) Ja + (0K/dt) /K + (dM/dt) /M — (3C/dt) /C (7)

By defining @’ as the time derivative of ® (= d®/3t), and defining the percentage
rate of growth of each variable by the corresponding lowercase letters (k, 72, and
c), we can rewrite equation (7) as equation (8), and equation (6) is replicated as
equation (9), where @’ = 0, because a is a constant.

®=(k+m—c)d (8)
k= —B[® —S] 9)

Equations (8) and (9) complete a system of differential equations that can
be solved for the time paths of ® and k, given a constant (exogenous) rate
of challenge, equal to ¢ (Chiang, 1984; Obst, 1978). The system is shown
in Figure 3, where the vertical demarcation line represents ®* = 0, and the
horizontal demarcation line represents k> = 0. The horizontal demarcation line
is found by setting &> = —B[® — S] = 0. Because B is a positive constant, the
equality holds when ® = S. The vertical demarcation line is found by setting
@ = (k +m — ¢)® = 0. Because ® > 0, this equality holds only when k + m —
¢ =0, 0r k = ¢ — m, as illustrated in Figure 3. When the learning rate is positive
(k > 0), it implies that ¢ > m. The dynamic system shown in Figure 3 is a vortex
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Figure 3. The Dynamics of Learning: A Phase Diagram of the Dynamic Flow
Model (Note: This phase diagram maps the dynamic path of a system of
differential equations where the determinant of the Jacobian, IJ;l, is positive and
trace, tr(Jg), zero. See Appendix for mathematical treatment.)

of unending cycles of stress and boredom, and the steady-state equilibrium (E)
is never reached (see Appendix).

Following Obst (1978), it is shown in the Appendix that this result is
attributable to the exogeneity of the rate of challenge (c). If instructors targeted
the rate of challenge to the learning rate, a different equilibrium could be
obtained. If teachers slowed the rate of challenge when the learning rate was so
high that undue stress occurred or increased the rate of challenge when boredom
occurred, the model could be altered to include an endogenous rate of challenge,
as in equation (10).

c:c(k),c’(k)<0 (10)

This would change equation (8) to incorporate the impact of the learning rate
on ¢, as in equation (11).

»=[k+m—c(k)]® (11)

In the modified model, equilibrium occurs when ®’ = 0, or when k = ¢(k) — m.
The Appendix demonstrates that this modified model results in a new equilibrium
but remains a vortex, as in the original model, and a steady-state equilibrium
would never be reached.

However, a sustainable equilibrium can exist: if the rate of challenge (¢) is
targeted not to the level of the learning rate (k), but rather to the rate of change
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Figure 4. Dynamic Time Path of the Flow Model of Learning (Note: This phase
diagram maps the dynamic path of a system of differential equations where the
Jacobian has a determinant, IJzl, that is positive and is trace, tr(Jg), negative.
Under these conditions, the dynamic path is one that leads to a stable equilibrium
[Chiang, 1984]. See Appendix for mathematical treatment.)

of learning rate (k’). In this case, a steady-state equilibrium is possible, and
the more responsive teachers are to changes in the rate of learning, the more
rapidly the dynamic system approaches the steady-state equilibrium. It should be
emphasized that the level of learning (k) remains independent of the instructor’s
change in the rate of challenge. Therefore, students could be working very hard at
a high level of learning, or working hard at a low level of learning (for example, if
the assignment was not clearly defined or explained). To capture this possibility
in the mathematical model, we make the rate of challenge endogenous and a
function of the rate of change in the learning rate.

c=c(k),c (k) <0 (12)
This modification alters equation (8) to equation (13).
d>’=[/e—|—m—c(/e’)]d> (13)

