

Composition operators on weighted analytic spaces

Marouane Bourass[,](https://orcid.org/0000-0002-9494-3047) Ibrahim Marrhich^o, and Fouzia Mkadmi

Abstract. We characterize the membership in the Schatten ideals S_p , $0 < p < \infty$, of composition operators acting on weighted Dirichlet spaces. Our results concern a large class of weights. In particular, we examine the case of perturbed superharmonic weights. Characterization of composition operators acting on weighted Bergman spaces to be in S_p is also given.

1 Introduction

Let Hol(\mathbb{D}) be the set of holomorphic functions on the open unit disk \mathbb{D} of the complex plane $\mathbb C$. For an analytic self-map φ on $\mathbb D$, we consider the composition operator

$$
C_\varphi f\coloneqq f\circ\varphi,\quad f\in\mathrm{Hol}\big(\mathbb{D}\big).
$$

For general information on composition operators on spaces of analytic functions, we refer the reader to the monographs by Shapiro [\[26\]](#page-17-0) and Cowen and MacCluer [\[9\]](#page-16-0). Boundedness, compactness, and membership in Schatten ideals of composition operators are the goals of several papers on various spaces of analytic functions (see, for instance, $[10, 16, 21, 24, 27]$ $[10, 16, 21, 24, 27]$ $[10, 16, 21, 24, 27]$ $[10, 16, 21, 24, 27]$ $[10, 16, 21, 24, 27]$ $[10, 16, 21, 24, 27]$ $[10, 16, 21, 24, 27]$ $[10, 16, 21, 24, 27]$ $[10, 16, 21, 24, 27]$). Recall that, for $p > 0$, the Schatten *p*-ideal of a separable Hilbert space H , denoted by $S_p(H)$, consists of compact operators *T* on H for which the sequence of singular values $s_n(T)$ belongs to ℓ^p .

For α > −1, let \mathcal{H}_α be the weighted analytic space given by

$$
\mathcal{H}_{\alpha} = \left\{ f \in Hol(\mathbb{D}) : \int_{\mathbb{D}} |f'(z)|^2 dA_{\alpha}(z) < \infty \right\},\,
$$

where $dA_{\alpha}(z) = (1 - |z|^2)^{\alpha} dA(z)$. As usual, $dA(z) = dx dy/\pi$, $z = x + iy$, is the normalized Lebesgue area measure on **D**. For α ∈ (-1, 1), \mathcal{H}_α is the standard Dirichlet space and is denoted by \mathcal{D}_{α} . \mathcal{H}_1 is the classical Hardy space H^2 . For $\alpha > 1$, \mathcal{H}_{α} is the standard Bergman space $A^2_{\alpha-2}$. Recall that

$$
A_{\beta}^{2} \coloneqq \left\{ f \in Hol(\mathbb{D}) : \int_{\mathbb{D}} |f(z)|^{2} dA_{\beta}(z) < \infty \right\}, \quad \beta > -1.
$$

Received by the editors January 16, 2023; revised April 3, 2023; accepted April 5, 2023. Published online on Cambridge Core April 17, 2023.

AMS subject classification: **47B32**, **30H20**, **47B10**, 47B33, 47B35.

Keywords: Composition operators, Toeplitz operators, weighted Bergman spaces, weighted Dirichlet spaces, Schatten *p*-ideals.

Littlewood's subordination principle guarantees the boundedness of *C^φ* on the Hardy space H^2 (see, for example, [\[26\]](#page-17-0)). The compactness of C_φ on H^2 has been characterized in [\[25\]](#page-17-4) by Shapiro. For $\alpha \geq 1$, Luecking and Zhu obtained in [\[19\]](#page-16-3) a characterization for a composition operator C_{φ} to be in $S_{p}(\mathcal{H}_{\alpha})$ for $p > 0$. Pau and Pérez in [\[21\]](#page-17-1) gave an analogous characterization for the standard Dirichlet spaces \mathcal{D}_{α} , $\alpha \in (0,1)$.

Let φ be an analytic self map of \mathbb{D} , and let $\alpha > -1$. The Nevanlinna counting function $N_{\varphi,\alpha}$ of φ associated with \mathcal{H}_α is defined by

$$
N_{\varphi,\alpha}(w)=\sum_{w=\varphi(z)}\left(1-|z|^2\right)^{\alpha}\quad\text{ if }w\in\varphi(\mathbb{D});\qquad N_{\varphi,\alpha}(w)=0\quad\text{ if }w\notin\varphi(\mathbb{D}).
$$

We summarize the results obtained in [\[19,](#page-16-3) [21\]](#page-17-1) as follows. Let $\alpha > 0$ and $p > 0$. Then

(1.1)
$$
C_{\varphi} \in S_p \left(\mathcal{H}_{\alpha} \right) \Longleftrightarrow \int_{\mathbb{D}} \left(\frac{N_{\varphi,\alpha}(w)}{\left(1 - |w| \right)^{\alpha}} \right)^{p/2} d\lambda(w) < \infty,
$$

where $d\lambda(z)\coloneqq dA(z)/\big(1-|z|^2\big)^2$ is the Möbius invariant measure on $\mathbb D.$

A weight on $\mathbb D$ is a function $\omega : \mathbb D \to (0, +\infty)$ which is integrable with respect to *dA*. If ω : $[0,1) \rightarrow (0, +\infty)$ is a radial weight, then we extend it to D by setting $\omega(z)$ = *ω*(|*z*|). The weighted Dirichlet space \mathcal{D}_ω associated with a weight *ω* on **D** is defined by

$$
\mathcal{D}_{\omega} = \left\{ f \in Hol(\mathbb{D}) : \mathcal{D}_{\omega}(f) := \left(\int_{\mathbb{D}} |f'(z)|^2 \omega(z) dA(z) \right)^{1/2} < \infty \right\}.
$$

The space \mathcal{D}_{ω} endowed with the norm $||f||_{\mathcal{D}_{\omega}}^2 = |f(0)|^2 + \mathcal{D}_{\omega}(f)^2$ is a Hilbert space (see Lemma [2.1\)](#page-4-0).

For $p > 1$, let \mathcal{C}_p be the set of weights ω such that, for some $\alpha \in (0,1)$ (or equivalently for all $\alpha \in (0,1)$, see [\[18\]](#page-16-4)), we have

$$
\left(\int_{\Delta(z,\alpha)}\omega dA\right)^{1/p}\left(\int_{\Delta(z,\alpha)}\omega^{-p'/p}dA\right)^{1/p'}\lesssim |\Delta(z,\alpha)|,\ z\in\mathbb{D},
$$

where $\Delta(z, \alpha) = \{ w \in \mathbb{D} : |z - w| < \alpha(1 - |z|^2) \} \text{ and } 1/p + 1/p' = 1. \text{ Here and}$ throughout the paper, for a Borel set Δ of \mathbb{D} , $|\Delta|$ denotes the Lebesgue measure of Δ . As usual, for real positive quantities *A* and *B*, $A \leq B$ means that there is an absolute constant *C* > 0 such that $A \leq CB$. If $A \leq B$ and $B \leq A$ both hold, then we write $A \approx B$.

We denote

$$
\tilde{\omega}(z)=\frac{1}{(1-|z|^2)^2}\int_{\Delta(z,1/2)}\omega(\zeta)dA(\zeta),\ z\in\mathbb{D},
$$

and, for $t > 0$, let

$$
\omega_t(z)=\int_{\mathbb{D}}\frac{\omega(w)(1-|z|^2)^t}{|1-\overline{w}z|^{2+t}}dA(w),\ z\in\mathbb{D}.
$$

For $p > 1$ and $t \ge 0$, a weight ω is said to belong to the class $\mathcal{C}_{p,t}$ if $\omega \in \mathcal{C}_p$ and $\omega_t \lesssim \tilde{\omega}$. The class of such weights is introduced by Bourass and Marrhich in [\[7\]](#page-16-5). In this paper, based on results obtained in [\[7\]](#page-16-5), we obtain characterizations of boundedness,

compactness, and Schatten classes membership for composition operators on D*ω*, *ω* ∈ C*p*,*t*. Our results cover Bekollé–Bonami weights, superharmonic weights, and the radial admissible weights introduced by Kellay and Lefèvre in [\[15\]](#page-16-6).

