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Abstract
In this contribution, we exploit machine learning techniques to evaluate whether and how close firms are
to become successful exporters. First, we train various algorithms using financial information on both
exporters and non-exporters in France in 2010–2018. Thus, we show that it is possible to predict the dis-
tance non-exporters are from export status. In particular, we find that a Bayesian Additive Regression Tree
with Missingness In Attributes (BART-MIA) performs better than other techniques with an accuracy of
up to 0.90. Predictions are robust to changes in definitions of exporters and in the presence of discontinu-
ous exporting activity. Eventually, we discuss how our exporting scores can be helpful for trade promotion,
trade credit, and assessing aggregate trade potential. For example, back-of-the-envelope estimates show
that a representative firm with just below-average exporting scores needs up to 44% more cash resources
and up to 2.5 times more capital to get to foreign markets.
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1. Introduction
Building trade capacity is a purpose of many international and national agencies. The World
Trade Organization provides special support programs for developing countries to better inte-
grate into the multilateral trading system. However, many developing and developed economies
prefer to establish their facilitative agencies to provide firms with information, technical advice,
marketing services, and policy advocacy about access to foreign markets.

The general idea is that there are opportunities for gains from trade, yet not all firms have the
same ability to sell their goods and services abroad. Exporting activity entails beachhead costs
when handling different regulatory environments, meeting different consumer tastes, and estab-
lishing marketing and logistics channels. Only the more productive firms may be able to self-
select into exporting status. In contrast, other companies may not have the necessary skills or
resources to enter foreign markets.1 Hence, the necessity to resort to trade promotion programs
to fill the gap and help firms build trade capacity to take advantage of open markets. Eventually,
openness to trade is a determinant of economic growth insofar as it allows exploiting differential
comparative advantages and economies of scale. Companies can benefit while tapping into for-
eign technology and raising aggregate productivity in the home countries.2

© The Author(s), 2023. Published by Cambridge University Press on behalf of The World Trade Organization

1For a review of the arguments according to which only the most efficient firms can self-select into an export status and the
consequences on the sources of gains from trade, see among others Bernard and Jensen (1999), Bernard et al. (2012), Melitz
and Redding (2014), and Hottman et al. (2016).

2Seminal works identify macroeconomic linkages between trade openness, technological progress, and economic growth.
See Grossman and Helpman (1990), Rivera-Batiz and Romer (1991), Romer (1994), and Barro and Sala-i Martin (1997).
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Against the previous background, our simple intuition is to adopt machine learning techni-
ques to evaluate how far a company is from reaching an export status based on the assumption
that firms’ accounts convey non-trivial information on firm-level trade capacity. In other words,
we propose to train an algorithm on in-sample financial statements to predict out-of-sample
firms’ ability to start exporting. Our intuition follows what financial institutions make to predict
credit risk, for example, in the case of traditional Altman’s Z-scores (Altman, 1968) or Merton’s
Distance-to-Default (Merton, 1974). Unlike credit risk literature, our problem is not to check if a
company is close to bankruptcy. On the contrary, our challenge is to measure how far a company
is from being healthy enough to enter foreign markets.

We begin by introducing different machine learning techniques in a sample of 57,016 manu-
facturing firms in France, which may or may not have exported in 2010–2018. Following statis-
tical standards, we randomly separate the initial sample into 80–20% proportions, splitting it into
a training and a testing set. Then, we train different models armed with a battery of 52 predictors
that we believe may contain non-trivial information on exporting abilities. Finally, we use the
trained models to obtain distributions of out-of-sample predictions that can be used to assess
a company’s distance from exporting capability. We call such a distance ‘exporting score’. In sim-
ple terms, it summarizes how much a non-exporter looks like an exporter. Crucially, we find that
our procedure correctly separated exporters from non-exporters with an accuracy of up to 90%.
The foregoing is a figure we obtained from a horse race among different algorithms. We find that
a Bayesian Additive Regression Tree with Missingness in Random (BART-MIA) (Kapelner and
Bleich, 2015) is the procedure that provides the most robust predictions. The BART-MIA is a
regression tree with a Bayesian component for regularization through a prior specification that
allows flexibility in fitting various regression models while avoiding strong parametric assump-
tions (Hill et al., 2020). What makes BART-MIA especially useful for our case is the possibility
of exploiting additional predictive power from non-random missing values on predictors. The lat-
ter is a feature that is especially useful in catching business dynamics when coverage of financial
accounts is likely to be correlated with other dimensions, e.g., firm size or productivity, which, in
turn, can correlate with firm export status. In our case, we assess that considering non-random
missing values helps us increase prediction accuracy by about 14.4%. Eventually, we ensure
that prediction accuracies are robust to different definitions of exporters and to the presence
of discontinuous exporting activity (Békés and Muraközy, 2012; Geishecker et al., 2019). The
last check is especially relevant in the case of smaller exporters, or when exporters specialize
in manufacturing capital goods, whose relationships with customers entail several breaks in
the time series.

Our framework is also robust to different cross-validation strategies since we obtain similar
performance by randomly picking training and testing subsets in different ways, albeit from a
unique sample. Finally, we test that reducing the set of predictors brings lower levels of accuracy
after we perform a Least Absolute Shrinkage and Selection Operator (LASSO) for dimensionality
reduction (Belloni et al., 2013; Belloni et al., 2014; Belloni et al., 2016; Ahrens et al., 2020).

After assessing which tool is better at predicting exporters, we delve into the prediction power
of single predictors, i.e., how much they contribute to getting good predictions. The practical util-
ity of this exercise is to show that there may be, indeed, some dimensions of the firms’ economic
activity that correlate relatively more with their trade potential. Thus, following Chipman et al.
(2010), we implement a procedure to derive Variable Inclusion Proportions (VIPs), which can
be interpreted as posterior probabilities (Bleich et al., 2014). Crucially, we discuss how VIPs
have a relevant internal validity since they catch predictive power within the given testing vs train-
ing sets. Yet, we may not attribute them any external validity because predictors can change their
power in different contexts. Indeed, we discuss how such changes in different contexts and sub-
populations could actually be informative of the changing resilience of firms and from where it
comes. For example, in the French case we study, the difference we observe in the model’s selec-
tion of influential predictors between Île-de-France and the rest of France suggests there are
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geographic-specific firms’ dynamics. The same predictors may or may not play a major role in the
probability of exporting, depending on the specific technological characteristics of the production
environment.

The final sections discuss how we see exporting scores applied in practice. We suggest looking
at baseline predictions to derive a probabilistic exporting score to a firm, i.e., a score summarizing
how similar a non-exporter is to benchmark exporters on a scale from 0 to 1. We argue that
exporting scores could be helpful for trade promotion or trade finance programs. After aggrega-
tion, we show how they can represent an additional tool to describe the trade competitiveness of
regions or industries.

Finally, to briefly illustrate the practical utility of exporting scores, we classify firms into
risk categories and provide simple back-of-the-envelope estimates of how much cash resources
and capital expenses they would need to reach export status. We find that increasing cash and
capital is required to reduce the distance from export status. For example, in the case of medium-
risk firms, i.e., firms that have just below 50% probability of exporting, we show a need for up to
44% more cash resources and up to 246% more capital expenses to reach full export status.

