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Numerical Semigroups That Are Not
Intersections of d-Squashed Semigroups

M. A. Moreno, J. Nicola, E. Pardo, and H. Thomas

Abstract. We say that a numerical semigroup is d-squashed if it can be written in the form

S =

1

N
〈a1, . . . , ad〉 ∩ Z

for N, a1, . . . , ad positive integers with gcd(a1, . . . , ad) = 1. Rosales and Urbano have shown that a

numerical semigroup is 2-squashed if and only if it is proportionally modular.

Recent works by Rosales et al. give a concrete example of a numerical semigroup that cannot

be written as an intersection of 2-squashed semigroups. We will show the existence of infinitely many

numerical semigroups that cannot be written as an intersection of 2-squashed semigroups. We also will

prove the same result for 3-squashed semigroups. We conjecture that there are numerical semigroups

that cannot be written as the intersection of d-squashed semigroups for any fixed d, and we prove some

partial results towards this conjecture.

1 Introduction

Numerical semigroups (i.e., subsemigroups of the positive integers whose comple-
ment in Z

+ contains only finitely many elements) have been the object of intensive

study in the last decade, not only in relation to semigroup rings which are Krull rings,
but also in connection to solutions of diophantine equations.

In this field, an especially interesting question is whether it is possible to write

numerical semigroups as an intersection of some kind of “elementary” building
blocks. The best-known choices for building blocks are the irreducible numerical

semigroups. Recall that a numerical semigroup is irreducible if it cannot be expressed

as an intersection of two numerical semigroups properly containing it. Every numer-
ical semigroup S admits a decomposition S = S1 ∩ S2 ∩ · · · ∩ Sn with Si irreducible

for all i (see [4]). Examples of irreducible numerical semigroups are those gener-
ated by pairs of coprime natural numbers, but it is known (see [4, 5]) that there exist

irreducible numerical semigroups whose minimal sets of generators have arbitrary

cardinality.
We can then consider a generalization of these 2-generated numerical semigroups

as basic building blocks, as follows (though these semigroups need not be irre-

ducible).
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Definition 1.1 We say that a numerical semigroup is d-squashed if it can be written
in the form

S =

1

N
〈a1, . . . , ad〉 ∩ Z

for N, a1, . . . , ad positive integers with gcd(a1, . . . , ad) = 1.

In [8] it was shown that the class of 2-squashed semigroups is exactly the class of

semigroups defined in [7], called proportionally modular semigroups. Proportionally
modular semigroups arise as the solution to certain diophantine inequalities.

Further, 2-squashed semigroups are related to some questions about K-theory of

C∗-algebras which we shall discuss below. For arbitrary d ≥ 2, these semigroups are

related to combinatorial questions of algebraic geometry.

From now on, we write N for {1, 2, . . . }, and Z
+ for {0}∪N. In Section 2, we show

the existence of infinitely many semigroups that cannot be written as the intersection

of 2-squashed semigroups. At the end of this section, we outline the connection with
K-theory of C∗-algebras, providing a negative answer to a question of Toms [10].

Finally, in Section 3, we consider the question of whether there exist semigroups

that cannot be written as an intersection of d-squashed semigroups, for fixed d >
2. We prove some preliminary results for general d, and then show that there exist

semigroups that cannot be written as an intersection of 3-squashed semigroups. We
offer the following conjecture.

Conjecture 1.2 For any d ≥ 2, there exist numerical semigroups S ⊂ Z
+ that cannot

be written as an intersection of d-squashed semigroups.

2 Existence of Examples for d = 2

We will use an argument of geometric inspiration to prove that there exist infinitely

many numerical semigroups that cannot be written as the intersection of 2-squashed
semigroups. The basic fact we need (which first occurred to us in a geometric con-

text) can be obtained as a direct consequence of (arithmetic) results of Rosales et

al. [7, 8]. Recall that a numerical semigroup S is called proportionally modular if
S = T ∩ Z

+, where T is a submonoid of R
+ generated by a closed interval [7, p. 285].

Proposition 2.1 A numerical semigroup S is a 2-squashed semigroup if and only if

there exist rational numbers 0 < α < β < ∞ such that S =

⋃

∞

i=0[iα, iβ] ∩ Z.

Proof By [8, Theorem 5], a numerical semigroup S is a 2-squashed semigroup if
and only if it is proportionally modular. Then the result holds by [7, Lemma 12,

Theorem 13, Remark 2].

Remark 2.2 The underlying geometric idea (which we will exploit subsequently)

is that the elements of a 2-squashed semigroup S can be seen as the y-coordinates of
lattice points in a cone of R

2.

