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Mapping QTLs for traits measured as percentages

YONGCAI MAO anp SHIZHONG XU*

Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA

(Received 23 June 2003 and in revised form 19 September 2003 and 8 February 2004)

Summary

Many quantitative traits are measured as percentages. As a result, the assumption of a normal
distribution for the residual errors of such percentage data is often violated. However, most quantitative
trait locus (QTL) mapping procedures assume normality of the residuals. Therefore, proper

data transformation is often recommended before statistical analysis is conducted. We propose the
probit transformation to convert percentage data into variables with a normal distribution. The
advantage of the probit transformation is that it can handle measurement errors with heterogeneous
variance and correlation structure in a statistically sound manner. We compared the results of this
data transformation with other transformations and found that this method can substantially
increase the statistical power of QTL detection. We develop the QTL mapping procedure based on
the maximum likelihood methodology implemented via the expectation-maximization algorithm.
The efficacy of the new method is demonstrated using Monte Carlo simulation.

1. Introduction

Many variables are discrete in nature and such discrete
variables often exhibit correlation among different
observations. Examples can be found in various fields
like genetics, epidemiology, familial studies, pedigree
analysis, teratology, toxicology, ophthalmology and
sample surveys. In many experiments encountered
in the biological and biomedical sciences, data are
generated in the form of a ratio, n;/N;, or percentage,
where n; is a non-negative count of success and is
bounded by the positive integer N;, which is the num-
ber of trials (Finney, 1971; Fisler & Warden, 1997;
Moody et al., 1999). When N; is assumed to be fixed
and known, n; may be modeled as a binomial variable
with parameter p;; that is, we may view #; as the sum
of N; independent Bernoulli random variables, W
(k=1... N)), with E(Wjy)=p;. If there is some corre-
lation among the W), values then n; would no longer
follow a binomial distribution. This situation is not
uncommon (Garren et al., 2001) and, in certain ap-
plications, the basic assumption of a binomial model
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in which individuals are responding independently
of each other might not be defensible. The lack of
independence among the individual respondents will
result in a larger variability than can be explained by
the binomial model. Count data coming from such
studies have a larger variance than the variance of
a binomial variable and are said to exhibit over-
dispersion (Moore, 1986; Sudhir & Islam, 1995). For
example, in the analyses of littermate data from bio-
logical or toxicological experiments, it is often of
interest to study the intraclass correlation as a means
of investigating the heritability of a certain trait.
Although there is an extensive literature, summarized
in reviews by Donner (1986) and Muller & Buttner
(1994), for the statistical analysis of intraclass corre-
lation for continuous response variables, techniques
are less developed for proportional data, which are
also of practical importance in many medical and
biostatistical applications (Ahmed et al., 2000). As
Donner (1986) remarked, the application of continu-
ous theory to proportional variables has severe limi-
tations because the associated methods of inferences
are not strictly valid.

Typical percentage traits in biological experiments
include the percentage of deformed seeds in plants,
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the mortality of litters in pigs and so on. Binary traits
are special forms of the percentage traits. Traditional
methods for mapping quantitative trait loci (QTLs)
responsible for the variation of percentage traits have
not taken into account how the percentage values
are measured. The same percentage value (say 50 %)
measured from different sample sizes (say 2/4 and
20/40) should have different residual error variance.
Yet this heterogeneous residual variance is rarely used
in an attempt at QTL mapping for percentage traits.
Rather than being treated as continuous characters,
traits measured as percentage are better analysed as
binomial variables based on the theory of discrete
data analysis.

The simplest and most naive approach to analysing
binomial proportional data is to ignore the indi-
cations that the data might be binomial in nature and
to perform the standard analysis of variance. The two
most obvious problems with this approach are: (1)
that the predicted values are not necessarily between
0 and 1; and (2) that the equal-variance assumption is
not necessarily satisfied. Regarding the second prob-
lem, the assumption that the variances are equal im-
plies that the mean is not related to the variance,
which is contrary to the binomial model, in which the
variance is a function of the mean. Of major sig-
nificance in hypothesis testing is the fact that the
standard errors of the estimated proportions from
the standard analysis of variance do not reflect the
nature of the binomial variance of the response vari-
able. Yet this method is still used at times because of
the wide availability of least-square software, relying
on asymptotic theory to justify the use of the normal
distribution (Brooks et al., 1997). In practice, such an
analysis might produce reasonable results when the
treatment groups have similar binomial variances and
little extra-binomial variability occurs. Collett (1991)
gave a detailed discussion of this issue.

Various transformations on the proportions have
been used in an attempt to minimize the effects of
these two major problems. An approach found in
many standard statistical text books is to use the
logistic transformation of the proportional variable
T;=In(n;/N;) —In(1 —n;/N;) as the response variable.
The probit model has been the dominant model in
biometrics. The logit and probit models give similar
predictions except for extreme values of the dose.
There is no compelling biological reason, however,
to adopt either the logit or the probit specification
(Neter et al., 1996).

The arcsine transformation is a useful trans-
formation for proportions and percentages. The
proportion can be made nearly normal if the square
root of each proportion is used with the arcsine
transformation, A;=arcsin[(n;/N;"*]. However, the
transformation is not very good at the extreme ends
of the data (near 0 % and near 100 %). A discussion of
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the arcsine transformation can be found in Snedecor
& Cochran (1989) or Zar (1996).

For the correlated percentage data, we have to deal
with the intraclass correlation. There are many dif-
ferent estimators of intraclass correlation that have
been proposed for binary data. Ridout et al. (1999)
gave an excellent review; see also Mak (1988).

Here, we present a method for analysing correlated
binomial proportion data using the correlated probit
model. One advantage of our approach is that the
standard errors of the probit model can be computed
in a straightforward way. Some earlier papers have
addressed the main issue of this paper but the results
have not led to suggestions that are easy to use in
practical applications. Examples of these papers in-
clude Ochi & Prentice (1984), Poirier & Ruud (1988),
Throne et al. (1995) and Gueorguieva & Agresti
(2001). Here, we use the maximum likelihood (ML)
method implemented via the expectation-maximiz-
ation (EM) algorithm to estimate genetic effects.

We also provide a simulation study to investigate
the performance of our method and compare it with
three other methods that do not take the correlation
into account. The study indicates that our method
performs better than other methods, particularly in
small samples. Initially, we construct a model that
incorporates the key features of the applications that
would benefit from our approach. Finally, we use
simulations to obtain numerical estimates of the
parameters.

2. Model and methods
(1) Genetic model

We consider a single, large, full-sib family with m sibs.
QTL mapping in full-sibs is important in forest trees
and laboratory animals (Knott ez al., 1996; Xu, 1996,
1998). Let {(/, 1), (J, 2)...., (j, N))} be the labels of N;
trials of sib j. For ease of presentation, the responses
are arbitrarily named as ‘normal’ and ‘deformed’,
and the {0, 1} metric is imposed with 0 for normal and
1 for deformed. We observe the number of deformed
n; out of the N; trials for sib j (&; is the size of the
trials). Let W, be a random variable taking a value 1
if trial (j, k) is deformed and O if trial (j, k) is normal.
The observed values wy, are defined such that

N/
n= ) Wik
k=1

and the observations from different individuals are
assumed to be independent.

Often, an underlying continuous scale called liab-
ility has been assumed; trials are scored 1 if they ex-
ceed a certain threshold value . Let Zj represent the
underlying random variable associated with trial (j, k)
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such that
I/ijzl <:>Zk>l

In the scale of liability, we assume that Zj can be
described by the following mixed linear model

Zy=pu+qa’ +ua" 410+ ey, (1)

where u is the population mean, o is the average ef-
fect of allelic substitution of the paternal parent (i.e.
the difference between the genetic values of the two
alleles carried by the father), a” is the average effect of
allelic substitution of the maternal parent, 0 is the
dominance effect (interaction between the two allelic
substitution effects) and ey is the environmental error
assumed to be normally distributed with mean 0. It is
then postulated that the correlation between any pair
Z, Zj has the same value p for any j and k#/. The
coefficients of the genetic effects, ¢;, u; and r;, are de-
fined as follows. Let the genotypes of the father and
mother be 4545 and Ay'A}, respectively. There are
four possible genotypes in the progeny (45 A7, AL Ay,
A5A7 and A5 AYY). Notice that these genotypes are
ordered with paternal allele followed by the maternal
allele. Variables ¢g;, u; and r; depend on the genotype
of j, and are defined as follows: (g;, u;, r)=(1, 1, 1) if
individual j takes the first genotype, AYAY"; (g, u;, 1)) =
(1, — 1, —1) if j takes the second genotype, A{AY;
(gj» uj r)=(—1,1,—1) if j takes the third genotype,
A5A7; and (q;, wy, r)=(—1, —1, 1) if j takes the last
genotype, A5AY. These variables are collectively
called the design matrix in a general linear model.
Under Mendelian segregation, the four genotypes will
take an equal frequency in the full-sib family. There-
fore, the three genetic effects defined this way are
orthogonal. If there is no segregation distortion, we
expect that

q 0 q 1 0 0
Elu|=]0 and Var|ju|=]|0 1 0

r 0 r 0 0 1
Let Var(Zy)=o0: and p be the correlation between
Zj and Zj, then

var(Z;) =var ( Z )
/ k=1

lz var(Zp)+2 . cov(Zi, Zj)
j k<l
_H+W=Dp , )

2
N;

The genetic model described above assumes that the
genotype of j at the locus of interest is observed (i.e.
variables ¢;, u; and r; are known). In practice, how-
ever, we only observe marker genotypes and the three
variables g;, u; and r; actually represent the genotypes
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of markers. If a marker is linked to a QTL, the marker
genotypes can be used to formulate the genetic model,
from which we can estimate genetic parameters and
perform statistical tests.

(i1) Correlated probit model

The threshold ¢ cannot be estimated and thus it must
be treated as a constant. There is no loss of generality
in setting t=0, and we adopt this convention regard-
less of the distribution of ej. If the actual ¢ is not zero,
the population mean u will be shifted, but u is only
a nuisance parameter in the model whose value does
not change the estimates and tests of the QTL effects.
Model 1 for the complete data {Z;;} can be translated
into the following model for the observed binomial
proportional data: Conditional on ¢;, u; and r;,

O (p)=u+qa” +ua” +r;0, 3)

where p; is the mean of the observed variable and @
denotes the standardized cumulative normal distri-
bution function.

If we use the sample proportions n;/N; as the esti-
mates of the mean p; then the probit model will be
invalid when n;=0 or n;=N;. We use the following
Bayesian estimate of p; to overcome this problem
(Press, 1989). Let N; be the number of independent
trials of an experiment in which there are two possible
outcomes on each trial, ‘deformed’ or ‘normal’. Let
n; denote the number of deformed during the N, trials,
and let p; be the probability of deformed on a single
trial. The probability mass function for #; is given by

Ny N
Sf(nlp)= . p;/(L=p)™—",

O<pj<1, nj=0,l,...,N

Assume that the prior distribution for p; is uniform
(uninformative prior),

0 0therw1se

g(p/) {

then using Bayes’ theorem, the posterior density is

PP (1—p)V"g(p)

h(pjn) = ——; —
P —=p)N g (py)dp;
- Py "(1—p)™ ™"
B(mj+1,N;—n;+ 1)

That is, the posterior distribution of p; given n; is a
B distribution with parameters 7;+1 and N;—n;+1;
therefore, the mean of p; given n; is

nj‘i‘l

E(pjlnj)= N2
J
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In this paper, we use
P nj+1
PN 2

“)

as the estimates of p;.
We now formulate the correlated probit model for
the binomial proportion data. Let

11 11 h, u

11 -1 -1 h, o’
H: = ) b: >

1 -1 1 —1 h, am

1 -1 —1 1 h, b)

&)

then our correlated probit model is (Gueorguieva &
Agresti, 2001)

yi=xb+aoe, (6)

where y;=® '[(n;+1)/(N;+2)], x;,=h, if individual
J takes the first genotype (A4747"), x;=h, if j takes
the second genotype (47A3") and so on, e; is the
residual error distributed as N(0, 02), and o,={[1 +
(N;—Dpl/Nj**.

(iii) Parameter estimation using the EM algorithm

Let Ay=AVA™, Ay= AL AT, Ay= ALAY and A, = ALAY.
When the genotype is 4, the distribution of y; is

1 1
i) =£()= ~ 555 (7 —hb)’
ey expl it )1

_ N;
V271 + (N, — Dplo?
N,

' = hib)2:| - (D

Xe"p[_ 2+ (N, — Dplo?

Using the multipoint method (Rao & Xu, 1998), we
can infer the probabilities of QTL genotypes con-
ditional on the marker information, pi(i)=Pr(x;=
hjl,) for i=1,...,4, where I,, represents marker
information. Therefore, the mixture of the four dis-
tributions is

F0)= X @,

and the log likelihood function is

L(b, 0;, ply, M) = i In {Z p;(i)/’,-(i)]. ®)
j=1 i=1

The EM steps are described as follows.

(1) Take the probit transformation, obtaining the
data  y=(r1, Vare-es ¥)?  with  y;=® (p) =
“'[(n;+ 1)/(N;+2)], where @ represents the stan-
dardized cumulative normal distribution function.
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(2) Choose initial values of the parameters 6© =
(b(O) 03(0) p(O))'

(3) Calculate the posterior probabilities of QTL
genotype given the initial values of the parameters
and y;

. pi(f(0)
pi)=G—
2P (RN
where f;(i) (i=1,..., 4) are evaluated at the initial
values of parameters.

(4) Expectation step: calculate the following expec-
tations using the posterior distribution of y;:

EEREE RN

E(xx;)= ZP ()h/h;,

i=1

E(x]y)= Zpi“(l)h Vi,

i=1
4
E(y;—xp =Y pf(i)(y;—hbp®)%.
i=1

(5) Maximization step: having obtained the above
expectations, we use the generalized weighted
least-squares method to calculate the maximum-
likelihood estimates of the parameters b and o2:

bV =[EXTWX)] ' EX"Wy)

-1
m ]\[] T
= E(x;x;
{_121 [1+ (N, — l)p(o)]ag(o) (X_I X./) }

m N
{Z 14+ (N, — 1)p©®]o? 2(0) E(XjTy,-)},

where
:(XlT X;,...,X; ]
N,
W=diag ! 08
[1+pO(N,—D)]oe
Ne N,
[1 +P(°)(Nz—l)]0§(°) o [1+pO(N,, — 1)]02(0) '
1 m
m ;=

The estimate of p is obtained by the solution
of E(OL/Dp)=0 with

m 1
I— _
.1‘;1 { 2

= 1n[1+(N D]

27152
_ Ny—xbP* }
2[1+(N,— Dplot )

that is,

i N—-1 N
| T+ =1Dp

—DE[;—xb)1| _
o +WN—Dp [


https://doi.org/10.1017/S0016672304006834

Mapping QTLs for traits 163
Table 1. Mean estimates and standard deviations (in parentheses) of the position (¢cM) and effects of the QTLs
calculated from 100 replicated simulations. The standard deviations among the 100 repeated simulations represent
standard errors of the estimated parameters. Empirical estimates of the statistical power at a Type I rate of 0-05
are given in the last column

Paternal Maternal Statistical
Heritability ~ Sample QTL location allelic allelic Dominance  power (%)
(h?) size (N;)  Method (cM) Mean u effect (a?)  effect (@) effect (0) (a=0-05)
3:03% True 45 0 0-09 0-09 0-13
7 (5) Model A 45-80 (24:06)  0-00 (0-05) 0-07 (0-06)  0-08 (0-05) 0-09 (0-07) 42
Model B 46-90 (24:42)  0-00 (0-06) 0-07 (0-08)  0-07 (0-07)  0-09 (0-10) 28
Model C  44-18 (24:24)  0-50 (0-02) 0-03 (0-03)  0-03 (0-03) 0-03 (0-04) 28
Model D 46-17 (24:78)  45-08 (1-28) 161 (1-70) 1-58 (1:57) 1-87 (2-29) 28
7 (10) Model A 46:39 (18:30)  0-00 (0-05) 0-10 (0-06)  0-08 (0-05) 0-12 (0-06) 50
Model B 48:62 (20-68)  0-00 (0-06) 0-09 (0-07)  0-07 (0-07)  0-12 (0-08) 43
Model C ~ 50-91 (22:56)  0-50 (0-02) 0-03 (0-03)  0-03 (0-03) 0-04 (0-03) 44
Model D 48-67 (20-61)  45-05(1-25) 197 (1-:60) 1-45(1-70) 2-61 (1-78) 43
7 (50) Model A 45:67 (15:50)  0-00 (0-05) 0-10 (0-06)  0-10 (0-05) 0-14 (0-06) 75
Model B 46-44 (16:17)  0-00 (0-06) 0-10 (0-07)  0-10 (0-06) 0-14 (0-07) 67
Model C  45-73 (16:70)  0-50 (0-02) 0-04 (0-02)  0-04 (0-02) 0-05(0-02) 70
Model D 46-15 (16:31)  45-03 (1-21) 2:24(1-43) 221 (1-27) 3-06 (1-51) 69
5-88% True 45 0 0-13 0-13 0-18
7 (5) Model A 45-27 (19-19) —0-01 (0-05) 0-10 (0-06)  0-09 (0-06) 0-12 (0-08) 66
Model B 45-73 (19:73) —0-01 (0-06) 0-10 (0-07)  0-08 (0-07) 0-12 (0-08) 51
Model C  45:37 (19-46)  0-50 (0-02) 0-04 (0-02)  0-03 (0-03) 0-04 (0-03) 53
Model D 45-86 (19-83)  44-71 (1-26) 211 (1-47) 191 (1-62) 2-58 (1-86) 51
7 (10) Model A 44-28 (14:15)  0-00 (0-04) 0-11 (0-05) 0-12 (0-05) 0-17 (0-05) 75
Model B 43-27 (14:30)  0-00 (0-05) 0-11 (0-07) 0-12 (0-06) 0-16 (0-06) 67
Model C  43-41 (14:26)  0-50 (0-02) 0-04 (0-02)  0-04 (0-02) 0:06 (0-02) 67
Model D 43-31 (14:28)  45-05(1-23) 229 (1-43) 2-51(1-43) 3-58(1-42) 68
7 (50) Model A 45-82 (7-20) 0-00 (0-04) 0-13 (0-05) 0-13 (0-05) 0-19 (0-05) 97
Model B 46-28 (8-92) 0-00 (0-05) 0-14 (0-06)  0-14 (0-06)  0-19 (0-06) 94
Model C  46-32 (8-13) 0-50 (0-02) 0-05 (0-02)  0-05(0-02) 0:07 (0-02) 95
Model D 46-33 (8-17) 4502 (1-10)  3-07 (1-28)  3-02(1-34) 411 (1-25) 94
11-11% True 45 0 0-18 0-18 0-25
7 (5) Model A 44-10 (7-83) 0-00 (0-05) 0-13 (0-05) 0-13 (0-05) 0-19 (0-06) 95
Model B 43-84 (8-97) 0-00 (0-05) 0-13 (0-06) 0-13 (0-06) 0-19 (0-07) 89
Model C  43-77 (8-29) 0-50 (0-02) 0-05 (0-02)  0-05(0-02) 0-07 (0-03) 90
Model D 43-75 (8-00) 45-09 (1-11) 291 (1-27) 2:80 (1-28) 4-07 (1-61) 89
7 (10) Model A 44-89 (5:52) 0-00 (0-04) 0-15(0-05) 0-16 (0-05) 0-23 (0-04) 100
Model B 44-59 (6-56) 0-00 (0-05) 0-15(0-06) 0-16 (0-06)  0-23 (0-06) 99
Model C 4455 (6-30) 0-50 (0-02) 0-05 (0-02)  0-06 (0-02) 0-08 (0-02) 98
Model D 44-57 (6-56) 4494 (1-21)  3-19(1-38)  3-47 (1-23) 495 (1-25) 99
7 (50) Model A 45-19 (4-35) 0-00 (0-04) 0-18 (0-04) 0-18 (0-05) 0-26 (0-05) 100
Model B 45-28 (5-39) 0-00 (0-06) 0-19 (0-06)  0-19 (0-06) 0-27 (0-06) 100
Model C  45-28 (5-15) 0-50 (0-02) 0-06 (0-02)  0-06 (0-02) 0:09 (0-02) 100
Model D 45-24 (5-14) 4497 (1-20) 402 (1-23)  4-11(1-29) 577 (1-34) 100

The estimate p™ of unknown parameter p can be
solved numerically using the bisection procedure
according to the above equation.

(6) Replace the initial parameters 6© by 6@ and
go back to step 2 for the next iteration. Continue
the iterations until a criterion of convergence is
reached. At the convergence, the values of the
parameters are the maximum likelihood solutions.

(iv) Likelihood ratio test

To test the significance of the QTL effect, a likelihood
ratio statistic is used. We first evaluate the log
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likelihood function with the parameters substituted
by their ML estimate under the full model, denoted by

L,=L(b, &, ply, M).

We then evaluate the log likelihood function under
the null model so that b=(u, 0, 0, 0)7 is used in place
of b, denoted by

Ly=L((4,0,0,0)", 62, ply,M).

Notice that here [Z,éiaﬁ are obtained by
maximizing the log likelihood function under the
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Table 2. Mean estimates and standard deviations
(in parentheses) of the intraclass correlation in
Model A calculated from 100 replicated
simulations. The standard deviations among the
100 repeated simulations represent standard
errors of the estimated parameters. The true
value of the intraclass correlation is 0-2

Heritability Sample Intraclass

(h?) size (N)) correlation (p)

3:03% 7 (5) 0-1606 (0-0429)
7 (10) 0-1658 (0-03)
7 (50) 0-1747 (0-0183)

5-88 % 7 (5) 0-1635 (0-0337)
7 (10) 0-1702 (0-0209)
7 (50) 0-1793 (0-0133)

11-11% 7 (5) 0-1957 (0-0357)
7 (10) 0-1983 (0-0214)
7 (50) 0-1994 (0-0166)

reduced model

L((4,0,0,0)", 62, ply,M)

_e N,
“Al {\/ 271 +(N;— Dplo?

N- 2
X eXp|:_ 2[1 +(N/]—1)p]ag(yl_ﬂ) :| }

and are different from those in b, 6%, p. The likelihood
ratio test statistic is defined as

A= —2(Ly—Ly). )

3. Simulation studies

This section reports the results of experiments that
test the accuracy of the approaches in applications
with small sample sizes. We focus on the performance
of our method and three alternative methods. We
call our model Model A (Eqn 6); the other three
models include the probit model, y;=xb+e; where
y;=® X((n;4+1)/(N;+2)) with homogeneous residual
variance (Model B); y;=xb+e; where y,=(n;+1)/
(N;4+2) (Model C); and the arcsine transformation
model y;=xb+e; with y;=arcsin[(n;+1)/(N;+2)]"?
(Model D). Model C simply treats the percentage
data as a regular quantitative trait without any
transformation.

We simulated a single chromosome of 11 markers
with 10 cM between consecutive markers. A single
QTL was simulated at position 45cM (between
markers 5 and 6). The parental marker genotype of
each locus comprised two alleles randomly sampled
from five unique alleles.

https://doi.org/10.1017/5S0016672304006834 Published online by Cambridge University Press

164

The residual error was assumed to be normally
distributed, with a variance set at 02=1-0, and the
intraclass correlation was set at p=0-2. The total
phenotypic variance explained by the QTL was simu-
lated at three levels:

(1) 02=0-03125 and 0%=0-0625, where the QTL ex-
plains #*=(2x 00312542 x 0-:0625)/(2 x 0-03125
+0-0625+1)=11-11% of the trait variance. The
corresponding allelic effects that generate this set
of QTL variances are o’ =0-1768, o’ =0-1768 and
0=0-25.

(2) 6%2=0-015625 and 0%=0-03125, where the QTL
explains h*=5-88% of the trait variance. The
corresponding allelic effects that generate this set
of QTL variances are a”=0-125, a=0-125 and
0=0-1768.

(3) 62=0-0078125 and 0%=0-015625, where the QTL
explains #2=3:03% of the trait variance. The
corresponding allelic effects that generate this set
of QTL variances are o’ =0-0884, o’ =0-0884 and
0=0-125.

The population mean of the liability was 0. We simu-
lated an outbred full-sib family with 100 individuals.
The number of trials per individual, N;, was simulated
according to a Poisson distribution with parameter 5,
10 or 50. The likelihood ratio (LR) test statistic profile
was calculated across the chromosome with 1cM
increments.