The remainder of the paper is organized as follows. We relate to previous literature in
Section 2. We introduce data and sample coverage in Section 3, whereas Section 4 discusses
the empirical strategy. Results are commented on in Section 5, while robustness checks are dis-
cussed in Section 6. A specific Section 7 tests for the sensitivity of predictions to the phenomenon
of temporary trade, while a practical use of exporting scores is presented in Section 10. Section 11
concludes.

2. Related literature
Most countries worldwide implement trade promotion programs that envisage the expenditure of
substantial amounts of public funds. Thus, it is hardly surprising that there have been concerns
about the efficacy and effectiveness of those support programs. Interestingly, Volpe Martincus
and Carballo (2008) show how export promotion actions are usefully associated with increased
exports by already trading firms and traded products, i.e., the intensive margin. In terms of exten-
sive margins, i.e., the increase of firms and products crossing national borders, Volpe Martincus
et al. (2010) show that an influential role is often played by the establishment of diplomatic repre-
sentations, especially in the case of producers of homogeneous goods. In general, activating new
trading relationships may require various services bundled into more complex export promotion
programs (Volpe Martincus and Carballo, 2010b). Eventually, a majority of studies investigate
how effective a policy is on the ex-post companies’ exporting performances while controlling
for cherry-picking Volpe Martincus and Carballo (2010a). In general, Van Biesebroeck et al.
(2016) demonstrate how trade promotion programs have been a vital tool to overcome economic
crises, such as recovery after the global recession in 2008–2009.

In this context, our contribution focuses explicitly on the possibility of increasing the trade
extensive margin, proposing a measure of the ability of non-exporters to start exporting. From
this perspective, what we propose is a pure prediction exercise based on the intuition that expor-
ters are statistically different from non-exporters. In this sense, we rely on a two-decades-long
strand of research that has established a connection between firms’ heterogeneity and trading sta-
tus (Bernard and Jensen, 1999; Melitz, 2003; Melitz and Ottaviano, 2008; Bernard et al., 2012;
Melitz and Redding, 2014; Lin, 2015; Hottman et al., 2016). Our intuition is that a prediction
of export status is possible only because we know that exporters have different cost structures
than non-exporters. After all, they have to sustain the fixed costs to gain access to foreign markets,
where regulations and consumer tastes can differ much from home (Aw et al., 2023), and where
shipping is costly. Thus, we demonstrate that starting from a comprehensive battery of economic
and financial predictors does indeed allow separating exporters from non-exporters with a rela-
tively high prediction accuracy, up to 90%.
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Please note that ours is not a classic policy evaluation exercise or a structural model to under-
stand the determinants of export status. We do not want to assess whether any specific policy
design works to support would-be exporters. Ours is a simple scoring exercise in the fashion
of what one can find in previous literature about credit scoring. There is a long tradition to
try and spot firms in financial distress based on the disclosure of financial accounts. See seminal
attempts with Z-scores by Altman (1968) and Altman (2000), and Distance-to-Default by Merton
(1974), where some specific threshold is set as a rule of thumb to say whether a firm is financially
sound and worthy of credit. Nowadays, most financial institutions adopt predictive models to
evaluate credit risk, including machine learning (Uddin, 2021). A statistical learning exercise
to spot financially distressed firms, i.e., so-called zombie firms, is reported in Bargagli-Stoffi
et al. (2020). See also the exercises on firm-level correlations to spot investment-to-cash-flow sen-
sitivities and assess time-varying financial constraints (Fazzari et al., 1988; Almeida et al., 2004;
Chen and Chen, 2012).

The additional difficulty in our exercise is that we want to score success, i.e., the ability of a
firm to outreach across national borders. In contrast, credit risk analyses take as reference previ-
ous firms’ failures, i.e., their distance-to-default. Yet, we argue, the intuition is the same: to set a
benchmark where firms realize an outcome, in our case, an export status, and thus to measure
how far we are from that outcome. Eventually, we could also relate to literature on trade finance.
We know very well that routine access to trade credit is needed to outlive foreign markets, and
well-functioning financial markets are crucial to export performance (Manova, 2012; Lin,
2017). Eventually, external finance helps firms gain and keep access to foreign markets despite
the high beach-head costs, especially for smaller producers who have a reduced ability to provide
collateral to financial institutions (Chor and Manova, 2012). In this context, we believe exporting
scores are potentially valuable to better target financial institutions’ credit policies in a familiar
way, e.g., by considering credit risk classes. To better grasp our previous intuitions, we propose
a simple back-of-the-envelope exercise that estimates, ceteris-paribus, how much cash resources
and capital expenses firms need to switch across low, medium, and high-risk classes.

Moreover, from a macroeconomic viewpoint, one can use firms’ scoring as yet another
indicator of the competitiveness of an economy (or lack thereof). Inspired by so-called growth
diagnostics, international and national statistics offices have developed frameworks for assessing
the potential of countries, regions, and industries to compete in international markets. See, for
example, works on measuring trade competitiveness (Reis et al., 2010; Gaulier et al., 2013).
In the case of French manufacturing, we show how potential exporters are unevenly distributed
across industries and regions. We believe there is no reason why an indicator such as ours about
the potential of extensive margins should not find room in a standard trade diagnostic kit.

Finally, we want to remark on how ours is one of the first attempts to exploit statistical learning
techniques in international economics. As far as we know, only a few notable efforts are in pro-
gress (see Gopinath et al., 2020 and Breinlich et al., 2021). Yet, we believe that statistical learning
exercises have great potential and should find their way in a field such as international economics,
where one often needs to extract valuable information from big and complex datasets, which can
be dealt with by a combination of both predictive tasks and standard causal inference exercises
(Mullainathan and Spiess, 2017; Athey, 2018).

3. Data
We source firm-level information from ORBIS3 compiled by the Bureau Van Dijk. Notably,
France is a much-explored case study of firm-level trade data, allowing us to confront previous
literature (see among others Crozet et al., 2011 and Fontagné et al., 2018). Our main outcome

3The ORBIS database has become a standard source for global firm-level financial accounts. For a previous usage of this
database, among others, see Gopinath et al. (2017), Cravino and Levchenko (2016), Del Prete and Rungi (2017), and Rungi
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of interest is the export status of a firm that we derive from information on export revenues.4

Prima facie, we will consider a firm as an exporter if it reports positive export revenues. In
Sections 6 and 7, we will challenge our baseline definition to comply with the phenomenon of
temporary trade (Békés and Muraközy, 2012) when it is optimal for firms to export every
once in a while. As for firm-level predictors of exporting status, we employ a battery of 52 indi-
cators elaborated on original financial accounts that we use to train our models. Details on our
choice are discussed in Section 4.2.

To grasp the coverage of our sample, we compare our sample industry and geographic figures
with the one provided by Eurostat census in 2018. We do find that relevant exporters are in every
NUTS-2 region, as from our sample. Moreover, we have fair coverage by 2-digit industries since
the correlation by industry shares is about 0.90. Yet, according to Eurostat business demograph-
ics, our sample covers 32.6% of firms’ population which represents about 75% of total operating
revenues in France. As largely expected, we cannot retrieve the financial accounts of smaller firms
because they are not required to comply with accounting regulations in the same way as medium
and larger ones. In the following paragraphs, we will show how our baseline analysis can handle
non-random missing values in financial information.