For K a set of integers, we write min(K) and max(K) for the minimum and max-

imum values in K . We have the following theorem.
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Theorem 2.3 Let K be a finite set of non-negative integers which is not the set of

y-values of the lattice points inside any compact, convex body in R
2, and suppose further

that max(K) < 2 min(K). Then the semigroup generated by K is not 2-squashed.

Proof Let S be the semigroup generated by K . Note that, since max K < 2 min K ,
we have that S ∩ [min K, max K] = K .

Suppose S is 2-squashed. By the previous remark, there is a cone C in R
2 of the

form C = {(x, y) | αx ≤ y ≤ βx} with α > 0, such that the set of y-values of lattice

points in C is S. Now consider the part of C whose y-values lie between min K and
max K . This is a compact, convex set in R

2, and the y-values of lattice points in the

set must be S ∩ [min K, max K] = K , which is a contradiction.

Thus, to find a non 2-squashed semigroup, it suffices to find a set of non-negative
integers K with max K < 2 min K and with the property that K cannot be the set of

lattice points in a compact, convex body in R
2. The next lemma, which we shall need

again when we consider the 3-squashed case, accomplishes this.

Given a finite set of integers K , let K(1) denote the maximal consecutive sequence
of integers in K beginning with the minimal element of K , let K(2) be the next con-

secutive sequence of integers in K , etc. Let r(K) denote the number of these subsets

which appear (so K(r(K)) is the last one). For example, if K = {0, 1, 4, 7, 48, 49},
K(1)

= {0, 1}, K(2)
= {4}, K(3)

= {7}, and K(4)
= {48, 49}, so r(K) = 4.

Lemma 2.4 A finite set of integers K is not the set of y-values of the lattice points in a

compact, convex body in R
2 if it has the following properties:

(i) |K(1)| ≥ 2.

(ii) r(K) ≥ 4.

(iii) |K(r(K))| = 2.

(iv) The only elements of K larger than (min(K) + max(K))/2 are those in K(r(K)).

(v) |K|/(max(K) − min(K)) < 1
8
.

Further, a set K satisfying these properties cannot be the set of y3-values of the lattice

points in any compact convex body contained in a plane in R
3.

It will be clear from the proof that these conditions are not by any means the

only possible set of conditions for which one could prove such a lemma, but they are
sufficient for our purposes.

To give a concrete example: the lemma asserts that the set K = {0, 1, 4, 7, 48, 49}
cannot be the set of y-values of lattice points in a compact convex body in R

2. Fur-

thermore, it cannot be the set of y3-values of the lattice points in any compact convex
body contained in a plane in R

3.

Proof Suppose that R is a compact, convex body in R
2. Let K be the set of y-values

of the lattice points in R. Assume further that K satisfies conditions (i)–(v). We will

now find a contradiction.

To begin with, note that K contains at least six integers, by conditions (i), (ii), and

(iii), and that therefore by (v) max(K) − min(K) > 48.

Write b0 for min(K) and b3 for max(K), and let P0 = (a0, b0) be a lattice point in

R guaranteed by the definition of K . Similarly, let P1 = (a1, b0 + 1), P2 = (a2, b3 −1),
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Figure 1: Examples of the non-parallel and parallel cases.

P3 = (a3, b3) be lattice points of R whose existence is guaranteed by the definition of

K together with (i) and (iii). We now consider two cases, depending on whether or
not P0P1 and P2P3 are parallel.

Suppose first that they are not parallel. Let Q be the convex hull of the Pi . Then Q

is a lattice polygon, so the number of lattice points in Q is given by Pick’s theorem:

|Q ∩ Z
2| = area(Q) +

|∂Q|

2
+ 1.

Here ∂Q denotes the lattice points on the boundary of Q. From Pick’s theorem we

can derive the inequality |Q ∩ Z
2| > area(Q).

Consider the area of the triangle P0P1P3. Its vertical length is b3 − b0; its area
will be half that length times the horizontal distance from P1 to P0P3. Similarly,

the area of P0P2P3 is 1
2
(b3 − b0) times the horizontal distance from P2 to P0P3. Let

X = (a0 + a3 − a2, b0 + 1) be the lattice point such that P0X is parallel to and has
the same length as P2P3. See Figure 1. The horizontal distance from P2 to P0P3 is,

by symmetry, equal to that from X to P0P3. X and P1 are lattice points on the same
horizontal line and by our assumption that P0P1 and P2P3 are not parallel, X and P1

are not the same point. Thus, if they lie on the same side of P0P3, one of them must

be horizontal distance at least 1 away from it, while if they lie on opposite sides of
P0P3, the sum of their horizontal distances is at least 1, and thus at least one of these

horizontal distances is at least 1
2
. It follows that the area of Q is at least 1

4
(b3 − b0),

and thus that Q contains at least this many lattice points.