Table 1 shows the means and standard deviations
of estimates of location as well as effects of the QTL
and the empirical power calculated from 100 repeated
simulations. For large numbers of trials and high
QTL heritability /4% the three methods tend to pro-
duce an unbiased estimate of the QTL position and
small estimation errors. For low 4%, especially with a
small number of trials, the estimated position of QTL
is biased towards the center of the chromosome. Our
correlated probit model (model A) and the probit
model (model B) give estimates of the paternal and
maternal allelic substitution effects and the domi-
nance deviation that are reasonably close to the true
values. Our method has higher power than the other
two models when the number of trials is small and 42
is low.

The means and standard deviations of the esti-
mated intraclass correlation p over 100 replicates are
given in Table 2. We can see that the estimate of p gets
more accurate as 4* and N, increase.

Figures 1-4 show the results of the LR test statistic
profiles for the four models against the map position
for the cases of heritability equal to 11-11% and av-
erage N;equal to 10, heritability 11-11 % and average
N; 50, heritability 5-88% and average N; 10, and
heritability 5-88 % and average N; 50, respectively. In
each figure, parts a—d show the results for Models
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(c) Model C (d) Model D

Likelihood ratio statistic
Likelihood ratio statistic

0 20 40T 60 80 100 0 20 40T 60 80 100
Map position (cM) Map position (cM)

Fig. 1. Comparison of the likelihood ratio test statistic profiles of the four models for the case where the variation
explained by the QTL is 1111 % and the distribution parameter for the trial number of each individual is 10. For this
test, 11 codominant markers are equally spaced along a chromosome of 100 cM and a single QTL resides at position
45 cM. (a) Model A. (b) Model B. (¢c) Model C. (d) Model D. The labels of the horizontal axis indicate the marker
positions measured in centiMorgans (cM) counted from the left-hand end of the chromosome. The simulated true
QTL location is indicated with an arrow.

50 (a) Model A 50 (b) Model B

Likelihood ratio statistic
Likelihood ratio statistic
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0 20 40 1 60 80 100 0 20 40 1 60 80 100
Map position (cM) Map position (cM)
50 (c) Model C 50 (d) Model D

Likelihood ratio statistic
Likelihood ratio statistic
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0 20 401 60 80 100 0 20 40 1 60 80 100
Map position (cM) Map position (cM)

Fig. 2. Comparison of the likelihood ratio test statistic profiles of the four models for the case where the variation
explained by the QTL is 11-11 % and the distribution parameter for the trial number of each individual is 50. For this test,
11 codominant markers are equally spaced along a chromosome of 100 cM and a single QTL resides at position 45 cM.
(a) Model A. (b) Model B. (c) Model C. (d) Model D. The labels of the horizontal axis indicate the marker positions
measured in centiMorgans (cM) counted from the left-hand end of the chromosome. The simulated true QTL location is
indicated with an arrow.
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Fig. 3. Comparison of the likelihood ratio test statistic profiles of the four models for the case where the variation
explained by the QTL is 5-88 % and the distribution parameter for the trial number of each individual is 10. For this test,
11 codominant markers are equally spaced along a chromosome of 100 cM and a single QTL resides at position 45 cM.
(a) Model A. (b) Model B. (c) Model C. (d) Model D. The labels of the horizontal axis indicate the marker positions
measured in centiMorgans (cM) counted from the left-hand end of the chromosome. The simulated true QTL location is
indicated with an arrow.
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Fig. 4. Comparison of the likelihood ratio test statistic profiles of the four models for the case where the variation
explained by the QTL is 5-88 % and the distribution parameter for the trial number of each individual is 50. For this test,
11 codominant markers are equally spaced along a chromosome of 100 cM and a single QTL resides at position 45 cM.
(a) Model A. (b) Model B. (c) Model C. (d) Model D. The labels of the horizontal axis indicate the marker positions
measured in centiMorgans (cM) counted from the left-hand end of the chromosome. The simulated true QTL location is
indicated with an arrow.
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A-D, respectively. As stated earlier, the intraclass
correlation of the simulated data was 0-2.

These figures show clearly that our method per-
forms better than the other methods for small N;
values. As N; increases, all methods perform equally
well. Also, all curves peak near the true location
(45 cM) of the QTL. In each graph, the dashed line
is the approximate threshold for QTL detection
computed using the method of Piepho (2001).

4. Discussion

In this study, we developed a correlated probit model
for mapping binomial proportional data. The corre-
lation can reduce the effect of error variance and
therefore make it easier to detect QTLs (i.e. make the
test more powerful). Not only is the power of QTL
detection increased but also the precision of the esti-
mated QTL position is improved. Binary traits are
special cases of binomial characters in which the
number of trials always equals one (N;=1). As a re-
sult, the algorithm developed here can be applied
to binary trait mapping except that the intraclass
correlation is irrelevant here. The estimated prob-
ability of success for individual j becomes p;=
(n;+1)/(N;+2)=2/3 and the probability of failure is
1—p;,=1/3. However, we do not recommend using
our algorithm for binary data analysis because algo-
rithms specialized for binary trait mapping have been
developed. One of the earliest works on binary trait
mapping can be found in Visscher et al. (1996),
who treated binary characters (defined as 0 or 1) as
normally distributed variables so that a least-squares
method can be applied. Mclntyre (2001) developed a
probabilistic approach to mapping QTLs for binary
traits. Hackett & Weller (1995), Xu & Atchley (1996),
Rao & Xu (1998) and Yi & Xu (2000) described bi-
nary traits using a threshold model so that the QTL
effects are estimated in the scale of liability. More
recently, Xu et al. (2003) proposed an EM algorithm
to map QTLs for binary traits in a four-way cross
experiment. The EM algorithm has unified QTL
mapping for discrete traits with that for continuous
traits. All the aforementioned methods were designed
for mapping binary or ordinal traits rather than for
mapping traits measured as percentages.

The main advantage of this method is the simplicity
of converting the percentage data into (approxi-
mately) normally distributed data and thus we can use
the EM algorithm straightforwardly. The weighted
regression analogy for estimation of QTL parameters
makes the method easy to implement in writing com-
puter programs. Our simulation results suggest that
the probit model can be used for the binomial pro-
portional data. However, the usual probit model is
not always suitable, particularly if the number of
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trials is small and there is a correlation structure in
the data. Our correlated probit model has solved the
problem.

Chib & Greenberg (1998) developed a method of
simulated maximum likelihood for the multinomial
probit model in which estimates are obtained using a
Monte Carlo version of the EM algorithm. However,
it is well known that, for the multinomial probit
model, the full-information simulation estimation
methods, at their current state of development, are
subject to numerous computational difficulties in
finding an optimal solution for all but the simplest
models. Our method, however, takes advantage of its
special form and does not have this problem.

Although we demonstrate the statistical method of
QTL mapping using full-sib families as an example,
families from other types of mating designs can in
principle be readily incorporated by simplifying the
full-sib family model. The model considered here
assumes only one QTL on the chromosome. In re-
ality, complex binomial proportional traits might be
controlled by multiple loci. If there are multiple
QTLs in the same chromosome, the estimator tends
to be biased because of interference caused by QTLs
located on the same chromosome but outside the
tested region (Zeng, 1994). This problem can be solved
by resorting to the concept of composite interval
mapping (Jansen, 1994; Zeng, 1994).

The method described here is not intended to
replace the standard QTL mapping procedure for
percentage data. If the number of trials per individual
is sufficiently large, the usual probit model and other
methods would provide correct estimates of the lo-
cation and effects of QTLs. However, when the number
of trials is small, especially when the heritability of the
QTL is low, the method presented in this paper will
allow correct analysis of the binomial proportional
data.

The presented method has been implemented in a
Matlab program, which is available on request from
the authors.

We thank two anonymous reviewers for their helpful com-
ments on the original submission. The work was supported
by the National Institutes of Health Grant R01-GM55321
and the USDA National Research Initiative Grants Pro-
gram 00-35300-9245 to S.X.
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Summary

Genes involved in major biological functions, such as reproductive or cognitive functions, are choice
targets for natural selection. However, the extent to which these genes are affected by selective

pressures remains undefined. The apparent clustering of these genes on sex chromosomes makes this
genomic region an attractive model system to study the effects of evolutionary forces. In the present

study, we analysed the genetic diversity of a X-linked microsatellite in 1410 X-chromosomes from
10 different human populations. Allelic frequency distributions revealed an unexpected discrepancy
between the sexes. By evaluating the different scenarios that could have led to this pattern, we show
that sex-specific selection on the tightly linked VCX gene could be the most likely cause of such a

distortion.

1. Introduction

Natural selection is one of the main forces shaping the
patterns of genetic variability in the human genome,
although its role has been often neglected in most
population genetics studies. Indeed, most genetic poly-
morphisms used in population genetic studies are
assumed to be neutral and affected mainly by both
mutation and genetic drift. Interestingly, the recent
results from human genome sequencing have revealed
that each category of repeated sequences possesses
a specific dynamics in space and time. This suggests a
combined and complex action of different evolution-
ary forces. Furthermore, these results revealed that
microsatellites, which are among the most used
markers in population genetics studies, displayed a
non-random distribution through the human genome:
there are fewer polymorphic loci on the X-chromo-
some compared with autosomes (International Se-
quencing Human Genome Consortium (ISHGC),
2001). The X-chromosome, known to harbour a num-
ber of genes involved in human fertility (Wang et al.,

* Corresponding authors: Equipe de Génétiques des populations,
Musée de 'Homme, 17, place du Trocadéro, 75116 Paris, France.
Tel: +33144057253. Fax: +33144057241. e-mail: heyer@
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2001; Saifi & Chandra, 1999) and in cognitive func-
tions (Gécz & Mulley, 2000; Hurst & Randerson,
1999 ; Graves & Delbridge, 2001) may be potential tar-
get for natural selection. However, the precise extent
to which these genes are affected by selective pressures,
or a possible variation in selective pressures acting
between both sexes, remains undefined. In addition,
the precise extent to which these genes have an influ-
ence on surrounding sequences either through direct
or background selection remains poorly studied.
We investigated the allelic diversity of an X-linked
dinucleotide microsatellite (DXS8175) located in the
Xp22.3 region, a gene-rich region, in 10 human popu-
lations and focused on the allelic distributions. We
found strikingly different allelic frequency distribu-
tions between males and females. In this study, we
investigated the likely demographic and selective scen-
arios as the bases of these observations.

2. Materials and methods
(1) Samples and PCR amplification

We genotyped 951 unrelated subjects, for a total of
1410 chromosomes belonging to 10 different human
populations from Africa (Akan and Yacouba from
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Table 1. Distribution of alleles frequencies in males (M) and females (F), A= ps—p,,, and statistical test of
differentiation between the two genders
Exact test
differentiation
(Raymond &
DXS 8175¢ alleles frequencies Rousset, 1995)
Populations 10 11 12 13 14 15 16 17 18 19 20 x P value
European
Corsican
M¢ 63° 6 10 46 37 2 1-75 0417
F 60 3 13 32 48 3
A=pr—pm -3 4 —14 12 2
Sardinian
M 36 11 11 47 22 8 10-65 0-005
F 94 1 18 51 30
A=pr—pm —10 7 4 8 -8
Orcadian
M 32 34 59 6 314 0-208
F 76 11 38 46 5
A=pr—pm 11 4 —-13 -1
African
Akan
M 59 5 8 36 17 17 14 2 2 15-05 0-000
F 166 5 3 18 16 45 11 1 1
A=pr—pn —0 —6 —-18 -1 28 -2 -2 —1 1
Yacouba
M 62 3 19 27 37 6 3 3 1-21 0-546
F 46 2 2 28 13 39 11 2 2
Ambhara
M 31 7 26 19 32 13 3 0-35 0-838
F 56 5 5 5 20 14 36 13 2
A=pr—pm 5 5 -1 —6 -5 3 -0 -1
Oromo
M 31 7 3 13 13 55 10 1-97 0-373
F 80 3 6 23 21 38 6 4
A=pr—pm 3 —0 10 8§ —-17 -4 4
Moroccan Berber
M 38 11 47 32 5 5 0-63 0-728
F 136 2 1 2 14 43 33 5 1
A=pr—pp, 2 1 2 4 —4 2 -0 —
Mozabit Berber
M 85 1 1 5 34 48 9 1 2:25 0-324
F 42 2 2 14 24 50 7
A=pr—pm 2 1 -1 10 -—10 2 -2 -1
South American
Bolivian
M 55 9 60 29 2 0-24 0-889
F 162 1 7 57 33 1
A=pr—pm 1 -2 -3 4 -1
“ Genders.

5 Number of chromosomes analysed.
¢ Alleles are named according to Scozzari et al. (1997).

Ivory Coast, Amhara and Oromo from Ethiopia,
Algerian Mozabits and Moroccan Berbers from
North Africa), Europe (Sardinian, Corsican and
Orcadian) and South-America (Bolivians) (see
Table 1). DXS8175 microsatellite amplifications were
performed according to Malaspina et al. (1997) and
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Scozzari et al. (1997). PCR primers were fluorescently
labelled and the PCR products were run in a standard
6% denaturing gel and detected using an ABI 373A
automated sequencer. GeneScan software (ABI) and
Genotyper software package (ABI) were used to size
the amplified alleles. In addition, we sequenced a total
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of 50 microsatellites randomly chosen from the 10
populations to control for possible indel events in
flanking sequences (Grimaldi & Crouau-Roy, 1997)
and showed that no indels have caused length homo-
plasy. Moreover, no null alleles have been detected as
previously reported by Scozzari et al. (1997).

(i1) Statistical analysis

The distributions of allele frequencies in the two sexes
were compared using the exact test of population
differentiation, implemented in GENEPOP software
(Raymond & Rousset, 1995), well adapted for allele
frequencies comparisons (Goudet et al., 1996). The
probability of type I error for the test was set at 0-05
and a Bonferroni correction for multiple tests used
following the method of Dunn and Sidak (Ury, 1976).
The analytical study of the evolution at X-linked loci
under selection was performed with Mathematica 4.1
(Wolfram, 2001). Figures were obtained with R
software (Ihaka & Gentleman, 1996).

3. Results and Discussion

The DXS8175 displays a total of 10 alleles, ranging
from 10 to 20 repeats in all populations studied,
a common feature for a dinucleotide microsatellite
(Zhivotovsky et al., 2003; Renwick et al., 2001).
Allelic frequencies in the 10 populations revealed
similar distributions to those observed by Scozzari
et al. (1997) in 30 populations from Europe, Africa,
Asia and the Americas for the same marker. However,
we observed a discrepancy in allele frequencies be-
tween males and females in all populations. We found
that two populations (Akan and Sardinian) show a
significant difference in allele frequencies (alleles 12,
14, 16, 17) between the sexes (Table 1). This difference
remained significant after Bonferonni correction for
multiple tests.

By evaluating the different scenarios that could have
led to this pattern, it appeared that two main possible
and testable hypotheses could explain the discrep-
ancy in allele frequencies: an admixture event or
sex-specific selection acting on a gene located on the
X chromosome affecting the DXS8175 marker by a
hitch-hiking effect.

(1) Admixture

To test whether admixture is the putative cause for the
observed differences, we need to take into consider-
ation the parental populations. If a population results
from the admixture of two different founder groups
with significant differences in allele frequencies, dis-
crepancies are expected in the offspring generation
(F1). The sex difference in the F1 generation is equal
to half the difference among parental generation (with
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an opposite sign). In the more extreme case, where all
males and females come from two different single
populations (corresponding to 100% admixture),
differences in allele frequencies between sexes in
the parental populations have to be twice that seen in
the F1 generation. In a moderate case, and so more
realistic for human populations, if admixture is less
than 100 %, the frequency difference between sexes in
the parental populations has to be much higher than
twice the F1 difference. The necessary frequencies
under this hypothesis were not observed in our study.

For example, the highest discrepancy in allele fre-
quencies was observed in the Akan population, in
which allele 16 showed the highest male to female
frequency divergence: A=p,—p,,= +0-28. In order
to explain such a result, we could consider a fictitious
case (100% admixture) where the most divergent
populations in allele frequencies found in our sample
would represent the parental populations. Consider-
ing males of the Orcadian and females of the Sardinian
populations, the maximal value which could be re-
ached in the F1 generation would be A=p,—p,,=
0-30/2=0-15 (allele 16,,: 0-59 and allele 16¢: 0-29),
a value much lower than 0-28.

Others pairs of parental populations would result
in lower expected divergence or in male frequencies be-
ing higher than female frequencies. Furthermore, the
expected frequency patterns for others alleles would
never match the observed Akan pattern. Using similar
calculations, it can easily be shown that the discrep-
ancy in sex frequency for the Sardinian population
(for allele 12 or 17) cannot be explained by admixture.
The admixture hypothesis seems not adapted to
explain the sex frequency discrepancies in the Akan
or the Sardinian population. The historical and
demographic parameters necessary to achieve such a
situation (100 % admixture) from very distant popu-
lations are very unrealistic and an admixture event
leading to the observed pattern of sex-allele dis-
crepancies is unlikely. Such a difference in allele
frequencies between males and females was never
observed when we compared allele frequencies for
other microsatellites on others parts of the genome
(data not shown).

This argument can be extended to a multiple allele
approach by noticing that the distance between sexes
in the parental populations, as measured by Fgr, has
to be approximately 4 times greater than the distance
between the two sexes in the F1 generation. Such a
distance was never achieved (data not shown).

(i1) Selection
(a) Nearness of VCX/Y genes

If the DXS8175 microsatellite is in the vicinity of a
gene under selective pressures, this could explain such
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Fig. 1. Relative positions of DXS8175 microsatellite and V'CX10r gene on the CRI-S232 genomic element (adopted from

Lahn & Page, 2000; Fukami ez al., 2000).

a discrepancy in allele frequencies. By performing
in silico investigation, we located the DXS8175
microsatellite ~2 kb upstream of the VCXI0r gene
(Fukami et al., 2000; Lahn & Page, 2000; Balaresque
et al., 2003; Fig. 1) within a CRI-S232 duplicated
element (Ballabio et al., 1990; Li et al., 1992), also
called segmental duplications. The recombination
fraction expected between the DX8175 microsatellite
and the VCX10r gene is approximately 0-002 %, con-
firming the association between the microsatellite and
the gene.

(b) Antagonistic allelic sex-specific selection
on the X-chromosome

Differential sex selection on the human X-chromo-
somes is an alternative explanation for the discrepancy
in allele frequencies distributions in males and females.
Population genetic theory shows that stable poly-
morphisms can be maintained by selection at sex-
linked loci when alleles are antagonistically selected in
the two sexes (see for example Crow & Kimura, 1970,
p. 278). Here we will show that in such cases large
differences between allele frequencies in males and
females can be obtained at equilibrium. Consider a
single locus on the X-chromosome with two alleles
(A1 and A2) under zygotic selection with one allele
(A1) being deleterious in males (heterogametic sex)
but advantageous in females (homogametic sex).
Selective effects of A1/A2 alleles were parameterized
by a selective coefficient s reducing YA1 male fitness
to wl =1—s (YA2 male fitness being w2=1), a selec-
tive coefficient ¢ reducing homozygous A2A2 female
fitness to w22=1—¢ (homozygous A1A1 female fit-
ness being wll =1), and a dominance parameter / (i.e.
heterozygous A1A2 female fitness was wl2=1—ht).
We supposed that the fitness of heterozygous females
was intermediate between those of homozygous
females (i.e. & varying between 0 and 1), thus exclud-
ing under- or over-dominance phenomena. This fit-
ness model was a slight modification of the one used
by Rice (1984) and was adopted because of its
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symmetry, all parameters (s, ¢ and /) varying between
0 and 1.

The precise analysis of the evolution at X-linked
loci under selection has been done by many authors
(see for example Cannings, 1967; Crow & Kimura,
1970; Rice, 1984). The existence of a stable polymor-
phic equilibrium depended on the three parameters
(s, t, h) as shown in Fig. 2. Globally, the region for a
stable polymorphism was reduced with increase in the
dominance parameter /.

Using our fitness model, equilibrium Al fre-
quencies in females (p,) and in males (p,,) were:

. I2—h2—9)]—s

LTI v

. (1=9[12—h(2—5))—s]
" R2(1—s)—h(2—s)Y]

2

Combining these equations (which are equivalent
to equations 7 and 8 of Rice, 1984), the difference in
allelic frequencies, A =p,—p,,, was:

B S[t2 —h(2 —5)) —s][s — (2 —s)hi]

21 —hQR—9)[s*+ t{2(1 —s)—h(2—s5)}]

(€)

This difference was strictly positive in the stable
polymorphic equilibrium region, i.e. equilibrium Al
female frequency p, was always higher than equilib-
rium Al male frequency p,,. The dominance par-
ameter /1 had little influence on the difference between
pr and p,. As a result, we restricted our analysis
to the case of a complete dominance of Al over A2 in
females (i.e. #=0). In this situation, the discrepancy
between female and male Al frequencies at equilib-
rium reduced to:

2
pe 8 2t—ys) ' @
21[s* 4 2t(1 —s)]

The exact value of the excess of Al allele in females
(as measured by A) obviously depended on the
selective coeflicients s and ¢, and can be visualized in
the (s, ) parameters space as lines with equal A values
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Fig. 2. Equilibrium at X-linked loci under antagonistic selection in the two sexes (allele A1 being deterious in males and
advantageous in females). White areas correspond to monomorphic equilibrium (A1 fixed or A2 fixed), light grey areas
correspond to stable polymorphic equilibrium, and dark grey areas correspond to unstable polymorphic equilibrium.
Stability is possible when (1 —/h#)(2—s)>2(1 —s) and (1 —/£)(2—5)>2(1 —¢). (¢) When Al is dominant in females (4=0),
two equilibrium states are possible: a stable polymorphic state and a monomorphic state (A2 fixed). () When Al is
partially dominant in females (0 </ <0-5), there are two monomorphic states (Al fixed or A2 fixed) and a reduced area
for the polymorphic state. (¢) When Al is partially recessive in females (0-5 </ < 1), an unstable polymorphic state
appears. (d) When Al is partially recessive in females (4= 1), polymorphism is unstable, thus A2 always becomes fixed.

(Fig. 3). Globally, A increased with increasing s and ¢
(i.e. under high selection) and tended to 0-5 with males
being only YA2 and females being only A1A2 hetero-
zygotes. For more realistic selective parameters (i.e.
lower s and ¢ values), A was strongly decreased and
would be impossible to detect for selective coefficients
s and ¢ lower than 0-2 (A <0-05).

With this model, we showed that sexual antagonism
is sufficient to create differences in allele frequencies
in males and females. The more extreme pattern we
observed (Akan population) can be explained in this

https://doi.org/10.1017/5S0016672304006834 Published online by Cambridge University Press

framework, although it requires very high selective
coefficients both in males and in females (s=0-748
and r=0-675 for p,,=0-169 and A=0-277). We
must, however, note (1) that the true A value in the
Akan population might be lower than that observed
in our sample, and (2) that the observed A value might
not be the equilibrium one. Classical population
genetics results show that an initial difference in allele
frequencies in males and females for a neutral locus
on the X-chromosome needs some generations to dis-
appear with fluctuations around 0 from generation to
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Fig. 3. Equilibrium A =p,—p,, value in selective
coefficients (s, ¢) space with complete dominance of Al in
females (4=0). The stable polymorphic equilibrium region
is delimited by the thick plain line: A2 gets fixed for
parameters values below the line. Thin plain lines represent
(s, 1) values yielding a given A values (shown values from
0-05 to 0-45). The thin dashed line represents A=0-277.
The thick dashed line represents an equilibrium Al
frequency in males p,,=0-169. The dashed line intersect

at s=0-748 and r=0-675.

generation (being successively positive and negative).
Adding sexual antagonistic selection (as in our model)
results in a translation of the equilibrium value from 0
(in the neutral case) to a positive value. In the non-
equilibrium phase, fluctuations may well transiently
increase A to a value much higher than its final equi-
librium value. Random genetic drift or moderate
admixture could be recurrent sources of displacement
from the equilibrium. In some situations (especially
when the discrepancy is reduced by such phenomena),
selection could transiently drive the system to higher
values than expected at equilibrium.

The model with an advantage in the homogametic
sex could explain the pattern observed in the Akan
population. Similarly, the reverse frequency pattern
observed in the Sardinian population (higher fre-
quency of allele 12 or 17 in males than in females)
could be explained by the reverse model where Al is
advantageous in males and deleterious in females.

