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BLOCK SIZES IN PAIRWISE BALANCED DESIGNS 

BY 

C H A R L E S J. C O L B O U R N , * K E V I N T. P H E L P S 
A N D V O J T È C H R O D L f 

ABSTRACT. The number of sets of integers which are realizable 
as block sizes of a pairwise balanced design of order n is between 
expC^Vn) and exp(c2Vn); in contrast, when the multiplicity of each 
block size is also specified, the number of multisets which can be 
realized is between expC^Vn log n) and exp(c2Vn log n). Although 
this gives a reasonable bound on the number of multisets which can 
be realized, a good characterization is not likely to exist; deciding 
whether a multiset can be so realized is NP-complete. 

1. Introduction. A pairwise balanced design (PBD) of order n is an n-set V 
of elements together with a collection B of subsets of V called blocks. Each 
unordered pair of elements appears in precisely one block. The profile of a 
PBD is the multiset (i.e., set with multiplicities) of the sizes of its blocks; the 
profile set is simply the set of these sizes. 

The problem of determining f(n), the number of profiles of n-element 
PBD's, was first discussed by Erdôs [1]. He further remarked that "it is 
perhaps not reasonable to expect to obtain a necessary and sufficient condition 
for a sequence xl9..., xn that there should be a block design (=PBD)" with 
these block sizes. We establish that expCc^Vn log n)</(n)<exp(c2Vn log n). 
Furthermore, we confirm Erdôs' remark on the difficulty of characterizing 
profiles by showing that the recognition of profiles is NP-complete. We also 
consider the related problem of determining the number g(n) of profile sets of 
n-element PBD's; here we establish exp(c!Vn)<g(n)<exp(c2Vn). 

2. The number of profile sets. In this section, we establish upper and lower 
bounds on the number g(n) of profile sets of n-element PBD's. We first 
establish the lower bound: 

LEMMA 2.1. There exists a fixed constant ct for which exp(c!\/n)<g(n). 

Proof. Partition the n points into k = Vn/2 groups, each of size 2\ln. Select k 
distinct integers i1?. . . , ik between 1 and Vn; on the /th group, place two 
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blocks, one of size Vn + ijy the other of size Vn - ij. All other pairs are covered 
by blocks of size 2. There are expf^Vn) distinct ways to select k integers, and 
each leads to a different profile set. • 

The upper bound is more complicated, and requires a preliminary result: 

LEMMA 2.2. Let A 1 ? . . . , Ap be subsets of an n-set such that \At D Aj\ < 1 for 
all l < i < j < p (i.e., a partial PBD). Suppose that n/2t+1 ^ | A t | ^ n / 2 1 for some 
fixed integer t, n > 2 2 t + 3 . Then p < 2 t + 2 . 

Proof. Since blocks intersect in at most one element, 

Substituting the smallest possible value for \At\ and simplifying gives, 

Since possible values of p form an interval, p must not exceed the smaller of 
the two roots of this inequality. (The existence of two real roots follows from 
our assumption, n>2 2 t + 3 . ) Then 

2p^-yl{$Sn) 
and hence 

P ^ - ^ 7 = 2 t + 2 . • 
n/2 

This lemma provides the basis for establishing the upper bound: 

LEMMA 2.3. There is a fixed constant c2 for which g(n)<exp(c2Vn). 

Proof. We partition (1, n) into two subintervals; (1, n/2t())? where t0 is the 
largest integer such that n/2 to>V8n, and (n/2to,n). In the interval (1, n/2to) 
there are at most 2V32n possible sets of block sizes. This follows as n/2 to<2V8n. 
We subdivide the interval (n/2t(\ n) into intervals 

It = (n/2f+1, n/2) for t = 0 , 1 , 2 , . . . , f 0 - l . 

The interval It has length lt = n/2t+1 and Lemma 2.2 ensures that at most 
rt < 2 t + 2 block sizes are chosen in this interval. Then Nt, the number of possible 
sets of block sizes in the interval It, satisfies 
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Then the number, N, of possible sets of block sizes in the interval (n/2to, n) is, 

N=Y\Nt 
t=0 

TT • i ,. / m \ (mè\a ( ne \ 2 t + 2 

Using the inequality I I < I — I , we have Nt < yz^^ I . Hence 

= exp( X 2t+2(log n + log e - (2t + 3))) 

Since l o g n < 2 t 0 + 5, 
/ t o " 1 t o " 1 \ 

N<exp(23(t0 + 2) X 2 '-8 X t2M 
\ t = 0 t=0 ' 

The first summation yields 8(t0 + 2)(2 t o- l ) . In order to determine the second 
summation, let sa = 23 Y?=o t2\ Using the recurrence relation sa-2sa^1 = 
16(2 a -12) , we find sa_x = a 2 a - 2 ( 2 a - l ) . Hence N<exp(2H16)-8( t 0 + 2))< 
exp(8Vn — 8 log n). 

Lemmas 2.1 and 2.3 together establish: 

THEOREM 2.4. Let g(n) be the number of profile sets of n-element PBD's then 
exp(CiVn) < g(n) < exp(c2Vn). 

3. The number of profiles. In this section, we consider the problem 
suggested by Erdos [1] of determining the number f(n) of profiles of n-element 
PBD's. We first establish a lower bound. This can be done rather easily if we 
allow blocks of size 2. If we insist that all blocks have size strictly larger than 2, 
the same lower bound can be achieved but the argument is more involved. 