4. The empirical strategy
Our main intuition is that we can predict out-of-sample exporting capability based on the
in-sample experience of both exporters and non-exporters. The first step is to find the best
algorithm that is able to separate exporters and non-exporters after conditioning on financial
information. Our prior is that exporters and non-exporters are statistically different, as
acknowledged by previous literature reported in Section 2. Thus, once we assess the method
that assures the best predictive accuracy with the minimum numbers of false positives and
false negatives (see Section 5.1), we can test out-of-sample and use the distribution of predic-
tions to assign each firm an exporting score that is bounded, by construction, in an interval
from 0 to 1. The higher the score, the better the chances a firm is able to make it on foreign
markets.

In Figure 1, we report a visual fictional representation of our intuition. Assuming that we did a
good job in training and that prediction accuracy is acceptable, we can reasonably test on new
firms and locate actual exporters at the end of the right tail of the distribution of exporting pre-
dictions. Thus, any ith non-exporting firm located on the left of predicted exporters will come
with a positive distance, which will convey non-trivial information on how viable that firm is
to start exporting. In other words, we take as a reference point the export status at 1 and,
thus, we check how far a company is from that reference point.

In Section 8, we will provide a framework for the interpretability of predictors by catching the
influence of each of them in getting the exporting scores. That is, we are able to sum up how
important one predictor is with respect to the entire set in any out-of-sample exercise we may
run. Obviously, given the predictive nature of our analyses, we will not be able to attach any cau-
sal interpretation to our exercise. For our purpose, we will make use of VIPs, i.e., the proportion
of times a predictor is selected as a splitting rule for the construction of the random trees. The
construction and interpretation of VIPs are discussed in Section 8. Notably, selected predictors
are contingent on the trained sample, i.e., their role will not have any external validity. Yet, we
argue that identifying the drivers of the model performance helps further comment on the nature
of exporting scores.

and Del Prete (2018). It complements financial accounts with other information from different sources on ownership, cor-
porate governance, and intellectual property rights, which we also use for predictions in the following analyses.

4Interestingly enough, French firms must report revenues from exports separately, as from the subsequently amended
Règlement n. 99-03 du Comité de la réglementation comptable.
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4.1 Methods

We train and compare different statistical learning techniques to get our best predictions. Thus,
we make use of the generic predictive model for firms’ export status in the form:

f (Xi) = Pr(Yi = 1gt|gtXi = x) (1)

where Yi is the binary outcome that assumes value 1 if the ith firm is exporting and 0 otherwise.
Xi is a matrix that includes a full battery of firm-level predictors, which we discuss in detail in
the following Section 4.2. Please note that, at this stage, we do not consider the time dimension,
i.e., we train the predictive model considering the export status of a firm in relation to present
predictors. In this baseline model, it is entirely possible that a firm is considered an exporter
in one year and a non-exporter in another year. See Section 7, where we consider heterogeneous
exporting patterns.

The functional form that links predictors to outcomes is ex-ante unknown and looked for by
the generic supervised machine learning technique. We provide an overview of our different
methods in Section 4.1. The advantage is to extract information from many predictors while
catching non-linearities that may be present in the association with export status. Briefly, the gen-
eric predictive model has to pick the best in-sample loss-minimizing function in the form:

arg min
∑N
i=1

L(f (xi), yi) over f (·) [ F s.gtt. R(f (·)) ≤ c (2)

where F is a function class from which to pick the specific function f ( ⋅ ). Importantly, R( f ( ⋅ ))
is the generic regularizer that summarizes the complexity of f ( ⋅ ). The latter is a tool that allows
us to solve the common trade-off between an as high as possible in-sample fit and an as high as
possible flexibility of the prediction model able to take on board new out-of-sample informa-
tion. It is the solution to the so-called bias–variance trade-off. The set of regularizers, R’s, will
change following the standards proposed by each method that we compare in the following
paragraphs. Eventually, any method, while searching for the function that can be better used
to process new out-of-sample information,will minimize the constrained loss function repre-
sented in equation (2).

Figure 1. Visual intuition of an
exporting score
Note: We represent a fictional distribu-
tion of predictions of exporting status
by definition bounded in an interval
[0, 1]. Along the distribution, we could
spot an ith non-exporting firm. We rea-
sonably assume that actual exporters
locate at the end of the right tail. By def-
inition, non-exporters are less likely to
start exporting at an increasing distance
from predicted exporters.
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As a common strategy across our different models, we will pick at random 80% of our French
firms to be considered as in-sample information. We will then use it to train the generic statistical
learning algorithm. We will keep the remaining 20% as out-of-sample information to predict export
status. Hence, we will be able to assess the accuracy of our predictions within the limit of our data
sources. As it is standard in similar exercises, we perform a cross-validation check, described in
Section 6, to verify that a specific segment of the sample does not affect prediction accuracy.

In the following paragraphs, we show how a specific variant of the Bayesian Additive
Regression Tree (BART) performs better than others because it is able to consider the presence
of non-random missing values as further predictors for the outcome. The variant we use is the
BART with Missingness In Attributes (BART-MIA). For more details, see also Kapelner and
Bleich (2015). For a previous application to firms’ dynamics, see Bargagli-Stoffi et al. (2020).

In general, any classification tree T is built on if–then statements that split the training data
according to the observed values of predictors, allowing for non-linear relationships between the
predictors and the outcomes. Thus, the generic algorithm for the construction of a classification
tree, T , is based on a top-down approach that recursively splits the main sample into non-
overlapping sub-samples (i.e., the nodes and the leaves). Therefore, to stop trees developing
too many layers, the tree is pruned iteratively with the generic regularizer R to improve its pre-
dictive ability while avoiding overfitting.5

As in the baseline version (Chipman et al., 2010), BART-MIA is a sum-of-trees ensemble with
an estimation approach relying on a fully Bayesian probability model. The algorithm elaborates the
ensemble by imposing a set of Bayesian priors that regularize the fit by keeping the individual trees’
effects small in an adaptive way. The result is a sum of trees, each of which explains a small and
different portion of the predictive function. The BART-MIA variant we adopt can be expressed as:

P(Y = 1|X) = F(T M
1 (X)+ . . .+ T M

q (X)), (3)

where Φ denotes the cumulative density function of the standard normal distribution and the dis-
tinct binary trees are denoted by Tq, each being a single tree coming with an entire structure made
of nodes and leaves. The sum-of-trees model serves as an estimate of the conditional probit at X,
which can be easily transformed into a conditional probability estimate of Y = 1.6 The Bayesian
component of the BART includes three priors that have been demonstrated to use the data at dis-
posal efficiently:

1. the prior on the probability that a node will split at depth k is β(1 + k)−η, where β∈ (0, 1),
η∈ [0, ∞), and the hyper-parameters are chosen to be η = 2 and β = 0.95;

2. the prior on the probability distribution in the leaves is a normal distribution with zero
mean: N (0, s2

q), where sq = 3/d
��
q

√
and d = 2;

3. the prior on the error variance is σ2 = 1.

Thus, the regularization parameter R( ⋅ ) in the general formulation of ML algorithm 2 corre-
sponds to the priors themselves. Finally, the BART-MIA algorithm employs a Metropolis-
within-Gibbs sampler (Hastings, 1970; Geman and Geman, 1984) to generate draws from the
posterior distribution of P(T M

1 , . . . , T M
m , 1|F(Y)).7 Let us denote with K the size of the sample

5It is beyond the scope of this paper to get into further details of single techniques. We refer to Hastie et al. (2017) for a
deeper introduction to statistical learning.