In particular, we are interested in perturbed superharmonic weights on D. Let $u \in \mathbb{C}^2(\mathbb{D})$ be a positive superharmonic function on \mathbb{D} . Recall that *u* admits the representation

$$
(1.2) \t u(z) = \int_{\mathbb{D}} \log \left| \frac{1 - \overline{\zeta} z}{z - \zeta} \right| \frac{d \sigma(\zeta)}{1 - |\zeta|^2} + P_{\nu}(z) =: S_{\sigma}(z) + P_{\nu}(z),
$$

for a unique finite positive Borel measure σ on $\mathbb D$ and a unique finite positive Borel measure *v* on the unit circle $\mathbb{T} := \partial \mathbb{D}$ (see [\[2\]](#page-16-7)). Here,

$$
P_{\nu}(z) \coloneqq \int_{\mathbb{T}} \frac{1-|z|^2}{|1-\overline{\xi}z|^2} d\nu(\xi)
$$

is the Poisson transform of the measure *ν* on \mathbb{T} . Let *ω* be a weight of the form $\omega(z)$ = $(1-|z|^2)^\alpha u(z)$, $\alpha > -1$. The space \mathcal{D}_ω is called the perturbed superharmonically weighted Dirichlet space. We adopt the notation \mathcal{D}_{σ} (resp. \mathcal{D}_{ν}) instead of $\mathcal{D}_{S_{\sigma}}$ (resp. D_{P_n}). The generalized Nevanlinna counting function of *φ* associated with a weight *ω* is defined by

$$
N_{\varphi,\omega}(w)=\sum_{w=\varphi(z)}\omega(z)\ \text{ if }w\in\varphi(\mathbb{D});\ \ N_{\varphi,\omega}(w)=0\ \text{ if }w\notin\varphi(\mathbb{D}).
$$

We write $N_{\varphi, \nu}$ instead of $N_{\varphi, P_{\nu}}$. In [\[24\]](#page-17-2), Sarason and Silva characterized boundedness and compactness of operators C_{φ} : $\mathcal{D}_{\nu} \to \mathcal{D}_{\nu}$ in terms of $N_{\varphi,\nu}$. They proved that C_{φ} is bounded (resp. compact) on D*^ν* if and only if

$$
\int_{\Delta_w} \frac{N_{\varphi,\nu}(z)}{P_{\nu}(z)} dA(z) = O(|\Delta_w|) \qquad \text{(resp. } o(|\Delta_w|) \text{ as } |w| \to 1^-),
$$

where $\Delta_w = \Delta(w, \frac{1}{2})$. In [\[12\]](#page-16-8), El-Fallah, Mahzouli, Marrhich, and Naqos proved that $C_{\varphi} \in S_{p}(\mathcal{D}_{\nu})$, for $p > 0$, if and only if

$$
\sum_{n=0}^{+\infty} \sum_{j=0}^{2^n-1} \left(\frac{1}{|R_{n,j}|} \int_{R_{n,j}} \frac{N_{\varphi,\nu}(z)}{P_{\nu}(z)} dA(z) \right)^{\frac{p}{2}} < \infty,
$$

where

$$
R_{n,j} := \left\{ re^{it} : \frac{1}{2^{n+1}} < 1 - r \leq \frac{1}{2^n} \text{ and } \frac{2\pi j}{2^n} \leq t < \frac{2\pi (j+1)}{2^n} \right\}, \quad n \in \mathbb{N} \text{ and } 0 \leq j \leq 2^n - 1,
$$

are the dyadic disks.

On the space \mathcal{D}_{σ} , Bao, Göğüş, and Pouliasis [\[5\]](#page-16-9) proved that *C*_{*φ*} is bounded (resp. compact) if and only if

$$
\check{N}_{\varphi,\sigma}(w) = O(U_{\sigma}(w)) \qquad \text{(resp. } o(U_{\sigma}(w)) \text{ as } (|w| \to 1^{-})\text{)},
$$

with
$$
U_{\sigma}(z) = \int_{\mathbb{D}} \frac{1-|z|^2}{|1-\overline{\zeta}z|^2} d\sigma(\zeta)
$$
 and
\n
$$
\check{N}_{\varphi,\sigma}(w) = \sum_{w=\varphi(z)} U_{\sigma}(z) \text{ if } w \in \varphi(\mathbb{D}); \ \check{N}_{\varphi,\sigma}(w) = 0 \text{ if } w \notin \varphi(\mathbb{D}).
$$

We will characterize boundedness, compactness, and Schatten classes membership of composition operators on perturbed superharmonically weighted Dirichlet spaces $D_ω$ with $ω(z) = (1 - |z|^2)^\alpha (S_σ(z) + P_ν(z))$. In particular, we prove that $C_φ : D_σ →$ \mathcal{D}_{σ} belongs to $\mathcal{S}_{p}(\mathcal{D}_{\sigma})$, for $p > 0$, if and only if

$$
\int_{\mathbb{D}}\left(\frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)}\right)^{p/2}d\lambda(z)<\infty.
$$

In this paper, we are interested also in composition operators on weighted Bergman spaces. In particular, we extend the result obtained by Constantin in [\[8\]](#page-16-10) concerning the membership of C_{φ} to $\mathcal{S}_{p}(A_{\omega}^{2})$, for $p \geq 2$ and in the Bekollé–Bonami weights setting, to all $p > 0$ and for $\omega \in \mathcal{C}_{p,t}$.

Throughout this paper, we decompose D by using the disks $\Delta(z, r)$, $0 < r < 1$. The sets $\Delta(z, r)$ give a (ρ, δ) −lattice of D for $\rho(z) = (1 - |z|^2)/2$ and for some choice of *δ*. Let $(Δ(z_n, δ))_n$ be the corresponding $(ρ, δ)$ -lattice of D , and let $(Δ_n)_n$ be an enumeration of $\Delta(z_n, \delta)$. Let $b > 1$ such that $b\Delta_n = \Delta(z_n, b\delta)$ is a covering of D of finite multiplicity (see [\[11,](#page-16-11) Proposition 3.1] and [\[20\]](#page-17-5) for details and generalization).

2 Composition operators on weighted Dirichlet spaces

2.1 General results

Suppose that ω is a weight such that $\omega \in \mathcal{C}_{p_0,t}$ for some $p_0 > 1$ and $t \geq 0$. The weighted Bergman space associated with *ω* is defined by

$$
A^2_{\omega} = \left\{ f \in Hol(\mathbb{D}) : ||f||_{A^2_{\omega}} := \left(\int_{\mathbb{D}} |f(z)|^2 \omega(z) dA(z) \right)^{1/2} < \infty \right\}.
$$

Notice that A^2_ω is a reproducing kernel Hilbert space since each point evaluation e_z : $A^2_{\omega} \rightarrow \mathbb{C}$, which takes *f* to $f(z)$, is a bounded linear functional on A^2_{ω} (see [\[7\]](#page-16-5)). The reproducing kernel of A^2_{ω} will be denoted by K^{ω} . The Toeplitz operator T_{μ} , associated with a positive Borel measure μ on $\mathbb D$, acting on A^2_ω is the transformation

$$
T_{\mu}f(z)=\int_{\mathbb{D}}f(\zeta)K^{\omega}(z,\zeta)\omega(\zeta)d\mu(\zeta),\quad f\in A^2_{\omega},\ z\in\mathbb{D}.
$$

In the sequel, for a positive Borel measure μ on \mathbb{D} , we denote $d\mu_{\omega} = \omega d\mu$. The following results are proved in [\[7\]](#page-16-5).

Theorem A *Let μ be a finite positive Borel measure on* D*. The following assertions are equivalent.*

- (1) *The Toeplitz operator* T_{μ} *is bounded (resp. compact) on* A^2_{ω} *.*
- (2) $\mu_{\omega}(\Delta_n) = O(A_{\omega}(\Delta_n))$ (resp. $\mu_{\omega}(\Delta_n) = o(A_{\omega}(\Delta_n))$), $n \to \infty$.

<https://doi.org/10.4153/S0008439523000292>Published online by Cambridge University Press

Theorem B *Let μ be a finite positive Borel measure on* D *such that T^μ is compact on* A^2_{ω} *, and let <code>p</code> > 0. Then* T_{μ} *belongs to* $\mathcal{S}_p(A^2_{\omega})$ *if and only if*

$$
\sum_{n=0}^{\infty} \left(\frac{\mu_{\omega}(\Delta_n)}{A_{\omega}(\Delta_n)} \right)^p < \infty.
$$

We will apply Theorems [A](#page-3-0) and [B](#page-4-1) to characterize boundedness, compactness, and Schatten class composition operators on \mathcal{D}_{ω} . The following lemma, which implies, in particular, that (D*ω*, ∥**.**∥^D**^ω**) is a Hilbert space, will be needed for the proof of next result.