(c) VCXJ/Y genes: target for selection

We showed that a differential selection between the
two sexes on a gene in the vicinity of the DXS8175
microsatellite would create such a difference in allelic
frequency distribution at equilibrium in a given popu-
lation. The VCX10r gene, a member of the VXC/Y
gene family, is a good candidate as expression analysis
showed that all copies of the VCX/Y gene family have
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a testis-specific expression, probably in the germ cells
(Fukami et al., 2000; Lahn & Page, 2000). Their in-
volvement in female reproductive functions remains
to be defined but, to our knowledge, no expression
studies of the VCX/Y gene family have been per-
formed in fetal ovary tissue and therefore a role of
VCX members during oogenesis cannot be ruled out.
A similar sex-specific selective process has been ob-
served in Drosophila for sexually antagonistic genes
(Rice, 1992; Chippindale et al., 2001) in which
some genes are advantageous in the heterogametic
sex whereas they are disadvantageous in the homo-
gametic sex. Genes located on the human X-chromo-
some constitute potential and interesting targets on
which antagonistic selective pressures between both
sexes could be acting (Gibson et al., 2002).

A second class of model could involve selection
acting at the gametic level rather than at the zygotic
levels, resulting in similar sex frequency discrepancies
provided that selection acts antagonistically in the
two sexes (data not shown).

A third class of model with alleles acting as a seg-
regation distorter in males but being deleterious in
females would probably also result in a difference in
allele frequency at equilibrium. As we have shown, the
DXS8175 microsatellite is located near the VCX gene
within the duplicated element CRI-S232. Interestingly,
in a recent study Lahn & Page (2000) and Lahn ez al.
(2001) reported that the VCX/Y genes could act as
meiotic distorters. Their statement is mainly based
on two observations: (i) the molecular characteristics
of VCX/Y genes that recalled those of the fruitfly
X-linked Stellate (Ste) and Y-linked crystal, which are
meiotic drive elements in Drosophila melanogaster
(Belloni et al., 2002); (ii) recombination between
CRI-S232 elements is known to cause frequent de-
letions in the X-chromosome short arm, resulting in
steroid sulfatase deficiency (X-ichthyosis). This could
be a satisfactory explanation for an old speculation of
male bias among the offspring of ichthyosis carrier
females reported in some human populations (Filippi
& Meera Khan, 1968 ; Gladstein et al., 1979).

(ii1) Differences among populations

The observed differences in allele frequencies between
sexes, dependent on the allele or the population, could
be due to several causes including differential demo-
graphic histories of some populations associated with
variation in linkage disequilibrium (LD) levels (Ardlie
et al., 2002): if the mutation arrived more recently in
one population, there is a higher LD between the gene
under selection and the microsatellite, and therefore
it can be detected through the microsatellite poly-
morphism in this population. In a population where
the mutation arrived earlier, LD has been reduced
through recombination between the selected gene
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and the microsatellite and it is very difficult to detect
such an effect. This could explain why such an as-
sociation is only detectable in 2 populations in 10.
Among these, the Sardinian population is known to
show high levels of linkage disequilibrium (Taillon-
Miller et al., 2000; Angius et al., 2002).

Moreover, local selection on the VCX gene could
also explain differences between populations. The
instability of this region through misalignment be-
tween duplicated elements could lead to a copy num-
ber polymorphism of VCX genes: these differences
among populations have been documented for other
gene families (Trask er al., 1998), suggesting that
variable selective patterns may be expected across
populations.

4. Conclusions and perspectives

We have shown that discrepancies in allele frequencies
between males and females are probably due to sex-
specific selective pressures. The model of Rice (1984)
seems well adapted to illustrate intra-locus antag-
onistic pressures acting on sex-specific-linked alleles.
Although this model with two alleles is clearly an
over-simplification of the reality, it provides an inter-
esting framework to explain our data. The concept of
antagonistic intra- or inter-locus selective pressures
becomes especially relevant when the candidate loci
are polymorphic and are part of a multigenic family
in which different members act in synergy. Recent
results on the human genome reported that segmen-
tal duplications constitute approximately 5% of the
human genome and that all copies of each family
share about 90-100% similarity (ISHGC, 2001;
Samonte & Eichler, 2002). These large blocks of
sequence similarity provide the substrate for aberrant
recombination leading to variation in copy number
among individuals or populations (Menashe et al.,
2003). This observation underlines the fact that
duplicated sequences are part of an ongoing process
that results in a novel form of large-scale variation
in the human genome (Eichler, 2001), which may be
subject to complex selective patterns.
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Summary

Identification of cis-regulatory motifs has been difficult due to the short and variable length of the
sequences that bind transcription factors. Using both sequence and microarray expression data, we
present a method for identifying cis-regulatory motifs that uses regression trees to refine results from
simple linear regression of expression levels on motif counts. Analysis of expression patterns from
two separate datasets for genes showing significant differences in expression between the sexes in
Drosophila melanogaster resulted in a model that identified known binding sites upstream of genes
that are differentially expressed in the germline. We obtained a strong result for motif TCGATA,
part of the larger, characterized binding site of dGATAb protein. We also identified an
uncharacterized motif that is positively associated with sex-biased expression and was assembled
from smaller motifs grouped by our model. A regression tree model provides a grouping of
independent variables into multiple linear models, an advantage over a single multivariate model.
In our case, this grouping of motifs suggests binding sites for cooperating factors in sex-specific
expression, as well as a way of combining smaller motifs into larger binding sites.

1. Introduction

The search for DNA regulatory motifs has been the
focus of much recent research, with various methods
being employed in motif discovery. Detection of tran-
scriptional regulatory motifs in the upstream region
of genes has presented a real challenge because
transcription factor binding regions tend to be short,
discontinuous, and quite variable. Saccharomyces
cerevisiae has frequently been the organism of choice
for development of methods that identify transcrip-
tion factor binding sites since many binding motifs
have already been experimentally characterized in this
organism. Nevertheless, most methods of motif de-
tection have found limited success, often resulting in
a high rate of false positives (Werner, 2002). In higher
eukaryotes, the structure of regulatory motifs is more
complex and less well defined, making the development
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of new methods and verification of results even more
difficult.

Before access to the sequence of multiple whole
genomes, many motif-detection methods involved
statistical approaches to the creation of weight
matrices. A weight matrix is derived from a number of
short sequences known to be bound by a given tran-
scription factor, and then the matrix is used to search
a sequence or a set of sequences for a match to that
motif. Examples include Matlnd and Matlnspector
(Quandt et al., 1995) and FastM (Klingenhoff ef al.,
1999). Searches that use weight matrices have a very
high rate of false positives, but results have improved
when they are used in combination with another
method such as phylogenetic comparison (Guha
Thakurta et al., 2002).

Alternative methods for motif detection involve di-
rect comparison of regulatory regions, either between
genes thought to be co-regulated or between ortholo-
gous genes from closely related species. The Gibbs
sampling method, which utilizes a modified Expec-
tation Maximization (EM) algorithm (Lawrence et al.,
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1993), has been used in the AlignACE program to
return over-represented motifs in co-regulated gene
clusters and has found some success (Hughes ez al.,
2000; Manson-McGuire et al., 2000). Advanced
application of Gibbs sampling methods in this con-
text continues to hold promise, particularly in micro-
organisms (Liu et al., 2001). With the increasing
availability of whole genome sequences of closely re-
lated species, the phylogenetic comparison of regu-
latory regions has increased. Comparisons between
human and mouse regulatory sequence showed that
phylogenetic footprinting can reduce the sequence
space to be searched for transcription factor binding
sites (Wasserman et al., 2000). Rajewsky et al. (2002)
recovered approximately 75 % of the regulatory sites
compiled for E. coli using interspecies comparisons.
Issues still remain as to how best to choose the species
for comparison and how many are required to produce
meaningful results. A recent study using proteo-
bacteria takes a formal look at these issues (McCue
et al., 2002).

A somewhat different strategy for detection of
transcription factor binding motifs searches for clus-
ters of motifs in upstream sequences (Berman et al.,
2002; Halfon et al., 2002; Markstein et al., 2002;
Rebeiz et al., 2002). These clustering methods require
prior knowledge of characterized sites and are targeted
more towards finding genes regulated by factors bind-
ing to the clusters rather than identifying the clusters
themselves. Another combinatorial approach for find-
ing synergistic motifs by Pilpel et al. (2001) also re-
quires knowledge of known regulatory motifs. An
underlying assumption in several of the above analy-
ses is that binding motifs are redundant in the pro-
moter region, as in the Drosophila yolk protein genes
(Piano et al., 1999) and the Drosophila eve stripe 2
gene (Berman et al., 2002).

Capitalizing on this redundancy property, a recent
study by Bussemaker et a/. (2001) fitted a linear model
of the logarithm of the expression ratio under two
different experimental conditions to the counts of
oligomers upstream of a set of genes. By first de-
termining statistically significant motifs with a single-
motif model of the data, a model describing the
additive effects of multiple motifs can then be created.
We incorporate this method by identifying the stat-
istically significant motifs through the single-motif
model, but instead of building a single additive model
for a given experiment, we use the significant motifs
to build regression trees. Our regression trees allow
for multiple linear models to describe the data based
on the prevalence of certain motifs and have the
potential to uncover hierarchical or non-additive
relationships between motifs.

Regression trees were originally used to generate
predictive models of regression estimates. They were
developed to deal with continuous-class learning
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problems (Quinlan, 1992; Wang & Witten, 1997), and
combine a classical decision tree with linear regression
estimations at the leaves of the tree. The prediction
accuracy of regression trees is competitive with linear
regression methods (Breiman et al., 1984), but the real
advantage of the regression tree method lies in the
model representation. The decision nodes and their
position in the tree indicate which nodes together
significantly affect the predicted values. We show that
they can be used to identify prospective regulatory
motifs bound by transcription factors, as well as
combinations of motifs that aggregate to form larger
motifs.

Other biological studies have also capitalized on
the classificatory property of regression trees. For
example, a recent investigation into the nesting habi-
tats of smallmouth bass used regression trees to give a
hierarchical view of habitat conditions that affect the
smallmouth bass’s choice of nesting site (Rejwan et al.,
1999). Similarly, they have been used to identify the
most predictive variables for patients who undergo
angiography (Pilote et al., 1996). In this study, re-
gression trees identified age as the most important
variable. However, in younger patients availability of
the angiography procedure was the next most predic-
tive factor, while age was still the second most pre-
dictive factor in older patients. This illustrates the
ability of regression trees to separate, or group to-
gether, cooperating factors under given circumstances.

In our model, we are using counts of binding motifs
as the decision points in the tree. The decision nodes
in the tree look at the counts of motifs of length & (k-
mers) taken from the upstream region of a given gene.
The change in estimated regression values between the
leaf nodes indicates whether a combination of motifs
is associated with the regulation of genes. As with the
aforementioned studies, we are not using the re-
gression tree model in its classical sense as a predictor
of response, but instead to identify the predictive
variables, namely regulatory motifs.

In this study, we searched for transcription factor
binding motifs of genes that show sex-biased ex-
pression. Our previous study on sex, genotype and age
(Jin et al., 2001) (subsequently referred to as the aging
dataset) showed evidence for between one-third and
two-thirds of the Drosophila transcriptome having
sex-biased expression. Comparisons with tudor
mutant animals that lack ovaries and testes have since
demonstrated that most of the differences in gene
expression between reproductively mature adult
male and female flies is due to germline expression
(Arbeitman et al., 2002 ; Parisi et al., 2003). To obtain
a larger number of these differentially expressed genes
for our analysis, we supplemented the aging dataset
(Jin et al., 2001) with data from another experiment
that tested the effects of nicotine on gene expression in
flies of both sexes (G. Passador-Gurgel and G.G., in
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preparation: this dataset is subsequently referred to as
the nicotine dataset). Although two different clone sets
were used to generate the data, a high concordance in
the predicted motifs was observed, and this indepen-
dent replication confirms that regression tree methods
may be a valuable new approach to characterization
of regulatory motifs.

2. Materials and methods
(1) Gene selection from microarray experiments

The genes used for analysis of sex-biased expression
are from two datasets: the aging dataset (Jin et al.,
2001) and the nicotine dataset (G. Passador-Gurgel
and G.G., in preparation). The aging array exper-
iment used a split-plot experimental design and tested
for sex as a fixed effect using a mixed-models approach
(Wolfinger et al., 2001). Array set-up and subsequent
analysis for the nicotine experiment was done simi-
larly, with 48 two-sample arrays involving three wild-
type genotypes, two sexes and treatment (control
versus drug) as fixed effects. The set of genes for the
nicotine experiment was 4856 genes from the Droso-
phila Gene Collection (DGC), which were indepen-
dently identified and amplified from those of the
White collection used in the aging experiment. From
each experiment, genes with a P value of <0-0001
resulting from the test for sex effects were chosen
for use in this analysis. The lists of genes from both
datasets and their associated expression difference
are available at http://statgen.ncsu.edu/ggibson/
SupplInfo/SexSpecificList.txt

(i) DNA sequence motifs

All possible motifs of length 6 were generated. In-
itially, we extracted counts of all possible 7-mers of
the 250 differentially expressed genes from the aging
dataset (Jin et al., 2001). Since five of the eight most
significant motifs from the linear regression contained
the sequence TCGATA, all subsequent analyses were
conducted on 6-mer motifs. Motifs were combined
with their reverse complement and the motif having
the higher lexicographic order was chosen to rep-
resent the pair. No allowance for variability in the
motif sequence was made. For each gene selected, the
1000 base-pair (bp) sequence upstream of the trans-
lation start site (ATG) was extracted from the Version
2 annotation of the Drosophila genome sequence at
NCBI (March 2002, http://www.ncbi.nlm.nih.gov).
This sequence includes variable lengths of 5 un-
transcribed and untranslated leader sequences, which
are as yet typically uncharacterized in Drosophila.
Although enhancers in the fly genome can be several
kilobases away from the translation start site, the
1000 bp upstream sequence was chosen for two
reasons. First, testis-specific promoters in Drosophila
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are usually close to the start site (Arnosti, 2003). Sec-
ondly, as more sequence is added to the analysis, the
signal-to-noise ratio of regulatory to non-functional
motifs probably drops, and with a large number of
genes we surmised that we would be most likely to
find common motifs in the upstream 1 kb region. This
approach is not intended to identify all the enhancer
elements that regulate sex-specific gene expression in
Drosophila, but rather to focus on those located
proximal to the transcription start site.

For each gene, all motifs were counted in the up-
stream 1 kb sequence (allowing overlap, namely 995
motif counts per gene). All work to extract sequence,
generate motifs and count motifs was done via Perl
scripts.

(ii1) Single-motif linear regression

The first stage of analysis uses a simple linear
regression model to fit single-motif counts and ex-
pression data. The model is defined as:

Y:ﬂo +61X

where Y is the base 2 logarithm of the expression dif-
ference between females and males. A positive Y in-
dicates greater expression in females; a negative Y
indicates greater expression in males. X'is the count of a
given motif. All genes chosen as significantly differen-
tially expressed between the sexes (in either direction)
were fitted to the model. 3, is the relative increase or
decrease in expression difference caused by each ad-
ditional copy of the motifin the upstream region of the
gene, and f3, is the grand mean expression difference.

Both the nicotine and the aging datasets were run
through simple linear regression. To account for the
large number of motifs (2080), application of the
Bonferroni correction set the experimentwise signifi-
cance cutoff from regression of expression level on
motif count for a=0:05 at P=2:4x 1073 Permu-
tation tests provided independent verification of the
appropriateness of this cutoff, but for some analyses
we included simply the top 20 motifs as these included
a few motifs that were close to the cutoff in both
datasets.

(iv) Regression and decision trees

Single-motif linear regression was used primarily as a
data reduction technique. Motifs with a P value below
the Bonferroni-corrected values were considered most
likely to affect sex-biased expression and were there-
fore used in training and validation of the regression
and decision tree models.

Regression and decision tree models were built and
trained with publicly available Weka software (Witten
& Frank, 1999) available at http://www.cs.waikato.
ac.nz/ml/weka/. Data from the nicotine experiment
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Table 1. The most significant sex-specific motifs from single-motif

regression for both the nicotine and aging datasets

Nicotine dataset Aging dataset
Rank  Motif P value sign®  Motif P value sign?
1 TCGATA 1.4e-19 + TCGATA 1.2e-12 +
2 CGATAG 2.5e-11 + ATCGAT 0-0000013  +
3 ATCGAT 3.7e-10 + ATATCG 0-0000024  +
4 GGTCAC  0.000000050  + ACGACG  0:000065 +
5 ATATCG 0-00000019 + AGTCGC  0-000092 +
6 ACACTG 0-00000024 + CGCAAC  0:00014 +
7 CACGTG  0-00000033 + CGATAG 0-00016 +
8 TAAAAA  0-0000012 + CCAAAG  0:00021 —
9 GGCGCA  0-0000022 + GCAACG  0-00021 +
10 CCGTTA 0-0000030 + ACACTG 0-00038 +
11 GTCACA  0-0000032 + CACGCA  0-00058 +
12 AAGAAG 00000032 + GCACGC 0-00063 +
13 CGCACG  0-0000057 + CCTTTC 0-00066 —
14 AGACTC  0-0000073 — AGTGTG 0-00075 +
15 CGGTAA  0-0000161 + AGGGCC  0-00099 -
16 TTAAAA 0-000016 + GTGTGA 00013 +
17 AAAATA  0:000019 + ATCGAC  0-0015 +
18 AGTGTG 0-000022 + ATTCGC 0-0015 +
19 GCGCAC  0-000022 + AGAAGA 0-0016 +
20 GCACGC 0-000028 + ACTACG  0-0020 +

Motifs in common between the two sets are indicated in bold.

¢ Positive coefficients indicate that the motif is associated with increased tran-
scription in females. Negative coefficients indicate that the motif is associated with

increased transcription in males.

were used to train the models and data from the aging
experiment were used for model validation. Specifi-
cally, the regression trees were built with the M5
software using a — O r option. The decision trees were
built with the J48 software using the — R option to
reduce error pruning and the — M option to vary the
minimum number of instances per leaf.
The models were built from motifs as follows:

Model 1: Motifs that were above Bonferroni-
corrected significance cutoff from single-motif re-
gression and were seen >4 % of the time within 20 bp
of TCGATA/TATCGA (8 total).

Model 2: Motifs seen >5% of time within 20 bp of
TCGATA/TATCGA (25 total).

Model 3: The most significant motifs from single-
motif regression at or below Bonferroni-corrected
cutoff (20 total).

Model 4: Combination of 20 most significant motifs
from single-motif regression and 20 motifs most often
seen within 20 bp of TCGATA/TATCGA.

3. Results
(1) Identification of female-specific regulatory motifs

The first stage of the analysis searched for motifs
that may contribute to male- or female-specific gene
expression in adult flies using linear regression of
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expression difference against motif count in the pro-
moters of differentially expressed genes (Bussemaker
et al., 2001). Table 1 shows the top 20 motifs after
linear regression with the two different datasets. The
significance threshold for regression of motif count on
expression difference after Bonferroni correction is
approximately 2-4 x 1075, Three motifs exceed this
threshold in the aging dataset, and 19 in the larger
nicotine dataset. Several results stand out. Most no-
ticeably, the two experiments converge on a similar
set of motifs, with the three most significant motifs
found in the aging dataset also being found within the
five most significant motifs resulting from analysis of
the nicotine dataset. Three other motifs are also
common between each dataset’s list of 20 most sig-
nificant motifs. Additionally, the motif TCGATA/
TATCGA is at a much higher significance level than
any other motif in both datasets, with a P value of
10—, Lastly, almost all the motifs are associated with
female-biased gene expression, and no case of a male-
specific motif was replicated in both datasets. Rep-
resentative linear regression profiles shown in Fig. 1
also highlight the point that none of the motifs is
either necessary or sufficient for sex-specific gene
expression: some genes with multiple copies of
TCGATA are actually male-biased, and many
female-specific genes lack the motif within 1 kb of
the translation start site.
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Fig. 1. Linear regression of expression difference on motif counts. Each diamond represents the normalized difference
between gene expression in adult females and males on a log 2 scale, given the number of copies of the indicated motif
(A: TCGATA; B: GTCACACTG) in the nicotine dataset. Only genes that are significantly different between the sexes
are included. On this scale, 1 represents a two-fold difference, 2 a four-fold difference, and so on. Dashed lines shows

linear regression fit. Female-biased genes are towards the top.

The most significant motif, TCGATA, is part of a
known binding site for the dGATAb (SERPENT)
protein, which enhances transcription of yolk proteins
in Drosophila females (Lossky & Wensink, 1995).
The entire binding site has been characterized as
GCTATCGATAGC, which highlights the fact that
TCGATA and its reverse complement TATCGA
have a 4 bp overlap. The combined 8-mer is palin-
dromic, a characteristic that is known to increase the
affinity of binding sites for transcription factors but
usually associated with head-to-tail dimerization of
individual binding sites (Drouin et al., 1992). Obser-
vations of all TCGATA/TATCGA pairs in the up-
stream regions of the genes being analysed show that
this 4 bp overlap occurs in 29 % of these incidences. A
chi-square contrast of the incidence of the palindrome
in female-biased versus male-biased and non-sex-
biased genes provides compelling evidence (P <0-001)
that this palindrome is strongly associated with sex-
biased expression, and, specifically, that it is female-
specific. A concern is that the prevalence of this
overlap artificially inflates the motif counts for
TCGATA and enhances its significance in the single
motif regression results. However, the overlap of the
motif with itself into an 8 bp palindrome creates a
more likely binding site, so counting the 6-mer twice
simply aids in this discovery.

The high significance of TCGATA could also be a
result of its pairing with itself as a composite binding
site for a transcription factor pair or for multiple fin-
gers of a zinc-finger binding protein such as SER-
PENT. Since over half of the DNA-binding proteins
in Drosophila are zinc-finger proteins (Adams et al.,
2000), we assumed that close proximity of binding
motifs would often allow for the possible binding of
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multiple-fingers, which prompted us to count all the
non-overlapping motifs within 20 bp on either side
of TCGATA/TATCGA. TCGATA was found within
20 bp of itself at a greater frequency than any other
motif (Table 2), supporting the idea that it often
forms a composite binding site.

(1) Use of regression trees to identify
interacting motifs

The most significant motifs from the single-motif re-
gression can be used to create an additive model that
accounts for the combinatorial nature of cooperative
and competitive binding of transcription factors.
However, in a single additive model, each included
motif is assumed to affect every gene’s predicted
expression level. This is not always the case. Different
combinations of motifs may have dramatically dif-
ferent effects on transcription. Consider a combi-
nation of three binding motifs that cause increased
binding affinity, and thus an increase in expression
levels. If one of those binding motifs is replaced by
a different motif, transcriptional repression could
result. Regression trees have the potential to account
for these types of occurrences. Nodes at the top of
the tree indicate motifs that most correlate with
expression. As a path is traversed through the tree,
a combination of motifs affecting expression is dis-
cerned. The values at the leaves of the tree show how
the path increases or decreases the expression differ-
ence. In our case, an increase in expression difference
between paths indicates that transcription tends to be
enhanced in females. We are using the regression tree
as a model for finding important motifs identified
by nodes in the tree. A more conventional use of
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Table 2. Motifs within 20 base-pairs of

TATCGA/TCGATA
Rank Motif Number Percentage
1 TATCGA 202 18-05
2 ATCGAT 155 13-85
3 CGATAG 126 11-26
4 CGATAA 120 10-72
5 AATCGA 110 9-83
6 AAAAAT 94 8-40
7 TAAAAA 88 7-86
8 ATATCG 85 7-60
9 ATCGAA 83 7-42
10 AAAATA 82 7-33
11 AAAATT 80 7-15
12 ATTTTA 74 6:61
13 AAATAT 70 6-26
14 ATAAAA 69 617
15 AAAAAA 68 6-08
16 ATAAAT 68 6-08
17 AAAACA 68 6-08
18 CCGATA 68 6-08
19 GATAAC 66 5-90
20 CATCGA 65 5-81

“ Motifs in this range may form composite binding sites
with TCGATA/TATCGA, which was seen a total of 1119
times.

regression trees is as a predictive tool for estimating
the values at the leaves of the tree. We instead use the
predicted values simply as a test for the direction and
amount of change in expression.