6Note that each classification probability P(Y = 1|X) is obtained as a function of a sum of regression trees. At the same
time, standard classifier approaches use a majority or an average vote based on an ensemble of classification trees. See, for
example, Breiman (2001).

7This passage involves introducing small perturbations to the tree structure: growing a terminal node by adding two child
nodes, pruning two child nodes (rendering their parent node terminal), or changing a split rule.
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of the draws {p∗1, . . . , p
∗
K} from the posterior distribution. Then, the prediction

p(x) = P(Y = 1|X) at a particular x, is

p∗(x) =
∑K
k=1

p∗k(x)

In addition to the Bayesian component, the BART-MIA variant augments the original algorithm
by exploiting information on missing values and splitting on missingness features that are used as
additional predictors in each binary-tree component.

Eventually, the BART-MIA is chosen in the following as the baseline method after a compari-
son with four other alternatives. At first, we compare with a simple logistic regression (LOGIT),
which is a classical econometric technique for binary outcomes with a specific ex-ante assump-
tion on the functional form linking predictors with the outcome. Then, we perform three other
methods based on regression trees, namely a Classification and Regression Tree (CART) (Breiman
et al., 1984), a Random Forest (RF) (Breiman, 2001), and the original unaugmented BART.
CART is the most basic regression tree, while RF is an ensemble method that aggregates different
regression trees to get a stronger predictive power, as the BART does, but without a Bayesian
framework. Finally, we compare previous regression trees’ models with the Least Absolute
Shrinkage and Selection Operator (LASSO) in the form:

arg min
b[Rp

1
2N

∑N
i=1

(yi(x
T
i b)− log(1+ e(x

T
i b)))

2
subject to‖b‖1 ≤ k.

where yi is a binary variable equal to 1 if a firm i is an exporter and 0 otherwise. Any xi is a pre-
dictor chosen in ℝp, whereas ‖b ‖1=

∑p
j=1 |bj| and k > 0. The constraint ‖b ‖1≤ k limits the

complexity of the model to avoid overfitting, and k is chosen, following Ahrens et al. (2020),
as the value that maximizes the Extended Bayesian Information Criteria (Chen and Chen,
2008). To account for the potential presence of heteroskedastic, non-Gaussian and cluster-
dependent errors, we adopt the rigorous penalization introduced by Belloni et al. (2016).

4.2 Predictors

To increase models’ predictability, we include a full battery of 52 predictors that we derive from
firms’ balance sheets and profit and loss accounts. Broadly speaking, we choose to include:

1. original financial accounts without any elaboration;
2. financial ratios and other proxy indicators (e.g., productivity, economies of scale, spillovers)

that we expect to be correlated with exporting activity;
3. firms’ locations, ownership status, and industry affiliations, which can help in spotting

categories of firms at a competitive advantage or disadvantage.

Usefully, in Figure 2, we show a correlation matrix including all numeric predictors. Please note
how some of them are indeed much cross-correlated with values well above 0.6. Yet, high corre-
lations are not that relevant to our case since, in a context of pure prediction such as ours, we do
not (want to) estimate coefficients. At this stage, we also do not need a prior on which financial
information conveys the highest predictive power. Hence, we choose not to discriminate among
predictors ex ante, although we do have information provided by previous literature that some
variables more than others are associated with exporting activity (productivity, firm size, financial
constraints, etc.). See also a specific robustness check in Section 6, where we show what happens
when we reduce our set of predictors. In other words, we are well aware that our long list of
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Figure 2. Correlation matrix of predictors
Note: We report a correlation matrix of the predictors we use. Non-numeric predictors are excluded here but included in the following analyses: NUTS-2 locations, NACE Rev.2 industries, a categorical
variable for consolidated accounts, patents’ dummy, inward FDI, outward FDI, and corporate control. Positive correlations are reported as upward-sloping ellipses, while negative correlations are reported
as downward-sloping ellipses. The color intensity and the ellipse width indicate the strength of the correlation.
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predictors entails a great deal of endogeneity among variables that are otherwise studied in dif-
ferent structural relationships. As we are not interested in obtaining estimates for determinants of
trade, such endogeneity is not relevant for our purpose. What we need to do is to minimize the
prediction errors given, albeit marginally useful observable information. In Section 9, we further
discuss the limits and benefits of a pure predictive exercise when it comes to the interpretability of
predictors.

5. Results
5.1 Models’ horse race

In Table 1, we compare measures of standard prediction accuracy across the methods we test.
Briefly, what we can see is that Sensitivity focuses on the ability to predict exporters, i.e., the
amount of true positives, while Specificity focuses on the ability to predict non-exporters, i.e.,
the amount of true negatives. Balanced Accuracy is an arithmetic mean between Sensitivity
and Specificity. Importantly, the receiver operating characteristic (ROC) curve evaluates the pre-
dictive performance at different classification thresholds and it is our baseline measure of per-
formance across different models. Finally, Precision-Recall is of help to us in assessing the
trade-off between returning accurate results (high precision) vis-á-vis returning a majority of
positive results (high recall).

From Table 1, we immediately notice that BART-MIA outperforms other methods with an
ROC equal to 0.9054, a value that is considerably higher than in the case of other methods. In
fact, BART-MIA is in general more able than others to predict both exporters and non-exporters,
with a Balanced Accuracy of 0.77.

Yet, when we look at Specificity vis-ávis Sensitivity values, we realize it predicts relatively better
non-exporters rather than exporters. The reason is that the boost in overall prediction accuracy by
BART-MIA is largely due to an efficient use of the non-random missing values on smaller firms
reporting incomplete financial accounts. See also the specific robustness checks performed in
Section 6. As largely expected, smaller firms with partial information are also the ones that are
more likely to be classified as non-exporters, because: (i) larger size is more likely to be associated
with an export status, and (ii) smaller firms do not have to report financial information as com-
plete as that required of bigger companies.

Since BART-MIA is able to include the missingness of any single feature as an additional pre-
dictor (i.e., as yet another branch of the regression tree), we understand why it outperforms other
methods, which instead simply drop from computation companies that have any missing values
in predictors.

Finally, a simple comparison between the accuracy of BART and the one of BART-MIA allows
us to quantify what is the gain in considering the predictive power of missing values. Overall, we
observe a 14.4% increase in ROC, which we take as our baseline measure of prediction accuracy.
We will further discuss the trade-off between Specificity and Sensitivity once we challenge our
results in Section 7. Suffice it to say here that, in general, predicting true exporters is made dif-
ficult by the presence of temporary trade, i.e., when firms export in some years and not in others,
thus breaking the time series.

5.2 Predictions

In Figure 3, we report the entire distribution of predicted scores for non-exporters that we obtain
from our baseline BART-MIA. Without any selection threshold, these are the values that one
could consider for evaluating how far a company is from export status. What is relevant to
observe here is that the distribution is much skewed, hence the majority of non-exporters in
France is located on a thick left tail, thus far from being able to propose on foreign markets.
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Briefly, the distribution of scores that we obtain here is consistent with the idea of firm hetero-
geneity that we take from trade literature, as introduced in Section 2. In other words, only a rela-
tively small number of non-exporters is proximate to the right tail’s goal. The observation that
firms are heterogeneous also in exporting scores is relevant for taking informed policy decisions
that we discuss in Section 10.