Lemma 2.1 Suppose that ω is a weight such that $\omega \in \mathcal{C}_p$ for some $p > 1$. Then, each *point evaluation is bounded on* $(\mathcal{D}_{\omega}, \| \| \mathcal{D}_{\omega})$ *.*

Proof Fix *z* in \mathbb{D} , and let $f \in \mathcal{D}_\omega$. We have $|f(z) - f(0)|^2 \le \int_0^1$ 0 ∣*f* ′ (*sz*)∣ ² *ds*. Since $f' \in A^2_\omega$ and $\omega \in \mathcal{C}_p$, then

$$
|f'(sz)|^2 \lesssim \frac{1}{(1-|sz|^2)^2 \tilde{\omega}(sz)} \|f'\|_{A^2_{\omega}}^2, \ s \in [0,1]
$$

(see [\[3\]](#page-16-12) or [\[7\]](#page-16-5)). Let *r* ∈ (∣*z*∣, 1). We have

$$
\inf_{w \in [0,z]} \tilde{\omega}(w) \ge \inf_{w \in \Delta(0,r)} \tilde{\omega}(w) \gtrsim \tilde{\omega}(0) > 0,
$$

since $\tilde{\omega}(w) \approx \tilde{\omega}(0)$ when $w \in \Delta(0, r)$ (see Lemma 2.2 in [\[8\]](#page-16-10)). We obtain

$$
|f(z)-f(0)|^2 \lesssim \|f'\|_{A^2_{\omega}}^2 \int_0^1 \frac{1}{(1-|sz|^2)^2 \tilde{\omega}(sz)} ds \lesssim \|f'\|_{A^2_{\omega}}^2 \le \|f\|_{\mathcal{D}_{\omega}}^2.
$$

Consequently, $|f(z)|^2 \le |f(z) - f(0)|^2 + |f(0)|^2 \le ||f||_{\mathcal{D}_{av}}^2$. \mathcal{D}_{ω} **.**

Theorem 2.2 Suppose that ω is a weight such that $\omega \in \mathcal{C}_{p_0,t}$ for some $p_0 > 1$ and $t \ge 0$. *Let φ be an analytic self-map of* D*. Then:*

(1) *C^φ is bounded on* D*^ω if and only if*

$$
\int_{\Delta_n} N_{\varphi,\omega}(z) dA(z) \lesssim \int_{\Delta_n} \omega(z) dA(z), \quad n \in \mathbb{N}.
$$

(2) *C^φ is compact on* D*^ω if and only if*

$$
\int_{\Delta_n} N_{\varphi,\omega}(z) dA(z) = o\left(\int_{\Delta_n} \omega(z) dA(z)\right), \quad (n \to \infty).
$$

Proof Suppose that C_{φ} is bounded on \mathcal{D}_{ω} . Let $V_{\omega} : \mathcal{D}_{\omega} \to A_{\omega}^2$ be the bounded operator defined by $V_{\omega} f = f'$, and let $D_{\varphi,\omega}: A_{\omega}^2 \to A_{\omega}^2$ be the operator defined by

$$
D_{\varphi,\omega}f\coloneq V_{\omega}C_{\varphi}V_{\omega}^*f.
$$

By a direct calculation, we have $D_{\varphi,\omega}f = \varphi'.f \circ \varphi, f \in A^2_{\omega}$. The operator $D^*_{\varphi,\omega}D_{\varphi,\omega}$ is then bounded on A^2_{ω} . For $f \in A^2_{\omega}$, the change of variable formula [\[1\]](#page-16-13) gives

$$
D_{\varphi,\omega}^* D_{\varphi,\omega} f(z) = \langle D_{\varphi,\omega} f, D_{\varphi,\omega} K_z^{\omega} \rangle_{A_{\omega}^2}
$$

=
$$
\int_{\mathbb{D}} f(\xi) \overline{K_z^{\omega}(\xi)} \omega(\xi) d\omega_{\varphi}(\xi)
$$

=
$$
T_{\omega_{\varphi}} f(z),
$$

where ω_{φ} is the measure defined on \mathbb{D} by $d\omega_{\varphi} = \frac{N_{\varphi,\omega}}{\omega} dA$. It follows that $T_{\omega_{\varphi}}$ is bounded on A^2_{ω} . By (1) of Theorem [A,](#page-3-0) we deduce that

(2.1)
$$
\int_{\Delta_n} N_{\varphi,\omega}(z) dA(z) \lesssim \int_{\Delta_n} \omega(z) dA(z), \quad n \in \mathbb{N}.
$$

Conversely, assume that [\(2.1\)](#page-5-0) holds, and let $f \in \mathcal{D}_{\omega}$. By using once again the change of variable formula, we get

$$
\|C_{\varphi}f\|_{\mathcal{D}_{\omega}}^{2} = |f(\varphi(0))|^{2} + \langle T_{\omega_{\varphi}}f', f' \rangle_{A_{\omega}^{2}}
$$

\n
$$
\leq |f(\varphi(0))|^{2} + \|T_{\omega_{\varphi}}\| \|f'\|_{A_{\omega}^{2}}^{2}
$$

\n
$$
\leq |f(\varphi(0))|^{2} + \|f\|_{\mathcal{D}_{\omega}}^{2}.
$$

By Lemma [2.1,](#page-4-0) we deduce that $||C_{\varphi}f||_{\mathcal{D}_{\omega}}^2 \lesssim ||f||_{\mathcal{D}_{\omega}}^2$, $f \in \mathcal{D}_{\omega}$. Therefore, C_{φ} is bounded on D*ω*.

To prove the second assertion, we may assume that C_{φ} is bounded on \mathcal{D}_{ω} . We have

(2.2)
$$
C_{\varphi}f = V_{\omega}^* D_{\varphi,\omega} V_{\omega} f + Kf, \quad f \in \mathcal{D}_{\omega},
$$

where $Kf(z) = f(\varphi(0))$, $f \in \mathcal{D}_{\omega}$, and $z \in \mathbb{D}$. Since *K* is bounded on \mathcal{D}_{ω} by Lemma [2.1](#page-4-0) then, by definition of $D_{\varphi,\omega}$ on the one hand and by [\(2.2\)](#page-5-1) on the other hand, C_{φ} is compact on \mathcal{D}_{ω} if and only if $D_{\varphi,\omega}$ is compact on A_{ω}^2 . In other words, C_{φ} is compact on \mathcal{D}_{ω} if and only if $T_{\omega_{\varphi}}$ is compact on A^2_{ω} . The result follows now by (2) of Theorem A . \blacksquare

Theorem 2.3 Suppose that ω is a weight such that $\omega \in \mathcal{C}_{p_0,t}$ for some $p_0 > 1$ and $t \ge 0$. *Assume that* φ *<i>is an analytic self-map of* $\mathbb D$ *such that* C_{φ} *is compact on* $\mathbb D_{\omega}$ *. Then* C_{φ} *belongs to* $S_p(\mathcal{D}_\omega)$ *, for* $p > 0$ *, if and only if*

$$
\sum_{n=0}^{\infty} \left(\frac{\int_{\Delta_n} N_{\varphi,\omega}(z) dA(z)}{\int_{\Delta_n} \omega(z) dA(z)} \right)^{p/2} < \infty.
$$

Proof Note that C_{φ} belongs to $S_p(\mathcal{D}_{\omega})$ if and only if $D_{\varphi,\omega}$ belongs to $S_p(A_{\omega}^2)$ by [\(2.2\)](#page-5-1). Since

$$
D_{\varphi,\omega}^* D_{\varphi,\omega} f = T_{\omega_\varphi} f, \quad f \in A_\omega^2,
$$

then $C_{\varphi} \in \mathcal{S}_p(\mathcal{D}_{\omega})$ if and only if $T_{\omega_{\varphi}} \in \mathcal{S}_{\frac{p}{2}}(A_{\omega}^2)$. The result follows by Theorem [B.](#page-4-1) ■

If ω is a weight such that for some (equivalently for all) $r \in (0,1)$, we have

$$
(2.3) \t\t\t \omega(z) \asymp \omega(w), \ w \in \Delta(z,r),
$$

then $\omega \in \mathcal{C}_p$ for all $p > 1$. Moreover, under the condition [\(2.3\)](#page-6-0), we have

$$
\frac{1}{|\Delta(z,\delta)|}\int_{\Delta(z,\delta)}\omega(\zeta)dA(\zeta)\asymp\omega(z),\ z\in\mathbb{D}
$$

for all $\delta \in (0,1)$. In this case, Theorems [2.2](#page-4-2) and [2.3](#page-5-2) can be reduced to the following result.

Corollary 2.4 *Let φ be an analytic self-map of* D*. Suppose that ω is a weight satisfying* [\(2.3\)](#page-6-0) *and such that* $\omega_t \leq \omega$ *for some t* ≥ 0 *. Then:*

(1) *C^φ is bounded on* D*^ω if and only if*

$$
\frac{1}{|\Delta_n|}\int_{\Delta_n}\frac{N_{\varphi,\omega}(z)}{\omega(z)}dA(z)=O(1),\quad \forall n\in\mathbb{N}.
$$

(2) *C^φ is compact on* D*^ω if and only if*

$$
\frac{1}{|\Delta_n|}\int_{\Delta_n}\frac{N_{\varphi,\omega}(z)}{\omega(z)}dA(z)=o(1),\quad (n\to\infty).
$$

(3) C_{φ} *belongs to* $S_p(\mathcal{D}_{\varphi})$ *, for* $p > 0$ *, if and only if*

$$
\sum_{n=0}^{\infty} \left(\frac{1}{|\Delta_n|} \int_{\Delta_n} \frac{N_{\varphi,\omega}(z)}{\omega(z)} dA(z) \right)^{p/2} < \infty.
$$

2.2 Radial weights

A radial weight ω in $\mathcal{C}^2[0,1)$ is called admissible if: $(\mathcal{W}_1)\omega$ is nonincreasing. (\mathcal{W}_2) *ω*(*r*)(1−*r*)^{−(1+*δ*)} is nondecreasing for some *δ* > 0. (W₃) $\lim_{r\to1^-}$ *ω*(*r*) = 0. (W₄) One of the two properties of convexity is fulfilled

$$
\begin{cases}\n(\mathcal{W}_4^{(I)}): \omega \text{ is convex and } \lim_{r \to 1^-} \omega'(r) = 0, \\
(\mathcal{W}_4^{(II)}): \omega \text{ is concave.} \n\end{cases}
$$

If ω satisfies (\mathcal{W}_1) – (\mathcal{W}_3) and $(\mathcal{W}_4^{(I)})$ (resp. $(\mathcal{W}_4^{(II)})$), then we say that ω is (I) admissible (resp. (*II*)-admissible). Kellay and Lefèvre [\[15\]](#page-16-6) proved the following result.