In this version of the model, equilibrium (®* = k&> = 0) occurs when k = ¢(k’)
— m. The Appendix shows that in this version of the model, the demarcation
line ®> = 0 is upward sloping, as in Figure 4, resulting in streamlines that spiral
toward the steady-state equilibrium at (®,, k.) = [S, c(k’) — m]. Thus, the
instructional strategy is capable of changing the cyclicality of the vortex into
a stable, increasing learning experience where anxiety motivates but does not
reach the point of overwhelming students.
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The model results parallel the earlier discussion of Csikszentmihalyi’s (1990,
2003) flow theory of motivation. Using the learning adjustment mechanism
presented in equation (8), we have shown mathematically that a learning
pathway where challenge (C) and student readiness (R) are balanced is achievable
if the rate of challenge (c) is an endogenous variable, calibrated by adjusting the
rate of change based on the learning rate (k’). Intuitively, the model results imply
that teachers who pay careful attention to changes in student learning rates could
diminish unproductive outcomes by rapidly modifying the rate of challenge to
match the rate of learning. This strategy would result in flow learning experiences
by students, as their preparedness is matched by classroom challenge and they
master increasingly difficult tasks. The motivation from this flow experience
becomes another factor encouraging the steady accumulation of knowledge.

The major outcome of the model that the endogenous rate of challenge
provides more efficient learning outcomes is reflected in recent research in
educational psychology. Kirschner et al. (2006) reported empirical evidence that
minimal guidance during instruction is less effective and efficient than guidance
specifically designed to support the cognition processing necessary for learning.
Moreno (2004) stated that research-based evidence shows that students learn
more from strongly guided learning than from discovery. Thus, there is some
evidence to suggest that students are likely to learn more from an endogenous
rate of change in the challenge level than an exogenous rate of change in the
challenge level.

Figure § illustrates the main features of the dynamic model and demonstrates
the usefulness of the model results. The flow theory of learning of Figure 1 is
repeated in the upper left graph, and the corresponding learning cycle of Figure 3
is in the upper right graph. In Figure 5, these two graphs are drawn for the same
learning cycle, with the points in the flow theory graph (¢, t1, ...) matching the
labeled points of the vortex graph. To see the learning process in a more intuitive
manner, the learning rate (k) is drawn as a function of time, in the lower left
graph, and total knowledge (K) is drawn with respect to time in the lower right
graph. These two graphs are also drawn with corresponding time labels, to match
those in the two upper graphs.

The learning process is viewed as a cycle of anxiety and boredom that results
in cycles in the rate of learning. The objective of the teacher is to reduce the
volatility in the learning cycles, making the learning process more productive
and pleasurable (a flow experience), whenever possible. With this objective,
the major implication of the model is for the teacher to match the rate of
change in challenge, or the level of complexity, with the rate of change in the
learning rate. Beneficial changes in the learning environment will occur the more
quickly that instructors can identify changes in the learning rate and act on
those changes by synchronizing class lectures, assignments, exams, and activities
with those changes. Note that this is independent of the exogenously determined
learning rate: the overall learning rate and rate of knowledge accumulation are
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Figure 5. Dynamic Time Path of the Flow Model of Learning (Note: All four
graphs correspond to the same learning cycle, with each time [z, #, ...]
corresponding to the same time and cycle location in all four graphs.)

independent of the learning cycles (Figure 5). Instructors can maintain a set of
exogenous, predetermined course learning outcomes while using instructional
design and teaching strategies to reduce or eliminate cycles. In this case, the lines
in the lower two graphs of Figure 5 remain fixed, while the inefficient cycles
around them narrow. This approach allows instructors to determine how well
students are doing relative to a predetermined performance level or a set of
educational goals determined by the curriculum (Bond, 1996).

Once standards have been determined by the instructor, department, or
institution, instructional design and teaching strategies can be used to implement
the curriculum (Reiser, 2004). The idea of “backward design,” or setting goals
prior to choosing instructional methods, was developed by McTighe and Wiggins
(2012). This strategy provides a research-based example of how the model
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presented here could be used to encourage and motivate students to achieve
predetermined student learning outcomes.