6. Robustness checks
So far, we adopted a relatively standard 80− 20 random partition of the firms in the sample at
our disposal when training our model (Athey et al., 2021). Therefore, our first concern here is
to cross-validate our choice by repeating the prediction exercise four more times with a similar
random partition. We want to check that our high prediction accuracy is not due to a fortunate
selection of the training-and-testing partition. Any time, we train on a random 80% of the dataset
that we consider as in-sample information, then we test the accuracy of our predictions on the

Figure 3. Distributions of exporting scores of non-exporters after BART-MIA
Note: We report the distribution of the score after implementing BART-MIA on the entire sample and selecting all non-exporting firms.
The vertical line identifies the median non-exporting firm.

Table 1. Prediction accuracies

Specificity Sensitivity Balanced accuracy ROC PR N. obs.

LOGIT 0.6642 0.7776 0.7210 0.7940 0.8053 86,754

LOGIT-LASSO 0.6606 0.7722 0.7164 0.7847 0.7891 86,754

CART 0.5700 0.7896 0.6796 – – 86,754

Random Forest 0.6078 0.8276 0.7178 0.7947 0.8010 86,754

BART 0.6272 0.8048 0.7158 0.7911 0.7998 86,754

BART-MIA 0.9064 0.6496 0.7782 0.9054 0.7375 382,606

Note: We report standard measures of prediction accuracies (by column) for different methods we train (by row). Any observation is a
firm-year present in the sample. All methods but BART-MIA do not train or test on observations when at least one predictor is missing.
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remaining 20%, which we take as out-of-sample information. We obtain similar performance
scores across all exercises, and we pick BART-MIA once again as the most predictive algorithm.
We conclude that previous results had not been driven by a specific selection of training vis-á-vis
testing data.

Our second concern is that prediction accuracies are robust to different definitions of expor-
ters. So far, we defined an exporter as any firm with positive exporting revenues. Tto make our
results robust to the presence of so-called passive exporters, here, we will define an exporter as a
firm whose export share over total revenues is higher than a specific minimum threshold
(Geishecker et al., 2019), i.e., domestic firms that engage in one-off exporting events.

We run simulations by excluding from the category of exporters those firms that report export
shares lower than the first, second, and fifth percentile. Prediction accuracies are similar in mag-
nitude to those of our benchmark definition. Latter evidence suggests that baseline predictions are
not affected by the presence of a few less proactive firms.

A third concern we have is to verify the robustness to changes in predictors. Our problem here
is whether we could obtain similar prediction accuracy with less effort, such as neglecting vari-
ables that have relatively little predictive power. For this purpose, we perform a Logit-LASSO
exercise before running again the models described in Section 4.1. As in standard applications
(Belloni et al., 2017), the Logit-LASSO selects a subset of best predictors (in our case, 23 out
of 52) to contribute relatively more in predicting export status. Once again, BART-MIA outper-
forms other statistical learning techniques. However, when we perform BART-MIA including
only such a subset of predictors, we obtain lower accuracy than baseline results. Yet, we gather
there is no reason to exclude available predictors despite the high cross-correlations we observed
in Figure 2.

A fourth concern we have is the need to check whether the time of training and testing
matters for predictions. So far, we have considered firms and their export status throughout
the entire period at our disposal, between 2010 and 2018. Now, we train and test our predictive
model separating each year and find that the predictions do not change dramatically over the
timeline.

A fifth concern is that performance measures are robust to different probability thresholds for
predicting the exporting status. In baseline analyses, we adopt a quite standard cut-off value set at
0.5 to separate exporters and non-exporters in prediction. We know that exporting is a relatively
rarer event than non-exporting, and our prediction accuracies can suffer from a bias. The choice
of the threshold is, indeed, crucial for the computation of most prediction accuracies because the
values in Table 1 are threshold-specific. For a similar case in trade literature, see Baier et al.
(2014). Here we want to check that a different threshold does not alter the ranking of method-
ologies obtained by comparing prediction accuracies in Table 1. Therefore, we check if the per-
formance measures vary when we choose, for each model, the optimal cut-off value obtained
following Liu (2012), who aims at maximizing the product of sensitivity and specificity. When
an optimal threshold is set, the evidence of BART-MIA superiority is even more striking as it
outperforms the others by all measures of prediction accuracy except for PR. We will discuss
in Section 7 how the latter is negatively affected by the presence of discontinuous exporters.
Note, however, that both PR and ROC are not affected by the change in cut-off values because
they are independent of thresholds by construction. The latter is also the reason why we consider
them as baseline measures of performance.

A final concern is that baseline predictions improve mechanically only because the sample size
is bigger in BART-MIA than in other exercises. In fact, we want to investigate whether improve-
ments actually come from missing values. For our purpose, we perform two different exercises: (i)
we add ex ante a predictor to our original set that catches the relative missingness of financial
information at the firm-level; (ii) we impute missing values on single predictors based on median
values available from other companies’ financial accounts. From a combined reading of both
exercises, we better understand the role of missingness.
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Interestingly, prediction accuracies do increase overall for all methods after predictors’ imput-
ation, although classification trees, BART,8 and Random Forest, perform relatively better along
the different segments of the distribution (ROCs are 0.907 and 0.905, respectively). Eventually,
when we check for the relative importance of a predictor on missingness, we find that it is always
selected as the best predictor no matter what procedure we choose. We conclude that missing
values do have a prediction power, yet our baseline BART-MIA better catches their role without
introducing unnecessary data manipulation.

Eventually, we consider useful also reporting Spearman’s rank correlations in Table 2, to test
whether rankings in predictions are sensitive to the choice of predictive models in Table 1. Please
note how, by construction, the Spearman’s rank correlations can be performed only on the subset
of the data where every technique obtains predictions.

As a matter of fact, we get relatively high rank-correlations across predictive models with a min-
imum of 0.87 and a maximum of 0.96. In general, models do not dramatically alter the relative
positions of firms on the distribution of predictions. Interestingly, please note that rank-correlation
between the simpler BART and the BART-MIA is about 0.92. Although the latter is just a variant
of the first with missingness of values as an additional feature, the rankings in predictions are dif-
ferent. The latter is a significant result that allows us to further qualify the difference between the
simpler BART and its variant. The bottom line is that information from firms with missing values
in predictors allows BART-MIA to identify different thresholds on predictors’ distributions, which
in turn change the relative positions of firms on the distribution of predictions.

7. Sensitivity to temporary trade
We investigate in this section the sensitivity of our results to the presence of discontinuous
exporting activity, i.e., when firms engage in trade relationship that are temporary (Békés and
Muraközy, 2012). Indeed, the biggest challenge we face when predicting exporters is that firms
can export in some years and then lay idle for a while before re-proposing (or not) on foreign
markets. This is especially true for smaller firms or for firms that are specialized in manufacturing
capital goods. Thus, our prior is that discontinuity is not at random; it could be correlated with
some firms’ attributes, and our previous predictions could therefore be sensitive to the relevance
of temporary trade within our sample.