Theorem C (1) Let ω be a (II)-admissible weight. Then C_{ω} is bounded on \mathcal{D}_{ω} if *and only if* $N_{\varphi,\omega}(z) = O(\omega(z))$, $z \in \mathbb{D}$.

(2) Let ω be an admissible weight. Then C_{ω} is compact on \mathcal{D}_{ω} *if and only if* $N_{\omega,\omega}(z)$ = $o(w(z)), |z| → 1^-$.

As noticed in [\[15\]](#page-16-6), C_{φ} is always bounded on \mathcal{D}_{ω} if ω is an (*I*)-admissible weight. We describe in the following theorem the membership of C_{φ} in $\mathcal{S}_{p}(\mathcal{D}_{\omega})$ for admissible weights.

Theorem 2.5 *Let φ be an analytic self-map of* D*, and let ω be an admissible weight. Then* C_{φ} *belongs to* $S_{p}(\mathcal{D}_{\omega})$ *, for* $p > 0$ *, if and only if*

(2.4)
$$
\int_{\mathbb{D}} \left(\frac{N_{\varphi,\omega}(z)}{\omega(z)} \right)^{p/2} d\lambda(z) < \infty.
$$

Proof Let *z* in \mathbb{D} , and let $w \in \Delta(z, r)$. Suppose that $|z| \le |w|$. By (\mathcal{W}_1) , we have $\omega(z) \geq \omega(w)$, and by (\mathcal{W}_2) , we have

$$
\omega(z)=\frac{\omega(z)}{(1-|z|)^{\delta+1}}\left(1-|z|\right)^{\delta+1}\leq \frac{\omega(w)}{(1-|w|)^{\delta+1}}\left(1-|z|\right)^{\delta+1}\asymp \omega(w),
$$

where *δ* is the constant in (W_2) . Similarly, we have *ω*(*z*) \times *ω*(*w*) if $|w| ≤ |z|$. Therefore, *ω* satisfies the condition [\(2.3\)](#page-6-0). On the other hand, the conditions (W_1) and (W_2) imply that $\omega_{2+2\delta} \leq \omega$ (see [\[15,](#page-16-6) Lemma 2.4]). By (3) of Corollary [2.4,](#page-6-1) it follows that C_{φ} belongs to $S_p(\mathcal{D}_\omega)$, for $p > 0$, if and only if

$$
(2.5) \qquad \qquad \sum_{n=0}^{\infty} \left(\frac{1}{|\Delta_n|} \int_{\Delta_n} \frac{N_{\varphi,\omega}(z)}{\omega(z)} dA(z) \right)^{p/2} < \infty.
$$

Now, since $N_{\varphi,\omega}$ satisfies the sub-mean-value property, that is,

$$
(2.6) \tN_{\varphi,\omega}(z) \lesssim \frac{1}{|\Delta(z,r)|} \int_{\Delta(z,r)} N_{\varphi,\omega}(w) dA(w), \quad z \in \mathbb{D}
$$

(see Lemmas 2.2 and 2.3 in [\[15\]](#page-16-6)), then, similarly to the proof of Theorem [2.9,](#page-10-0) the condition [\(2.5\)](#page-7-0) is equivalent to the condition [\(2.4\)](#page-7-1). ■

2.3 Remarks and examples

• A radial weight ω is called almost standard if ω satisfies (W_1) – (W_3) . In the recent paper [\[13\]](#page-16-14), Esmaeili and Kellay studied the boundedness and the compactness of weighted composition operators on Bergman and Dirichlet spaces associated with almost standard weights. As noticed in the proof of Theorem [2.5,](#page-7-2) every almost standard weight satisfies [\(2.3\)](#page-6-0) and $\omega_{2+2\delta} \leq \omega$. Therefore, Corollary [2.4](#page-6-1) can be applied for any almost standard weight.

• Let ω be a weight on $\mathbb D$ such that there are constants $s \in (-1, 0)$ and $\eta \ge 0$ for which

$$
(2.7) \qquad \omega_{s,\eta}(z)\coloneqq \int_{\mathbb{D}}\frac{\omega(\xi)(1-|\xi|^2)^s(1-|z|^2)^{\eta}}{|1-\overline{\xi}z|^{2+s+\eta}}dA(\xi)\lesssim \omega(z),\quad z\in\mathbb{D}.
$$

This condition is similar to the one that appears in [\[6\]](#page-16-15). Note that any standard weight $\omega_{\alpha}(z) = (1 - |z|^2)^{\alpha}$, for $\alpha > -1$, satisfies the condition [\(2.7\)](#page-7-3) since for $s \in (\max(-1, -1$ *α*), 0) and $η > max(0, α)$, we have

$$
\int_{\mathbb{D}}\frac{(1-|z|^2)^{\alpha+s}}{|1-\overline{w}z|^{2+s+\eta}}dA(z)\asymp(1-|w|^2)^{\alpha-\eta},\quad w\in\mathbb{D}.
$$

The following lemma is stated in [\[7\]](#page-16-5).

Lemma A Let ω be a weight satisfying [\(2.7\)](#page-7-3) for some constants $s \in (-1, 0)$ and $\eta \ge 0$. *Then ω satisfies* [\(2.7\)](#page-7-3) *for all s'* > *s and* $β$ > *η*.

Let $1 < p, p' < \infty$ such that $\frac{1}{p} + \frac{1}{p'} = 1$, and let $\eta > -1$. The class of Bekollé–Bonami weights $B_p(\eta)$ consists of weights ω such that

$$
\bigg(\int_{S(\theta,h)}\omega dA_{\eta}\bigg)\bigg(\int_{S(\theta,h)}\omega^{-p'/p}dA_{\eta}\bigg)^{p/p'}\lesssim \big(A_{\eta}(S(\theta,h))\big)^p
$$

for any Carleson square

S(θ , *h*) := {*re*^{*iα*} : 1 – *h* < *r* < 1, $|\theta - \alpha|$ < *h*/2}, $\theta \in [0, 2\pi]$, $h \in (0, 1)$.

Note that if $\frac{\omega}{(1-|z|^2)^{\eta}} \in B_p(\eta)$, for some $p > 1$ and $\eta > -1$, then $\omega \in \mathcal{C}_{p,t}$ for all $t \geq$ *p*(*η* + 2) − 2 (see [\[3,](#page-16-12) Lemma 2.1]).

If *ω* is a weight on D that satisfies [\(2.7\)](#page-7-3), then by Lemma [A,](#page-8-0) $\omega_n \leq \omega$ for some $\eta \geq 0$. Using Corollary 4.4 from [\[4\]](#page-16-16) (see the proof of $(c) \Rightarrow (b)$), we find that $(1-|z|^2)^{-\eta} \omega$ belongs to $B_p(\eta)$ for all $p > 1$. We conclude that if ω satisfies [\(2.7\)](#page-7-3), then $\omega \in \mathcal{C}_{p,t}$ for all $p > 1$ and some $t \ge 0$. As examples, we consider here weights which appear in [\[6\]](#page-16-15). Let *μ* be a finite positive Borel mesure on D and $b \in \mathbb{R}$ such that $\int_D (1 - |w|^2)^b d\mu(w)$ ∞. Let *ν* be a finite positive Borel measure on T. Let *a* > −1, and let *c* < *a* + 2. Using Lemma 2.5 in [\[14\]](#page-16-17), one can verify that the weight

$$
\omega(z)=(1-|z|^2)^a\left(\int_{\mathbb{D}}\frac{(1-|w|^2)^b}{|1-z\overline{w}|^c}d\mu(w)+\int_{\mathbb{T}}\frac{d\nu(\zeta)}{|1-\overline{\zeta}z|^c}\right)
$$

satisfies the condition [\(2.7\)](#page-7-3) for all $\eta > a$ and $c - a - 2 < s < 0$. Notice that the previous weight satisfies, in addition, the condition [\(2.3\)](#page-6-0).

Remark 2.6 Let ω be a weight satisfying [\(2.7\)](#page-7-3) with $s \in (-1, 0)$ and $t \ge 0$. Then (1 – *|z*|²)^{*α*}*ω* satisfies [\(2.7\)](#page-7-3) for all *α* > *s*. Indeed, if *α* > 0, then for *ε* ∈ (0, 1) such that *α* − *ε* > 0 and *β* ≥ *t* + *α* − *ε* we have by Lemma [A](#page-8-0)

$$
\int_{\mathbb{D}} \frac{\omega(z)(1-|z|^2)^{\alpha-\varepsilon}(1-|w|^2)^{\beta-\alpha+\varepsilon}}{|1-\overline{w}z|^{2+\beta}}dA(z)\lesssim \omega(w).
$$

If $\alpha \in (s, 0)$, then for $s' = s - \alpha$ and $\beta = t + \alpha + 1$ once again by Lemma [A,](#page-8-0) we obtain

$$
\int_{\mathbb{D}} \frac{\omega(z)(1-|z|^2)^{\alpha+s'}(1-|w|^2)^{\beta}}{|1-\overline{w}z|^{2+s'+\beta}} dA(z) = \int_{\mathbb{D}} \frac{\omega(z)(1-|z|^2)^s(1-|w|^2)^{t+\alpha+1}}{|1-\overline{w}z|^{3+s+t}} dA(z) \leq (1-|w|^2)^{\alpha} \omega(w).
$$

2.4 Composition operators on Dirichlet spaces induced by perturbed superharmonic weights

In this subsection, we examine the case of perturbed superharmonic weights. We begin with the following proposition.