As inputs into the regression tree software we used
the single motifs identified by simple regression, sup-
plemented by those that occur at elevated frequency
within 20 bp of TCGATA. Various combinations of
these motifs and corresponding data from the nicotine
dataset were used in the creation of four multiple re-
gression model trees using Weka software (Witten &
Frank, 1999; see Section 2 for details). The resulting
trees were compared via their correlation coefficients,
which measure the statistical correlation between the
actual and predicted expression level values. These
values are shown in Table 3. Models 3 and 4 show
the highest correlation coefficients and were rerun
with the aging dataset used as a test dataset. The test
dataset correlation coefficients were 0-49 for Model 3
and 0-48 for Model 4. These values are higher than
those obtained for the training dataset, and thus show
strong support for the model.

Models 3 and 4 resulted in very similar regression
trees and are shown in Fig. 2. Model 4 had one ad-
ditional node (GATAAC), a motif found within 20 bp
of TCGATA but not found to be significant by simple
linear regression. We decided not to use Model 4 as
our final regression tree model for two reasons: (i) the
motif GATAAC was added because of its proximity
to TCGATA in upstream sequences but the node
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containing the motif was not closely connected to
TCGATA in the tree and (ii) GATAAC fell out of the
model when we removed AGTGTG from the input
dataset because of its 5 bp overlap with ACACTG.
Since AGTGTG fits in the overlap with other genes in
its path in the tree, we decided to keep that motif in
the model and use the resulting tree from the set of
significant motifs from single-motif regression.

Traversal of the regression tree should identify
binding site combinations that may enhance or re-
press expression significantly in one sex or the other.
On the left side of the Model 3 regression tree, we see
that with 0 or 1 copy of TCGATA and 0 copies of
GGTCAC, we have an estimated expression differ-
ence of —0-346, indicating that genes lacking these
motifs in their upstream regions are more likely dif-
ferentially expressed in males. We then use —0-346 as
a comparison point. If we have 0 or I TCGATA, 1
GGTCAC and 0 copies of AGTGTG, the estimated
expression difference is —0-320 which is not much
different from —0-346. This indicates that the ad-
dition of a GGTCAC by itself does not change
expression. However, if we find the combination of
0 or 1 TCGATA, 1 or more GGTCACs, 1 or more
AGTGTGs and 0 ACACTGs, the expression differ-
ence changes to —0-176, which is a considerable
change. This motif combination may cause the gene
to be less differentially expressed between the sexes.
With the same combination of TCGATA, GGTCAC,
AGTGTG, but addition of 1 or more copies of AC-
ACTG, the expression difference becomes positive.
This can mean either that ACACTG activates female-
specific transcription, or that this motif could be a
repressor-binding site for male-specific transcription.
Since our analysis has not included genes that are
not differentially expressed between the sexes, a
change of this magnitude in comparison with our
other expression differences most likely indicates
up-regulation in females.

From the left traversal of the tree, a motif combi-
nation of interest is GGTCAC, AGTGTG and
ACACTG. This motif trio combines to form the 10-
mer GGTCACACTG that contains the palindromic
sub-motif GTCACACTG. Of the 238 GGTCAC-
ACACTG pairs found in the upstream regions of sex-
biased genes, 84 (or 35%) were found in this overlap.
Another chi-square test of motif presence associated
with female-biased, male-biased or non-sex-biased
genes resulted in strong evidence (P value <0-001) that
this larger motif is associated with female-specific ex-
pression. Detection of a larger, overlapping binding
site such as this is a direct observation from regression
trees. A single multiple-regression model does not
provide any type of grouping of motifs that may work
together. Regression trees separate independent vari-
ables that, together, change the dependent variable
and create multiple groupings to explain the data.
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Table 3. Regression model tree results

Training set
No. of leaf nodes correlation

Model Motifs in model in resulting tree? coefficient

1 Most significant from SLR and 3 0-3107
seen >4% of time within 20 bp

2 Seen > 5% of time within 20 bp 4 0-2904

3 20 most significant from SLR 6 0-3469

4 20 most significant from SLR 7 0-3613

plus 20 seen most within 20 bp

“ The number of leaf nodes in the resulting tree gives an indication of tree
complexity.

A. Model 3
0.1 @ >1

>=1

0-43

B. Model 4

>=1

0-43

0-168
-0-392

Fig. 2. Regression trees highlighting combinations of motifs that predict sex-biased gene expression in D. melanogaster.
See text for details of Models 3 and 4.

This is a distinct advantage over multiple-regression reproductive tissues are known to contribute to much

methods. of the overall expression difference between adult
As further verification of our method, we obtained male and female flies (Parisi et al., 2003), and ran it
data from a microarray experiment specifically tar-  through our analysis. We used genes that showed a

geting Drosophila ovaries and testes, since these four-fold or higher difference in expression between
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Fig. 3. Regression tree highlighting combinations of motifs that predict sex-biased gene expression in D. melanogaster
from the ovaries/testes cDNA microarray dataset. See text for details.

the sexes in order to reduce the dataset to approxi-
mately 1600 genes. The most significant motif re-
sulting from the single-motif linear regression was
TCGATA/TATCGA, and the six most significant
motifs from the ovaries/testes dataset were found in
the seven most significant motifs resulting from
regression on the nicotine dataset. Again, using the
motifs with significance below the Bonferroni-
corrected cut-off, we built a regression tree. The re-
sulting tree (Fig. 3) was strikingly similar in structure
to the regression tree built from the nicotine dataset.
The top node in the ovaries/testes regression tree is
the motif CGATAG, which has a 5 bp overlap with
TCGATA, and TCGATA is the next node in the tree
on the female-biased side. This further supports our
theory of overlapping TCGATA motifs enhancing
female expression. Additionally, expression becomes
more female from left to right among the leaves. This
tree further validates our regression tree model ob-
tained from the nicotine dataset. The differences
relative to the adult fly trees could either be due to
sampling variance, or reflect the additional contri-
bution of somatic tissues to sex-specific gene ex-
pression in whole flies.

(iii) Use of decision trees to predict sex-specific
gene expression

With the identification of motifs affecting sex-specific
expression by the regression tree, we wanted to de-
termine whether we could use these same motifs to
classify a gene as being differentially expressed in
either sex from the motifs found in its upstream
region. To do this, we created a decision tree, which,
based on motif counts, classified a gene as signifi-
cantly expressed more in males, females or neither.
The structure of a decision tree is very similar to that
of the regression tree except that the classification of
‘male’, ‘female’ or ‘neither’ is found at the leaves of
the tree instead of a predicted expression difference.
Again, various combinations of the significant motifs
from the single-motif regression model were used as
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input. Data from all differentially expressed genes and
a subset of genes not differentially expressed in males
or females from the nicotine cDNA microarray ex-
periment were used to construct the model tree, again
using Weka software (Witten & Frank, 1999). Since
the motifs used as input into the decision tree model
were determined from analysis of differentially ex-
pressed genes between males and females, the expec-
tation for the decision tree correctly classifying the
differentially expressed genes from the non-differen-
tially expressed genes was low.

Inputting only the motifs found at the regression
tree nodes into the decision tree resulted in a model
much more complicated than expected (49 nodes in
the tree) but with a correct classification percentage of
47%. After realizing that most motifs occur closer to
the promoter, we decided to narrow the upstream re-
gion of each gene to 700 bp and construct a tree using
motif counts from that smaller region. The resulting
tree was similar to our regression tree and highlighted
certain motif pairs. It is shown in Fig. 4. This tree also
had a correct classification percentage of 47 % for our
training set. On the entire nicotine array gene set,
67 % of the observed male-biased genes and 54 % of
the observed female-biased genes were correctly pre-
dicted. Classification of genes not showing sex bias
was low, as expected. To test our decision tree results,
we created 1000 decision trees with 20 random motifs
selected as input. Our model, with a 47% overall
correct classification, ranked within the top 1% of all
random trees created.

4. Discussion

(1) Regression trees and sex-specific motifs
in Drosophila

Regression provides a quantitative method of combin-
ing sequence data and expression data. We describe
here a two-step method for creating a multifactorial
model which links the prevalence of binding motifs to
changes in expression. Besides eliminating the need
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Fig. 4. Decision tree highlighting combinations of motifs that predict sex-biased gene expression in D. melanogaster.

See text for details.

for clustering of expression data, this technique im-
plies that the presence of multiple motifs in an up-
stream region is more likely to affect the level of
transcription. This concept is starting to be explored
in motif-clustering methods (Berman et al., 2002;
Halfon er al., 2002; Markstein et al., 2002; Rebeiz
et al., 2002). However, these motif-clustering methods
require prior knowledge of the sequence of the bind-
ing sites which are believed to affect expression, and
our approach does not. Furthermore, our method
provides a straightforward procedure for focusing
further analysis on a subset of the numerous sig-
nificant motifs that may arise using simple linear
regression.

Few binding sites for sex-specific expression have
been identified in Drosophila. Almost all the motifs
identified by our single-motif regression were asso-
ciated with female-biased gene expression. Therefore,
the motifs selected by the regression tree model were
mostly female-specific. Verification of the function of
the three major motifs that are highlighted in the re-
gression trees was achieved by scanning TRANSFAC
and the literature, which revealed that each of these
motifs has previously been shown to form part of
known binding sites for transcription factors during
oogenesis. Most interesting is the TCGATA/TATC-
GA motif that forms the core of the SERPENT
binding site, GCTATCGATAGC, in the promoters
of the ypI and yp2 genes (Lossky & Wensink, 1995).
Similarly, GGTCAC/GTGACC is part of the ex-
tended TAGTGTATATAGGTCACGT binding site
for chorion factor II in the chorion protein s/5 pro-
moter during oogenesis (Shea et al., 1990), and
ACACTG/CAGTGT is the core of the CCTAC-
ACTGTAAG binding site for DEP3 in the ovarian
promoter of Alcohol dehydrogenase (Bayer et al.,
1992).

https://doi.org/10.1017/5S0016672304006834 Published online by Cambridge University Press

Very few male-specific motifs were found by any of
our single-motif models, and between the datasets,
the male-specific motifs that tested with higher sig-
nificance were different. Although it was surprising
that our regression tree did not find any male-specific
or antagonistic binding site combinations, it was
encouraging that known female-specific motifs were
selected and used as decision nodes in the regression
tree. Since we only looked at mature adults, our
motifs are actually associated with germline (ovary-
and testis-specific) expression. Notwithstanding the
empirical evidence discussed above that GGTCAC
and ACACTG are part of female-specific enhancers, a
possibility suggested by the regression trees is that the
presence of these motifs is sufficient to contribute to
repression of male-specific transcription. It is known,
for example, that repressor binding sites in mRNA
actively inhibit translation in the male germline
(Crowley & Hazelrigg, 1995; Blumer et al., 2002).
Extra power can be obtained by fitting regressions
over a developmental time course, and this had led to
the detection of male-specific elements as well (K. P.
White & H. J. Bussemaker, personal communication).

A multiple regression model including all the sig-
nificant motifs was also built on the same sets of mo-
tifs as the regression trees and resulted in a model with
a correlation coefficient of 0-44. Even though this was
similar to the correlation coefficient for our regression
tree, the associated model does not uncover all the
salient features revealed by our regression tree ap-
proach. The TCGATA motif stands out the most
from all our analyses as it was always at the root of
both the regression and decision trees, indicating that
it is the most highly correlated motif in sex-biased
expression. Additionally, the TCGATA motif was
found overlapping with itself in an 8 bp palindrome
29 % of the time, and this overlapping motif tested
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positively for association with sex-biased expression.
Because TCGATA is found in these situations so
often, the motif seems to be involved somehow in
regulation and deserves further investigation. Overlap
of GGTCAC, AGTGTG and ACACTG into a larger
motif is also highly suggested by our results.

(1) Advantages and drawbacks of regression trees

There are at least two situations in which regression
trees are expected to outperform direct multiple re-
gression. As documented above, one is where the
short motifs overlap and combine to perform a single
binding site. Multiple linear regression does not sug-
gest any grouping of motifs, but merely gives partial
regression coefficients indicating the contribution of
the motif to the change in expression. In fact, over-
lapping motifs will tend not to add significance to the
overall model fit once the most strongly associated
motif has been accounted for. The second situation
where regression trees should provide an advantage
is where multiple different combinations of motifs
give rise to similar expression patterns. Though
not strongly indicated here, most likely because only
a short section of each promoter was examined, in
theory combinations of motifs that act together
should generate their own arms of the regression tree.
It should even be possible for the same motif to
appear on different arms at different frequencies, as
for example TCGATAT in our decision tree, and for
repressor and activator functions to be distinguished.

The utility of regression trees is thus more likely to
lie in the perspective they provide concerning the
relationship among motifs, rather than superior per-
formance in identifying single motifs. The major
factors restricting the application of regression trees
relate to the enormous range of possible ways of
combining and formulating motifs. While 8-mer and
longer motifs may often be functional, perfect mat-
ches will often be rare in promoters of co-regulated
genes so statistical power is reduced, particularly
given that the increased number of possible longer
motifs requires more stringent significance thresholds.
Similarly, formulation of trees that combine motifs
of different lengths, or link motifs in two different re-
gions of a gene (for example, putative promoter and
distal enhancer elements), creates so many possible
combinations that it will be difficult to assess a priori
which trees are more or less probable. If the number
of co-regulated genes for which a regulatory motif
is sought is less than 20 or so, it may never be possible
to use regression-based approaches since P values
of the order of 10~® would require an unreasonably
tight relationship between motif count and transcript
abundance. Nevertheless, systematic simulation
studies and statistical modelling, including use of
other evidence to define candidate regulatory regions
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within which motifs may lie (Wasserman et al., 2000),
should improve the performance of regression trees in
the context of regulatory motif detection.

(iii) Do computational approaches identify
enhancer elements?

The standard approach to confirmation that a motif
actually regulates gene expression is to demonstrate
that it is sufficient to drive expression of a reporter
gene in the predicted pattern in a transgenic organism.
In our case, the expression data themselves demon-
strate, however, that the identified motifs are insuf-
ficient to drive female-specific expression, since a large
number of genes with each motif combination are
expressed more strongly in males than females. Several
other recent studies have failed to confirm that se-
quences identified using bioinformatic approaches are
functional. For example, Halfon et al. (2002) ex-
tracted 34 potential dorsal mesodermal enhancers
consisting of multiple binding sites for known tran-
scription factors, but only 8 of the 18 of these for
which data are available appear to drive transcription
in embryonic Drosophila mesoderm. They concluded
that there can be a high false-positive identification
rate associated with computational strategies.

Given the extremely high significance associated
with particular test statistics, it should also be con-
sidered that some potential regulatory motifs are
not classical enhancers, but rather define a class of
‘modulator’ elements that act in a more probabilistic
manner. Either the effects of individual elements are
too subtle to detect in transgenic assays, or the el-
ements act in a context-dependent manner. Promoter-
proximal elements such as those characterized in this
study are likely to require distal true enhancer se-
quences, as regulatory regions in flies typically extend
over tens of kilobases. The corollary may also be
true, that enhancers require the context of modulator
elements, such as those identified here, more com-
monly than generally recognized.

The problem remains as to how to confirm the
biological function of statistically significant motifs.
One approach is to ask whether the motifs are poly-
morphic in the promoters of genes that show variable
expression within and among species. We sequenced
the promoters of 10 wild-type strains of D. melano-
gaster for eight genes that differed between genotypes
in the level of sex-specific transcription in our micro-
array studies. Nine of the 72 SNPs and indel poly-
morphisms were located within the top 10 motifs
described here, but this fraction is not greater than
expected given the motif frequencies in the sequenced
regions. Nevertheless, polymorphism in modulator
elements is an intuitively appealing mechanism for
quantitative variation in gene expression that could
contribute to gradual evolution of gene expression.
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Phylogenetic shadowing (Boffelli e al., 2003; Kellis
et al., 2003), namely extensive genomic comparison of
promoter sequences in multiple sibling species among
which tissue-specific gene expression diverges, is likely
to aid in the functional footprinting of subtle regu-
latory motifs.
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croarray research in G.G.’s laboratory has been supported
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Insecticide resistance genes confer a predation cost
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Summary

Newly occurring adaptive genes, such as those providing insecticide resistance, display a fitness cost
which is poorly understood. In order to detect subtle behavioural changes induced by the presence
of resistance genes, we used natural predators and compared their differential predation on
susceptible and resistant Culex pipiens mosquitoes, using strains with a similar genetic background.
Resistance genes were either coding an overproduced detoxifying esterase (locus Ester), or an
insensitive target (locus ace-1). Differential predation was measured between susceptible and
resistant individuals, as well as among resistant mosquitoes. A backswimmer, a water measurer, a
water boatman and a predaceous diving beetle were used as larval predators, and a pholcid spider as
adult predator. Overall, the presence of a resistance gene increased the probability of predation: all
resistance genes displayed predation costs relative to susceptible ones, at either the larval or adult
stage, or both. Interestingly, predation preferences among the susceptible and the resistance genes
were not ranked uniformly. Possible explanations for these results are given, and we suggest that
predators, which are designed by natural selection to detect specific behavioural phenotypes, are
useful tools to explore non-obvious differences between two classes of individuals, for example when
they differ by the presence or absence of one recent gene, such as insecticide resistance genes.

1. Introduction

Genes responsible for an adaptation to a new en-
vironment are usually assumed to have a fitness cost,
i.e. to be at a disadvantage in the previous environ-
ment (e.g. Fisher, 1958; Lande, 1983; Orr & Coyne,
1992; Carriére et al., 1994). This assumption is based
on the general view that resource reallocation occurs
or that metabolic or developmental processes are af-
fected, thus decreasing other fitness-enhancing charac-
ters (Davies et al., 1996). Cost can be important in the
evolution of adaptation since it can lead to allelic
replacement (an allele is replaced by a less costly one)
or to selection of modifier genes (Lenski, 1988a, b;
Cohan et al., 1994). Few situations exist where both
the environmental changes and the adaptive genes are
clearly identified. Resistance to pesticides, and in
particular resistance to organophosphorus insecti-
cides (OP) in Culex pipiens L. mosquitoes, is one of
them.

* Corresponding author. Fax: +33 4 67144615. e-mail: raymond @
isem.univ-montp2.fr
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Two loci are involved in OP resistance in C. pipiens,
the super-locus Ester and the locus ace-1. Several
resistance alleles have been described at both loci (for
areview see Raymond et al., 2001). The resistance con-
ferred by Ester is due to an esterase over-production
which is the result of two non-exclusive mechanisms
(Raymond et al., 1998): gene amplification (for in-
stance, Ester®, Ester’ and Ester’ alleles), or change in
gene regulation (Ester’ allele). The ace-1 locus codes
for the OP target, acetylcholinesterase (AChE). Resist-
ance alleles ace-1® code an AChE with a reduced
sensitivity towards OP, associated with modified
catalytic properties (Bourguet et al., 1997).

Resistance genes have been studied in the Mont-
pellier area for more than 30 years. Resistance first
appeared in 1972 with the occurrence of Ester!, fol-
lowed by ace-1% in 1978, Ester” in 1984 and Ester” in
1990 (Guillemaud et al., 1998). Estimations of overall
fitness costs from population surveys have shown that
ace-1 is associated with higher deleterious effects
than Ester (Lenormand et al., 1999; Lenormand &
Raymond, 2000). This difference is also observed for a
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specific life history trait, survival during the over-
wintering period (Chevillon et al., 1997; Gazave et al.,
2001). The functional differences between the two loci
could explain this phenomenon (Chevillon et al., 1997).
The over-production of esterases by the Ester locus
could be at the expense of producing something else,
with the resulting alteration of some fitness-related
traits. The modified AChE could lead to changes in
some behavioural fitness-related traits, since it alters
the optimal functioning of cholinergic synapses of the
central nervous system. It has been observed that, dur-
ing the 1990s, Ester” has replaced Ester’ (Guillemaud
et al., 1998). As Ester” is known to confer a slightly
lower OP resistance level, its advantage over Ester’
could possibly come from a lower cost (Guillemaud
et al., 1998). The proximal causes of such variability
in the fitness cost between resistance alleles are still
unknown.

In order to better understand this fitness cost and
its variability, the effects of these resistance genes on
several fitness-related traits are being studied, using
strains sharing the same genetic background. In a re-
cent study, a mating competition cost associated with
Ester!, Ester® and ace-1R resistance alleles was dem-
onstrated, but no cost difference between them was
detected (Berticat ef al., 2002a). Here, we investigate
how these three resistance alleles affect the probability
of predation at larval and adult stages, relative to
susceptible alleles. We also attempt to compare the
resistance alleles with one another. Avoiding pre-
dation is an important fitness component of C. pipiens
(Sih, 1986), and confrontation with a predator could
constitute a risky situation, liable to amplify the
physiological differences between the resistance geno-
types, thus potentially allowing us to detect cost
difference between the resistance alleles.

2. Materials and methods
(1) Mosquito strains

Four strains sharing the same genetic background
and only differing by their genotype at Ester and/or
ace-1 locus were used: the insecticide-susceptible
strain S-LAB, homozygous for ace-I1° and Ester’
(Georghiou et al., 1966); the resistant strains SA1 and
SA4, homozygous for ace-1° and for the resistance
alleles Ester’ and Ester?, respectively; and finally, the
resistant strain SR, homozygous for Ester’” and for
the resistance allele ace-IR (Berticat et al., 2002a).
Before all experiments, all strains were reared under
the same standardized conditions for a minimum of 5
generations, preventing possible maternal effects.

(i1) Predation on adult mosquitoes

The adult predator used in this experiment was a
spider, Holocnemus pluchei (Scopoli) (Araneae, Pholci-
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dae), a common inhabitant of homes, which is known
to feed on flying insects, including C. pipiens (Déom,
1990). H. pluchei, through vibrations of its web,
locates its prey, which is eventually immobilized and
rapidly packed with silk threads. Then H. pluchei in-
jects its digestive saliva into a captured insect, and
ingests the content. The external skeleton of an empty
individual remains, tightly packed like a mummy, al-
lowing easy detection of eaten adults. H. pluchei used
here were locally collected in one University building.

Differential predation between two strains was as-
sessed by introducing, into the same cage (20 x 20 x
20 cm®), 20 one-day-old male mosquitoes from each
of the two strains considered, together with one H.
pluchei. Predators were starved for 10 days before each
experiment. Every day, predated adults (‘mummies’)
were collected, and the spider was replaced by a new
starved one. This procedure ensured that the pre-
dation rate did not decrease due to satiation. The ex-
periment was ended when approximately 50 % of all
adults were eaten. In order to recognize the strain of
origin of each mummy, adults of each strain were
marked just before the start of an experiment, using
fluorescent powders of different colour (yellow or
orange). For each experiment, at least two replicates
were performed by switching the colour of each
strain. Additionally, experiments with adults marked
with orange or yellow from the same strain were
conducted for all strains. The different experiments
performed and their number of replicates are in-
dicated in Table 1.