However, we know that |K| is less than half that amount. Thus, there must be some
k ∈ K which is the y-value of at least three lattice points of Q. Thus it follows that

the line y = k intersects Q (and hence R) in a line of width at least 2. By convexity,
it follows that the line y = j intersects R in a line of width at least 1 whenever

(min(K) + k)/2 ≤ j ≤ (max(K) + k)/2. Thus, there is an interval of half the length

of K over which the width of R is at least 1. Therefore, K contains all the lattice points
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in this interval. But since the length of this interval is (max(K) − min(K))/2, even
allowing for round-off error, condition (v) must be violated.

Now consider the case where P0P1 and P2P3 are parallel. After a horizontally shear-
ing lattice homomorphism, we may assume that a1 = a0, and therefore that also

a2 = a3. Without loss of generality, assume a3 > a0. The line x = a0 intersects R in

a segment of length at least 1, and the line x = a3 also intersects R in a segment of
length at least 1. By convexity, the same is true for any line x = k with a0 ≤ k ≤ a3.

It follows that there is at least one lattice point in R with each x-value between a0 and

a3. Note that if we fix an integer a such that a0 ≤ a ≤ a3, then the set {y | (a, y) ∈ R}
is a consecutive set of lattice points in K . Since r(K) ≥ 4, there must be at least four

different integers in [a0, a3], so a3 − a0 ≥ 3.
Consider the line segment ℓ from (a0, b0) to (a3, b3). Let m = (b3 − b0)/(a3 − a0)

be the slope of ℓ. By convexity, all the points of this line are in R.

Let c = a0 + 3
4
(a3 − a0), and d = b0 + 3

4
(b3 − b0), so (c, d) lies on ℓ. Let c ′ be the

integer closest to c. Define d ′ by requiring that (c ′, d ′) lie on ℓ.

Since |c − c ′| ≤ 1
2
≤ 1

6
(a3 − a0), we know that |d − d ′| ≤ 1

6
(b3 − b0). Thus

b0 +
( 3

4
−

1

6

)

(b3 − b0) ≤ d ′ ≤ b0 +
( 3

4
+

1

6

)

(b3 − b0).

Since b3 − b0 > 48, this implies that

b0 + b3

2
+ 4 < d ′ < b3 − 4.

Since the vertical line defined by x = c ′ intersects R in a segment of length at least

1, there is a lattice point in R whose y-value is within 1 of d ′. This contradicts (iv),

completing the proof of the main claim.
Now suppose that R is a compact, convex body contained in a plane in R

3, and

suppose again, for the sake of contradiction, that K consists of the y3-values of the
lattice points in R. We focus our attention on the plane in which R lies, and apply

the first claim. The crucial point we need is that y3 is a lattice coordinate on this

plane (that is, y3 restricts to a surjective map from the lattice points in this plane
to Z), which must be true given our assumptions since K contains two consecutive

integers.

Corollary 2.5 There are infinitely many subsemigroups of N that are not 2-squashed.

Proof Let K = {0, 1, 4, 7, 48, 49}. As already remarked, K satisfies the hypotheses of
Lemma 2.4, so it cannot be the set of y-values of lattice points in a compact, convex

body in R
2. We cannot directly use K in Theorem 2.3, since it does not satisfy the

additional hypothesis that max K < 2 min K . However, any Kn = K + n for n ≥ 50,
will satisfy the hypotheses of the theorem. Since the subgroups generated by Kn and

Kn ′ are different if n and n′ are distinct positive numbers, we have generated infinitely
many non 2-squashed semigroups.

We should remark that these examples are not the first known examples of semi-
groups that cannot be written as an intersection of 2-squashed semigroups. In [7, Ex-

ample 28] it was shown, by using [7, Algorithm 24, Algorithm 27], that the numerical

semigroup S = 〈4, 6, 7〉 cannot be written as intersection of 2-squashed semigroups.
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2.1 Applications to K-Theory

Since the early seventies, K-theory has been successfully used as a tool for classifying

C∗-algebras. During this time, interest has been focused not only on the search for
invariants in order to classify certain classes of C∗-algebras (AF C∗-algebras and ir-

rational rotation algebras, among others), but also on self-contained considerations
about determining the range of these invariants. This interest is closely related to the

search for pathological behaviors in the structure of these algebras and feeds into the

parallel development of a rich theory of ordered groups.
Among numerous questions related to the structural regularity of simple C∗-alge-

bras is the following one: is it possible to construct a simple C∗-algebra A whose

ordered K0-group is not endowed with the unperforation property (a sort of torsion-
freeness for ordered groups)?