For our purpose, we perform separate checks by classifying firms into five categories:

1. firms that always export, which we call constant exporters;
2. firms that never export, which we call non-exporters;
3. firms that start exporting at some period t and always export afterwards, which we call

switching exporters;
4. firms that export in all periods until t and never export afterwards, which we call switching

non-exporters;9

5. discontinuous exporters, which export with an irregular pattern with more than one gap
along the timeline.

Prediction accuracies are reported in Table 3, after testing out-of-sample our baseline BART-MIA
algorithm. As expected, we observe that our predictive model performs quite well in separating
constant exporters from non-exporters, since Sensitivity and Specificity are about 0.86 and

8At this stage, computing BART-MIA or BART is equivalent, since we filled in missing values with imputations. The
BART-MIA will not find any missingness, and will not include missing values among predictors, thus reversing to a
more traditional BART procedure

9Please note that we may have had more switching non-exporters if we were able to zoom out on a longer timeline. We
cannot exclude that firms that do not export in our sample did so in previous unobserved periods. The latter is an element of
imperfection that we cannot expunge from our prediction exercise.
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0.95, respectively.10 However, predictions become relatively less accurate when we look at
out-of-sample information on firms that show gaps along the timeline. In general, in the case
of switching exporters and switching non exporters, we still have acceptable accuracies as the
ROCs reach up to 0.86 and 0.81, respectively. In line with our prior knowledge, the quality of
predictions is proportional to the number of years that the firms actually exported. Predictions
are more accurate when firms started (stopped) exporting sooner (later) in our data.

Finally, we focus on the category what we define discontinuous exporters, when firms have
more than one break in the time series, entering and exiting the export status. In this case, at
the bottom of Table 3, we find that prediction accuracy reached a relatively lower albeit acceptable
threshold (ROC:0.80). The accuracy is lower than the one obtained in predicting constant expor-
ters and non-exporters. Interestingly, we do register that our procedure is less and less able to
predict the export status in the case of firms that have less experience of foreign markets. This
is however consistent with the idea that firms engaging in temporary trade may continue to
do so systematically; hence, their lower predictability on a year-by-year basis.

Eventually, a final sensitivity check to temporary trade is performed by introducing a more lib-
eral definition of exporters proposed by Békés and Muraközy (2012), according to whom only firms
with at least four years of consecutive exporting can be actually considered as permanent exporters
vis-ávis temporary exporters. As largely expected, we find in that prediction accuracies for perman-
ent exporters are relatively higher (AUC:0.849; PR:0.934) than in the case of temporary exporters. In
particular, the model fails at predicting the export status of temporary exporters, i.e., it reports a
relatively lower true positives’ rate, as shown by the low scores on sensitivity, PR and ROC.

From our viewpoint, it makes sense that exporters with irregular exporting patterns represent
intermediate cases somewhere between firms that always export and firms that never export.
Therefore, classification algorithms struggle to separate intermediate cases on a binary outcome.
Based on financial accounts, such firms can be seen neither as fit for exporting as constant expor-
ters nor as unfit as non-exporters. Yet, it is more likely that such intermediate cases are of less
interest in policy applications because trade promoters or financial institutions need instead to
understand whether a firm that never exported at all needs some support or not.

8. Interpretability of predictors
In line with our empirical strategy, we have focused so far on prediction accuracy while neglecting
the role of single predictors. We discussed in Section 4 how our choice is driven by the necessity
to maximize prediction accuracy. Therefore. we have been using an as complete as possible list of
predictors, even though we are aware that we carried on with a compound of endogenous vari-
ables that are highly cross-correlated, as commented after Figure 2.

Table 2. Spearman’s rank correlations of predicted probabilities from different models

LOGIT LOGIT-LASSO Random Forest BART BART-MIA

LOGIT 1 0.9657 0.8773 0.8841 0.9012

LOGIT-LASSO 1 0.8925 0.9030 0.9118

Random Forest 1 0.9112 0.9167

BART 1 0.9179

BART-MIA 1

Note: We report a Spearman’s rank correlation among out-of-sample predictions to show how rankings in export status are sensitive to
changes in predictive models. All models, including BART-MIA, are thus trained and tested on the same observations.

10Please note that we cannot estimate other measures of prediction accuracy when we focus exclusively on either positive
or negative outcomes.
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Table 3. Prediction accuracies and temporary trade

Firm category Sensitivity Specificity
Balanced
accuracy ROC PR Num. Obs.

Constant Exporters 0.856 – – – – 21,834

Non-exporters – 0.951 – – – 158,625

Switching to export 0.629 0.849 0.739 0.864 0.764 15,084

Since t0 0.749 0.682 0.716 0.794 0.954 1,980

Since t1 0.729 0.694 0.712 0.808 0.914 1,296

Since t2 0.711 0.751 0.731 0.838 0.888 1,179

Since t3 0.618 0.806 0.712 0.832 0.821 1,215

Since t4 0.582 0.796 0.689 0.812 0.73 1,323

Since t5 0.585 0.819 0.702 0.823 0.638 1,683

Since t6 0.463 0.835 0.649 0.804 0.45 2,187

Since t7 0.262 0.903 0.583 0.792 0.251 4,221

Switching to non-export 0.599 0.802 0.7 0.819 0.786 27,891

Until t0 0.269 0.81 0.539 0.643 0.152 3,915

Until t1 0.376 0.745 0.561 0.65 0.291 2,511

Until t2 0.419 0.725 0.572 0.689 0.443 2,124

Until t3 0.479 0.737 0.608 0.733 0.599 2,412

Until t4 0.508 0.815 0.662 0.816 0.757 2,844

Until t5 0.563 0.925 0.744 0.929 0.924 5,409

Until t6 0.664 0.843 0.754 0.877 0.931 3,996

Until t7 0.742 0.813 0.778 0.874 0.97 4,680

Discontinuous exporters 0.547 0.807 0.677 0.796 0.686 85,023

Export experience:
1 year

0.216 0.873 0.544 0.686 0.171 19,152

Export experience:
2 years

0.313 0.823 0.568 0.702 0.334 12,816

Export experience:
3 years

0.387 0.796 0.592 0.718 0.483 10,962

Export experience:
4 years

0.478 0.736 0.607 0.719 0.595 8,910

Export experience:
5 years

0.519 0.74 0.63 0.753 0.72 9,297

Export experience:
6 years

0.593 0.721 0.657 0.755 0.808 8,460

Export experience:
7 years

0.662 0.7 0.681 0.774 0.886 7,758

Export experience:
8 years

0.757 0.658 0.708 0.781 0.951 7,668

All sample 0.6491 0.9080 0.7785 0.9048 0.7383 308,457

Note: We report prediction accuracies after BART-MIA for firms with different exporting patterns. For switching-exporters and
switching-non-exporters we identify the year when they are observed changing status, i.e., the year when the firm passes from never
exporting to always exporting, and vice versa. For discontinuous exporters. we distinguish by number of exporting years over the sample
timeline.
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What we want to do now is to show how predictors do have different influence on the out-
come, and we can still discuss their influence on predictions without implicating any causality.
On the contrary, the internal validity of our ‘influential predictors’ is to us more important
than an external validity. They are relevant because we can interpret them in relationship with
the specific prediction exercise on which we want to comment. If we consider a different sample,
those ‘influential predictors’ will almost certainly be different.