Proposition 2.7 *Let* $\omega \in C^2(\mathbb{D})$ *be a positive superharmonic function on* \mathbb{D} *. Then* (1 – ∣*z*∣ ²)*^αω verifies* [\(2.7\)](#page-7-3) *for all α* > −1*.*

Proof Let σ and ν be the unique finite positive Borel measures on $\mathbb D$ and $\mathbb T$, respectively, such that $\omega = S_\sigma + P_\nu$. It is proved in [\[17\]](#page-16-18) that P_ν satisfies [\(2.7\)](#page-7-3) for all *s* > −1 and *t* > 1. On the other hand, note that for *s* ∈ (−1, 0) and *t* > 1, we have

$$
\int_{\mathbb{D}} \frac{(1-|z|^2)^s}{|1-\overline{w}z|^{2+s+t}} \log \left| \frac{1-\overline{\zeta}z}{z-\zeta} \right| dA(z) \asymp \int_{\mathbb{D}} \frac{(1-|z|^2)^s}{|1-\overline{w}z|^{2+s+t}} \left(1-\left|\frac{z-\zeta}{1-\overline{\zeta}z}\right|^2\right) dA(z)
$$

$$
= (1-|\zeta|^2) \int_{\mathbb{D}} \frac{(1-|z|^2)^{s+1}}{|1-\overline{w}z|^{2+s+t}|1-\overline{\zeta}z|^2} dA(z)
$$

$$
\lesssim \frac{(1-|\zeta|^2)}{(1-|w|^2)^{t-1}|1-\overline{\zeta}w|^2}.
$$

Therefore, for $s \in (-1, 0)$ and $t > 1$, we have

$$
\int_{\mathbb{D}} \frac{S_{\sigma}(z)(1-|z|^2)^s}{|1-\overline{w}z|^{2+s+t}} dA(w) = \int_{\mathbb{D}} \left(\int_{\mathbb{D}} \log \left| \frac{1-\overline{\zeta}z}{z-\zeta} \right| \frac{d\sigma(\zeta)}{1-|\zeta|^2} \right) \frac{(1-|z|^2)^s}{|1-\overline{w}z|^{2+s+t}} dA(z)
$$

$$
= \int_{\mathbb{D}} \left(\int_{\mathbb{D}} \frac{(1-|z|^2)^s}{|1-\overline{w}z|^{2+s+t}} \log \left| \frac{1-\overline{\zeta}z}{z-\zeta} \right| dA(z) \right) \frac{d\sigma(\zeta)}{1-|\zeta|^2}
$$

$$
\lesssim \frac{1}{(1-|w|^2)^t} \int_{\mathbb{D}} \left(\frac{(1-|\zeta|^2)(1-|w|^2)}{|1-\overline{\zeta}w|^2} \right) \frac{d\sigma(\zeta)}{1-|\zeta|^2}
$$

$$
\lesssim \frac{S_{\sigma}(w)}{(1-|w|^2)^t}.
$$

Thus, S_{σ} satisfies [\(2.7\)](#page-7-3). It follows that $S_{\sigma} + P_{\nu}$ satisfies (2.7) for all $s > -1$ and $t > 1$. Therefore, by Remark [2.6,](#page-8-1) $(1-|z|^2)^\alpha \omega$ verifies [\(2.7\)](#page-7-3) for all $\alpha > -1$.

In the rest of this subsection, let $\omega(z) = (1 - |z|^2)^{\alpha} (S_{\sigma}(z) + P_{\nu}(z))$, for a fixed *α* > −1 and finite positive Borel measures *σ* and *ν* on **D** and **T**, respectively. Let $\check{\omega}$ be the weight given by $\check{\omega}(z) = (1 - |z|^2)^{\alpha} (U_{\sigma}(z) + P_{\nu}(z)), \quad z \in \mathbb{D}.$

Theorem 2.8 Let ω and $\check{\omega}$ be as given above, and let φ be an analytic self-map of \mathbb{D} . *The following assertions hold.*

(1) C_{φ} *is bounded (resp. compact) on* D_{ω} *if and only if*

$$
\frac{1}{|\Delta_n|}\int_{\Delta_n}\frac{N_{\varphi,\check{\omega}}(z)}{\check{\omega}(z)}dA(z)=O(1),\quad(\text{resp. }o(1)\text{ as }n\to\infty).
$$

(2) C_{φ} *belongs to* $S_p(\mathcal{D}_{\omega})$ *,* $p > 0$ *, if and only if*

$$
\sum_{n=0}^{+\infty} \left(\frac{1}{|\Delta_n|} \int_{\Delta_n} \frac{N_{\varphi,\check{\omega}}(z)}{\check{\omega}(z)} dA(z) \right)^{\frac{p}{2}} < \infty.
$$

Proof Let $f \in \mathcal{D}_{\omega}$. We have

$$
\mathcal{D}_{\omega}(f) - \int_{\mathbb{D}} |f'(z)|^2 (1 - |z|^2)^{\alpha} P_{\nu}(z) dA(z) \n= \int_{\mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 (1 - |z|^2)^{\alpha} \log \left| \frac{1 - \overline{\zeta}z}{z - \zeta} \right| dA(z) \frac{d\sigma(\zeta)}{1 - |\zeta|^2} \n\approx \int_{\mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 (1 - |z|^2)^{\alpha} \left(1 - \left| \frac{z - \zeta}{1 - \overline{\zeta}z} \right|^2 \right) dA(z) \frac{d\sigma(\zeta)}{1 - |\zeta|^2} \n= \int_{\mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 (1 - |z|^2)^{\alpha} \frac{1 - |z|^2}{|1 - \overline{\zeta}z|^2} dA(z) d\sigma(\zeta) \n= \int_{\mathbb{D}} |f'(z)|^2 (1 - |z|^2)^{\alpha} U_{\sigma}(z) dA(z).
$$

It follows that $D_{\omega} = D_{\omega}$ with equivalent norms. Therefore, C_{φ} is bounded (resp. compact) on \mathcal{D}_{ω} if and only if C_{φ} is bounded (resp. compact) on \mathcal{D}_{ω} . Taking into account that $\check{\omega}(z) \times \check{\omega}(z_n)$, for $z \in \Delta_n$, the first assertion follows by combining Proposition [2.7,](#page-9-0) Lemma [A,](#page-8-0) and (1) and (2) of Corollary [2.4.](#page-6-1)

For the proof of the second assertion, note that since $\mathcal{D}_{\omega} = \mathcal{D}_{\check{\omega}}$ with equivalent norms then the operator $I: \mathcal{D}_{\omega} \to \mathcal{D}_{\omega}$ ^{*} which takes *f* to *f* is bounded and invertible. It follows that *I*^{*}, the adjoint of *I* defined by $\langle I^* f, g \rangle_{\mathcal{D}_\omega} = \langle f, Ig \rangle_{\mathcal{D}_\omega}$ is bounded and invertible on \mathcal{D}_ω . This implies

$$
I^*\left(C_{\varphi,\mathcal{D}_{\check{\omega}}}\right)^*\left(C_{\varphi,\mathcal{D}_{\check{\omega}}}\right)I \asymp \left(C_{\varphi,\mathcal{D}_{\omega}}\right)^*\left(C_{\varphi,\mathcal{D}_{\omega}}\right),
$$

where $C_{\varphi, \mathcal{D}_{\omega}}$ is the operator $C_{\varphi} : \mathcal{D}_{\omega} \to \mathcal{D}_{\omega}$ and $C_{\varphi, \mathcal{D}_{\omega}}$ is the operator $C_{\varphi} : \mathcal{D}_{\omega} \to \mathcal{D}_{\omega}$. It follows that if $C_{\varphi, \mathcal{D}_\omega}$ is compact, then $C_{\varphi, \mathcal{D}_\omega}$ belongs to $\mathcal{S}_p(\mathcal{D}_\omega)$ if and only if $C_{\varphi, \mathcal{D}_\omega}$ belongs to $\mathcal{S}_p(\mathcal{D}_{\check{\omega}})$. Hence, using once again Proposition [2.7,](#page-9-0) Lemma [A,](#page-8-0) and (3) of Corollary [2.4,](#page-6-1) we obtain the second assertion of the theorem.