This question was answered in the affirmative by J. Villadsen [11]. Subsequent

refinements, due to Rørdam and Villadsen [3], Elliott and Villadsen [1], and Toms
[10], allow one to restrict the K-theoretical scope of these examples by construct-

ing a simple C∗-algebra A such that (K0(A), K0(A)+) ∼
= (Z, S), where S ⊆ Z

+ is a
submonoid such that Z

+\S is a finite set.

In this context, the following question arises naturally: is it possible to find such an

algebra for any such monoid S? While the first approaches were not promising, Toms,
for any prime numbers q1, . . . , qn, integers m1, . . . , mn ∈ N with gcd(qi , mi) = 1,

and N ∈ N with gcd(qi, N) = gcd(mi, N) = 1, provided a simple C∗-algebra A with

(K0(A), K0(A)+) ∼= (Z, S), where

S =

1

N

(

n
⋂

i=1

〈qi , mi〉
)

∩ Z.

The obvious question is

Toms: Is any submonoid S ⊂ Z
+ with Z

+\S finite of this particular form?

Toms showed that the result holds for 2-generated numerical semigroups [9, 10].
However, it is clear that any semigroup of Toms’ form can be written as an intersec-

tion of 2-squashed semigroups. Thus, by the results we have just discussed, 〈4, 6, 7〉
provides a concrete counterexample to Toms’ question, while Corollary 2.5 guaran-
tees that there exist infinitely many numerical semigroups which are counterexam-

ples to Toms’ question.

3 A Generalized Conjecture

In this section we consider the question of whether there exist numerical semigroups

which cannot be written as an intersection of d-squashed semigroups for fixed d > 2.

The first part of the argument applies for all d, but to finish the argument we must
specialize to the case d = 3.

For now, we will be operating inside Z
d. We will sometimes think of Z

d sitting as
lattice points inside R

d. Let y1, . . . , yd be the coordinate functions on Z
d (or R

d). For

greater clarity, though, when we discuss R
2, we will consider its coordinate functions

to be x and y.
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We begin by proving a d-dimensional analogue of Proposition 2.1.

Lemma 3.1 If S is a d-squashed semigroup, then there is a d-dimensional simplicial

cone CS in the positive orthant of R
d such that yd(CS ∩ Z

d) = S.

Proof Suppose S = ( 1
N
〈a1, . . . , ad〉) ∩ Z

+. It is easy to construct a suitable cone if

S = Z
+, so assume otherwise.

Let L = {(z1, . . . , zd) ∈ Z
d | N divides

∑

aizi}. Then L is a free abelian group.

Since it is contained in Z
d, its rank is at most d, but since it contains N times each of

the standard basis vectors, its rank is at least d. So L is a d-dimensional sublattice of
Z

d.

Now consider the map g : L → Z defined by g(z1, . . . , zd) =
1
N

∑

aizi . This map
is onto because the greatest common divisor of the ai is 1. We can therefore define a

new set of coordinates for L (and hence also for R
d), denoted by xi , such that xd = g.

(In other words, we choose a set of maps xi : L → Z such that (x1, . . . , xd) is an
isomorphism from L to Z

d, and such that xd = g.) We can also view {xi} and {yi} as

two different systems of coordinates on R
d.

Now consider C, the subset of R
d defined by the condition that yi ≥ 0 for all i.

This is a full-dimensional simplicial cone. (With respect to the yi coordinate system,

it is exactly the positive orthant.) Therefore, it is defined by d inequalities, which we
can express in our new coordinate system by linear functionals fi(x1, . . . , xd) ≥ 0.

By definition, S consists of the values of xd on lattice points in C. So we would like to

take C (considered with respect to the xi coordinate system) to be the cone satisfying
the statement of the lemma. However, we may not be able to do that.

The problem we face is that C might not lie in the positive orthant (again, with

respect to the xi coordinate system). Consider the xd = 1 slice of C,

D = {w ∈ C | xd(w) = 1}.

A priori, if we take an affine slice of a cone, we can get an unbounded set. However,

if that happens in our case, then all the slices xd = k for k ∈ N would be unbounded,

and, in particular, would contain lattice points. Therefore the xd-values of the lattice
points of C would be all of Z

+, so S = Z
+, contrary to our initial assumption. Thus,

D is bounded. We can therefore choose v = (v1, . . . , vd−1, 0) ∈ Z
d such that v+D lies

in the positive orthant. Let C ′ be the cone over v + D. We claim that C ′ satisfies the

statement of the lemma, with respect to the coordinate system given by the xi . The

xd-values of lattice points in C ′ agree with those of C (and hence with S), and C ′ lies
in the positive orthant, so C ′ satisfies our conditions, and we are done.