5. Implications: The Case for Implementing the Dynamic Classroom

The dynamic model of learning set forth in the previous section shows the ability
of instructors to guide students toward flow experience and a steady-state path
of knowledge acquisition. The learning adjustment mechanism is consistent with
economic behavioral models (Obst, 1978). Furthermore, the concepts built into
the model conform to modern understanding of the psychology of motivation
and learning (Artino, 2008; Loyens and Gijbels, 2008). Given the theoretical
and practical consistency of the model, its outcomes serve as teaching guidelines.
Managing the rate of change in the challenge level (¢) in the model is key to
directing students toward a flow experience and consistent learning. Instructors
have different criteria for setting and changing the level of complexity in a
course. Model results show that identification of the appropriate rate of change of
learning level (k) is key to creating an effective learning environment. Ambrose
et al. (2010) conclude that “setting challenging but attainable goals is critical
for optimally motivating students” (p. 85). Past researchers modeling teaching
effectiveness have concluded that a universally optimal approach to teaching
does not exist (Lima, 1981, Wetzstein, 1988). This is, in no small part, because
of the fact that individual students differ greatly by ability, knowledge, and
motivation levels. A teacher can implement the dynamic classroom by attempting
to perceive and address the individual differences in stress and boredom that
occur within a given term. Nilson (2016, p. 99) concludes, “Fortunately, effective
motivational techniques and effective teaching techniques greatly overlap. Of
course, by definition, more motivated students want to learn more, so they
achieve more ... better teaching generates more rewarding learning experiences,
which beget more motivation to learn. It is not surprising, then, that you
motivate students using the same methods and formats that you do to teach
them effectively.” The present implications suggest that instructor flexibility and
ability to respond to specific groups of students is crucial to a successful dynamic
classroom. Providing some flexibility to students can result in a sense of control
that can lead to expectations of success (Ambrose et al., 2010, p. 89).

The endogenous rate of change in the level of challenge (c) postulated by the
model could be useful in a seminar class, where instructors are able to assign and
assess student progress frequently. This allows instructors to pay close attention
to how well each individual student is learning (k’) and provide the necessary
information for altering the rate of challenge level to better match student
readiness as students progress through the course. For small, applied field-
type courses, instructors could provide clear instructions for what is required,
provide clear and frequent feedback to students, and maintain a close relationship
between rate of challenge and student readiness.
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The endogenous rate of change of challenge could also be employed in a
required, core course such as intermediate microeconomics, the foundation for
subsequent applied economics courses. The education literature provides several
instructional strategies to enhance learning in these courses. Lepper et al. (1993)
highlight the distinction between strategies that involve altering the “objective”
level of challenge presented to the learner with strategies that seek to change
the learner’s subjective perceptions of the challenge. In a required, foundational
course, the subject matter is typically predetermined by faculty at the department
level. Based on feedback on the level of student readiness, objective task difficulty
can be modified through instructional design strategies such as supplemental
education, educational scaffolding, and self-regulated learning, as explained
further in what follows.

Supplemental instruction is an academic support system that could include
peer advising, the provision of academic assistance outside of class by tutors,
peers, instructors, or computers (Blanc et al., 1983). Reiser (2004) defines
educational scaffolding as the process by which a teacher or more knowledgeable
peer assists a learner, altering the learning task so the learner can solve
problems or accomplish tasks that would otherwise be out of reach. Reiser
(2004, p. 275) states that “scaffolding entails a delicate negotiation between
providing support and continuing to engage learners actively in the process.”
Thus, educational scaffolding is finding an optimal level of challenge for learners
(Lepper et al., 1993). Self-regulated learning involves explicitly coaching students
to think about their study processes and to monitor their learning (Glenn,
2010). Zimmerman (1990) recommends self-regulated learning that includes
fast, accurate feedback about how students are doing and making students
demonstrate that they understand the provided feedback. Explicit instructions
on how to succeed at homework, papers, exams, projects, and presentations can
help students succeed.

Lepper et al. (1993) report that the best tutors are “both systematically
progressive and highly responsive to the learner. In general, their strategy is to
increase the task difficulty across problems, one step at a time, but only when
they are sure that the student is ready to advance” (p. 84). The authors go on
to say that “strategies for manipulating a learner’s sense of challenge may focus
on perceptions of the task itself, on perceptions of one’s own competence, or on
a combination of both” (p. 84). Instructors can motivate students in required
courses to perceive difficult tasks as achievable and perceive their own sense
of readiness by bolstering self-confidence, evolving curiosity, and promoting a
feeling of personal control.

The model results also provide strategies for graduate courses. In many
cases, intellectual skills may initially be easily acquired but retained and applied
to new situations with difficulty (Gagne and Driscoll, 1988). Driscoll (2005)
provides a relevant example: “Students who appeared to understand the new
statistical analysis procedure when the instructor went over it in class may
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experience problems trying to use it on new sets of data outside of class” (p.
160). This situation can frequently be a result of differences in student readiness,
often quantitative experience and knowledge. The model results suggest that
an instructor could pay careful attention to student performance early on in
a quantitative graduate course. Because the course goals typically require all
students to obtain and use quantitative tools at a given level of proficiency, and
there is limited in-class time to review and practice prerequisite mathematical
concepts and statistics, a math review could be provided prior to the graduate
program or before a specific course. Also, mathematical tools could be provided
through online videos or handouts. When the rate of student learning slows,
teachers can encourage students to enhance their readiness through these out-of-
class tutorials and peer assistance.