The following theorem extend the result obtained by Pau and Pérez [\[21,](#page-17-1) Theorem 4.1] in standard Dirichlet spaces setting to the Green potential of the Riesz measure of any positive superharmonic function. Recall that

$$
\check{N}_{\varphi,\sigma}(w)=\sum_{w=\varphi(z)}U_{\sigma}(z)\ \text{ if }w\in\varphi(\mathbb{D})\ ;\ \check{N}_{\varphi,\sigma}(w)=0\ \text{ if }w\notin\varphi(\mathbb{D}).
$$

Theorem 2.9 *Let p* > 0*, and let φ be an analytic self-map of* D*. Let σ be a finite positive measure on* $\mathbb D$ *. Then,* C_{φ} *belongs to* $S_{\varphi}(\mathcal D_{\sigma})$ *if and only if*

$$
\int_{\mathbb{D}}\left(\frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)}\right)^{p/2}d\lambda(z)<\infty.
$$

Proof By Theorem [2.8,](#page-9-1) we have

$$
C_{\varphi} \in \mathcal{S}_p(\mathcal{D}_{\sigma}) \Longleftrightarrow \sum_{n=0}^{+\infty} \left(\frac{1}{|\Delta_n|} \int_{\Delta_n} \frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)} dA(z) \right)^{p/2} < \infty.
$$

Therefore, it suffices to show that

$$
\frac{1}{|\Delta_n|}\int_{\Delta_n}\frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)}dA(z)\in\ell^{p/2}\Longleftrightarrow \frac{\check{N}_{\varphi,\sigma}(w)}{U_{\sigma}}\in L^{p/2}(\mathbb{D},d\lambda).
$$

We use for the proof some standard arguments. First, we prove that for all $p > 0$, we have

$$
(2.8) \t\t \tilde{N}_{\varphi,\sigma}(z)^p \lesssim \frac{1}{|\Delta(z,r)|} \int_{\Delta(z,r)} \check{N}_{\varphi,\sigma}(w)^p dA(w), \quad z \in \mathbb{D}.
$$

The function $\check{N}_{\varphi,\sigma}$ satisfies the sub-mean-value property, that is,

$$
\check{N}_{\varphi,\sigma}(z) \lesssim \frac{1}{|\Delta(z,r)|} \int_{\Delta(z,r)} \check{N}_{\varphi,\sigma}(w) dA(w), \quad z \in \mathbb{D}
$$

(see [\[5,](#page-16-9) Lemma 5.2]). Therefore, there exists a subharmonic function u on D such that $N_{\varphi,\sigma} \leq u$ on $\mathbb D$ and $u = N_{\varphi,\sigma}$ almost everywhere on $\mathbb D$ (see [\[19\]](#page-16-3). Since

$$
u(z)^p \lesssim \frac{1}{|\Delta(z,r)|} \int_{\Delta(z,r)} u(w)^p dA(w), \quad z \in \mathbb{D},
$$

by [\[19,](#page-16-3) Lemma 3], we obtain [\(2.8\)](#page-11-0). Now, we have

$$
\int_{\mathbb{D}}\left(\frac{\check{N}_{\varphi,\sigma}(w)}{U_{\sigma}(w)}\right)^{p/2}d\lambda(w)\asymp \sum_{n=0}^{+\infty}\int_{\Delta_n}\left(\frac{\check{N}_{\varphi,\sigma}(w)}{U_{\sigma}(w)}\right)^{p/2}d\lambda(w).
$$

Taking into account that $U_{\sigma}(w) \times U_{\sigma}(z)$ if $w \in \Delta_n$ and $z \in b\Delta_n$, the inequality [\(2.8\)](#page-11-0) gives

$$
\int_{\mathbb{D}} \left(\frac{\check{N}_{\varphi,\sigma}(w)}{U_{\sigma}(w)} \right)^{p/2} d\lambda(w) \lesssim \sum_{n=0}^{+\infty} \int_{\Delta_n} \left(\frac{1}{|\Delta_n|} \int_{b\Delta_n} \frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)} dA(z) \right)^{p/2} d\lambda(w)
$$

$$
\asymp \sum_{n=0}^{+\infty} \left(\frac{1}{|\Delta_n|} \int_{b\Delta_n} \frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)} dA(z) \right)^{p/2}.
$$

Since $(b\Delta_n)_n$ is a covering of D of finite multiplicity, then for all *n* there exist *n*₁, *n*₂, ..., *n*_{*N*} such that $b\Delta_n \subset \cup_{k=1}^N \Delta_{n_k}$, for some $N \in \mathbb{N}^*$ not depending on *n*. Hence,

$$
\int_{b\Delta_n}\frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)}dA(z)\lesssim \int_{\Delta_{m_n}}\frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)}dA(z),
$$

where m_n is such that $\int_{\Delta_{m_n}}$ $\check{N}_{\varphi,\sigma}(z)$ $\int_{U_{\sigma}}^{V_{\sigma}} f(z) dz = \max_{1 \leq k \leq N} \int_{\Delta_{n_k}}$ $\check{N}_{\varphi,\sigma}(z)$ $\frac{\varphi, \sigma(x)}{U_{\sigma}(z)} dA(z)$. Therefore,

$$
\int_{\mathbb{D}} \left(\frac{\check{N}_{\varphi,\sigma}(w)}{U_{\sigma}(w)} \right)^{p/2} d\lambda(w) \lesssim \sum_{n=0}^{+\infty} \left(\frac{1}{|\Delta_n|} \int_{\Delta_{m_n}} \frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)} dA(z) \right)^{p/2} \leq \sum_{n=0}^{+\infty} \left(\frac{1}{|\Delta_n|} \int_{\Delta_n} \frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)} dA(z) \right)^{p/2}.
$$

<https://doi.org/10.4153/S0008439523000292>Published online by Cambridge University Press

Composition operators on weighted analytic spaces 1225

On the other hand, let $\zeta_n \in \overline{\Delta}_n$ such that $\frac{\check{N}_{\varphi,\sigma}(\zeta_n)}{I(\zeta)}$ $\frac{\varphi,\sigma\left(\sqrt{n}\right)}{U_{\sigma}\left(\zeta_{n}\right)}$ = sup $\check{N}_{\varphi,\sigma}(z)$ $\frac{\varphi,\sigma\left(\gamma\right)}{U_{\sigma}(z)}$. We have

$$
\sum_{n=0}^{+\infty} \left(\frac{1}{|\Delta_n|} \int_{\Delta_n} \frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)} dA(z) \right)^{p/2} \lesssim \sum_{n=0}^{+\infty} \left(\frac{\check{N}_{\varphi,\sigma}(\zeta_n)}{U_{\sigma}(\zeta_n)} \right)^{p/2} \lesssim \sum_{n=0}^{+\infty} \frac{1}{|\Delta_n|} \int_{b\Delta_n} \left(\frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)} \right)^{p/2} dA(z) \lesssim \sum_{n=0}^{+\infty} \int_{b\Delta_n} \left(\frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)} \right)^{p/2} d\lambda(z) \lesssim \int_{\mathbb{D}} \left(\frac{\check{N}_{\varphi,\sigma}(z)}{U_{\sigma}(z)} \right)^{p/2} d\lambda(z).
$$

The proof is complete.

3 Composition operators on weighted Bergman spaces

3.1 Radial weights

Let ω : [0, 1] \rightarrow (0, ∞) be a continuous radial weight. We associate with ω , the weight *ω*[∗] defined by

$$
\omega_*(r)=\int_r^1(t-r)\omega(t)dt.
$$

As pointed in [\[15\]](#page-16-6), $A^2_\omega = \mathcal{D}_{\omega_*}$ with equivalent norms and ω_* always satisfies (\mathcal{W}_1) , (W_3) , and $(W_4^{(I)})$. Therefore, as a consequence of Theorem [2.5,](#page-7-2) we have the following result.

Theorem 3.1 *Let φ be an analytic self-map of* D*, and let p* > 0*. Let ω be a continuous radial weight such that* $ω_∗$ *satisfies* ($W₂$)*. Then*

$$
C_{\varphi} \in \mathcal{S}_p(A_{\omega}^2) \Longleftrightarrow \int_{\mathbb{D}} \left(\frac{N_{\varphi,\omega_*}(z)}{\omega_*(z)} \right)^{p/2} d\lambda(z) < \infty.
$$

Corollary 3.2 *Let φ be an analytic self-map of* D*, and let p* > 0*. Let ω be a continuous radial weight such that* $ω_∗$ *satisfies* ($W₂$) *fore some* $δ > 0$ *. The following assertions hold.*

- (1) *If* C_{φ} *belongs to* $S_p(H^2)$ *, then* C_{φ} *belongs to* $S_p(A^2_{\omega})$ *.*
- (2) *If* C_{φ} *belongs to* $S_p(A_{\omega}^2)$ *, then* C_{φ} *belongs to* $S_p(A_{\delta-1}^2)$ *.*

Proof Since ω_* satisfies (\mathcal{W}_2) and always satisfies (\mathcal{W}_1) then, by [\[15,](#page-16-6) Lemma 2.1], each composition operator induced by the symbol $q_{\varphi(0)}(z) = \frac{\varphi(0)-z}{1-\varphi(0)z}$ is bounded on $A^2_\omega = \mathcal{D}_{\omega_*}$. It is also known that each composition operator induced by $q_{\varphi(0)}$ is bounded on \mathcal{H}_{α} . Hence, by standard arguments, we may assume without loss of generality that $\varphi(0) = 0$. The condition (\mathcal{W}_2) gives

$$
\frac{\omega_*(r)}{\omega_*(t)} \le \left(\frac{1-r}{1-t}\right)^{1+\delta}, \quad 0 \le r \le t < 1.
$$

On the other hand, by a direct calculation, $s \in [0,1) \rightarrow \frac{\omega_*(s)}{1-s}$ is a nonincreasing function. It follows that

$$
\frac{\omega_*(r)}{\omega_*(t)} \ge \frac{1-r}{1-t}, \quad 0 \le r \le t < 1.
$$

Let $z \in \varphi(\mathbb{D})$ and $w \in \mathbb{D}$ such that $\varphi(w) = z$. By Schwarz's lemma and the above inequalities, we obtain

$$
\left(\frac{1-|w|^2}{1-|z|^2}\right)^{\delta+1} \lesssim \frac{\omega_*\left(w\right)}{\omega_*\left(z\right)} \lesssim \frac{1-|w|^2}{1-|z|^2}.
$$

It follows that

Nφ,*δ*+1(*z*) (1 − ∣*z*∣ ²)*^δ*+¹ [≲] *Nφ*,*ω*[∗] (*z*) *^ω*∗(*z*) [≲] *Nφ*,1(*z*) (1 − ∣*z*∣ ²) (3.1) , *^z* [∈] ^D.