We have now shown that any d-squashed semigroup can be obtained by taking
some simplicial cone C in the positive orthant of R

d, intersecting it with Z
d, and then

taking its projection onto one coordinate axis.

If S is a d-squashed semigroup not containing some n ∈ N, then we know that the
intersection of C with the hyperplane yd = n must not contain any lattice points. If

d = 2 (contrary to our running assumption in this section), this would tell us a lot
about C, because in this case the “hyperplane” is a line, and so the intersection of C

with this line is an interval of R which contains no lattice points. Such intervals are

relatively easy to understand.
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However, since we are assuming d > 2, we will have to work harder. Let us step
back, and consider what we might hope to be able to prove, given some convex body

inside R
d−1 which contains no lattice points.

Our first hope might be that such a set would have to be bounded, as is true of one-

dimensional convex bodies containing no lattice points. But that is not true, even

in two dimensions. It is easy to see that a two-dimensional convex set containing
no lattice points can be arbitrarily large in one direction, provided it is reasonably

skinny. In fact, it is easy to convince oneself that any two-dimensional convex set

which contains no lattice points must have some direction in which it is narrow. (See
Lemma 3.5 below for a precise statement.) It turns out that a similar statement holds

in arbitrary dimension.

Khintchine’s Flatness Theorem ([2, 2.2]) If P is a convex body in R
d−1 which con-

tains no lattice points, then there is some surjective linear map φ : Z
d−1 → Z such that,

extending φ to R
d−1, the difference between the maximum and minimum values of φ

on P is bounded by some function q(d) that depends only on d and not on P.

Applying this theorem, we determine that the intersection of C with the hyper-
plane yd = n is skinny in some direction, namely, the direction inside R

d−1 per-

pendicular to the hyperplanes on which φ is constant. Now consider what happens

when we intersect C with a hyperplane parallel to yd = n, say, yd = n′. Since C is
a cone, its thickness in the φ direction is a linear function of n′. If we like, we can

direct our attention to the part of C lying between yd = 0 and yd = n/(8q(d)), and

here the thickness of C will be less than 1
8
. From this, we will conclude that (under

one additional technical assumption) there is a d−1-simplex R contained in R
d such

that yd(C ∩ Z
d) ∩ [0, n/8q(d)] = yd(R ∩ Z

d) ∩ [0, n/8q(d)]. In less technical lan-

guage, we will show that, at least in the interval [0, n/8q(d)], S has to look like the
projection onto a coordinate axis of the lattice points in a d − 1-dimensional sim-

plex. In other words, we can replace the d-dimensional cone from Lemma 3.1 by a

d − 1-dimensional simplex (provided we restrict our attention to an interval within
S). This might not seem like a big improvement, but in fact, it will allow us to prove

the theorem we want, at least in the case d = 3.

Before we do that, though, we state and prove a somewhat technical lemma which
we shall need shortly. In untechnical language, this lemma says that if we have a

convex shape P in R
2 which is skinny in the x-direction, and such that when we

project P onto the y axis, obtaining an interval I, most of the lattice points in I have

some lattice point in P which projects onto them, then we can choose those lattice

points in P so that they all lie on a line.

Lemma 3.2 Let P be a convex compact set in R
2. Let I be the set of y-values of points

in P. Let K be the set of y-values of lattice points in P. Suppose the following conditions

hold.

(i) For any fixed m ∈ I, the length of the line segment {(x, m) ∈ P} is less than 1
8
.

(ii) |K|/(|Z ∩ I|) ≥ 3
4
.

Then K is a set of consecutive integers corresponding to lattice points on a line in P.

A diagram showing a possible P appears in Figure 2.
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b2

b1

Figure 2: A convex body P satisfying (i) and (ii).

Proof We may assume that |K| > 1, since otherwise the statement is trivially true.

First, we show that P is contained inside a strip defined by two parallel lines:
H = {(x, y) | t y + c ≤ x ≤ t y + d}, with d − c =

1
4
. Choose a point (a1, b1) ∈ P

with b1 minimal. Similarly, choose a point (a2, b2) ∈ P with b2 maximal. Let
t = (a2 − a1)/(b2 − b1). Now observe that every point on the line segment be-

tween (a1, b1) and (a2, b2) lies in P, by convexity. By condition (i), every point of P is

at a horizontal distance of no more than 1
8

from this line. Thus every point of P lies
between this line translated to the right by 1

8
and this line translated to the left by 1

8
.