The model results, when combined with Csikszentmihalyi’s (1975) flow theory
of motivation, offer more guidelines on how to manage the level of complexity
that is introduced into a course. First, the flow theory of learning implies that
higher levels of learning will occur when instructors set high expectations for
student achievement. By “raising the bar,” teachers can inspire or motivate
students to higher rates of learning. In the original model, an exogenous, higher
level of challenge shifts the demarcation line ®* = 0 to the right, resulting in a
continuation of learning cycles, but at a higher rate of learning. Perhaps one of the
most overlooked aspects of college teaching is the ability of teachers to demand
greater levels of achievement from students. Moreover, when the challenge of a
course is congruent with student ability, an optimal learning experience occurs.

Ambrose et al. (2010) provide a wuseful list of strategies that help
instructors achieve high levels of expectations and achievement among
students, emphasizing the model outcomes: (1) align objectives, assessments,
and instructional strategies with student learning outcomes; (2) identify an
appropriate level of challenge; (3) create assignments and assessments that
provide the appropriate level of challenge; (4) provide opportunities for early
success; (5) articulate and clarify your expectations; (6) use rubrics; (7) provide
targeted feedback; (8) be fair and consistent; (9) educate students about the ways
we explain success and failure; and (10) describe effective study strategies (pp.
85-88). Implementation of these strategies is likely to move the classroom toward
the “dynamic classroom” approach, where learning cycles of stress and boredom
are reduced or, in the ideal case, eliminated.

In order to calibrate the rate of change in the challenge (¢) in such a way, a
teacher must know her students’ level of understanding and ability. Lepper et al.
(1993) emphasize the challenge of eliciting this type of information: “Of course,
it will be difficult, even for experts, to predict exactly how much difficulty a
given problem will pose for a particular learner” (p. 84). Time spent early in a
course understanding how much students know and how motivated they are to
learn more is a productive investment. To the degree possible, this could help
a teacher to manage course complexity to provide enough anxiety that students
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feel challenged to progress (Rauh and Seccia, 2006), but that they can realistically
master the material and feel the enjoyment of that mastery. Preassessments
and diagnostic assignments conducted early in the term can provide important
information about student knowledge and motivation (Ambrose et al., 2010, p.
86). This is one of the major outcomes of the model: for instructors to make a
strong effort to learn when their students are struggling or coasting. Frequent
evaluation and feedback from students throughout the course are essential to
maintaining a proper level of C. This corresponds to education literature that
suggests that frequent feedback can improve student learning outcomes (Frye,
1999).

Student motivation to learn (M) is exogenous to the model. Motivation
is defined as the personal investment that an individual has to reaching a
desired state or outcome (Maehr and Meyer, 1997). Wieman (2013) asserts that
motivation is likely to be the single most important determinant of learning.
Student readiness (R) is defined as a function of motivation (M). Therefore, an
understanding of M and how it changes () is a large part of R and calibrating
C relative to R, as previously discussed. Institutions (or specific departments)
that foster a culture of learning can increase the level of motivation for students.
Educational literature offers guidance in how to accomplish this. Nilson (2016),
citing Hobson (2001) and Sass (1989), concludes that “people learn more when
they are motivated to do so by the inspiration and enthusiasm of their instructors
or other people in their lives” (p. 4). Matching challenge rates (c¢) with learning
rates (k’) will eliminate learning cycles, but knowledge acquisition is also strongly
influenced by the level of motivation (M). It should be emphasized that students
vary enormously in levels of motivation, and their causes for being motivated
to learn. The theoretical model presented here suggests that any increase in
motivation would enhance the level of knowledge gained.