(iii) Predation on mosquito larvae

The larval predator used in this experiment was the
pigmy backswimmer, Plea minutissima Leach (Hemi-
ptera, Pleidae), which is about 2 mm in size. This
insect is a common inhabitant of ponds of the Pa-
learctic, and feeds on small aquatic prey such as other
small insects or crustaceans. P. minutissima is a po-
tential predator of C. pipiens, as both often co-occur
in the same breeding sites (Laird, 1988), and P. min-
utissima readily feeds on young (L1 or L2) C. pipiens
larvae in the laboratory. P. minutissima injects its di-
gestive saliva into a captured larvae, and ingests the
contents. The external skeleton of an empty larva re-
mains, allowing easy detection of captured larvae. P.
minutissima used here were collected locally (around
the Montpellier area) and reared in the laboratory.
Differential predation between two strains was as-
sessed by introducing, into the same container, an
equal number of L2 larvae from the two strains con-
sidered, together with two or three P. minutissima.
The experiment was ended when approximately 50 %
of all larvae had been preyed upon, and eaten larvae
of each strain were recorded. Predators were starved
for 10 days before each experiment. In order to
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Table 1. Adult predation. (A) Effect of powder coloration on each strain, (B) effect of resistance genes compared
with a susceptible one, and (C) effect of different resistance genes between them

Confronted strains

No. of ﬁ of the strain
Effect tested Orange Yellow replicates P values mentioned
(A) Effect of S-LAB S-LAB 4 0-1345 -
coloration SA1 SA1 3 1 -
SA4 SA4 3 0-74 -
SR SR 2 0-88 -
All - 0-69 _
(B) Effect of SA1 S-LAB 2 0-018 -
resistance vs S-LAB SA1 2 0-03 -
susceptible genes All - 0-001 SA1 0-67 (0-048)
SA4 S-LAB 2 0-48 -
S-LAB SA4 2 0-001 -
All - 0-02 SA4 0-64 (0-076)
SR S-LAB 2 0-25 -
S-LAB SR 2 0-89 -
All - 0-59 SR 0-50 (0-075)
(C) Effect of SAl SA4 2 0-56 -
different resistance SA4 SA1 2 0-22 -
genes All - 0-36 SA4 0-41 (0-044)
SR SAl 2 093 -
SAl SR 2 0-13 -
All - 0-35 SR 0-44 (0-060)
SR SA4 2 0-32 -
SA4 SR 2 0-76 -
All - 0-57 SR 0-57 (0-033)

The P value refers to a two-sided (A and C) or a one-sided test (B), when the alternative hypothesis is a higher predation rate
for resistant mosquitoes. For all cases, the P value refers to a global exact test across replicates. Estimates of average
predation coefficients (f3) refer to the strain mentioned and bold characters indicate  values significantly (P <0-05) higher

than 0-5. sE is given in parentheses. See text for explanations.

recognize the strain of origin of each larva, two
protocols were used. For the first protocol, each ex-
periment was conducted in 100 ml of tap water (water
depth 1-5 cm), with a total number of 40 larvae. No
refugium was available for the mosquito larvae.
Larvae of one of the strains considered were stained
just before the start of an experiment, using diluted
methylene blue. For each experiment, two replicates
were performed by switching the stained strain.
Additionally, experiments with stained and unstained
larvae from the same strain were conducted for all the
strains. The number of replicates of the different ex-
periments are indicated in Table 2. For the second
protocol, when larvae from the SR strain were
involved, a propoxur (a carbamate insecticide) con-
centration of 5 mg/l was applied during 24 h to the
non-eaten larvae. In this case, each experiment was
conducted in 500 ml of tap water (water depth 1 cm),
with a total number of 200 larvae and no refugium
was available for the mosquito larvae. This dose kills
in a few hours only those larvae without the ace-1%
resistance gene (i.e. all individuals except those from
the SR strain), as the propoxur concentration re-
quired to kill SR larvae after 24 h exposure is more
than 100-fold higher (Bourguet et al., 1997). This
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procedure allowed the identification of SR individuals
among non-eaten larvae. As a control, the same pro-
poxur dose was simultancously applied only to sus-
ceptible ace-15 (S-LAB, or SA1 or SA4) and only to
ace-1R resistant (SR) larvae. The number of replicates
of the different experiments is indicated in Table 3.
The same procedure could not be used for the other
resistant strains, as their relatively low OP resistance
level does not allow the use of a discriminative dose.

The larval predation cost of SR relative to S-LAB
was further evaluated using three additional pre-
dators: a water boatman Sigara lateralis (Leach)
(Hemiptera, Corixidae), a predaceous diving beetle
Guignotus pusillus Fabricius, 1781 (Coleoptera, Dytis-
cidae) and the water measurer Hydrometra stagnorum
(Linnaeus, 1758) (Hemiptera, Hydrometridae). Their
size is approximately 5-6, 2 and 10 mm, respectively.
All these predators are commonly found in mosquito
breeding sites around the Montpellier area, and also
at a larger scale (Laird, 1988). They can feed only on
young (L1 or L2) C. pipiens larvae in laboratory
conditions, and inject their digestive saliva into a
captured larva in order to ingest its content. Water
boatmen appear to be very effective predators, and
seem to hunt like P. minutissima. In comparison with
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Table 2. Larval predation by Plea minutissima. (A4) Effect of dye on each strain, and (B) effect of resistance

genes compared with a susceptible one

Confronted strains

No. of 3

Tested effect Not stained Stained replicates P value p

(A) Effect of coloration S-LAB S-LAB 16 <107° —

SAl SAl 4 0-14 -

SA4 SA4 5 0-24 -

SR SR 3 1 -

All - <10~* -
(B) Effect of resistance vs SAl S-LAB 8 0-68 0-49 (0-038)
susceptible genes SA4 S-LAB 12 <107° 063 (0-050)
SR S-LAB 12 <1078 0-71 (0-050)

The P value refers to a two-sided (A) or a one-sided test (B), when the alternative hypothesis is a higher predation rate for
resistant mosquitoes. For all cases, the P value refers to a global exact test across replicates. Estimates of average predatlon
coefficients () refer to the resistant strain and bold characters indicate ﬁ values significantly (P <0-05) higher than 0-5. SE is

given in parentheses. See text for explanations.

Table 3. Larval predation by Plea minutissima, using
an insecticide for genotype identification

Confronted No. of 3
strains replicates P value B
SR S-LAB 5 <1078 0-65 (0-014)
SR SA1 5 0-22 0-52 (0-024)
SR SA4 5 <1078 0-86 (0-036)

The P value refers to a two-sided (lines 2 and 3) or a one-
sided test (line 1), when the alternative hypothesis is a higher
predation rate for SR mosquitoes. For all cases, the P value
refers to a global exact test across replicates. Estimates of
average predation coefficients () refer to the SR strain and
bold characters indicate 8 values significantly (P<0-05)
higher than 0-5. sE is given in parentheses. See text for ex-
planations.

other Dytiscidae, adults of Guignotus pusillus are very
small, and feed only on tiny prey. The water measurer
walks slowly onto the water surface, usually among
vegetation, and spears small prey under the water
surface with its long rostrum. Differential predation
between S-LAB and SR was assessed with the same
protocol described above with P. minutissima,
although only L1 larvae were used, and only one pre-
dator per replicate. Experiments were conducted in
250, 50 and 50 ml of tap water, with a total number of
larvae of 200, 100 and 40 for the water boatman, water
beetle and water measurer, respectively. Non-eaten
larvae were assigned to each strain by treating them
with a discriminating dose of propoxur (5 mg/l), as
described above. The numbers of replicates of the
different experiments are indicated in Table 4.

(iv) Statistics

A predation experiment corresponds to sampling
without replacement. The null hypothesis (Hy) is that
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Table 4. Estimates of average predation coefficients
(B) for resistant larvae (SR strain) compared with
susceptible ones (S-LAB strain), in the presence of
various predators (SE in parentheses)

No. of 3
Predator replicates P value f
Sigara lateralis 9 0-22  0-56 (0-020)
Guignotus pusillus 9 <1072 0-69 (0-043)
Hydrometra 11 <10=%  0-68 (0-033)
stagnorum

The P value refers to a one-sided test, when the alternative
hypothesis is a higher predation rate for SR larvae. For all
cases, the P value refers to a global exact test across rep-
licates. Estimates of average predation coefficients (3) refer
to the SR strain and bold characters indicate 8 values sig-
nificantly (P <0-05) higher than 0-5. sE is given in parenth-
eses. See text for explanations.

both morphs (here strains) are equally preyed upon.
At the end of the experiment, the number of eaten
individuals of each morph follows a hypergeometric
distribution, and the probability of the observed data,
under H, is: P,,,=(C4 C4)/Ci* %, where Aj de-
notes the total number of morph j at the beginning of
the experiment, rj is the number of morph j remaining
after predation, and Ci=i!/j/(i—j)!. To test Hy, a hyper-
geometric exact test was constructed. The P value is
defined as: P=Y p <p P; where P; is the probability
(under Hy) of all i cases describing all possible ways of
distributing the observed number of eaten individuals
among both morphs, with the total number of indi-
viduals of both morphs kept constant. When an alter-
native hypothesis was present (e.g. resistant individuals
were more preyed upon than susceptible ones), a one-
sided test was performed. When no alternative hy-
pothesis was obvious (e.g. when differently coloured
adults of the same strain were together), a two-sided
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test was done. A quick-basic program was written to
perform these tests, and was checked by comparison
with hand calculations. A global test across replicates
was performed by generating the joint distribution,
and computing the P value as P= ZP < Pg),)\P where
P; is the probability of element j of the jJoint distri-
butlon and Pg,,, is the joint probability of the ob-
served data. When a specified alternative hypothesis
was present (e.g. type 1 individuals were more preyed
upon than type 2), the P value was P= ZN o, b
where N; is the total number of type 1 preyed upon
1nd1v1duals in element j of the joint distribution, and
N,ps 1s the total number of observed type 1 preyed
upon individuals across replicates. A quick-basic
program was written to perform the global exact test
for up to five replicates, using the complete enumer-
ation method. A PowerBasic program was written to
perform the global exact test for an unspecified num-
ber of replicates, using the resampling method to
estimate the P value. Program checking was done
by comparing the P values generated by the two
programs (which use very different algorithms) when
used on the same data, for 2-5 replicates. When the
number of resamplings was 500 000, the estimated P
values diverged by less than 0-4 % from the computed
exact values. The exact P value was computed for
cases with 2—4 replicates, and also for 5 replicates
when the number of assayed individuals was lower
than 40. In all other cases, the exact P value was
estimated using 500 000 resamplings.

Preference was measured using the index proposed
by Manly (1974, 1985):

A _ log, (ri/4:)
Y. log, (/)

where K is the number of morphs (here K=2). This
measure is appropriate for experiments in which the
prey are not replaced during the experiment. This
index varies between 0 and 1, and ) B;=1. The ab-
sence of preference between two morphs corresponds
here to f=1/2.

3. Results
(1) Adult predation

Each predation experiment lasted about 3 days (range
1-4 days). In order to recognize susceptible and re-
sistant mosquitoes in the experimental cage, adults
were marked with a fluorescent powder, either yellow
or orange. The colour of the powder had no signifi-
cant effect (P>0-69) on the predation frequency, for
all the strains used (Table 1). When susceptible and
resistant adults were in the same cage, the latter
were significantly more preyed upon than the former
(SAl: P<0-001, B=0-674+0-048; SA4: P=0-02,
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5 =0-64+0-076). However, no difference in predation
rate relative to susceptible individuals was apparent
for the SR strain (Table 1). When the resistant strains
were confronted pairwise within the same cage, pre-
dation was not different (P>0-3) according to the
resistance genes present.

(1) Larval predation

Each predation experiment lasted about 2 days (range
1-3 days). In order to recognize susceptible and re-
sistant mosquitoes in the experimental container, lar-
vae were stained with a blue dye. This dye slightly
increased the risk of predation by P. minitissima for
the susceptible strain (Table 2). As the hypothesis
considered is a higher predation for resistant larvae
compared with susceptible ones, only assays where
the susceptible strain is stained are presented, in order
to be conservative (assays where the resistant strain is
stained are all supportive of the hypothesis tested, but
they are not conclusive due to the dye bias). Despite
this disadvantage, stained susceptible larvae were sig-
nificantly less predated than resistant ones (P <107%),
with the exception of SA1 larvae (Table 2).

When SR individuals were used, they could be rec-
ognized within the non-eaten larvae as they survive a
high concentration of propoxur. Thus no dye was re-
quired in these experiments. SR larvae were signifi-
cantly more preyed upon than susceptible individuals
(P<1078, f=065+0-014). SR larvae were also sig-
nificantly more eaten than SA4 (P<10~8, f=0-86+
0-036), although no difference (P=0-22) in predation
rate was apparent when SR and SA1 were together
(Table 3).

To evaluate whether the differences detected by
Plea minutissima were also detected by other larval
predators, SR were confronted with S-LAB larvae in
the presence of the three other aquatic predators. For
these predators, SR larvae were significantly more
preyed upon than susceptible ones (diving beetle:
P<1072, =069 +0-043; water measurer: P <108,
S =0-68+0-033; Table 4), with the exception of the
water boatman (P=0-22, 5 =0-5640-020; Table 4).

4. Discussion

Overall, the presence of a resistance gene increased the
probability of predation, at both the larval and the
adult stage: there is thus a ‘predation cost’ associated
with these genes.

(1) Origin of the predation cost

Hunting techniques of backswimmers and water
boatmen (families Notonectidae, Corixidae and Plei-
dae) rely essentially upon prey motion (Murphey &
Mendenhall, 1973; Sih, 1979). Behaviour underlying
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backswimmers’ preferences seems to be stereotyped
and inflexible (Scott & Murdoch, 1983). Many mos-
quito larvae, including those of C. pipiens, are natural
prey items for several backswimmer species, and thus
share an evolutionary history with them (e.g. Sunish
& Reuben, 2002; Chesson, 1984; Blaustein, 1998;
Mogi et al., 1999). It is thus not surprising that upon a
backswimmer attack, mosquitoes try most of the time
to escape by becoming motionless, although other
strategies are also occasionally observed (such as
wriggling away) (Scott & Murdoch, 1983; Sih, 1979).
C. pipiens larvae are apparently able to detect chemi-
cals released by conspecifics which have been preyed
upon by backswimmers, and adjust their behaviour to
reduce the predation risk by choosing a less risky mi-
crohabitat (a vegetation refugium, the edge of the
breeding site, etc.) and moving less (Sih, 1986). Simi-
larly, prey motion is reduced following the introduc-
tion of a dytiscid (Kruuk & Gilchrist, 1997). This
behavioural change is probably an adaptation to
escape predators using motion and/or vibration to
detect and locate their prey.

The higher predation cost inflicted by three larval
predators could be explained if resistant larvae are
more active, and thus are detected more frequently by
the predator. Another possibility is that resistant lar-
vae are not changing their microhabitat and/or their
moving frequency after conspecifics have started to be
preyed upon, unlike susceptible individuals. SR larvae
display a distinct feeding behaviour, as they replace
their gut contents at a faster rate than the other strains
(Agnew et al., 2004). This is consistent with the
former hypothesis (resistant larvae are more active),
although a direct measurement is required to confirm
this. The absence of predation cost in the presence of
the water boatman is surprising, and suggests that its
hunting technique is different. The identification of
this difference could potentially shed some light on the
modified behaviour of resistant larvae.

The pholcid spider’s principal means of capturing
prey is to throw silk with the aid of its hind legs. This
method is used to immobilize mosquitoes which are
entangled in the standing web, or to catch flying
mosquitoes directly (Strickman er al., 1997; Déom,
1990). Once a mosquito has been in contact with the
web, it could escape a spider attack. Apparently,
mosquitoes possessing Ester’ or Ester” have a higher
predation probability (Table 1), suggesting that they
are either more active (thus with a higher probability
of flying near the web or the spider), or have fewer
chances to escape an attack by H. pluchei. However,
possessing ace-1R does not seem to affect predation
probability. There are several physiological differ-
ences between susceptible and resistant mosquitoes.
For example, susceptible adults live longer (Agnew
et al., 2004), and have a lower density of endocellular
Wolbachia (Berticat et al., 2002b). Wolbachia affect
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locomotive performance, at least in a parasitic wasp
(Fleury et al., 2000), and thus may represent a causal
link between the effect of a resistant gene and the
predation cost. Further experiments, using aposym-
biotic strains, could settle this issue.

(i1) Variability of the predation cost

All the resistance genes studied present a predation
cost relative to susceptible ones, at either the larval or
adult stage, or both.

For the ace-1 locus, the predation cost of the
resistance alleles seems to be restricted to the larval
stage: spiders seem to capture susceptible and resist-
ant adult mosquitoes equally. This indicates that the
high survival cost associated with the ace-I® gene
during the overwintering period (Chevillon et al.,
1997; Gazave et al., 2001), could not be attributed to
pholcid predation. However, it is still possible that
other spider species use distinct cues or use different
catching techniques which are more discriminatory
towards the behavioural changes between mosquitoes
resistant and susceptible at the ace-1 locus. It is also
possible that the predation cost is only apparent in
female mosquitoes (which were not used in the ex-
periments), as only females overwinter in caves. Only
empirical data using the most common spider pre-
dators in local caves (Meta bourneti (Simon, 1922),
Tegenaria parietina (Fourcroy, 1785), Pholcus pha-
langioides (Fuesslin, 1775)) could settle this point. The
first two species have already been observed catching
hibernating C. pipiens (M. Michaud, personal com-
munication), although no quantitative data are yet
available.

As regards the Ester locus, the allele Ester” displays
a predation cost in both larvae and adults, although
Ester! induces a cost only in adults. This absence of
predation cost in larvae must be considered with
caution, as the procedure used was very conservative:
it could be safely concluded only that the predation
cost of Ester’ in larvae is not significantly higher than
that induced by the staining procedure in susceptible
individuals.

There is one example of transitivity for predation
preferences (e.g. if the preference is ranked as A <B
and B<C, then A <C): adults with Ester’ or Ester®
are equally more preyed upon than susceptible mos-
quitoes (=067 and 0-64, respectively), and thus
adults with Ester’ or Ester’ are equally preferred
when they are presented together to the predator (4
values not different from 0-5). However, this transi-
tivity is not always observed: for example, larvae with
Ester? or ace-1R are approximately equally preferred to
susceptible mosquitoes (4=0-63 and 0-65-0-71, re-
spectively), although larvae with ace-IR are strongly
preferred when the alternativeis larvae with Ester? (6 =
0-86). The other possible example of non-transitivity
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in larval predation, involving individuals with Ester’,
ace-1% and susceptible, is not conclusive because /3 for
the pair SA1/S-LAB is probably underestimated (see
Section 3). The non-transitivity observed for both
larval and adult predation suggests that several
phenotypic traits of the prey are affected by the re-
sistance genes, and that the predator uses these cues
differently according to environmental conditions.

In conclusion, predators seem to be useful tools to
detect behavioural changes that are caused by these
genes of recent origin. There is a large variety of
potential predators for any given insect species, each
with its own detection method, stimulus type and
capture strategy (Lima & Dill, 1990). It is likely that
any phenotypic variation will result in differential
predation for at least one type of predator. We sug-
gest that predators, which are designed by natural
selection to detect specific behavioural phenotypes,
are useful tools to explore non-obvious differences
between two classes of individuals, for example when
they differ by the presence or absence of a gene such as
insecticide resistance.
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Simultaneous mapping of epistatic QTL in chickens reveals
clusters of QTL pairs with similar genetic effects on growth
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Summary

We used simultaneous mapping of interacting quantitative trait locus (QTL) pairs to study various
growth traits in a chicken F, intercross. The method was shown to increase the number of detected
QTLs by 30% compared with a traditional method detecting QTLs by their marginal genetic effects.
Epistasis was shown to be an important contributor to the genetic variance of growth, with the largest
impact on early growth (before 6 weeks of age). There is also evidence for a discrete set of interacting
loci involved in early growth, supporting the previous findings of different genetic regulation of early
and late growth in chicken. The genotype—phenotype relationship was evaluated for all interacting
QTL pairs and 17 of the 21 evaluated QTL pairs could be assigned to one of four clusters in which
the pairs in a cluster have very similar genetic effects on growth. The genetic effects of the pairs indicate
commonly occurring dominance-by-dominance, heterosis and multiplicative interactions. The results
from this study clearly illustrate the increase in power obtained by using this novel method for
simultaneous detection of epistatic QTL, and also how visualization of genotype—phenotype
relationships for epistatic QTL pairs provides new insights to biological mechanisms underlying

complex traits.

1. Introduction

The desire to dissect the underlying mechanisms of
complex traits has led to detection of major genes and
quantitative trait loci (QTLs) for many traits in vari-
ous species. The traditional way to detect major genes
and QTLs is by looking for marginal (additive and
dominance) effects of the individual loci. Larger
sample sizes in QTL mapping studies have increased
the opportunity to study the importance of more
complex genetic mechanisms such as epistasis. Epi-
stasis has been sought by estimation of the epistatic
effects of combinations of QTLs detected by their
marginal effects (e.g. Chase et al., 1997) or by using
one-dimensional searches with an epistatic model,
while including markers to control background gen-
etic effects (e.g. Fijneman ez al., 1996). Some attempts
have also been made to develop methods that assess
the physiological importance of epistasis (Cheverud &
Routman, 1995). More recently, several new methods
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and technologies have been proposed to increase the
power to map epistatic QTLs by performing genome-
wide mapping of epistatic QTLs (e.g. Boer et al.,
2002; Carlborg et al., 2000; Carlborg & Andersson,
2002; Kao et al., 1999; Jannink & Jansen, 2001 ; Sen &
Churchill, 2001). Several of the methods have also
been evaluated by simulation and several have also
been applied to map interacting QTLs in various ex-
perimental populations (e.g. Carlborg et al., 2003;
Leamy et al., 2002 ; Peripato et al., 2002 ; Shimomura
et al., 2001; Zeng et al., 2000). The application of
newly developed methods to experimental datasets is
an important part of the process of developing im-
proved method, because it gives new insights into
various properties of the analytical method. It also
gives an indication of the potential of the new method
for revealing previously unnoticed phenomena in ex-
perimental data.

Conventional genetic selection has resulted in lines
of laying fowl that are small and lean, and produce
many eggs in the course of a laying year. Selection of
fowl for high growth rates, high muscle yields and
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improved feed efficiency has led to the creation of very
large, heavily muscled broiler lines with relatively
poor reproductive fitness. Several recent studies have
reported associations between genetic markers and
quantitative traits of economic importance in chick-
ens (e.g. Dunnington et al., 1992; van Kaam et al.,
1998, 1999; Ikeobi et al., 2002; Sewalem et al., 2002).
The current study is based on a cross between a layer
line with a small body size and a sire line of broiler
parent stock with a very large body size that were
crossed to produce an F, in which many traits were
characterized. This cross has previously been analysed
using a variety of traditional QTL mapping techni-
ques (Ikeobi et al., 2002 ; Sewalem et al., 2002). Here,
we use the method described by Carlborg et al. (2003)
to map epistatic QTLs and to evaluate the relative
contribution of epistasis to live weight at 3, 6 and 9
weeks of age and for the growth in the age intervals
3—6 weeks and 69 weeks of age.

2. Animal material

The mapping population consisted of a three gener-
ation F, cross between a White Leghorn line and a
commercial broiler sire line. The layer was derived
from a commercial pure line and the broiler sire line
had been selected for high growth rates and breast
muscle yields as part of a commercial breeding pro-
gram. Three females and three males from both lines
were used to generate six F; families. Subsequently,
four of these families (two each of broiler male x layer
female and layer male X broiler female) were used to
create the F; population. Each F; family contained
10-16 birds. Eight male and 32 female F; were sel-
ected to produce an F, generation of 546 chickens. The
recorded traits were body weight at 3, 6 and 9 weeks
of age, and, from these, growth rates at 3—6 and 6-9
weeks of age were calculated. For the total genome
scan, 134 microsatellite markers covering 30 auto-
somal linkage groups and the sex chromosomes were
typed on eight Fy grandparents, 40 F; parents and 510
F, chickens. After parentage checking and genotyping
edits in the F,, data from 466 F, chicks in 30 full-sib
families with genotypes on 101 microsatellites cover-
ing 27 linkage groups were available for analysis. The
total map length was 2499 cM. The average marker
spacing was 40 cM and the average polymorphic
information content was 0-61 (ranging from 0-19 to
0-98). The sex chromosomes were excluded in the
search for epistatic QTLs. A more thorough descrip-
tion of the mapping population can be found in
Sewalem et al. (2002).

3. QTL mapping methods

This report uses two QTL mapping methods based on
two genetic models (without and with epistasis) and
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two genomic search strategies, forward selection (FS)
and simultaneous search (SIM) to map QTLs in an
outbred F, chicken cross. The methods are compared
based on the differences in the number of significant
QTLs detected and the amount of genetic variance
explained by the detected QTLs. Method I (FS) is a
traditional strategy for QTL mapping based on a lin-
ear model with marginal (additive and dominance)
effects for multiple QTLs. The final genetic model is
built by forward selection of significant marginal ef-
fects of individual QTLs. Method II (SIM) is a
method for simultaneous mapping of epistatic QTLs
(Carlborg & Andersson, 2002 ; Carlborg et al., 2003),
which is based on a linear model with marginal effects
for a pair of QTLs and their four possible pairwise
interactions. The locations for the two QTLs in the
model are selected simultaneously using either an
exhaustive search (in the real data) or a genetic al-
gorithm (during randomization testing). The contri-
bution of epistasis to the genetic variance explained
by the pair was evaluated for all the pairs. The pro-
cedures outlined here are described in more detail in
the following sections.

(1) Linear models for single and multiple QTLs

In the marginal effects genetic model, used for for-
ward selection of non-epistatic QTL (method I, FS),
each QTL is modelled by its marginal (additive and
dominance) effects

y=PBy+FZ+pB;a;+By;d; +¢; )

where y; is a vector of phenotypes, 3, is the mean, F
is a vector of regression coefficients for full-sib family,
sex, rearing pen and earlier detected QTLs, Z is a
matrix of regression variables for full-sib family, sex,
rearing pen and earlier detected QTLs, f8,;, f,; are
regression coefficients for additive and dominance ef-
fects at genomic location j, and a; and d; are regression
indicator variables for additive and dominance effects
at genomic location j.