(These lines are also shown in Figure 2.)

Now let P ′ be the parallelogram defined by these two translated lines, and also the

lines y = b1 and y = b2. Then P ′ contains P. Let K ′ be the set of y-values of lattice
points in P ′. We will now proceed to prove that the conclusion of the lemma holds

for the pair (P ′, K ′) instead of (P, K). Since K ⊂ K ′, observe that condition (ii) holds

for K ′.

Define f : K ′ → Z by saying that f (z) is the x-coordinate of the lattice point
in P ′ whose y-coordinate is z. (Since P ′ is thin in the x-direction, f (z) is uniquely

determined.)

Let X = {z | {z, z + 1} ⊂ K ′}. We will show that X is non-empty, in other words,

that there are some two consecutive integers in K ′. Suppose otherwise. Then I ∩ Z

consists of, say, p lattice points. If K ′ contained no two consecutive lattice points, K ′

would contain at most ⌈(p + 1)/2⌉ lattice points, which is at most (p + 2)/2. Thus,
the ratio of the number of points in K ′ to the number of points in I ∩ Z is at most

(p + 2)/2p. For p > 4, this ratio is less than 3
4
, violating our assumption. But it is

also easy to see that one of our assumptions must be violated if p ≤ 4.
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Having established that X is non-empty, we claim that f (z + 1) − f (z) will be
constant for z ∈ X.

If z ∈ X, then the x-coordinate of a point of P ′ with y-coordinate z + 1 must be

between f (z) + t − 1
4

and f (z) + t + 1
4
. Since these differ by less than 1, there is a

unique integer in [t − 1
4
, t + 1

4
], which must be f (z + 1) − f (z) for all z ∈ X. Write w

for this integer.

Let Li be the line {(wy + i, y) | y ∈ R}. Let Zi be the set of y-values of points in
Li ∩ H, and let Yi be the set of y-values of lattice points in Li ∩ P ′. Observe that by

our construction of w, if z and z + 1 are both in K ′, then z and z + 1 both lie in the

same set Yi .

Now, we claim that there is actually only a single non-empty Yi . We will prove this

by showing that if more than one were non-empty, condition (ii) would have to be

violated.

If t = w, then the lines Li are parallel to the boundaries of H. Since the width of

H is 1
4
, only one line Li lies inside H. So suppose t 6= w.

The length of Zi does not depend on i. This is clear geometrically, but we will give
an argument which also determines the length. Fix i, and let z be the smallest value

in Zi . Then (wz + i, z) is the lowest point of Li ∩ H. See Figure 3. The highest point

in Li ∩ H will be the point (wz ′ + i, z ′), where |(wz ′ + i) − (wz + i) − t(z ′ − z)| =
1
4
,

because the (horizontal) width of H is 1
4
. Solving this for z ′ − z, which is the length

of Zi , we find z ′ − z = 1/(4|w − t|). Clearly, this amount does not depend on i. We

denote it ℓ. Since Yi is contained in Zi , the number of lattice points in Yi is at most
ℓ + 1.

Zi

z ′

z

wz + i wz ′ + i

H

Li

t(z ′
− z) 1/4

Figure 3

It is not immediately obvious from the definition that different Zi do not overlap.

In fact, even more is true: they are far apart from each other. Let the lowest point of
Li ∩ H be (wz + i, z). Let z ′′ be the smallest value in Zi−1. See Figure 4. By a similar

argument to the above, (w − t)(z ′′ − z) = 1, so |z ′′ − z| = 4ℓ. Thus, the separation

between Zi and Zi−1 is 3ℓ.
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z ′ ′

z

1

Zi−1

Zi

t(z ′ ′
− z)

wz ′ ′ + (i − 1)wz + i wz ′ ′ + i

Li

Li−1

H

Figure 4

Roughly speaking, therefore, 1
4

of the y-axis lies in some Zi . Therefore, we would

expect, on average, that the union of the Yi would contain about 1
4

of the lattice
points in I. By (ii), though, the Yi must contain at least 3

4
of them. We now make

this argument precise and show that it leads to the expected contradiction unless only
one Yi is non-empty.

Since there is some i with z and z + 1 in Yi , ℓ > 1. The number of lattice points
between Yi and Yi−1 is at least 3ℓ−1. Suppose that p > 1 is the number of Yi that are

non-empty. Then the number of lattice points in total in some Yi is at most p(ℓ + 1).
The number of lattice points in I, but not in any Yi , is at least (p − 1)3ℓ. Taking the

ratio, we get
p(ℓ + 1)

3(p − 1)ℓ
≤

p

p − 1

ℓ + 1

3ℓ
.