VIPs are our baseline method for the interpretability of a BART-MIA exercise).11 The VIP for
any given predictor represents the proportion of times that a variable is chosen as a splitting rule
out of all splitting rules among the posterior draws of the sum-of-trees model (Kapelner and
Bleich, 2013). It is computed as follows: (1) Across all q trees in the ensemble we examine the
set of predictor variables used for each splitting rule in each tree; (2) for each sum-of-tree
model, we compute the proportion of times that a split using xp as a splitting variable appears
among all splitting variables X in the model; with (3) K being the number of the sum-of-tree mod-
els f ∗k , drawn from the posterior distribution P(T M

1 , . . . , T M
m , 1|F(Y)), and zpk being the propor-

tion of all splitting rules that use the pth component of X in model f ∗k , the VIP is computed as

vp =
1
K

∑K
k=1

z pk (5)

Thus, we report in Figure 4 a visualization of the VIPs accompanied by a standard deviation that
is computed after running five different random tests. Please note how averaging across multiple
trials allows us to improve the stability of estimates, as suggested by Kapelner and Bleich (2013).
For the sake of visualization, we report in Figure 4 only those predictors that register a VIP equal
to or higher than 1%.

When we look at Figure 4, we document that the best predictor in our baseline exercise is the
proxy we use for the existence of external economies of scale, which indicates the presence of
other firms in the same industry and in the same region, as suggested by Bernard et al.
(1995). Once again, we want to stress that since we are in a pure prediction framework, we cannot
say whether external economies of scale, measured in this way, are an actual determinant of
export status. We cannot exclude reversal causality. On the one hand, it is indeed possible that
local spillovers help neighbouring firms to start exporting after, for example, sharing infrastruc-
tures or intangible knowledge about foreign markets: Dhyne et al. (2023) found such a dynamic
using buyer–seller linkages in the Belgian production network. On the other hand, it is possible
that firms in industries at a comparative advantage locate in geographical proximity before
becoming exporters. In any case, it is beyond the scope of our analysis to unravel the endogeneity
of this specific relationship or any other we know we have among predictors and the outcome.
Suffice it to say that the industrial concentration of exporting firms in a region of France is a
good, albeit not unique, predictor of export status for the representative firm located in that area.

Notably, we observe in Figure 4 how original accounts altogether provide an important contri-
bution to predict export status. However, no single predictor contributes more than 4% in any of
the tests we performed. Besides financial accounts, business demography has predictive power: firm
age has an inclusion proportion higher than2%. It also makes perfect sense that the activities of
multinational enterprises play a role in export status. Being either a foreign subsidiary (inward
FDI) or owning a subsidiary abroad (outward FDI) affects the probability of exporting. As expected,
the ability to innovate and register patents is also related to the likelihood of becoming an exporter.

Eventually, we want to bring the attention on the absence of Total Factor Productivity (TFP).
Among the predictors shown in Figure 4, which we however included following the methodology

11For a different choice of methods to catch the relative importance of predictors, see also Joseph (2020) and the case of
neural networks.
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by Ackerberg et al. (2015). Although TFP is a much-studied determinant of export status, we do
not find it to be among the most relevant predictors in a machine learning exercise. Our educated
guess is that the role of TFP is already captured by the sample variation in raw financial accounts
that are also needed to compute it as a residual from a firm-level production function (turnover,
costs of materials, employees, etc.).

9. Internal vs. external validity
In this section, we discuss the reproducibility of our predictive exercise in different contexts, i.e.,
the external validity of our results.

A first concern we want to address is the possibility to replicate our study in the case of other
countries, e.g. in the case of countries that differ in economic development. In this contribution, we
investigate the case of France mainly because French firm-level data has been used extensively in
related literature. Yet, we argue that our predictive setup can be applied to any country, regardless
of its economic development, provided that financial accounts have predictive power on a firm’s
export status. We have already discussed in Section 2 how we rely on extensive literature that sup-
ports the evidence that exporters are significantly different from non-exporters when we look at
financial accounts (Bernard and Jensen, 1999; Melitz, 2003; Melitz and Ottaviano, 2008;
Bernard et al., 2012; Melitz and Redding, 2014; Lin, 2015; Hottman et al., 2016). Therefore, in
the case of developing countries, we do expect exporters and non-exporters to be at least as stat-
istically different in financial accounts as in the case of a developed country. In the case of devel-
oping countries, we actually expect domestic allocative inefficiencies to be higher and exporters to
be relatively larger and more productive than non-exporters, very concentrated at the top of the
distribution (Tybout, 2000; Alfaro et al., 2009). In this case, we expect our algorithm, if anything,
to perform at least as good in a developing country as in the case of France.

A second concern relates the external validity of our results on the prediction power of single
financial accounts in Section 8. Can we assume that they will have a similar predictive power in
other contexts? We argue they will not. VIPs constitute a posterior probability that the variable xk

Figure 4. Variable inclusion proportions after BART-MIA
Note: We report VIPs, i.e., the proportion of times each predictor is chosen for a splitting rule in BART-MIA. Of all the predictors in base-
line, we visualize only those with a VIP higher than 1%. The bars represent standard deviations of inclusion proportions obtained by
replicating five different times the BART-MIA on the same random training set.
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has a (linear or non-linear) association with the response variable (Bleich et al., 2014). Variables
selected through VIPs would be almost certainly different if we considered different countries or
regions. Yet, we argue that the relevance of VIPs resides in their internal validity, given the pecu-
liarity of each predictive exercise. For example, one could compare across different countries or
regions how the relative importance of predictors changes and use that information to take solid
policy decisions. To make our point, we replicate our exercise after separating Île-de-France from
the rest of the country.

We observe that not only the set of influential predictors differs, but also that the relative
importance of predictors changes from one exercise to the other. This hints at the presence of
locally different dynamics. For example, the predictor (log of) number of employees is selected
in the sample excluding Île-de-France, but not in Île-de-France, where there is possibly more
homogeneity in terms of firm size. In contrast, the predictor patent is influential in
Île-de-France, but not elsewhere, possibly indicating that in the first there is a comparative advan-
tage in more innovative activities that have the potential to reach foreign markets. Prima facie, the
latter evidence is consistent with our prior knowledge about the landscape of the French economy.

A third concern we want to address is the validity of our methodology in presence of structural
breaks or external shocks, e.g. in the case of policy changes. In this regard, please note that ours is
a cross-sectional classification exercise: we use information on both exporters and non-exporters
to understand how non-exporters are statistically different from exporters. We could pool data
over longer periods in order to increase the training set’s size. However, it is unnecessary for
our scope, and we included a few robustness checks in Section 7 when we changed the pooling
strategy. Eventually, in our case, the levels of prediction accuracy depend only on the ability of
predictors to capture the statistical difference between exporters and non-exporters within the
same period in different contexts. Structural breaks or policy shocks are of no concern to us
as far as we do not use variation from the past to predict the future. Our only concern is that
our list of predictors includes the different dimensions that can contribute to the gap between
exporters and non-exporters in different policy environments. A discussion of the rationale for
single predictors was included in Section 4.2.

10. How to use exporting scores
We now provide new examples of possible applications of exporting scores as either indicators for
trade credit or a tool for assessing the trade potential of regions and industries. Based on the prior
knowledge that exporters and non-exporters are statistically different across financial attributes,
we use in-sample information to predict out-of-sample capability to export. Thus, it is possible to
build a continuous indicator that provides an exporting score based on our baseline predictions to
indicate the potential of companies to successfully enter foreign markets, i.e., their distance from
export status. We visualize our intuition in Figure 1.