For simultaneous mapping of QTL pairs (method
I1, SIM), the linear model is a non-orthogonal expan-
sion of model I to include also the marginal genetic
effects of a second QTL and the four pairwise inter-
action terms for a QTL pair

Y=L+ FZ+ By ya;+ By .d; + Bsjax + By i
+ﬂ5_jkaajk +ﬁ6jkad_ik +ﬁ7_;‘kdajk +Bs jkddik t €k (2

where y, B, F and Z are the same as in model I, By,
Baji» Pajx and By are regression coefficients for addi-
tive and dominance effects for QTLs at locations j
and k cM, By, Beji, B and Py are regression coef-
ficients for epistatic effects between QTLs at locations
jand k cM, a;, d;, a; and dj. are regression indicator
variables for additive and dominance effects for QTLs


https://doi.org/10.1017/S0016672304006834

Epistatic QTL in chickens

at locations j and k cM, and aay., ady., da; and ddy,
are regression indicator variables for epistatic effects
for QTLs at locations j and k cM.

(i1) Parameter estimation

Estimation of the genetic effects for QTLs was per-
formed using variations of the commonly used least
squares framework for QTL mapping in inbred and
outbred crosses (Haley & Knott, 1992; Haley et al.,
1994). This framework involves two independent
tasks. First, QTL genotype probabilities are estimated
throughout the genome conditional on the measured
marker genotypes. Second, the QTL genotype prob-
abilities are used to calculate regression indicator vari-
ables for the genetic effects of QTL, which are then
used to estimate the genetic effects using least squares.
In this F, population, the marker genotypes were used
to estimate the probability of an F, offspring being
each of the four QTL genotypes (QQ, Qq, qQ and qq)
at 1 cM intervals throughout the genome. The mar-
ginal QTL effects considered are additive (allele sub-
stitution) and dominance (heterozygote deviation)
effects (model I above). Haley & Knott (1992) describe
how to form additive (a;) and dominance (d;) indi-
cator regression variables as

a;=P(Q0),— P(qq);
di=P(Qq), + P(qQ);,

where 7 is the genome location of QTLC[1 - genome
size cM], and P(XX), is the conditional probability of
the individual having QTL genotype XX at location
i given the flanking marker genotypes. We did not
consider parental origin effects because there was no
evidence of imprinting in this population (Sewalem
et al., 2002).

Method II involves a search for pairwise inter-
actions between QTLs, and the genetic model to evalu-
ate these effects includes four interaction effects in
addition to the marginal effects of the two QTLs in the
pair. To estimate these effects (additive by additive,
additive by dominance, dominance by additive and
dominance by dominance interactions), a new set of
indicator regression variables needs to be calculated.
Haley & Knott (1992) indicated that the indicator re-
gression variables could be calculated by multiplying
the respective additive and dominance regression in-
dicator variables for the QTL in the pair

Aajng =dp X djy,
adijlz =dp X djz,
dfli;‘m =dj ¥ aj,
ddzjjzz =dy x dea

where i and j are the genome locations in cM of QTLs
1 and 2C (1 genome size cM).
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Using these indicator regression variables, the gen-
etic parameters for single QTL (model I) and epistatic
QTL pairs (model II) can be estimated using ordinary
least squares.

(iii) Forward selection interval mapping

A simple way to map multiple QTLs is by forward
selection of non-interacting QTLs. This was the first
analysis we performed to detect significant marginal
(additive and dominance) effects of QTLs (Fig. 1, step
I). QTL genotype probabilities were calculated at
1 cM intervals and QTLs were fitted using model 1
at 1 cM intervals using ordinary least squares (Haley
et al., 1994). The additive and dominance regression
indicator variables for the most significant single QTL
in this scan were added as cofactors to model I and
a new genome scan was performed using the updated
model. This procedure was repeated until no ad-
ditional significant QTLs were detected. Statistical
significance was assessed by randomization testing
(Churchill & Doerge, 1994) in each step of the pro-
cedure using a 5% genome-wide threshold for signifi-
cant and a 20% genome-wide significance threshold
for nearly significant QTLs. All randomization tests
are based on analyses of 1000 permuted datasets.

(iv) Simultaneous interval mapping

Simultaneous mapping of epistatic QTLs increases
the power to detect interacting QTL. The principle of
the SIM method performed here is as follows (Fig. 1,
step II). First, QTL genotype probabilities were cal-
culated at 1 cM intervals according to Haley et al.
(1994). An exhaustive simultaneous search for inter-
acting QTL pairs in the real data was performed using
model II. For all fitted pairs, the parameters of the
model were estimated using least squares and the
model fit (residual sum of squares) was retained. Sig-
nificance of fitted QTL pairs was assessed in three
ways depending on the number of QTLs in the pair
that had significant marginal effects (for further detail
on the randomization procedures see Carlborg &
Andersson, 2002). (i) When both QTLs in the pair had
significant marginal effects in the FS procedure de-
scribed above, the QTL pair was declared significant
without further significance testing. (i) Where one of
the QTLs in the pair had significant marginal effects, a
randomization test was used to test for the combined
effects of the marginal effects of the second QTL and
the interaction parameters for the pair, conditional
on the significant marginal effects of the first QTL.
(iii) Where neither of the QTLs had significant mar-
ginal effects, the significance of the pair is assessed
using a randomization test for a QTL pair without
significant marginal effects. For all these tests, a 5%
genome-wide threshold was used to declare significant
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Fig. 1. The analysis procedure used for detection of QTL. Further explanation of the figure can be found in the text.
Abbreviations: 1D, one-dimensional; 2D, two-dimensional; E, exhaustive search.

and a 20% genome-wide significance threshold to
declare nearly significant QTL pairs.

(v) Model selection for significant QTL pairs

To evaluate whether epistasis contributed signifi-
cantly to the genetic variance explained by significant
and nearly significant QTL pairs, a randomization
test was used to test whether a model including both
marginal (additive and dominance) and epistatic
QTL parameters significantly improved the fit over a
model including only marginal QTL effects (Carlborg
& Andersson, 2002). A nominal 5% significance
threshold was used for each of these tests.

(vi) Multiple regression modelling

To compare the explanatory power of the QTL de-
tected by the SIM and FS procedures, we used multiple
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regression modelling to fit simultaneously all QTL
detected using the FS and SIM procedures. For all
traits in turn, we fitted model I with (i) all QTLs de-
tected by FS and (ii) all QTLs detected by SIM. The
fits of the models were compared by the reduction of
the residual sums of squares of these two models by
including the genetic effects of the QTLs. The relative
importance of epistasis for the analysed traits was
assessed by comparing the fit of model I, including the
marginal effects for all QTL detected by the SIM pro-
cedure, and model II, including the same marginal
effects together with interaction effects for pairs where
an epistatic QTL model was significantly better than a
marginal effects model. The variances contributed by
the marginal effects (model I) and by the marginal and
epistatic effects (model IT) were compared using the
reduction of the residual sum of squares by the re-
spective models by including the genetic effects of the
QTLs.
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(vii) Interpretation of epistasis

If the genetic mechanism behind the observed pairwise
QTL interactions could be understood, the infor-
mation would be valuable for identifying candidate
genes for detected QTLs. We have therefore plotted
the nine genotype class means for all the significant
and nearly significant QTL pairs to identify simi-
larities among the interaction patterns and those of
classic mendelian patterns of epistasis. The genotype
class means were estimated using the SAS software,
by regressing phenotypes on fixed effects and the two-
locus genotype probabilities (calculated by multiply-
ing the single locus genotype probabilities described
above) of the QTL pair.

4. Computational methods

In QTL mapping, the genome is modelled as a grid
based on genetic markers (where each marker is a
node in the grid) or on genetic map locations (where
each node in the grid is a genomic location in cM). The
grid is one-dimensional during a search for a single
QTL and multidimensional when multiple QTLs are
sought. A genome scan involves fitting a statistical
model at multiple locations in the genomic grid with
the objective of finding the location(s) in the genome
with significant statistical support for a QTL or mul-
tiple QTLs. We use a genetic-map-based grid with a
genetic distance of 1cM (Kosambi) between the
nodes.

We have used three different algorithms to select
the QTLs to be evaluated among all the possible
combinations of QTLs that exist in the grid. Below,
we give a short introduction to these methods but, for
a more thorough discussion of methods to search for
QTLs in genetic grids, we refer to Carlborg (2002).

(1) Exhaustive search

An exhaustive search involves fitting the statistical
model at all nodes in the one- or multidimensional
grid. The method guarantees that the best location in
the grid, at the given resolution, is found, but at the
price of a high computational demand. The compu-
tational demand for using an exhaustive search in a
one-dimensional grid (i.e. a search for a single QTL),
randomization testing in one-dimensional grids or
isolated scans in two-dimensional grids (i.e. fitting
two QTLs simultaneously in real data) is not pro-
hibitively high, especially when parallel computers
are used for the analysis (Carlborg, 2002). However,
randomization testing based on two-dimensional
grids and scans in grids of dimensions higher than two
is computationally intractable using an exhaustive
search and, for this, alternative search methods are
needed.
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(i1) Forward selection

Forward selection is a method to reduce a scan of a
multidimensional grid to a series of one-dimensional
scans. In QTL mapping, the method has been used to
map multiple non-interacting QTLs, where the most
significant QTL from a series of successive exhaustive
one-dimensional genome scans are sequentially added
to a multiple-QTL model. The method is expected to
perform well when the QTLs are independent, which
is the case for non-interacting and non-linked QTLs,
and has been widely used for this purpose. We have
selected this method to represent a traditional method
to search for multiple non-interacting QTLs.

(iii) Genetic algorithm

Genetic algorithms are search algorithms based on
the mechanisms of genetics and natural selection,
and can be used to perform a multidimensional search
in a more computationally efficient way than using an
exhaustive search. The advantage of using a true
multidimensional search instead of a search based on
repetitive one-dimensional searches is expected to be
greater for interacting QTLs than for non-interacting
QTLs, because pairs of QTLs with non-significant
marginal effects will not be found in a series of one-
dimensional searches. The importance of using true
multidimensional searches when mapping interacting
QTLs was first shown by Carlborg et al. (2000), where
a genetic algorithm was shown to be more efficient in
detecting interacting QTL than an FS-based method.
Here, a genetic algorithm has been used to reduce the
computational demand during randomization testing
for interacting pairs of QTLs without significant
marginal genetic effects. We used a genetic algorithm
(GA) from a library named PGAPack (Levine, 1996).
Ten independent GA populations of 20 individuals
with 1000 iterations per population were used for two-
dimensional genome scan. For each independent GA
population, a local exhaustive search of +5cM was
performed around the found optimum after the
GA had converged. More information on specific
parameters settings for PGAPack can be found in
Carlborg et al. (2000).

5. Results
(1) Detection of non-interacting and interacting QTLs

For the five analysed bodyweight and growth traits,
a total of nine QTL regions were detected as signifi-
cant using a 5% genome-wide significance threshold
(Table 1). Three of the regions (chromosome 1,
150 cM; chromosome 1, 470 cM; chromosome 27,
0 cM) were only detected by their marginal effects
and one region was only detected using simultaneous
mapping of epistatic QTL pairs (chromosome 2,
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Table 1. Genomic regions with a significant or nearly significant QTL affecting at least one growth trait. The information content at the location of the QTL and
the markers flanking the QTL peak are also given

QTL LM RM BW3 BW6 BW9 GR36 GR69 Sum IC Int
GGA  Pos Name Pos  Name Pos FS SIM FS SIM FS SIM FS SIM FS FS SIM T Y/N  Pairs
1 70 MCWO010 48  ADLISS 109 ¢ c a a a - a a a L Y 1
1 150  LEIl46 145 MCW007 178 - c a c - c a c a H Y 5(4)
1 390 MCWO036 362  LEIN06 394 — c - b a a a c c a a a M Y 4(3)
1 470  LEI079 422 ROSO025 503 a c a b a b a L Y 1
2 240 ADL196 225 LEI127 270 - a - b - a a M Y 3(2)
2 290  LEI127 270  ROS074 302 - b c - c - c b b H N
3 50  MCWO083 51 MCWO083 51 - b - - b b M Y 1
4 165 ADL266 126  LEI073 231 a a a c a b a a a a L N
5 127  ROS084 57  ADL298 166 - - c c L Y 1
6 35  ROS003 33 ADLI142 51 a a a b a a a H Y 4
7 105 ROSO019 101  ADLI180 109 - c - c c H Y 1
8 15 ADLI179 11 ROS075 80 c c c c c c c L Y 1
13 55 ADLI147 32 ADL255 70 a c a a ¢ a a b a a a M Y 5(3)
18 15  ROS022 0  ROS027 23 - c - c - c c H Y 2(1)
27 0  ROS071 0  ROS071 0 c - a c a c a H Y 2

Abbreviations: GGA = Gallus gallus chromosome, Pos = Estimated chromosomal position (cM) based on the results from all traits, No=QTL ID number, LM/RM = Left/Right
Marker flanking QTL interval (LM =RM if the QTL peak is located at a marker), BW3/6/9 =Body weight at 3/6/9 weeks of age, GR36/69 = Growth from 3 to 6 and 6 to 9 weeks
of age, Sum =Summary of QTL mapping results, FS=Significance of QTL mapped using forward selection, SIM = Significance of QTL mapped using Simultaneous mapping,
T =Significance of QTL mapped by the entire SIM procedure, a/b/c=QTL significant at 5/10/20 % genome-wide significance threshold, Int=QTL involved in interactions,

Y /N =Yes/No, Pairs =No. of epistatic pairs (No. of unique epistatic pairs) in which QTL is involved, IC=combined information content for QTL location classified as 0 < Low

(L)<0-30, 0-31 < Medium (M) <0-60, 0-61 <High (H) < 1-00.
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240 cM). When a 20% genome-wide significance
threshold was used, 15 QTL regions were detected,
and five of these (chromosome 2, 240 cM; chromo-
some 3, 50 cM ; chromosome 5, 127 ¢cM ; chromosome
7, 105cM; chromosome 18, 15cM) were only de-
tected using simultaneous mapping of epistatic QTL
pairs. A summary of all QTL pairs that were detected
for the five analysed traits and the model that was
selected for each of the pairs are given as supplemen-
tary information on the publisher’s website. Two QTL
regions (chromosome 2, 290 cM; chromosome 4,
165 cM) were never included in a significant epistatic
QTL pair, and seven regions were significant on more
than one occasion and two of these were only detected
using SIM (chromosome 2, 240 ¢cM; chromosome
18, 15 cM). The least squares estimates for the two-
locus genotypes for all detected QTL pairs are given
in Table 2.

(i1) Variation explained by epistasis

The additional residual phenotypic variance ex-
plained by adding significant epistatic parameters to
the genetic model varied from 0% to 34 % using a 5%
genome-wide threshold and from 20 % to 103 % using
a 20% genome-wide threshold. The largest contri-
bution of epistasis when using the 5% threshold was
for bodyweight at 6 weeks and 9 weeks. For the QTLs
detected using the 20% threshold, the largest con-
tribution of epistasis was found for bodyweight at
6 weeks and the growth rates at 3—6 and 6—9 weeks.
Fig. 2 shows the amount of residual phenotypic vari-
ation explained by the QTLs detected by their mar-
ginal effects using FS and by the SIM procedure for
the five analysed traits.

(iii) Interpretation of epistasis

In total, 30 QTL pairs were detected for the five ana-
lysed traits (Table 3) and, for 16 of these, an epistatic
model was selected. Among the 30 pairs, there were 21
unique combinations of loci that had significant gen-
etic effects on at least one trait. The patterns among
the genotypic effects for the locus pairs that had sig-
nificant effects on multiple traits were very similar and
so only the unique combinations were evaluated fur-
ther. Four clusters of QTL pairs with similar genetic
effect patterns were identified by visual inspection
(representative pairs are given in Fig. 3).

The first cluster consists of five pairs, in which sev-
eral of the homozygote—heterozygote genotypes have
lower phenotypes than expected under a two-locus
additive model. An epistatic model was significant for
four of the pairs in this group. An example of a pair
from this cluster is shown in Fig. 3A.

The second cluster contains six pairs, in which the
broiler double homozygote has a lower phenotype
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Trait and significance level
Fig. 2. The variance explained by the QTLs detected by
their marginal effects using forward selection and by the
SIM procedure for the five analysed traits, calculated as
the reduction of the residual sums of squares by adding
marginal and epistatic genetic effects to the model.
Abbreviations: FS, QTL mapped using forward selection;
SIM, QTL mapped using simultaneous mapping; BWX,
bodyweight at X weeks of age; GRXY, growth from X to
Y weeks of age; Marginal, model used included additive
and dominance effects; Epistatic, model used included
additive, dominance and epistatic effects.

than expected given the other genotypic-effects for
the pair. The QTL pair in Fig. 3B is an example
from this cluster. An epistatic model was selected for
the three most significant of the pairs in this group.
Three of the six pairs include a QTL on chromosome
1, closely linked to marker LEI106 at 393 cM, and
two more pairs include a close, but unlinked, QTL
located at 455 cM.

The third cluster includes four pairs that show a
continuous increase in the phenotype from the low
phenotype Leghorn double homozygote to the high
phenotype broiler double homozygote. The transition
of the phenotype between the genotypes varies from
near linear (‘additive’) to non-linear. Fig. 3C shows
a pair from this cluster with a non-linear phenotype
transition between the genotype classes. An epistatic
model was selected for the two most non-linear of the
pairs in this group.

The last identified cluster includes two pairs that
have their genotypic effects divided into three distinct
classes, in which the high-effect group contain broiler
homozygotes or the double heterozygote, the inter-
mediary-effect group only contains the Leghorn
double homozygote and the low-effect group contain
the rest of the genotype classes. Both of the pairs are
significantly epistatic. Fig. 3D shows one of these
pairs.

There are no striking similarities with a mendelian
pattern of digenic epistasis or other similarities among
the remaining five pairs and they have not been
classified further. The plots of the genotypic effects for
all the 22 genotype combinations are given as sup-
plementary information on the publishers website.

QTLs with significant pairwise interactions or non-
significant interactions for QTL clustering into groups
1 and 2 above were joined by connecting arrows to
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Table 2. Estimates of the genotypic effects (as deviations from the LLLL genotype) and the respective standard errors for the QTL pairs detected in the study

Genotypes
QTL information
BBBB BBBL BBLL BLBB BLBL BLLL LLBB LLBL LLLL
Pair
no Trait Location Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE
1 bw3  1-147|1-373 720 19-6 824 188 392 201 352 191 472 177 504 194 509 196 60-3  21-8 00 -
2 bw3  1-147|1-471 18-1 344 367 327 —538 348 23 319 -7-5 295 —-376 312 354 279 —437 436 00 -
3 bw3  1-471|]13-59 141-1 51-3 167-8 463 70-3 380 116:5 500 93-7 357 12119 563 1145 502 106:6 517 00 -
4 bw6  1-71]6-34 1236 100-9 84-3 823 962 821 12609 853 1182 754 —47-5 11666 —519 92:0 —729 838 00 -
2 bw6  1-150|1-455 1260 1074 96:8 101-0 —109-0 1065 359 100-4 4-8 887 —735 1028 1129 876 —127-4 1341 00 -
5 bw6  1-150/4-168 381-6 1448 160-2 134-1 —12-5 1496 1657 135-1 1367 1140 3-5 143-8 3398 1131 4-3 191-3 00 -
6 bw6  1-150|18-13 617 64-3 732 565 —839 629 392 591 —543 538 —507 61'1 —653 648 —674 657 00 -
7 bw6  1-383|6-34 87-3 597 1982 495 1257 526 2105 487 14114 443 1121 588 1314 556 91-7 551 00 -
8 bw6  1-383|13-56 1734 869 391-0 750 1205 749 3985 779 2339 637 243-0 797 2181 834 2652 9144 00 -
9 bw6  1-455/4-168 81:6 3248 5664 3527 —1057 2595 495-3  328-5 746 191-1 1522 3903 1940 2166 1406  391-8 0-0 -
3 bw6  1-455|13-56 387-8 147-1 5129 1325 219-6 1089 3653 1432 3250 1023 346-8 1612 3660 1439 2969 1482 00 -
10 bw6  2-239|6-34  178-8 59-7 160-8  53-5 1362 562 1597 535 1558 49-1 856 632 1230 644 866 546 00 -
11 bw6  2-239|13-56 360-5 93-8 2089 696 779 702 882 723 246:1 581 1177 759 3441 797 62:6 852 00 -
12 bw6  3-34/6-34 1485 523 556 474 —61-2 513 1-0 434 592 404  —30-5 479 672 536 —524 484 00 —
13 bw6  4-168|6-34  476:6 144-1 317-8 1240 323-5 1032 2109 1292 2596 1158 165-3 1808 1186 144-1 89-7 1275 00 -
14 bw6  4-168|13-56 481-1 1869 286:5 1717 250-1 1326 59-5 181:7 3164 1222 112:0 2092 3640 1880 —13-6 1805 00 -
15 bw9  1-397|4-168 4953  308-8 456-8 2630 —60-8 2714 607-4 256:0 3035 2195 725 2667 3639 2022 184-1 3523 00 -
8 bw9  1-397|]13-55 3019 1296 508-8 110-1 1134 1134 447-4 1123 3076 977 3189 1086 352-6 127-1 239-8 1317 00 -
16 bw9  8-13]13-55 9114 2709 —83-1 2166 99-0 1887 —3287 2303 3340 1474 —131-0 2599 3470 2419 -—-2702 2305 00 -
6 gr36  1-145|18-16 469 43-8 447  38-1 —67-5 426 34-8 397 —397 366 —287 388 =227 445 —546 438 00 -
17 gr36  1-145)27-0 1823 419 100-4 355 345 394 1026 374 570 346 47-1 359 60-6 448 54-1 37-8 00 -
15 gr36  1-400/4-170 1343  149-1 2551 1274 —53-3 1299 306-1 1227 1072 1046 492 1305 1705 956 734 1681 00 -
7 gr36  1-400|6-33 92-5 37-8 1453 322 90-1 364 1294 319 1165 288 79-1 361 1170 361 488 347 00 -
11 gr36  2-245|13-52 2694 79-3 152:5 606 94-5 605 653 652 2058 500 904 674 2757 688 423 757 00 -
13 gr36  4-170/6-33 2949 109-2 243-4 932 2583 776 180-0 975 1675 883 758 1369 223 109-3 509 949 00 -
14 gr36  4-170|13-52 3756  153-7 2082 1414 254-1 106-3 60-7 1514 2475 966 717 1682 2512 1536 21 148-0 00 -
18 gr36  6-33]27-0 146-4 389 1048 309 725 351 1541 325 90-7 289 652 322 647 390 586 324 00 -
19 gr36  7-105/27-0 77-8 40-9 121-0 333 525 409 142-3 351 446 316 442 354 925 409 533 349 00 -
20 gr36  8-2527-0 3335 1353 181-1 868 239-1 786 120-5 937 2065 736 141-1 1175 2712 108-2 69-6 838 00 -
21 gr69  3-63|5-127 7203 2050 —386:1 2022 260-2 1931 —3319 2032 2136 1605 —984 2195 2402 1523 —1622 2709 00 -

Abbreviations: Pair no, number of unique QTL pairs if the same pair has significant effects for more traits the pair has the same number; L, Leghorn allele; B, broiler allele;

XXYY, genotype XX at locus 1 and genotype YY at locus 2.