The first fraction on the right-hand side is a decreasing function of p, and so is max-
imized at p = 2 (since we assume p > 1). The second fraction is a decreasing func-

tion of ℓ, and we know that ℓ is more than 1. Thus, the ratio of the number of points

from I that appear in some Yi to those that do not appear is at most 4/3 < 2. Thus
the fraction of the lattice points in I that appear in some Yi is at most 2/3 < 3/4,

violating (ii).

Thus there is only one Yi which is non-empty, and it follows that K ′ is a consecu-

tive sequence of integers, the y-values of a set of lattice points in P ′ that lie all on the
line Li .

Now P ⊂ P ′, and K ⊂ K ′. By the convexity of P, the intersection of P with the

lattice points of P ′ must be a consecutive sequence of lattice points along the line,

which implies the statement of the lemma.

Now we prove the lemma which we promised earlier.

Lemma 3.3 Let S be a d-squashed semigroup and n 6∈ S. There is a value β(d) < 1

(depending only on d, not on n or S) such that if I is an interval contained in [0, β(d)n],
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and |S ∩ I|/|Z+ ∩ I| > 3
4
, then there is a d − 1-dimensional simplex R in R

d, such that,

if we write V for the set of yd-coordinates of lattice points in R, S ∩ I = V ∩ I.

Proof Let C be the cone guaranteed by Lemma 3.1. Let T be the intersection of
C with the hypersurface yd = n. Then T does not contain any lattice points, by

assumption.

Appealing to Khintchine’s Flatness Theorem, we obtain a surjective linear func-

tional φ defined on the copy of Z
d−1 lying inside yd = n, such that the difference

between the maximum and minimum values of φ on T is bounded by q(d). Since
φ is a surjective map from Z

d to Z, we may reparameterize if necessary and assume

that φ = y1; in other words, the direction in which T is narrow is the first coordinate

direction.

Set β(d) = 1/(8q(d)). We will show that this choice of β(d) satisfies the conditions

of the theorem.

Let P be the part of the projection of C onto the (y1, yd)-plane having yd-coordi-

nate in I. Observe that, by our application of Khintchine’s Flatness Theorem, P has
thickness less than 1

8
in the y1 direction, so P satisfies condition (i) of Lemma 3.2.

Let K be the set of yd-values of lattice points in P. Note that K ⊃ S ∩ I, so K

satisfies condition (ii) of Lemma 3.2.

We can therefore apply Lemma 3.2 to deduce that K consists of a string of consec-

utive numbers coming from lattice points all lying on a line in P.

Thus, the lattice points of C ∩ I all lie on some hyperplane in R
d. The intersection

of this hyperplane with C is either a simplex or a simplicial cone (with cone point
not necessarily at the origin). In the former case, let R be this simplex. In the lat-

ter case, let R be the subset of this simplicial cone with yd ≤ β(d)n. Now R is a
d − 1-dimensional simplex inside R

d. If we write V for the set of yd-coordinates of

lattice points in R, then V ∩ I = S ∩ I, as desired.

For the final part of the argument, we specialize to the case d = 3. Here, we

have already concluded that if S is 3-squashed and n 6∈ S (and S satisfies a certain

density condition), then there is an interval [0, β(d)n] within which S looks like the
set of y3-values of the lattice points in some two-dimensional simplex in R

3. Now

the crucial point is that this is a very restrictive condition, and in particular, we can
apply Lemma 2.4 to prove our theorem.

Theorem 3.4 There exist numerical semigroups that cannot be written as an intersec-

tion of 3-squashed semigroups.

Proof Determine β(3) as in Lemma 3.3. Let b = ⌈1/β(3)⌉ (where ⌈x⌉ denotes the

least integer z ≥ x).

Using Lemma 2.4, construct a set of integers K contained in an interval [0, j]

with j an integer, such that K cannot be the set of y3-values of the lattice points in a
compact convex set in a plane in R

3. Let J = K ∪ { j + 1, j + 2, . . . , 4 j + 3}. Clearly,

since K is not the set of y3-values of lattice points in a compact convex set in a plane

in R
3, neither is J, and the density of J in {0, 1, . . . , 4 j + 3} is more than 3

4
.
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Let n = b(b + 1)(4 j + 5). Let I = [b(4 j + 5) + 1, (b + 1)(4 j + 5) − 1] ∩ Z
+. Let

P = b(4 j + 5) + 1 + J, which is contained in I.

Now let S be the subsemigroup of Z
+ generated by P, n− (I \ P), and {q | q > n}.

Clearly, S is a numerical semigroup.