The assertions of the corollary are obtained by combining Theorem [3.1](#page-12-0) and [\(1.1\)](#page-1-0). ∎

A radial weight ω belongs to the class \hat{D} if \int_{r}^{1} $\int_{r}^{1} \omega(s) ds \lesssim \int_{\frac{1+i}{2}}^{1}$ **1**+**r** *ω*(*s*)*ds*,*r* ∈ [0, 1). Peláez and Rättyä obtained in [\[23\]](#page-17-6), a trace class criteria for Toeplitz operators on Dirichlet spaces associated with regular weights and they obtained that, for $\omega \in \hat{D}$, C_{φ} belongs to $\mathcal{S}_{p}(A_{\omega}^{2})$, for $p > 0$, if and only if

$$
\int_{\mathbb{D}}\left(\frac{N_{\varphi,\omega^*}(z)}{\omega^*(z)}\right)^{p/2}d\lambda(z)<\infty,
$$

where $\omega^*(r) := \int_r^1 s \log(\frac{s}{r}) \omega(s) ds$, $r \in (0,1)$. We point out that Lemma 2.4 in [\[15\]](#page-16-6) and Theorem [2.5](#page-7-2) for (*I*)-admissible weights still hold if we replace the condition (\mathcal{W}_2) by the following one:

$$
(\mathcal{W}'_2) \text{ there is } \delta > 0 \text{ such that } \omega(r)(1-r)^{-(1+\delta)} \lesssim \omega(t)(1-t)^{-(1+\delta)}, \quad 0 \le r \le t < 1.
$$

Theorem [3.1](#page-12-0) can be applied to continuous weights belonging to \hat{D} thanks to the following lemma.

Lemma 3.3 *If* ω belongs to \hat{D} , then ω_* satisfies (\mathcal{W}'_2) .

Proof Assume that *ω* belongs to *D*ˆ . We have

$$
\omega_*(r) \geq \int_{\frac{1+r}{2}}^1 (t-r) \omega(t) dt \gtrsim (1-r) \int_{\frac{1+r}{2}}^1 \omega(t) dt \gtrsim (1-r) \int_r^1 \omega(t) dt.
$$

Composition operators on weighted analytic spaces 1227

It follows that $\omega_*(r) \asymp (1 - r) \int_r^1 \omega(t) dt$. On the other hand, since $\omega \in \hat{D}$, there exists a constant $\delta > 0$ such that

$$
\int_r^1 \omega(s)ds \lesssim \left(\frac{1-r}{1-t}\right)^{\delta} \int_t^1 \omega(s)ds, \quad 0 \leq r \leq t < 1
$$

(see [\[22\]](#page-17-7)). We obtain

$$
\frac{\omega_*(r)}{(1-r)^{\delta+1}}\asymp \frac{1}{(1-r)^{\delta}}\int_r^1\omega(s)ds\lesssim \frac{1}{(1-t)^{\delta}}\int_t^1\omega(s)ds\asymp \frac{\omega_*(t)}{(1-t)^{\delta+1}},
$$

for $0 \leq r \leq t < 1$.

3.2 General case

Let ω be a weight not necessarily radial and consider the composition operator C_{φ} : $A^2_\omega \to A^2_\omega$. For the weights ω such that $\frac{\omega}{(1-|z|^2)^{\eta}} \in B_{p_0}(\eta)$ for some $p_0 > 1$ and $\eta > -1$, Constantin [\[8\]](#page-16-10) characterized boundedness, compactness, and membership of *C^φ* in $\mathcal{S}_p(A^2_\omega)$, for $p \ge 2$, in terms of the pullback measure of ωdA under φ .

If C_{φ} is bounded on A_{ω}^2 then $C_{\varphi}^* C_{\varphi} = T_{\frac{1}{\omega}d\mu}$ with $\mu(E) = A_{\omega}(\varphi^{-1}(E))$ for any Borel subset E of D . Using Theorem \overline{B} , we obtain the following result, which extend [\[8,](#page-16-10) Theorem 6.2].

Theorem 3.4 *Let ω be a weight in* $\omega \in \mathcal{C}_{p_0,t}$ *for some* $p_0 > 1$ *and* $t \ge 0$ *. Assume that* φ *is an analytic self-map of* $\mathbb D$ *such that* C_φ *<i>is compact on* A_ω^2 *. Then* C_φ *belongs to* ${\mathcal S}_p(A_\omega^2)$ *, for p* > 0*, if and only if*

$$
\sum_{n=0}^{\infty}\left(\frac{\int_{\varphi^{-1}(\Delta_n)}\omega(z)dA(z)}{\int_{\Delta_n}\omega(z)dA(z)}\right)^{p/2}<\infty.
$$

In particular, if ω is an almost standard weight, then C_{φ} belongs to $\mathcal{S}_p(A^2_{\omega})$ if and only if

$$
\sum_{n=0}^{\infty} \left(\frac{A_{\omega} \left(\varphi^{-1}(\Delta_n) \right)}{(1-|z_n|^2)^2 \omega(z_n)} \right)^{p/2} < \infty.
$$

Note that, when *ω* is an almost standard weight, *C^φ* is bounded (resp. compact) $\text{on } A^2_\omega \text{ if and only if } A_\omega \left(\varphi^{-1}(\Delta_z) \right) = O\left((1-|z|^2)^2 \omega(z) \right) \left(\text{ resp. } o\left((1-|z|^2)^2 \omega(z) \right) \right),$ $|z| \rightarrow 1^-$.

Here, we characterize boundedness, compactness, and membership of C_{φ} in $\mathcal{S}_p(A^2_\omega)$, for ω in some class $\mathcal{C}_{p_0,t}$, in terms of Nevanlinna counting function. Denote $\omega_{[2]} = (1 - |z|^2)^2 \omega.$

Theorem 3.5 *Let φ be an analytic self-map of* D*, and let p* > 0*. Suppose that ω is a weight such that* $\omega \in \mathcal{C}_{p_0,t}$ *for some* $p_0 > 1$ *and* $t \geq 0$ *. Then:*

(1) C_{φ} *is bounded on* A_{ω}^2 *if and only if*

$$
\frac{1}{|\Delta_n|}\int_{\Delta_n}N_{\varphi,\omega_{[2]}}(z)dA(z)\lesssim \int_{\Delta_n}\omega(z)dA(z),\quad \forall n\in\mathbb{N}.
$$

(2) C_{φ} *is compact on* A_{ω}^2 *if and only if*

$$
\frac{1}{|\Delta_n|}\int_{\Delta_n}N_{\varphi,\omega_{[2]}}(z)dA(z)=o\left(\int_{\Delta_n}\omega(z)dA(z)\right),\quad (n\to\infty).
$$

(3) C_{φ} *belongs to* $S_p(A_{\omega}^2)$ *if and only if*

$$
\sum_{n=0}^{\infty}\left(\frac{\frac{1}{|\Delta_n|}\int_{\Delta_n}N_{\varphi,\omega_{[2]}}(z)dA(z)}{\int_{\Delta_n}\omega(z)dA(z)}\right)^{p/2}<\infty.
$$

Proof Note that, since $\omega \in \mathcal{C}_{p_0,t}$ for some $p_0 > 1$ and $t \ge 0$, we have the following Littlewood–Paley estimates:

$$
(3.2) \t\t ||f||_{A^2_{\omega}}^2 \asymp |f(0)|^2 + \int_{\mathbb{D}} |f'(z)|^2 (1-|z|^2)^2 \omega(z) dA(z), \quad f \in Hol(\mathbb{D})
$$

(see [\[7\]](#page-16-5)). Therefore,

$$
\int_{\mathbb{D}}|C_{\varphi}f(z)|^{2}\omega(z)dA(z)\asymp |f(\varphi(0))|^{2}+\int_{\mathbb{D}}|(C_{\varphi}f)'(z)|^{2}\omega_{[2]}(z)dA(z),\quad f\in\text{Hol}(\mathbb{D}).
$$

It follows that $C_{\varphi}: A_{\omega}^2 \to A_{\omega}^2$ is bounded (resp. compact) if and only if $C_{\varphi}: \mathcal{D}_{\omega_{[2]}} \to$ $\mathcal{D}_{\omega_{r_{21}}}$ is bounded (resp. compact). Also, note that if $\omega \in \mathcal{C}_{p_0,t}$, then $\omega_{r_{21}} \in \mathcal{C}_{p_0,t+2}$. By Theorem [2.2,](#page-4-2) we obtain the first and the second assertions of the theorem.