Locations: a-b|c-d, first QTL at chromosome a in location b and second QTL at chromosome ¢ in location d.
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Table 3. Number of QTL pairs identified by a simultaneous mapping strategy for epistatic QTL pairs (SIM) and
the number of pairs detected with a marginal effects model including additive and dominance effects (A + D) and
an epistatic QTL model (E) were selected. Also, the number of times two, one or none of the QTLs in the
detected pair were also detected using forward selection (FS) and a marginal effects model

5% genome-wide significance

20 % genome-wide significance

Selected model Detected by FS

Selected model Detected by FS

No of pairs No of pairs
by SIM A+D E 2 1 0 by SIM A+D E 2 1 0
BW3 0 0 0 0 0 0 3 1 2 2 1 0
BW6 4 1 3 2 2 0 13 6 7 8 5 0
BW9 1 0 1 0 1 0 3 1 2 3 0 0
GR36 0 0 0 0 0 0 10 6 4 6 3 1
GR69 0 0 0 0 0 0 1 0 1 0 0 1
(A) Growth 6 to 9 weeks of age B) Bodyweight 6 weeks of age
g T 250
1200 ¢ .‘
1000 | 200
- | | c
B 800 | 2 150
ki | £ 100
> 400 a
A | 50
200 BB
6 BL Chr 5, BL Chré6,
BB 127 eM 34 M
BL LL
Chr 3, Chr 1,
63 cM 383 cM
©) Growth 3 to 6 weeks of age (D) Bodyweight 6 weeks of age
] )
£ g
Chr 27,
0 cM
Chr1, Chr 1,
145 cM 150 cM

Fig. 3. Phenotypic expression in the nine genotype classes for representative epistatic QTL pairs from the four clusters of
QTL pairs with similar genetic effects on growth in a broiler layer cross. Abbreviations: Deviation, phenotype expressed as
the deviation (in grams) of the phenotype from the genotype class with the lowest mean; Chr, chromosome; Pos, position;
BB, genotype is homozygote broiler; BL, genotype is heterozygote; LL, genotype is homozygote layer.

understand further the genetic architecture of the
traits (Fig. 4). The figure shows a chain of eight QTLs
linked by pairwise interactions, two branches with a
single QTL and three loops on the chain (two of which
are created by non-linear type interactions). Two
QTLs (chromosome 2, 290 cM, and chromosome
4, 165cM) are not included in the figure because
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they were not involved in any significant pairwise
interactions.

6. Discussion

The use of efficient computational algorithms in QTL
mapping allows researchers to move from approximate
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Fig. 4. Graphical representation of the interactions
detected between the QTLs affecting growth in a

broiler x layer cross. Circles indicate QTLs and the number
in the circle is the relevant QTL number given in Table 1.
The connectors between the circles indicate two-locus
interactions, where black connectors indicate significant
epistatic interactions and grey connectors indicate
interactions where the significance threshold is not reached
but where inspection of the genotype means indicate that
the QTL pair belongs to one of the four interaction
clusters identified. Dashed connectors indicate additive-like
interactions. The style of the ends of the connectors
indicate the trait for which the interaction was significant:
circular, body weight at 3 weeks; square, body weight at

6 weeks; arrow, body weight at 9 weeks; circular 4 square,
growth between 3 weeks and 6 weeks; square + arrow,
growth between 6 weeks and 9 weeks.

methods to screen for epistasis to true multi-
dimensional searches (Carlborg et al., 2001 ; Carlborg,
2002; Ljungberg et al., 2002). We have previously
shown by simulations that simultaneous mapping of
multiple epistatic QTLs has the potential to increase
the power to map interacting QTLs (Carlborg et al.,
2000; Carlborg & Andersson, 2002). The benefits of
using this method are, however, not universal. Be-
cause the true genetic architecture of complex traits,
and therefore the impact of epistasis, is unknown,
the potential benefit of using these methods can only
be assessed when they are applied in analyses of ex-
perimental data. High power to detect epistasis can
only be expected in reasonably large datasets with
high-quality phenotypic measurements and highly
informative markers. Owing to limited practical ex-
perience from applying these methods to experimental
data, the practical usefulness and limitations of the
method in experimental datasets are still largely un-
known. The analysis of this dataset serves as an
exploration of potential use of the method in a
reasonably sized experimental dataset, which was not
initially designed for detection of epistasis. The model
selection procedures used in this study were based on
stringent, population-based genome-wide thresholds
in order to control the rate of false-positive epistatic
QTL pairs. We felt that this was justified, because this
study is one of the first aiming to detect genome-wide
epistatic QTLs and it is important to avoid making
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inferences and recommendations for future studies
based on false-positive QTLs. This does limit the
power of the study but, when the method has been
more thoroughly evaluated, other thresholds can be
used to obtain a balance between type I and type II
errors that is suitable for each individual experiment.

The first application of the QTL mapping method
used in this study was for analyses of growth traits
from an exotic cross between the Red Jungle Fowl
and a White Leghorn layer (Carlborg et al., 2003).
The use of the method increased the number of QTLs
detected dramatically, and epistasis was shown to be
a large contributor to the genetic variance of early
growth in that cross. The study described in this re-
port serves two purposes. First, we analysed a set of
similar growth traits in a different chicken cross be-
tween broiler and layer chickens. By doing this, we
hoped to evaluate further the importance of epistasis
in chicken growth and to identify genetic mechanisms
underlying detected epistasis. Second, this dataset is
significantly smaller (466 rather than 752 F, in-
dividuals) and the results from this study will indicate
the potential of the method in the more moderately
sized experiments that are common used.

The previous analyses of the growth traits in this
dataset (Sewalem et al., 2002) were based on an older
version of the dataset and different combinations of
background QTLs and fixed effects in the models used
for analyses. Despite this, a brief comparison of the
results from these studies shows that the two studies
together report 16 QTLs as significant using a 20 %
genome-wide significance threshold. Sewalem et al.
(2003) detected 12 QTLs, one of which was unique to
that study, and we here report 15 QTLs, four of which
could only be detected using SIM and were unique to
this study. Two of these unique QTLs were, however,
detected for growth rate at 3—6 and 6—9 weeks of age,
which have not previously been analysed.

Both the number and the significance of epistatic
QTLs were lower in this cross than in the exotic cross
between the Red Jungle Fowl and a White Leghorn.
This is expected because this cross has about 300
fewer F, individuals and a sparser genetic map (aver-
age marker spacing is more than 15cM greater).
There are also fewer unique QTLs detected by the
SIM procedure and this could be due to the decrease
in power caused by the above reasons, but also to the
considerably shorter time since the divergence of the
broiler and layer than of the domesticated chicken
and its wild ancestor (a few hundred compared with
several thousand years). This could influence the op-
portunities for co-adaptation of genes within the lines
that might be one cause of the large amount of epis-
tasis detected in the more exotic cross. However, a
significant amount of epistasis was still detected in
this study, which implies that epistasis is a rather im-
portant mechanism for generation of poultry lines in
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general, and that certain favourable allelic combi-
nations occur at high frequencies within the lines. The
creation of an experimental cross creates new allelic
combinations, which in turn increases the power to
detect epistasis. Further studies are needed to evaluate
how much epistasis that is segregating within natural
chicken populations.

In the Red Jungle Fowl x White Leghorn cross, epi-
stasis was found to be very influential on early growth
(846 days of age), whereas the importance of epistasis
on later growth was low. In the broiler x layer cross,
the largest total genetic and epistatic contribution to
growth is to the bodyweight at 6 weeks of age (42 days
of age) and to growth between 3 weeks and 6 weeks of
age (21-42 days). There also seems to be a discrete set
of epistatic QTLs involved in earlier growth. This
study is therefore consistent with the previous finding
that there could be different genetic regulation of
early and late growth in chickens, and that epistasis is
more important for early than for late growth.

There were 101 unique QTL pairs detected in the
Red Jungle Fowl x White Leghorn cross, and of the
21 unique pairs detected in the broiler x layer cross,
ten mapped to the same chromosome pairs and six
mapped to closely linked marker intervals in the two
crosses. When the genotype—phenotype relationships
were compared between the crosses for these pairs,
the Leghorn alleles for one pair (chromosome 1,
417 cM, and chromosome 13, 7 cM) appeared to have
a very similar phenotypic effect in both a broiler and
a Red Jungle Fowl background.

The marker spacing in this cross is on average
40 cM and, owing to this, there are relatively large
proportions of the genome where the genetic infor-
mation for detecting a QTL is low. Several QTLs have
been located in low information regions both as single
QTLs and as part of epistatic QTL pairs. The method
used for mapping epistatic QTL pairs is designed to
detect significant additional variation explained by an
epistatic QTL model. There is no evidence here that
would suggest that the additional variation explained
for the pairs is due to low information content. On the
contrary, there is an indication that the additional
QTLs found are in most cases located in more in-
formative regions in the genome than the QTLs de-
tected by their marginal effects. There is furthermore
no evidence that segregation distortion is more com-
mon in the regions detected using the simultaneous
mapping procedure. There is also no evidence that
there was a deviation from normality within the QTL
genotype classes of the detected epistatic QTL pairs.
This observation strengthens the evidence that the
method is robust when applied to real data.

Close linkage causes some genotype combinations
to be rare, which could cause problems in estimating
genetic interactions. Several QTLs were detected on
chromosome 1 but only in one pair did the epistatic
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model fit significantly better than the marginal effects
model. In that specific case, the QTLs were located
226 cM apart (chromosome 1, 147 ¢cM, and chromo-
some 1, 373 ¢cM), which means that they are virtually
unlinked. For the QTLs that were located closer
than that, no interactions were detected, which could
be because either there are no interactions or there is a
lack of recombination and hence limited information
means that the power is too low to detect interactions.

The genotypic patterns for means of the detected
QTL pairs suggested four clusters of pairs with similar
patterns of genotype—phenotype expression. The first
group contain pairs where several (and in some in-
stances all) homozygote—heterozygote genotype com-
binations have inferior phenotypes. In the estimates
for the two-locus interaction model, this type of
genotype pattern becomes apparent by large estimates
of the two single-locus dominance and the domi-
nance-by-dominance interaction terms. For example,
almost all of the variation for the single epistatic QTL
pair for growth at 6-9 weeks of age (chromosome
3, 63cM, and chromosome 5, 127 cM) is due to
the dominance and dominance-by-dominance com-
ponents. The underlying genetic mechanism for this is
unclear but the relatively frequent occurrence of the
pattern indicates that there could be some general
mechanism that causes this phenomenon.

A second commonly occurring interaction pattern
is where the hybrid genotypes (i.e. genotypes that con-
tain at least one heterozygote genotype) have higher
phenotypes than both double homozygotes. The
broiler genotype has a higher phenotypic effect on
growth than the layer genotype in all genotypic com-
binations. This pattern indicates a pair of QTLs with
a heterosis-type interaction. One possible explanation
for this could be that the broiler line is fixed for an
allele with deleterious effect on growth in homo-
zygous form and that the layer allele is able to comp-
lement this allele in the hybrid individuals. Five of the
six pairs that exhibit this pattern contain QTLs lo-
cated on the distal end of chromosome 1 (three pairs
with one of the QTLs located around 400 cM and two
pairs with one of the QTLs located around 455 cM).
This similarity could indicate that these QTLs are the
same, even though their estimated locations are more
than 50 cM apart.

A third group reflect QTL pairs with a genotype—
phenotype pattern with a smooth transition from low
phenotypes for Leghorn double homozygotes to high
phenotypes for broiler homozygotes. The deviation
from additivity and dominance for these pairs is gen-
erally due to a non-linear (‘multiplicative’) rather
than a linear (‘additive’) increase in the phenotypic
values with genotype. This pattern indicates a co-
adaptation between the alleles at the two loci, where
the broiler double homozygote was associated with
the highest phenotypic values.


https://doi.org/10.1017/S0016672304006834

O. Carlborg et al.

The fourth identified group involves two pairs where
there are three levels of phenotypes —high, medium
and low. One of the pairs (chromosome 1, 150 cM,
and chromosome 18, 13 cM) showed a pattern where
a high phenotype is expressed when either or both of
the loci contain the broiler homozygote and the other
loci contain one broiler allele (BBB— or B-BB). The
intermediary phenotype was expressed only by the
layer double homozygotes (LLLL), and the rest of
the genotypes express a low phenotype. Biologically,
this could indicate an inhibitory action on growth by
the layer alleles at these loci, unless they are present in
the double homozygote (where the inhibition is lower)
or it is overridden by homozygote broiler alleles from
either locus. The second pair in this group has a
similar appearance but is more difficult to interpret
genetically.

For some of the QTL pairs it is, however, not
possible to cluster or find immediate biological ex-
planations for the patterns of the genotypic means.
This could be due to our limited knowledge about
the relationships between gene interactions and
phenotype. It could also be due to violations of as-
sumptions made in the QTL mapping procedure (e.g.
segregation of multiple QTL alleles within the original
lines, existence of multiple linked genes in the QTL
region or simply poor estimates of the genotypic
effects owing to chance or low information content
at the genomic location of interest). The results for
most QTL pairs will therefore only be an estimate of
the importance of epistasis for the combined effects
of the two genomic regions and aid in the selection of
genotypes for further genetic characterisation of these
regions.

By creating a figure joining pairwise interacting
QTLs, we obtained a visual representation of the com-
plexity of the genetic network behind the analysed
traits. The pairs that were detected or assigned to be
epistatic in this study are connected as shown in Fig. 4.
The interpretation of this figure is speculation until
the true genetic components of each QTL have been
identified, but it is possible to suggest alternative in-
terpretations of the figure. It could be viewed as an
enzymatic chain (the eight connected horizontal
QTLs) in which each step is affected by the result of the
enzymatic processes that precede and proceed from
that step. The branches represent modulators of the
enzymatic chain or provide alternative substrates for
the chain. The loops (and especially the loops involv-
ing non-linear additive type of epistasis) indicate
feedback inhibitors or accelerators of the enzymatic
activity. An alternative interpretation is that the QTLs
in the centre of the chain involved in most interactions
are central to the process of growth (e.g. for depo-
sition of protein or fat). There are then several
branches (enzymatic chains) leading to these QTLs
and providing substrates for the growth process. The
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loops could also in this scenario indicate feedback
regulation.

A QTL study can be used to find the chromosomal
locations that contribute to the variation of the F,
individuals. It can also be used to predict the genetic
effects of individual QTL genotypes. The latter is
more difficult because many individuals are needed to
draw strong conclusions about the magnitude of the
effects. In the Jungle Fowl x Leghorn cross described
by Carlborg et al. (2003), about half of the detected
QTL pairs had epistasis patterns that conformed to
previously described mendelian patterns of epistasis
(O. Carlborg, unpublished results). The evaluations of
the effects of the genotypes of the individual QTL
pairs in this cross shows that 17 of the 21 unique QTL
pairs can be classified into four clusters of similar
types of interactions. From this, we conclude that,
even though this study was based on a population
with a rather low-resolution genetic map and rela-
tively few individuals in each genotype class, the extra
effort to map epistatic QTL pairs and inspection of
the genotype class made a valuable contribution to
interpreting the results.

The method used for mapping of interacting QTLs
is based on detection and estimation of epistatic QTL
pairs one at the time. Owing to a high computational
demand and the small number of individuals in the
cross relative to the number of parameters that would
need to be estimated, it is not possible simultaneously
to fit all QTLs and to estimate their joint effects.
Therefore, some of the QTL pairs that are proposed
in this article might not be significant if all parameters
were fitted jointly. The major aim of this study is,
however, not to describe an optimal method for de-
tection of epistatic QTL but rather to highlight gen-
etically interesting findings that deserve to be further
evaluated in future generations in this pedigree (e.g. in
an advanced intercross line) as well as to indicate the
potential benefits of considering epistasis in genome
scans for QTLs. If an experiment was designed with
the aim of exploring further the importance of epi-
stasis, we recommend that many individuals and a
more informative genetic map should be used. None-
theless, the results from this study show that this
method for mapping epistatic QTLs can be valuable
for experimental datasets of limited size that are in-
itially not designed for detection of epistasis.
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Summary

This study investigated whether quantitative trait loci (QTL) identified in experimental crosses of
chickens provide a short cut to the identification of QTL in commercial populations. A commercial
population of broilers was targeted for chromosomal regions in which QTL for traits associated
with meat production have previously been detected in extreme crosses. A three-generation design,
consisting of 15 grandsires, 608 half-sib hens and over 15000 third-generation offspring, was
implemented within the existing breeding scheme of a broiler breeding company. The first two
generations were typed for 52 microsatellite markers spanning regions of nine chicken chromosomes
and covering a total of 730 cM, approximately one-fifth of the chicken genome. Using half-sib
analyses with a multiple QTL model, linkage was studied between these regions and 17 growth

and carcass traits. Out of 153 trait x region comparisons, 53 QTL exceeded the threshold for
genome-wide significance while an additional 23 QTL were significant at the nominal 1% level.
Many of the QTL affect the carcass proportions and feed intake, for which there are few published
studies. Given intensive selection for efficient growth in broilers for more than 50 generations it is
surprising that many QTL affecting these traits are still segregating. Future fine-mapping efforts
could elucidate whether ancestral mutations are still segregating as a result of pleiotropic effects on
fitness traits or whether this variation is due to new mutations.

1. Introduction

In chicken, as in other species, crosses between
extreme lines have been used to detect quantitative
trait loci (QTL) that explain phenotypic differences
between the lines. These experimental populations
include crosses between native jungle fowl and White
Leghorn (Carlborg et al., 2003), broiler and White
Leghorn (Sewalem et al., 2002) and two extreme
broiler lines (Van Kaam et al., 1998). This approach
has proved very successful in identifying QTL that ex-
plain differences between these lines, but they provide
no insight as to whether these QTL are segregating
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within current commercial lines that have been selec-
ted for at least 50 generations. Indeed, following more
than 50 generations of selection for efficient growth, it
is expected that loci with major effects on growth will
be fixed for the high-growth alleles within the broiler
lines, unless there are other mechanisms that maintain
variation at these loci. Hence, most of the extreme
crosses have been analysed under the assumption that
the founder breeds are completely fixed for alternative
QTL alleles (Haley et al., 1994). However, for suc-
cessful implementation of marker-assisted selection
within a population, segregation of QTL needs to be
verified within the commercial lines. Confirmation of
QTL within a commercial line is only realistic using
the existing family structure and data recording of
the breeding population and requires different study
designs and statistical analyses compared with line-
cross experiments. Following the preliminary results
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Table 1. Trait means and genetic parameters for 13 traits in a commercial broiler breeding population

Maternal Average
Trait Mean“ SD h?4sE effect” reliability®
Body weight 40 days, g 2415 276 0-114+0-01 0-02/0-01 0-30
Feed conversion during test 1-82 0-31 0-07+0-01 - 0-10
Residual feed intake during test, g 1042 223 0-1140-02 0-02 0-16
Conformation score 3-35 0-88 0-23+0-02 0-01 0-43
Dissection weight at 41 days, g 2291 268 0-10+0-03 0-04 0-18
Abdominal fat weight, g 28 10 0-00+0-01 - -
Breast muscle weight, g 450 67 0-434+0-04 — 0-33
Thighbone weight, g 20 4-5 0-06 +£0-02 - 0-10
Thigh muscle weight, g 92 13 0-10+0-03 0-02 0-16
Thigh meat to bone ratio 4-8 1-1 0-10+0-02 - 0-10
Drumbone weight, g 33 7-3 0-07+0-02 - 0-12
Drum muscle weight, g 76 13 0-16+0-03 - 0-21
Drum meat to bone ratio 2:4 0-7 0-04+0-02 — 0-08

¢ Raw phenotypic means.

b Proportion of total variance explained by the direct maternal effect. Second value is for the maternal genetic effect.
¢ Expected fraction of additive genetic variance explained by breeding values (EBV).

— Indicates that the direct maternal effect was not significant.

for a region on chicken chromosome 4 (De Koning
et al., 2003), we have tested eight additional candidate
regions for which QTL have been reported in extreme
crosses on a commercial broiler line.

2. Material and methods
(1) Experimental population and phenotypic traits

Following power calculations (De Koning et al.,
2003), 15 males of a broiler dam line (The Cobb
Breeding Company Ltd, Chelmsford, UK) were selec-
ted as grandsires in a three-generation half-sib design.
Blood samples were collected on the grandsires (G1),
their mates (104) and 608 second-generation (G2)
hens. For 80 hens only their own observations for
body weight, conformation and test data were avail-
able, leaving 524 G2 hens with phenotypic data on at
least one offspring with an average family size of 35.
On the offspring of these hens, the third generation
(G3), only phenotypic information was gathered.
Traits that are routinely measured on all birds in-
cluded body weight at 40 days and conformation
score. Prior to selection, a proportion of the birds were
randomly selected for carcass dissection to allow suf-
ficient numbers for QTL analysis. Following trunc-
ation selection on body weight, a proportion (~20 %)
of birds was tested for 2 weeks for feed consumption
and growth, while the remaining birds were culled at
40 days of age. Thirteen traits were derived from the
observations (Table 1). For body weight and confor-
mation score observations were available on > 50 000
birds (15000 G3 offspring and their contemporaries)
with an average of 28 offspring for every G2 hen. For
nine carcass-related traits, an average of nine offspring
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phenotypes were available for each of 477 G2 hens.
For the feed intake and growth data during a 2 week
test, an average of five offspring was available for
440 G2 hens. Following exploratory analyses using
GENSTAT (Lawes Agricultural Trust, Harpenden,
UK), variance components were estimated using
ASREML (Gilmour et al., 2000). The initial model
included the fixed effects (sex, hatch within flock, and
age of dam for all traits), covariates (body weight for
all carcass proportions, mid-weight and growth during
test for feed efficiency traits) as well as a random
polygenic component. The initial model included all
the fixed effects and covariates as well as a random
polygenic component:

y=Xb+Zu+e, (1)

where y is a vector of phenotypes, b is a vector of fixed
effects and covariates, u is a vector of random direct
polygenic effects (estimated breeding values: EBV)
and e is a vector of residuals. X is an incidence matrix
relating fixed effects and covariates to observations
and Z is an incidence matrix relating observations
to random direct polygenic effects. Subsequently a
direct maternal effect was added to the model and
tested against a polygenic model with a likelihood
ratio test.

y=Xb+Zu+Vc+e. 2)

Variables are as in (1) with the addition of ¢, a vector
of random direct maternal effects and V, an incidence
matrix relating direct maternal effects to obser-
vations. When the direct maternal effect was signifi-
cant the model was extended with a genetic maternal
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Table 2. Candidate regions from four experimental crosses

Marker interval

Chromosome (positions)“

QTL in experimental
crosses”

1 MCWO0011-MCWO0112 (98-205)

3 ADL0237-MCW0037 (275-317)
4 ADL0241-LEI0076 (80-182)
5 MCW0090-MCW0032 (57-128)

7 LEI0064-MCW0236 (0-109)

8 ROS0026-MCW0100 (14-46)

9 ROS0078-MCWO0135 (0-57)
11 LEIO110-ROS0112 (18-88)
13 MCWO0213-ADL0214 (22-74)

Body weight™*#, feed intake’,
thigh yield®

Body weight?, fatness?

Body weight®34, feed intake!?

Body weight?, fatness?,
lean-to-bone ratio®

Body weight®*, leg yield?,
fatness®, lean-to-bone ratio®

Body weight®4, breast yield®

Body weight?, fatness?,
lean-to-bone ratio®

Body weight*

Body weight®*, fatness?,
leg yield?, lean-to-bone ratio®

¢ Positions on consensus linkage map in Schmid et al. (2000).

b Restricted to traits that resemble those in the present study. Superscripts indicate in which cross the QTL was detected :
! Wageningen University extreme broiler cross (Van Kaam et al., 1998, 19994, b); 2 Agrifood Research Finland extreme layer
cross (Tuiskula-Haavisto et al., 2002); ® Roslin Institute broiler x layer cross (Ikeobi et al., 2002 ; Sewalem et al., 2002 ; Ikeobi
et al., 2004); * Uppsala Red Jungle Fowl x White Leghorn cross (Carlborg et al., 2003).

component and its significance evaluated with a like-
lihood ratio test against model (2):

y=Xb+Zu+Wd+Vec+te, (€)

where d is a vector of random maternal genetic effects
and W is an incidence matrix relating maternal genetic
effects to observations. For the QTL analyses, trait
scores for the G2 dams were derived from the EBV of
the G2 hens, adjusted for information coming from
other relatives besides their offspring by deducting the
mean of the parental EBV of each hen. An alternative
to using adjusted EBV is to calculate offspring yield
deviations (OYD) as was done by Van Kaam er al.
(1998) and in our previous work (De Koning et al.,
2003). However, the adjustment of the EBV is more
straightforward than obtaining the OYD, especially
because the EBV of the G2 sires (mated to our G2
hens) may be biased when they were mated only to a
single or few hens. Furthermore, Dolezal et al. (2003)
showed that adjusted EBV and OYD are very closely
correlated. To account for different numbers of off-
spring between G2 hens, the reliability of the EBV
was used as a weighting factor in the QTL analyses
(Table 1). The estimation of direct maternal (MD)
and the maternal genetic (MG) effects used additional
information compared with the EBVs for traits that
were also measured on the G2 hens. Therefore, the
estimated maternal effects from ASREML for body
weight (direct and genetic), conformation score and
residual feed intake were included as four additional
traits in the QTL analyses. For a more detailed de-
scription of the phenotypes and the derivation of QTL
trait scores see De Koning et al. (2003).

https://doi.org/10.1017/5S0016672304006834 Published online by Cambridge University Press

The adjusted EBVs for all traits were analysed
jointly by GENSTAT to obtain estimates of the cor-
relations between trait scores. A principal component
analysis was also performed to assess the number
of independent traits among the 17 traits that were
analysed.