The sum of any b elements of P will be less than n, while the sum of any b + 1
elements of P will be greater than n. The sum of an element of P and an element of

n − (I \ P) cannot be n, while if we add further elements of P or further elements of

n − (I \ P), the result will be larger than n. Thus S does not contain n.

Now if S can be written as an intersection of 3-squashed semigroups, it must be
that there is some 3-squashed semigroup Q containing S and not containing n. If

Q ∩ I strictly contains S ∩ I, there is some x ∈ Q ∩ I which is not in P. But by our

construction of S, n − x is then in S, and hence in Q. So Q contains x and n − x,
and therefore also n, which would be a contradiction. So Q ∩ I = S ∩ I = P. But

by Lemma 3.3, P cannot be the intersection with I of a 3-squashed semigroup which

does not contain n, so we have a contradiction.

In order to apply our theorem to obtain concrete examples of semigroups, we need
to know q(3). Because we found it difficult to locate a statement of the value of q(3)

in the literature, we include the following lemma:

Lemma 3.5 The minimum possible value for q(3) in Khintchine’s Flatness Theorem

is q(3) = 2.

Proof First, we prove that one can take q(3) = 2 in the statement of the Flatness

Theorem; in other words, we show that if a convex set C in R
2 contains no lattice

points, then there is some lattice coordinate with respect to which the width of C is
at most 2.

We may as well assume that C is closed and bounded. Let I be the projection of

C onto the x-axis. If C is narrow in the x-direction, then we are done, so we may
assume that the length of I is at least 2.

Now consider the function on the interval I defined by setting f (c) to be the length

of the intersection of C with the line x = c. Since, by assumption, C contains no

lattice points, we know that the value of c at any integer point in I is less than 1.

For any a < b in I, consider the trapezoid Tab whose left and right sides are the
intersections of x = a and x = b, respectively, with C. The trapezoid Tab is contained

in C. For 0 ≤ t ≤ 1, the length of the intersection of Tab with the line x = ta+(1−t)b

is t f (a) + (1 − t) f (b). Thus, f (ta + (1 − t)b) ≥ t f (a) + (1 − t) f (b). In other words,
the function f is concave.

Now choose d ∈ I. Let d ′ be the largest integer less than d. Let e = 2d ′ − d,

f = 2d ′ − d + 2. Since the length of I is at least 2, at least one of e, f must lie in I.

Without loss of generality, suppose that e ∈ I. Then

1

2
( f (d) + f (e)) ≤ f

( 1

2
(d + e)

)

= f (d ′) ≤ 1.
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Since f (e) ≥ 0, we know that f (d) ≤ 2. Since d was arbitrary, it follows that the
width of C in the y-direction is at most 2.

Now we show that we cannot take q(3) to be less than 2. Consider the triangle

whose vertices are A = (ǫ, ǫ), B = (ǫ, 2 − 2ǫ), and C = (2 − 2ǫ, ǫ). For φ a lattice

coordinate other than the x-coordinate, consider the length of AB. Since φ((0, 0)),
φ((0, 1)), and φ((0, 2)) are distinct integers, the φ-length of AB tends to at least 2

as ǫ goes to zero. On the other hand, clearly the length of AC tends to 2 for the x-
coordinate. Thus as ǫ goes to zero, the width of the triangle ABC with respect to any

coordinate tends to at least 2, so we cannot take q(3) < 2 in Khintchine’s Flatness

Theorem.

We now proceed to give an example of the kind of semigroup whose existence is
guaranteed by the theorem. Since q(3) = 2, b = 16. Let K be the set given after the

statement of Lemma 2.4: K = {0, 1, 4, 7, 48, 49}. So

J = {0, 1, 4, 7, 48, 49, 50, . . . , 199}.

Now j = 49, and n = 54672. Write Jc for {0, . . . , 199} \ J. Let S be generated by

3217 + J, 51455 − Jc , and {54673, 54674, . . .}. Then 54672 6∈ S, and S cannot be

written as an intersection of 3-squashed semigroups.
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to the Departamento de Matemáticas de la Universidad de Cádiz (Spain), through a
grant of the Erasmus-Socrates Program of the European Community. His contribu-

tion is contained in his Master’s Thesis, done under the supervision of E. Pardo in

Fall 2004. The second author thanks the host center for its warm hospitality. The
first and third authors want to thank P. Garcia-Sánchez for turning our attention to

the papers [7, 8]. The fourth author thanks Andrew Toms for discussing some of the

matters touched on in this paper with him. We would like to thank the referees for
their comments, which improved the paper.

References

[1] G. Elliott and J. Villadsen, Perforated ordered K0-groups. Canad. J. Math. 52(2000), no. 6,
1164–1191.
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