Ames (1990) and Maehr and Meyer (1997) provide comprehensive reviews of
how motivation relates to learning. Specific strategies that provide a classroom
environment conducive to enhancing motivation include (1) connecting the
material to the students’ interests; (2) providing authentic, real-world tasks;
(3) sharing relevance to students’ current academic lives; (4) demonstrating
the relevance of higher-level skills to students’ future professional lives; (5)
identifying and rewarding what you value; and (6) sharing your own passion
and enthusiasm for the discipline (Ambrose et al., 2010, pp. 83-85; Pintrich,
2003; Wieman, 2013).

6. Conclusions and Implications for Future Research

This research provides a mathematical model of the proposition that a stable
and sustainable rate of learning occurs when student readiness and challenges
are congruent. The model is a dynamic system of simultaneous differential
equations, which provides timely, relevant, and important implications for
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teachers and learners. The objective of this research is to utilize economic theory,
psychology of motivation, and educational research to construct a mathematical
model of learning, in order to identify the major determinants of a successful
learning environment for college-level students. Model results demonstrate that
instructors who engage students to understand their level of ability and goals
to design course expectations build such environments. Instructors willing to
place high demands on students (a high level of learning) that are still realistic
and flexible relative to student ability (the rate of challenge) offer students an
opportunity of a flow learning experience that builds knowledge. Specifically,
teachers who target the rate of student learning (rather than simply target
the level or rate of knowledge acquisition) may be able to create a learning
environment that is productive and enjoyable.

Students differ greatly in readiness, acceptability to challenge, ability,
knowledge, motivation, and learning outcomes. Therefore, instructors who adopt
a dynamic classroom approach based on the theoretical model will need to pay
careful attention, to the degree possible, to each student’s learning rate. Nilson
(2016) warns, however, “Just don’t expect to motivate every one of your students,
no matter what you do ... Celebrate those you inspire” (p. 103).

Another contribution of this research is expanding the use of economic
models in education. There has been a rich history of economic modeling to
evaluate student learning outcomes and differentiate between teaching methods.
As fruitful as these ex post analyses have been, there has been a lack of application
of conceptual economic models to the process of learning. By adapting Obst’s
(1978) behavioral model to learning, we demonstrate the appropriateness and
effectiveness of economic models in this area and provide a base for future
research.

The theoretical model not only yields strategies that enhance student learning,
but also suggests how future research could enhance our knowledge of how
students learn and how to maximize student learning. One limitation of the
current dynamic model of student learning presented previously is the treatment
of motivation (M) and knowledge (K) as exogenous variables. Future modeling
efforts could explore endogenous levels of motivation and knowledge, allowing
for new results and implications. The model could also be expanded by
incorporating differences across individual students. We believe that these model
extensions are likely to produce important implications for teaching and learning.

The dynamic model also provides important empirical hypotheses. Research
that investigates how teachers and students respond to changes in the rate of
challenge (c) and compares these to changes in the challenge level (C) would
provide evidence for the hypotheses of the model. Specifically, the model puts
forth the idea that teachers who focus on reducing fluctuations of boredom and
stress by matching the rate of challenge (¢) to changes in the rate of student
learning (k’) can find a steady-state equilibrium, whereas teachers who target
the level of learning (k) will be subjected to continuing volatility of learning

https://doi.org/10.1017/aae.2018.13 Published online by Cambridge University Press


https://doi.org/10.1017/aae.2018.13

Student Learning Model 521

cycles. These cycles of stress and boredom are costly to students, teachers, and
society at large, because they lower the rate of knowledge acquisition. Any
strategy, teaching tool, or course improvement that reduces or eliminates these
unproductive cycles will result in greater learning levels and a more productive
learning environment.
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Appendix: Local Stability Analysis of Dynamic Model of Learning

The dynamic model of learning is represented by equations (8) and (9) in the text,
rewritten here as equations (A-1) and (A-2).

= (k+m—c)® (A-1)
kR = —p[® — 5] (A-2)
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It is assumed that ¢, the rate of change in the level of challenge (¢ = C/C)
is exogenous. Intuitively, this refers to the extreme case when the instructor is
completely disconnected from the class and the students. In this case, the equilibrium
of the model occurs at E = (k,, ®.) = (¢ — m, S). The Jacobian matrix at the
equilibrium (Jg) is found in equation (A-3).