(i) Genotyping and map construction

Nine regions on chicken chromosomes 1, 3, 4, 5, 7, 8,
9, 11 and 13 were selected because they showed evi-
dence for body-weight-related QTL in one or more
genome scans. Marker coverage of these chromosomal
regions and the QTL identified in these regions in four
experimental populations are summarized in Table 2.
Microsatellite markers in the candidate regions were
selected from the consensus linkage map (Schmid
et al., 2000) and tested for heterozygosity in the 15
grandsires. Genotypes were obtained on the G1 and
G2 animals for 52 microsatellite markers with three
to ten markers per candidate region. Details on PCR
amplification and gel electrophoresis are given by
Sewalem er al. (2002). Marker distances were esti-
mated using the ‘build’ option of Crimap (Green
et al., 1990), subsequently using the ‘flips’ option to
evaluate alternative marker orders compared to the
marker order of the consensus map.

(iii)) QTL analysis

The methodology is based on the half-sib analyses
proposed by Knott et al. (1996). Exploratory QTL
analyses were performed using the QTL Express
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software at http://qtl.cap.ed.ac.uk/ (Seaton et al.,
2002), followed by analyses under a multiple QTL
model using a modification of the methodology pro-
posed by De Koning et al. (2001). In the first step of
the multiple QTL analyses, the candidate regions are
analysed individually fitting a single QTL within every
family:

Yii:/’ti+biXii+eijr (4)

where Y; is the phenotype of j, offspring of sire i, u;
is the mean of sire family i, b; the allele substitution
effect of the QTL within family i, X;; the probability
that animal j inherited the (arbitrarily assigned) first
haplotype of sire i, and e; is the residual effect. In
the second step, the best positions on every chromo-
some that exceeded a point-wise 5% threshold were
identified and all the regions were re-analysed with
the QTL that were on all other chromosomes
as cofactors:

Yy=u+b:Xy+ Y baXy+ey, ©)
k_

=1

where variables are identical to (1), except for the term
ZZ=1bikX ;ik» which describes the multiple regression of
the n cofactors that are on chromosomes other than
the one under study. If this analysis revealed ad-
ditional putative QTL, or the best positions of the
QTL change, the selection of cofactors was modified
and the regions were re-analysed. This step was re-
peated until no new QTL were identified or dropped
from the model, and the positions of the QTL were
stable. The difference between this analysis and that
of De Koning et al. (2001) is that in the present study
the cofactors were maintained in the model continu-
ously, while De Koning et al. (2001) adjusted the trait
scores for cofactor effects prior to re-analysing the
chromosomes. The proportion of within-family vari-
ance explained by each QTL (h%7,) was approximated
following Knott et al. (1996):

thTL =4*[1 - (MSEful//MSEI‘educed)]a (6)

where M SEj,; is the mean squared error of the model
including the QTL (4) and MSE,.q.ccq 15 the mean
squared error of the model fitting only a family mean.
For comparison, we also estimated the proportion
of variance explained (+?) by the joint QTL and co-
factors. Empirical thresholds were obtained using
permutation tests (Churchill & Doerge, 1994). Marker
genotypes for the region under study were permuted
within half-sib families, while the phenotypes and the
genotype scores for the cofactors were maintained.
Note that this provides an empirical test for the region
under study, not for the cofactors, but the significance
of every cofactor was tested when its region was
re-analysed. For significance testing we imposed two
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thresholds: (1) Following the recommendations of
Lander & Kruglyak (1995) we used an empirical point-
wise threshold (not accounting for multiple testing)
of P<0-01 to claim confirmed linkage when a QTL for
a given trait had already been reported for a certain
region. (2) Because each region represented on average
1/50 of the chicken genome, we imposed an empirical
‘region-wise’ threshold (accounting for multiple tests
on part of a linkage group) of P<0-001 to claim
genome-wide significant linkage (Lander & Kruglyak,
1995).

It is not trivial to determine which QTL are con-
firming published QTL and which QTL are ‘new’.
Trait definitions vary between studies and some traits
are measured in only a single study. Published studies
use different molecular markers, further compro-
mising any comparison of QTL positions. This is no
problem for genome-wide significant QTL because
they do not rely on published results for inter-
pretation of their significance. Accounting for the
imprecision of QTL detection, we used a maximum
distance of 30cM from a published QTL to infer
whether that QTL had been confirmed in the present
study.

3. Results
(1) Trait heritabilities and correlations

Heritabilities were low to moderate (Table 1) and sig-
nificant direct maternal effects were detected for body
weight, residual feed intake, conformation, dissection
weight and thigh muscle weight. For body weight, the
maternal genetic effect was also significant.

Many of the traits were closely correlated and a
principal component analysis on all adjusted breeding
values showed that five independent vectors explained
99 % of all the variation in the 17 traits. The principal
component vector loadings and the partial corre-
lations between the EBVs show that conformation,
bodyweight and dissection weight grouped together
with correlations ranging from 0-30 to 0-96. Residual
feed intake and feed conversion ratio were a separate
group with a correlation of 0-64. Correlations of the
feed intake traits with the other traits were all within
—0-10 to 0-10, with the exception of feed conversion
ratio and dissection weight (0-17). The thigh and drum
proportion traits were at least moderately correlated
with the absolute correlation varying between 0-20
and 0-81.

(i) QTL analyses

The multiple QTL analyses found 53 genome-wide
significant QTL, varying from a single genome-wide
significant QTL for body weight and conformation
score up to six genome-wide significant QTL for
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residual feed intake and thighbone weight. Twenty-
three additional putative QTL exceeded the threshold
for confirmed linkage. An overview of all these QTL
and a comparison with published QTL is given in
Fig. 1. Seventeen genome-wide significant QTL map
to regions where similar QTL have been published
(Fig. 1). From the 23 QTL exceeding the threshold for
confirmed linkage, 10 map within 30 cM of published
QTL for a similar or identical trait, while the re-
maining 13 putative QTL have to be classified as
suggestive new QTL because they do not map to a
published QTL. Fig. 1 also shows that the QTL appear
clustered rather than uniformly distributed across the
candidate regions. Many of these QTL clusters may
reflect pleiotropic action of a single QTL, with the
actual number of genome-wide significant QTL be-
tween 9 and 53. Although Schrooten & Bovenhuis
(2002) propose a method to identify pleiotropic effects
of QTL in a half-sib design there is at present no
multi-trait software available to distinguish between
linked and pleiotropic QTL in half-sib designs.

(iii) QTL effects

The approximate proportions of within-family vari-
ance explained by the QTL (h)7,) are summarized
in Table 3 and range between 0-04 and 0-26 for the
genome-wide significant QTL. Summed together, the
QTL and QTL used as cofactors have r* (Table 3)
between 0-16 (body weight) and 0-52 (direct maternal
effect for residual feed intake). Multiplying the 72 by 4
to approximate the within-family variance explained
by the joint QTL would give very unrealistic values,
thus illustrating that the variances explained by the
joint QTL are overestimated. Hayes & Goddard
(2001) quantified the level of upward bias using em-
pirical pig and dairy cattle data and the present results
agree with their trend. The total overestimation of the
QTL variances increases with the number of QTL that
are detected.

To evaluate the proportion of the additive genetic
variance that is explained by the joint QTL it is
important to note that the trait scores are EBV that
would explain all additive genetic variance (i.e. have a
‘heritability’ of 1-0) if there were an infinite number
of offspring. The reliability of the EBV, also defined
as the squared correlation between the estimated and
true EBV, is an indicator of the proportion of additive
genetic variance explained by the EBV. The average
reliabilities vary between ~0-1 for the thigh and drum
traits and 0-4 for conformation score, clearly reflecting
the effect of the estimated heritability (Table 1) on the
reliability. Although the QTL explain up to half of the
variance in adjusted EBV (Table 3), this only accounts
for a small part of the additive genetic variance be-
cause of the low to modest reliabilities of the EBV
(Table 1).
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4. Discussion
(1) Multiple QTL analysis

The number of genome-wide significant QTL (53) is
very high compared with published studies of poultry
QTL, even accounting for the fact that many of the
QTL are counted more than once because they affect
multiple traits (Fig. 1, Table 3). The only comparison
with a family based experimental design is offered by
the studies of Van Kaam et al. (1998, 19994, b) who
identified only four genome-wide QTL. They used a
cross between two different broiler strains that is
expected to be segregating for more QTL than the
present study of a single closed population. One
possible explanation for this discrepancy could be
the use of cofactors to account for unlinked QTL in
the present analyses. Using only single QTL analyses
we detected 24 instead of 53 genome-wide significant
QTL. De Koning et al. (2001) first introduced the
use of cofactors for the analyses of half-sib designs in
dairy cattle. Despite the apparent effectiveness of this
approach and its relatively straightforward imple-
mentation, it has not been widely used in the analyses
of experimental data except for the population where
it was first implemented (Viitala et al., 2003). The
present results use a refined approach of the cofactor
analysis where cofactors are continuously included in
the analyses rather than adjusting the phenotypic data
for the cofactor effects (De Koning ez al., 2001). Fig. 2
shows the effect of multiple QTL analyses on the test
statistic along chromosome 1 for two traits. The main
effect of using cofactors is the reduction in the residual
variance leading to a higher test statistic.

(i1) Segregation of QTL within a selected line

The selection line for this experiment is a broiler-dam
line with about 50000 contemporaries at any given
time in overlapping generations. Although all birds
are potential selection candidates the effective popu-
lation size is much smaller, which is exemplified by the
present experiment where 15 grandsires give rise to
approximately one-third of the animals in the G3. The
initial selection of candidate parents is based on body
weight at 6 weeks of age and conformation score.
The selected birds are then entered into a 2 week feed
efficiency trial, while a proportion of unselected re-
latives is dissected to provide carcass measurements.
From the 53 genome-wide QTL, 21 are for traits for
which selection is applied directly on the selection
candidates (body weight, feed intake, conformation)
and 32 for carcass-related traits that have been
measured on relatives of the selection candidates. For
many decades selection has been mainly been on juv-
enile growth and conformation. This may be reflected
in the present results because we find the least number
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Fig. 1. Overview of poultry QTL in nine candidate regions in four experimental crosses and the present study. The
marker maps are in Kosambi cM. Trait names on the left of the maps indicate approximate locations of QTL in the
four experimental crosses while trait names on the right indicate approximate locations of QTL in the present study.
Significance exceeding the threshold for confirmed linkage (*); genome-wide significant linkage (**). MD and MG
denote, respectively, the direct maternal and the maternal genetic effects of the trait.
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Table 3. Approximate proportion of within-family variance (h§yr1) explained by QTL in nine candidate regions
and the proportion of EBV variance (%) explained by joint QTL and cofactors

* joint
cofactors
Trait? GGAl GGA3 GGA4 GGA5 GGA7 GGA8 GGA9 GGAIll GGAI3 and QTL
Body weight 0-07* 0-24%* C 0-16
MD 0-06* 0-16**  0-08* 0-08* 0-21
MG c’ 0-09* 0-12* C 0-24
Feed conversion 0-09* 0-18**  0-09* 0-14%* 0-14**  0-18**  (-18** 0-40
Residual feed intake 0-14**  0-10%* 0-16** 0-15%* 0-10*  0-11** 0-06* C 041
MD 0-05*%*  0-04** 0-03* 0-05* 0-02*  0-08** 0-18** C 0-06**  0-52
Conformation score ch 0-11%* 0-20%* 0-15
MD 0-10* 0-10* 0-19%*  (0-20%* 0-23
Dissection weight 0-24%** 0-23%* 0-13
Breast yield 0-04* 0-11%* 0-20%* 0-13**  0-26
Thighbone 0-12%* 0-17**% 0-10** 0-10%* 0-10** 0-10%* 0-38
Thigh muscle 0-15*%* 0-16** 0-03* 0-10**  0-10** 0-05** 0-05* 0-08** 047
Thigh meat to bone ratio 0-05*%*  0-04* 0-07**  0-09** 0-16*%* 0-04* 0-09%** 0-39
Drumbone 0-30%* 0-05* 0-14%* 0-10%* 0-26**  0-32
Drum muscle 0-18%* 0-13**  0-15** 0-07* 0-21%* 0-29
Drum meat to bone ratio 0-20** 0-08%* 0-20%** 0-20

* Denotes significance at the empirical P <0-01 (confirmed linkage) and ** denotes significance at the empirical region-wide

P<0-001 (~genome-wide significant).

¢ MD and MG denote respectively, the direct maternal and the maternal genetic effect of the preceding trait.
b C indicates that the best position was included as a cofactor although this region was not significant.

of QTL for body weight and conformation. Breeding
objectives have changed over time to include feed
efficiency and breast yield, for which we find large
numbers of QTL. Selection on carcass proportions
is expected to be less effective because it is based on
information coming from relatives. As more traits are
combined in the selection index, the total efficiency of
selection for any given trait will decrease. Although
the development of broiler breeding over time may
offer some explanations, it is nevertheless surprising
that so many QTL with moderate to large effect are
still segregating within this line. It is even more sur-
prising that many of these QTL map to regions that
explain phenotypic differences between broilers, layers
and their wild progenitor. Furthermore the number
of detected QTL suggests that the present design is at
least as powerful as a moderately sized F2 design for
the detection of QTL. This raises questions as to
whether there is just as much variation within chicken
lines as there is between lines, and whether the same
loci or even the same alleles might be involved.

The large population size would certainly con-
tribute to maintain considerable genetic variation by
preventing fixation of alleles by drift and/or inbreed-
ing. However, for QTL with moderate to large effects
to be present it could be hypothesized that consider-
able mutation variance should have contributed
(Keightley & Hill, 1987). If there were new mutations
giving rise to many of the detected QTL it is not
obvious why they would map to the same regions as
QTL explaining differences between broilers and
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layers. However, no firm conclusions can be drawn
because we do not know how many QTL are segre-
gating outside the candidate regions nor whether the
QTL that map to similar regions as published studies
represent the same functional mutation. Furthermore,
we do not know whether the QTL represent single
Mendelian loci or complexes of multiple linked effects.
Fine mapping efforts in both the commercial line
and the experimental crosses would reveal conserved
haplotypes around the mutation(s) that give rise to
the QTL in each population. If these haplotypes are
identical in the crosses and the commercial lines this
points to the same mutation while different haplotypes
and/or QTL locations point to independent mutations
in different populations.

(ii1) Conclusions

The use of nine candidate regions from experimental
crosses to target a commercial line has proved very
powerful. By typing only approximately 20 % of the
chicken genome we detected QTL explaining between
14% and 50 % of the variation in the analysed traits,
although this is most likely an inflated estimate. The
detection of many QTL within a selection line is the
first step to the implementation of marker-assisted
selection within this line. With the present knowledge
this would require large amounts of genotyping and
analyses because the QTL effects have to be estimated
within every family. However, if these QTL can be
fine-mapped to the level of a functional haplotype by
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Fig. 2. Effect of cofactors on the test statistic along chromosome 1 for two traits. The horizontal line denotes the
approximate threshold for genome-wide significance under the multiple QTL model.

using across-family haplotype comparison (Riquet
et al., 1999), they could be used for direct association
and selection at the population level.

Our results inspire some interesting hypotheses
about variation within versus between lines and
whether the same loci could be involved. The present
results lack precision of QTL positions and infor-
mation about QTL on the remaining chromosomes
that would be required to draw any firm conclusions,
but clearly point to commercial populations as a
valuable addition to experimental crosses for the
location of QTL that affect performance traits.
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Introduction to Conservation Genetics. R. FRANKHAM,
J. D. BaLLou and D. A. Briscoe. Cambridge Uni-
versity Press.

Published in 2002, this book is much, much more
than an ‘introduction’ to conservation genetics, it is
an in-depth treatment of the subject suitable (as the
preface tells us) as a university textbook and for
professionals in the field. After a preface and a couple
of introductory chapters, it has two large sections
on ‘Evolutionary Genetics of Natural Populations’
(182 pages; 7 chapters, including one specifically on
small populations) and ‘Effects of Population Size
Reduction’ (135 pages; 5 chapters), which together
amount to a textbook in evolutionary population
genetics, liberally illustrated with examples from en-
dangered animals and plants or laboratory models,
often the Frankham-Briscoe lab’s own highly illus-
trative experiments with Drosophila. The final section,
‘From Theory to Practice’ (170 pages; 6 chapters)
covers the practical application of the tools and prin-
ciples discovered in the first two sections and ranges
widely, from species definitions through uses of mol-
ecular markers to management advice in captive
breeding. As in any good textbook, each chapter ends
with further reading and problems, and at the back
there is a list of take home messages, a set of revision
problems, an extensive glossary, the reference list and
the index. Truly this is a massive enterprise.

Rightly, the book places quantitative genetic
variation, especially for reproductive fitness, firmly
at centre stage in conservation genetics, and its main
business is to consider the consequences of popu-
lation size (and change) for this kind of variation.
Molecular markers, especially non-expressed DNA
markers, have many useful roles in conservation gen-
etics documented here, but we should not (and here
do not) lose sight of the central concern, which is ex-
pressed variation. The clarity of presentation of many
population genetics issues is excellent. Although the
treatment becomes reasonably mathematical at times,
to a greater extent than most textbooks, this one de-
livers worked examples of even the simplest formulae,
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and line-by-line algebra, making it very accessible to
the mathematically challenged. The authors are also
appropriately candid about uncertainties, for example
in chapter 13, when writing about the mutational
meltdown hypothesis and the effective population size
required to avoid inbreeding depression; and they are
appropriately dismissive, for example in chapter 12
when writing about fluctuating asymmetry as a way of
detecting inbreeding depression. In fact sections 1 and
2 struck me as an excellent teaching resources for
university-level evolutionary genetics, with the added
benefit that undergraduates will be attracted to a
textbook that is so overtly about conservation.

I found few serious issues to argue about in the text,
which, considering the scale of the enterprise, is re-
markably free of errors. The errors that have been
spotted so far can be found on the book’s web page at
http://consgen.mq.edu.au/.

The main criticisms one can make of this book
concern its organisation and presentation. In their
preface, the authors say that the organisation of ma-
terial has been arrived at from teaching experience,
and that some repetition results from trying to make
each chapter the basis for a free-standing lecture.
However, as a reader I found the extensive revisiting
of topics and examples trying. Part of the problem
comes from the separation of the two first sections,
because events in small populations are described in
a section 1 chapter, but then revisited in section 2 as
events in declining populations. In consequence, by
the time we reach the main treatment of inbreeding
and inbreeding depression in section 2, we have
already read quite a lot about them, both in an
introductory chapter and in section 1. Furthermore,
the main discussion of selfing in plants, a normal
behaviour for some 20 % of plants, ends up in section
2 about declining populations, which seems strange.
Similarly, other topics such as effective population
size and genetic rescue of inbred populations by sup-
plementation are covered in more than one place. The
organisation also leads to extensive revisiting of the
same cases studies in different parts of the book.
To give some extreme examples: the greater prairie
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chicken and the northern hairy-nosed wombat appear
ten times, the California condor 16 times, and the
golden lion tamarin 17 times. I can’t help feeling that
a combination of more restraint on picking examples
and more thorough treatment of some of these major
case studies, bringing all the information to one place,
would have brought economy of effort (writing and
reading).

The production style adds to the sense of scattered
facts. The main text is mostly in paragraphs, but
regularly breaks out into lists of bullet points and
equations. Aside from the main text, there are num-
bered boxes, examples, figures and tables. There are
also frequent line drawings of the organisms under
discussion and marginal summaries of the adjacent
text. The overall effect is to break up the flow some-
what, as one flits from text to one of the display items
and back, being careful to remember whether one is
looking for Box 12.1, Example 12.1, Figure 12.1 or
Table 12.1 (they all exist).

Given these remarks, the recent publication of a
much shorter primer associated with this book sounds
like a very good idea indeed.

In terms of content, so few stones are left unturned
that it seems churlish to point out any omissions, yet
for such a thorough treatment, I do think there are a
couple. Compared with the heavy working of some
case histories such as the Northern elephant seal and
the golden lion tamarin, I was surprised that the
cheetah has such a low profile in this book. There is
no thoroughgoing treatment of the arguments that
have surrounded this species, which is a shame, since
its relative lack of molecular variation led to several
arguable inferences that need to be set straight, and
these authors could have done it.

Similarly, in this determinedly apolitical book, the
main omission for me is discussion of the value-for-
money of conservation genetics. Despite the 617 pages
here, I believe that some remarkably simple and cheap
rules of thumb exist for practical genetic management
of endangered populations. Indeed, the book comes
up with several: To avoid inbreeding depression, keep
N, at >50; to retain evolutionary potential, keep N,
>500; N, is likely to be around 0-1 of census popu-
lation size for many organisms; captive breeding in-
troduces problems of its own, so only use it as a last
resort; minimise kinship of mates in captive breeding
programmes (more can be found in the book’s closing
list of take-home messages). To what extent should
scarce conservation funds be spent on conservation
genetics, for example on molecular surveys or com-
puter modelling of endangered populations, versus
securing their habitat or understanding the ecological
causes of decline? If conservation geneticists can lever
additional funds specifically for their work, then great,
but mainstream conservation money should surely be
spent on habitat protection and understanding of
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ecology? I should have liked some discussion of this
issue.

JOSEPHINE PEMBERTON

Institute of Cell, Animal and Population Biology

The University of Edinburgh
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DNA: Changing Science and Society. Ed. T. KRUDE.
Cambridge University Press. 2003. 193 pages. ISBN
0 521 82378 1. Price £25.00 (hardback).

To mark the 50th anniversary of the publication of
Watson and Crick’s model of the structure of DNA,
Darwin College, Cambridge marked the event by
holding a series of lectures by distinguished speakers
to explore the impact of our understanding of DNA
on contemporary science and society. This book
comprises the eight essays based on these lectures,
together with a short introductory summary by the
editor, Torsten Krude. Its breadth illustrates how
pervasive a topic DNA has become and how iconic its
structure. Nevertheless whilst the public now accepts
its use in forensic studies, for example, many remain
wary of changes produced by genetic manipulation,
not least because of an unwillingness by individuals,
the press, and particularly the antagonists, to consider
the problem at a finer level than is, for example, GM
food safe or not, regardless of the insertion technique
or construct.

The first chapter, by Aaron Klug, differs from the
rest in dealing not with contemporary issues, but with
the history of the discovery of DNA. It features in the
crucial work on x-ray crystallography, particularly
that of Rosalind Franklin, and how that can be in-
terpreted, showing some of the well and less known
photographs. It is not a simple read, but interesting
and informative.

The remaining essays can be grouped into those
which mainly consider current technical develop-
ments, perhaps with historical background, and those
which mainly deal with some of the political and
ethical issues that arise from developments in genetic
technology. In the former are Alec Jeffreys on Genetic
Fingerprinting, Svante Pddbo on Ancient DNA,
Ron Laskey on DNA and cancer, Robert Winston
on DNA and reproductive medicine, and Dorothy
Bishop on Genes and language. They provide nice
reviews, which would be useful for a person requiring
background knowledge in some of the applications of
DNA. The professional is likely to find most inter-
esting that which he knows least about: in my case the
genetics of language, but the discussion here is mostly
limited to what determines the ability to construct
language and an argument against Chomsky’s view
that grammatical structures are inherited.
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The discussions on DNA, biotechnology and
society by Malcolm Grant, who was Chair of the
Agriculture and Environment Biotechnology Com-
mittee and on DNA and ethics by the philosopher
Onora O’Neill seem to me well reasoned discussions.
Not least both argue against the simplistic view that,
for example, that decisions should not be based on a
strong version of the Precautionary Principle, which
are argued by some ‘provides reasons for avoiding all
GM technologies, indeed all new technologies, that
might have bad consequences (O’Neill, p. 171)’. I was,
however, disappointed that, in her discussion of
individual’s rights on their DNA she did not discuss
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the use of such information in life and health in-
surance.

The content is not, with few exceptions, highly
technical and should be readily accessible to a broad
audience. Also citations are not given to specific
papers, but a short list of background reading is
given in each chapter. Overall, this book is a diverse
and enjoyable book, which I hope gets a broad
readership.

WILLIAM G. HILL

Institute of Cell, Animal and Population biology
School of Biological Sciences

The University of Edinburgh
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