By [\(3.2\)](#page-15-0), the operator $X: A^2_{\omega} \to \mathcal{D}_{\omega_{[2]}}$ defined by $Xf = f$ is bounded and invertible. Similarly to the proof of the second assertion of Theorem [2.8,](#page-9-1) it follows that $C_\varphi: A^2_\omega \to A^2_\varphi$ A^2_ω belongs to $\mathcal{S}_p(A^2_\omega)$ if and only if $C_\varphi : \mathcal{D}_{\omega_{[2]}} \to \mathcal{D}_{\omega_{[2]}}$ belongs to $\mathcal{S}_p(\mathcal{D}_{\omega_{[2]}})$. Hence, by Theorem [2.3,](#page-5-2) we obtain the third assertion of the theorem.

Remark 3.6 Let α > −1. Luecking and Zhu proved in [\[19\]](#page-16-3) that the condition

$$
\left(\frac{1-|z|^2}{1-|\varphi(z)|^2}\right)^{2+\alpha}\in L^{p/2}(\mathbb{D},d\lambda)
$$

is necessary when $p \ge 2$ and sufficient when $p \le 2$ for C_{φ} to be in $\mathcal{S}_p(A_{\alpha}^2)$. Suppose that *ω* is a weight in $\mathcal{C}_{p_0,t}$ for some $p_0 > 1$ and $t \ge 0$. It is proved in [\[7\]](#page-16-5) that $A^2_\omega = A^2_{\tilde{\omega}}$ with $||f||_{A^2_{\omega}} \asymp ||f||_{A^2_{\omega}}$ for all $f \in Hol(\mathbb{D})$. It is proved also in $[7]$ that A^2_{ω} is a reproducing kernel space with kernel $K^{\tilde{\omega}}$ satisfying

$$
||K_{z}^{\tilde{\omega}}||_{A_{\tilde{\omega}}^{2}}^{2} \asymp \frac{1}{(1-|z|^{2})^{2}\tilde{\omega}(z)}, \quad z \in \mathbb{D}.
$$

Composition operators on weighted analytic spaces 1229

Since $C_{\varphi} \in S_p(A_{\omega}^2)$ if and only if $C_{\varphi} \in S_p(A_{\omega}^2)$, using the same argument given in [\[19\]](#page-16-3), we obtain that the condition

(3.3)
$$
\frac{\int_{\Delta(z,(1-|z|^2)/2)} \omega(\zeta) dA(\zeta)}{\int_{\Delta(\varphi(z),(1-|\varphi(z)|^2)/2)} \omega(\zeta) dA(\zeta)} \in L^{p/2}(\mathbb{D},d\lambda)
$$

is necessary when $p \ge 2$ and sufficient when $p \le 2$ for C_{φ} to be in $\mathcal{S}_p(A^2_{\omega})$. Note that if in addition ω verifies [\(2.3\)](#page-6-0), then the condition [\(3.3\)](#page-16-19) is equivalent to

$$
\frac{(1-|z|^2)^2\omega(z)}{(1-|\varphi(z)|^2)^2\omega(\varphi(z))}\in L^{p/2}(\mathbb{D},d\lambda).
$$

Acknowledgment The authors would like to thank Professor Omar El-Fallah for helpful discussions.

References

- [1] A. Aleman, *Hilbert spaces of analytic functions between the Hardy and the Dirichlet space*. Proc. Amer. Math. Soc. **115**(1992), 97–104.
- [2] A. Aleman, *The multiplication operator on Hilbert spaces of analytic functions*, Habilitationsschrift, Fern Universitat, Hagen, 1993.
- [3] A. Aleman and O. Constantin, *Spectra of integration operators on weighted Bergman spaces*. J. Anal. Math. **109**(2009), 199–231.
- [4] A. Aleman, S. Pott, and M. C. Reguera, *Characterizations of a limiting class B*[∞] *of Békollé–Bonami weights*. Rev. Mat. Iberoam. **35**(2019), 1766–1692.
- [5] G. Bao, N. G. Göğüş, and S. Pouliasis, *On Dirichlet spaces with a class of superharmonic weights*. Canad. J. Math. **70**(2018), 721–741.
- [6] G. Bao, H. Wulan, and K. Zhu, *A Hardy–Littlewood theorem for Bergman spaces*. Ann. Acad. Sci. Fenn. Math. **43**(2018), 807–821.
- [7] M. Bourass and I. Marrhich, Littlewood–Paley estimates with applications to Toeplitz and integration operators on weighted Bergman spaces. Banach J. Math. Anal. **17**(2023), 10.
- [8] O. Constantin, *Carleson embeddings and some classes of operators on weighted Bergman spaces*. J. Math. Anal. Appl. **365**(2010), 668–682.
- [9] C. C. Cowen and B. MacCluer, *Composition operators on spaces of analytic functions*, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1995.
- [10] O. El-Fallah and M. ElIbbaoui, *Trace estimates of Toeplitz operators on Bergman spaces and applications to composition operators*. Rev. Mat. Iberoam. **38**(2022), 1723–1762.
- [11] O. El-Fallah, H. Mahzouli, I. Marrhich, and H. Naqos, *Asymptotic behavior of eigenvalues of Toeplitz operators on the weighted analytic spaces*. J. Funct. Anal. **270**(2016), 4614–4630.
- [12] O. El-Fallah, H. Mahzouli, I. Marrhich, and H. Naqos, *Toeplitz operators on harmonically weighted Bergman spaces and applications to composition operators on Dirichlet spaces*. J. Math. Anal. Appl. **466**(2018), 471–489.
- [13] K. Esmaeili and K. Kellay, *Weighted composition operators on weighted Bergman and Dirichlet spaces*. Canad. Math. Bull. **66**(2023), 286–302.
- [14] J. Fàbrega and J. M. Ortega, *Pointwise multipliers and corona type decomposition in BMOA*. Ann. Inst. Fourier (Grenoble) **46**(1996), 111–137.
- [15] K. Kellay and P. Lefèvre, *Compact composition operators on weighted Hilbert spaces of analytic functions*. J. Math. Anal. Appl. **386**(2012), 718–727.
- [16] P. Lefèvre, D. Li, H. Queffélec, and L. Rodríguez-Piazza, *Approximation numbers of composition operators on the Dirichlet space*. Ark. Mat. **53**(2015), 155–175.
- [17] X. Liu, G. Chacón, and Z. Lou, *Characterizations of the Dirichlet-type space*. Complex Anal. Oper. Theory **9**(2015), 1269–1286.
- [18] D. H. Luecking, *Representation and duality in weighted spaces of analytic functions*. Indiana Univ. Math. J. **34**(1985), 319–336.
- [19] D. H. Luecking and K. Zhu, *Composition operators belonging to the Schatten ideals*. Amer. J. Math. **114**(1992), 1127–1145.

- [20] V. L. Oleinik, *Embedding theorems for weighted classes of harmonic and analytic functions*. J. Soviet Math. **9**(1978), 228–243.
- [21] J. Pau and P. A. Pérez, *Composition operators acting on weighted Dirichlet spaces*. J. Math. Anal. Appl. **401**(2013), 682–694.
- [22] J. A. Peláez, *Small weighted Bergman spaces*. In: Proceedings of the summer school in complex and harmonic analysis, and related topics, University of Eastern Finland, Joensuu (2016), 29–98.
- [23] J. A. Peláez and J. Rättyä, *Trace class criteria for Toeplitz and composition operators on small Bergman spaces*. Adv. Math. **293**(2016), 606–643.
- [24] D. Sarason and O. Silva, *Composition operators on a local Dirichlet space*. J. Anal. Math. **87**(2002), 433–450.
- [25] J. H. Shapiro, *The essential norm of a composition operator*. Ann. Math. **125**(1987), 375–404.
- [26] J. H. Shapiro, *Composition operators and classical function theory*, Springer, New York, 1993.
- [27] N. Zorboska, *Composition operators on weighted Dirichlet spaces*. Proc. Amer. Math. Soc. **126**(1998), 2013–2023.

Faculty of Sciences, Mohammed V University in Rabat, CeReMAR, LAMA, B.P. 1014, Rabat, Morocco e-mail: marouane.bourass@gmail.com fouzia.mkadmii@gmail.com

Laboratoire Mathématiques Fondamentales et Appliquées, Faculty of Sciences Ain-Chock, Hassan II University of Casablanca, B.P. 5366 Maarif, Casablanca, Morocco

e-mail: ibrahim.marrhich@univh2c.ma brahim.marrhich@gmail.com