_ (3k'/3k  dkja®@\ _ (O -8\ _(0 -8 (A-3)
Je = a0’ ok 00 /od) ~ \@ k+m)—\S 0
The local stability of a system of dynamic equations depends on (1) the determinant

of Jg and (2) the trace of Jg, both evaluated at the equilibrium (Chiang, 1984;
Minorsky, 1962). From (A-3):

|Je| = BS > 0, (A-4)
tr (Jg) = 0. (A-5)

Thus, the Jacobian of this system of dynamic equations, evaluated at equilibrium,
has trace zero and determinant positive, implying cycles without convergence. Local
stability analysis results indicate that this equilibrium is a vortex, with streamlines in
the phase diagram (see Figure 3) that form a family of concentric loops, which never
reach the equilibrium point. Equilibrium is unattainable for the dynamic system of
equations in (A-1) and (A-2).

If the model presented in equations (A-1) and (A-2) is modified to reflect a more
realistic instructional environment, where the instructor reacts to student learning
rates, we can model a second dynamic system that can be analyzed using local
stability analysis for the presence of a stable equilibrium. If instructors alter the rate
of challenge (c), based on the rate of learning (k) in a countercyclical fashion, to
ameliorate stress and boredom, we achieve

c=c(k), wherec’ (k) < 0. (A-6)

By endogenizing the level of challenge, the dynamic system in (A-1) and (A-2)
becomes

® =[k+m—c(k)], (A-7)

kK =—B[®—S]. (A-8)

The equilibrium of this system is E = (k,, ®,) = [c(k) — m, S]. The demarcation line
@’ = 0 remains vertical in this case, with a different (larger) horizontal intercept,
equal to &k = ¢c(k) — m. The result is a vortex once again, because d®’/dk = [1 —
(k)] ®.

The contribution of Obst (1978) was to suggest that monetary policy should target
the rate of change of the rate of inflation, rather than the rate of inflation. In our
context, instructors could usefully consider gearing changes in the rate of challenge
(¢) to the rate of change in the rate of learning (k’). This alternative teaching rule is
made explicit in equation (A-9).

c=¢c (k), wherec’ (k) <0 (A-9)
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If the instructor follows this teaching rule, the level of challenge is endogenous
and depends on the rate of acceleration or deceleration of learning (k’). The learning
model system of equations becomes (A-10) and (A-11).

P’ = [k—i—m—c(k’)]cb (A-10)
k= —B[d -S| (A-11)

In this modified model, ® = 0 implies that, in equilibrium, k& = ¢(k’) — m.
Additionally, the equilibrium condition, k> = 0, implies that ® = S in equilibrium,
defined as @’ = k’ = 0. The Jacobian of the modified model evaluated at equilibrium

is equal to
_ (ok'jok ak'/a®) (0O _B (0 _B
Je = A0’ /ak 3’ /od) ~ \® k+m—c(K)—C(K)(—B)) — \S —(0)(—B)
(A-12)
We know that ¢’(0) < 0, from the assumption that ¢’(k’) < 0. The determinant and
trace are
Je| = BS > 0, (A-13)
tr(Jg) = —c(0)(=B) < 0. (A-14)

The Jacobian at equilibrium is trace negative and determinant positive, which
corresponds to either (1) a stable focus or (2) a stable node. Whether a stable focus or
node occurs depends on the magnitude of (tr]r)? and 4IJgl: if (tr]g)? > 4IJ£l, a stable
node occurs, whereas if (trfg)> < 4lJl, a stable focus occurs. The larger the absolute
value of the derivative ¢’(0), the larger the value of tr/g, and the more probable (tr/g)?
> 4|]gl, the condition necessary for the existence of a stable node, with streamlines
flowing noncyclically toward the node (Figure 4).

Intuitively, this result suggests that the more responsive an instructor is in matching
the rate of challenge with the rate of change in the learning rate, the more likely a
stable equilibrium is reached, and the more rapidly the model reaches the steady-state
equilibrium. Graphically, this can be seen in Figure 4: a larger derivative ¢’(k’) results
in a flatter demarcation line ®* = 0. The closer to horizontal the demarcation line,
the faster the streamlines cycle toward equilibrium. Therefore, the more perceptive an
instructor is to changes in learning rates, and the more rapidly the instructor can alter
the rate of challenge, the faster a steady-state learning environment can be reached,
and the cyclicality of stress and boredom can be reduced or brought to a halt.
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