Briefly, we can get a basic and simple export (probabilistic) score for any out-of-sample non-
exporting ith firm in the form:

distancei = 1− Pr(Yi = 1gt|gtXi = x) (6)

which is by definition bounded in a range (0, 1), and made conditional on the set of predictors,
Xi, as from previous exercises.

To illustrate our idea of the relationship with creditability, we perform back-of-the-envelope
estimates here to predict how much capital and cash resources may be needed by a company
to become fit for export. We classify firms in different risk categories, i.e., categories based on
a partition of the distribution of exporting scores obtained in Figure 3. For simplicity, let us con-
sider all firms included in a decile of predictions as belonging to the same risk category.
Obviously, the higher the distance from export status, 1− Pr(Yi), the higher the risk for trade
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credit. We obtain symmetric segments of length equal to 0.1, i.e., about ten percentage points of
lower risk in each category when approaching export status. Therefore, we can run the following
simple specification:

logYit = b0 +
∑risk=1

10

urisk + b1xit ++ft + ds + hr + e (7)

where Yit is either cash resources or fixed assets for firm i at time t, and xit is its firm-level size.
We will always control for time (ϕt), four-digit NACE sector (δt), and two-digit NUTS region (ηr)
fixed effects. We cluster standard errors at the firm level. Crucially, our coefficients of interest are
the ones on θrisk, as these are the risk classes we built on exporting scores. We report them in
decreasing order of risk in Figure 5 together with 99% confidence intervals. Once we omit the
first segment [0, 0.09], the estimated intercepts of equation (7) will indicate (logs of) cash
resources and fixed assets needed by a representative firm that is more distant from export status.
To obtain what is on average needed by a firm in a risk category, we predict (log) premia with respect
to the baseline omitted first segment. For example, the representative firm with exporting scores
lower than 0.1 operates with exp(b̂0) = exp(11.6338) ≈ 112, 850 euro of cash resources and
exp(b̂0) = exp(13.4027) ≈ 661, 790 euro of fixed assets. Firms in the fifth category, when exporting
scores are in a range [0.4, 0.5), will need exp(b̂0 + û5) = (11.6338+ 0.6797) ≈ 222, 690 euro of
cash resources and exp(b̂0 + û5) = exp(13.4027+ 0.5933) ≈ 1, 197, 800 euro of fixed assets. To
put it differently, we can say that a firm that is in a medium-risk category needs about 97% more
cash resources and about 81% more fixed assets compared with a firm with the lowest exporting
scores.

However, if we look at firms in a comfort zone with exporting scores in a range [0.9, 1], we see
that they operate with exp(b̂0 + û10) = exp(11.6338+ 1.0459) ≈ 321, 160 euro of cash and
exp(b̂0 + û10) = exp(13.4027+ 1.8348) ≈ 4, 145, 360 euro of fixed assets. Please note that the

Figure 5. Premia on relevant firm dimensions across exporting scores
Note: Fixed effects on segments of exporting scores after linear regressions where the outcomes are (log of) cash resources and (log of)
fixed assets, respectively. We always control for firm size, NUTS 2-digit regions, NACE 2-digit industries, and fixed time effects. Errors are
clustered at the firm level.
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Figure 6. The potential for extensive margin across France
Note: We report location quotients of non-exporters whose score is above the median in the national distribution. Regions with location quotients greater than 1 (lower than 1) are those where potential
exporters are more (less) concentrated than what one would expect given manufacturing density.
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higher the probability that a firm starts exporting, the higher the cash resources and capital
expenses it needs. In the latter case, if we compare with average exporting scores in the fifth
risk class, we find that medium-risk firms need 44% more cash resources and up to 246%
more capital expenses to look like firms that have been classified under the lowest risk category.

We observe that there is an increasing need for financial resources to climb risk categories and
reduce the distance from export status. Based on predictions made on the experience of both
exporters and non-exporters, a financial institution could evaluate whether it wasworth the effort
to invest in internationalization, and how many resources a firm would need to reach its target.

Finally, we spend a few words to show how exporting scores can help assess the potential for
expanding the number of exporters in a region or an industry, i.e., the potential for a trade exten-
sive margin. Openness to international trade is a determinant of economic growth. Consumers
can gain from trade thanks to differential comparative advantages and economies of scale.
Both developed and developing economies have benefited from integration into the global econ-
omy through export growth and diversification. Thus, export performance has been long used as
yet another proxy for measuring countries’ competitiveness by a consolidated tradition in eco-
nomic literature and by international organizations (Leamer and Stern, 1970; Richardson,
1971a, 1971b; Gaulier et al., 2013).

To make our point, we follow a dartboard approach as in Ellison and Glaeser (1997) (see
Figure 6 for further details on computations). Regions with location quotients greater than 1
are the ones where potential exporters are more concentrated than what one would expect.
Eventually, we did find a geographic pattern since non-exporters with the highest potential are
mainly present in North-Eastern regions. In contrast, Southern regions and overseas territories
lag behind in trade potential.

Eventually, more sophisticated analyses on the distribution of exporting scores in industries
and regions can be performed to evaluate trade potential. For example, one could exploit the vari-
ation in time to understand how competitive a region or an industry is becoming. Also, one could
compare across countries to check whether there is different potential for trade beyond actual
export performance. We believe any of them could be a useful tool in the analysis that aims at
assessing the trade competitiveness of an economy.

11. Conclusions
This paper exploited statistical learning techniques to predict firms’ export ability. After show-
ing how financial accounts convey non-trivial information in order to separate exporters from
non-exporters, we propose predictions as a tool that can be useful for targeting trade promo-
tion programs, trade credit, and in assessing firms’ trade potential. The central intuition is that
exporters and non-exporters are statistically different in their financial structures since they
have to sustain the sunk costs of gaining access to foreign markets, where regulations and con-
sumer tastes differ. Thus, we train and test various algorithms on a dataset of French firm-
level data from 2010 to 2018. Eventually, we find that the Bayesian Additive Regression
Tree with Missingness In Attributes (BART-MIA) outperforms other models due to efficient
use of the non-random missing information on smaller firms reporting incomplete financial
accounts.

Notably, prediction accuracy is rather high, up to 90%, and robust to both changes in the def-
inition of exporters and different machine learning training strategies. Interestingly enough, our
framework allows handling cases of discontinuous exporters, as they are intermediate cases
between permanent exporters and non-exporters. Eventually, we discuss how predictions can
be used as scores to catch firms’ internationalization strategies and creditability. For example, imi-
tating what a financial institution would professionally do, we order firms along risk categories.
Thus, we show back-of-the-envelope estimates of how much cash resources and capital a firm
would need to climb risk classes and become fit for foreign markets.
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To conclude, we argue that exporting scores obtained as predictions from firm-level financial
accounts can be yet another useful tool in the analyst kit to evaluate trade potential at different
levels of aggregations. As we show in the case of France, for which we provide summary statistics
where a high heterogeneity of trade potential is detected across regions.

Supplementary Materials. To view supplementary material for this article, please visit https://doi.org/10.1017/
S1474745623000265.
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