LEMMA 3.1. There is a fixed constant cx for which expCc^Vn log n)<f(n). 

Proof. It follows from the Prime Number Theorem that for any 6 > 0 , and 
n>n0(8), there exists a projective plane with at most n(l + 8) points. It is a 
simple matter to delete on points so that each remaining block has at least c\/n 
points (c ~ 1 — 8) and there are at least n blocks remaining as well. (Consider 
the affine plane and choose <Wn blocks from one parallel class.) Let 
bl9 b2,..., bm, m > n be the blocks which remain. From each bt we choose a 
subset Uj of Uj points 3 ^ 1 ^ <cVn/4 so that 1̂ 1 — ^ = 3 (mod 6). Thus, there 
are approximately cVn/24 choices of Uy On the remaining 6t + 3 = lbJ-\L/I-| 
points we construct a Kirkman triple system of order 6f + 3 and, selecting Uj 
different parallel classes, assign point i G UJ as a fourth point to each triple in 
the ith parallel class selected. The resulting collection of 4-tuples along with 
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the remaining triples and the set U] cover all of the original pairs in fy. For 
j = 1,2, . . . , f t we can choose Ui independently which gives at least 
exp(c'Vn log n) different sequences of block sizes. 

Note, we have a similar lower bound even if we insist that all blocks have 
size at least k, for some fixed k ; the argument would be almost identical except 
that we would use resolvable Steiner systems S(2, p, v) for prime powers p>k. 
Though the spectrum for these designs is not completely known, the existence 
of affine geometries over GF(p) along with the fact that resolvability is 
PBD-closed is enough to ensure that the spectrum has positive density. 

The upper bound can be established, as noted in [1] as follows: 

LEMMA 3.2. There is a fixed constant c2 for which g(n)<exp(c2Vn log n). 

Proof. Consider the number of blocks p in the interval (l(Wn, n). We know 

that l O p V n - l ^ j ^ n , and hence p<Vn/5 . Thus, the number of possible 

selections of blocks in this interval is less than ncVn = exp(c'Vn log ft). In the 
interval (1, lOVn), the number of selections of block sizes is bounded by the 

number of multisets of at most ( 1 elements chosen from the interval 

(1, l(Wft); this is exp(cVn log n). • 

Lemmas 3.1 and 3.2 together establish the main result of this section: 

THEOREM 3.3. The number f(n) of profiles of n-element PBD's is asymptoti­
cally exp(cVn log ft). Moreover the number fk(n) of profiles on n-element PBD's 
having all blocks of cardinality at least k is bounded from below by 
exp(ckVn log ft). 

REMARK. We could not decide whether ck has to tend to zero as k —> oo. 

4. Characterizing profiles. Theorem 3.3 demonstrates that the number of 
multisets of integers which satisfy the basic necessary conditions is on the same 
order as the number of profiles. Thus, one might hope for a good characteriza­
tion of which multisets are profiles (as one has in the case of degree sequences 
of graphs, for example [2]). We show that a good characterization is unlikely, 
since the recognition of profiles is almost certainly a difficult computational 
problem: 

THEOREM 4.1. Deciding whether a multiset is a profile is NP-complete. 

Proof. Membership in NP is immediate. To show completeness, we reduce 
the problem of 3-PARTITION [3] to profile recognition. An instance of the 
3-PARTITION problem is a set of 3m integers a1?. . . , a3m whose sum is mB. 
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The problem is to determine whether the numbers can be partitioned into m 
groups, each of whose sum is JB. Moreover, each number lies in the range 
B / 4 < a t < B / 2 , and hence each group must contain exactly three of the 
numbers. 

We transform the 3-PARTITION problem into a clique packing problem, as 
follows. Let B' be the smallest number of the form 2*4-1 satisfying B'>2B. 
Modify the set of 3 m integers from the 3-partition problem by adding m 
numbers of the form B'— B + 6, and change the bound to B'. Note that each 
group must contain exactly one of these large numbers, and hence each group 
will consist of four integers. In this revised problem, we ask: can one pack 
cliques of the sizes given by the 4m integers specified into m disjoint complete 
graphs, each with B' vertices. In this packing, cliques can overlap in a single 
vertex, but not in a pair; hence the bound differs by 6 from the corresponding 
"sum of integers" problem. It is straightforward to verify that this clique 
packing problem is equivalent to the 3-PARTITION problem from which it is 
produced. 

To complete the transformation to recognition of profiles, we note that, 
given a clique packing problem constructed in this way, there is a projective 
plane of order n with block size n +1 = B'. We construct a multiset by taking 
the 4m integers from the clique packing problem. To this, we add n2 + n +1 -
m integers each equal to n + 1, the plane's block size. Finally, we add the 
integer 2 to the multiset sufficiently many times to cover all remaining pairs. 
When the clique packing problem has a solution, the multiset constructed in 
this way is indeed a profile: one takes n2 + n + 1 - m blocks from the plane, and 
in the remaining m cliques of size B, the other blocks are packed. 

It is necessary to show when a PBD exists, there is a solution to the clique 
packing problem. This is ensured here by a fact about projective planes, that a 
partial projective plane of order n with n2 blocks specified has a unique 
completion [4], [5]. Hence any realization of the multiset as a PBD induces a 
clique packing as long as m>Bf. This reduces clique packing to the recognition 
of profiles, and the reduction can easily be done in polynomial time. • 
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