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1. Consider a plane curve C of order n and class X; it is to be
supposed throughout that G has only ordinary Plucker singularities,
i.e. nodes, cusps, inflections and bitangents. Through any point
P± of C there pass, apart from the tangent at Px itself, X — 2 lines
which touch C; let Ti2 be the point of contact of any one of these
tangents and P2 any ° n e of the n — 3 further intersections of Px T12

with C. Through P2 there pass, apart from the tangent at P2 itself
and the line P2P\, X — 3 lines which touch C; let T23 be the point
of contact of any one of these with C and P3 any one of its n — 3
further intersections with C. Proceeding in this way we obtain points
P4, P5 , Pm+i, each line P ^ Pt being a tangent of C. If we can
so arrange matters that Pm+i coincides with P1 we obtain a polygon
of m sides whose vertices all lie on C and whose sides all touch C,
each of the m points of contact being, it must be understood, distinct
from the vertices; this polygon is both inscribed and circumscribed
to C, and is called an in-and-circumscribed m-gon of C. The number
of in-and-circumscribed triangles of a plane curve was found by
Cayley.1

The determination of the number of in-and-circumscribed rw-gons
of a curve is one of those problems which, as soon as they have been
propounded, seem immediately to suggest that a solution will be
forthcoming by application of the theory of correspondence. In fact,
given a point P1 of C there are X — 2 tangents Px T12 each of which
meets C in n — 3 further points—corresponding to P1 there are
{X — 2) (n — 3) positions of P2. Similarly, to each position of P2 there
correspond (X — 3) (n — 3) positions of P3, so that to any position of
P1 on C there correspond (X — 2) (X — 3) (n — 3)2 positions of P3.
Proceeding in this manner we find that to any position of Px there
correspond (X — 2)(X — 3)"*-1 (n — 3)m positions of Pm+1. We will

1 Phil. Trans. Roy. Sue , 161 (1871), 369-412 ; or Papers, 8, 212-257.
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122 W. L. EDGE

denote the correspondence between the points Px and Pm+i by Sm; it
is clearly a symmetrical correspondence, and if ym is its valency and
p the genus of C the number of united points of Sm is1

2 (X - 2) (X - 3)*-1 (n - 3)m + 2#ym.

These united points include all the vertices of all the in-and-
circumscribed m-gons of C; indeed they include each vertex twice
over. For if A^ A2 .. .. Am is any in-and-circumscribed m-gon we
may take Px

 a^ a n y vertex and proceed round the polygon in either
direction; if Px is, for example, at Ax we may take P2 to be either of
the two vertices A2, Am which are contiguous to Alt and in either
case we obtain a position of Pm+i at Ax. Thus, if Nm is the number
of in-and-circumscribed m-gons of C we have the relation

2mNm = 2 (X - 2) (X - 3)"1-1 (n - 3)- + 2pym - H
m,

where Hm is the number of points of C which are united points of
Sm without being vertices of in-and-circumscribed m-gons, each of
these points being included according to its proper degree of multiplicity.
We say, following Gayley, that the problem has Hm heterotypic
solutions. This much is easy; the whole difficulty, and it is not an
inconsiderable one, lies in calculating Hm. In order to calculate
Hm we have first to discover all those points of C which are united
points of Sm without being vertices of in-and-circumscribed m-gons;
secondly we have to decide how often each of these points is to be
included in the number Hm.

2. Cayley solved the problem in the case when m = 3 not by
means of correspondence theory but by means of his functional
method; he gave indications of the solution by correspondence
theory but he was unable satisfactorily to account for the hetero-
typic solutions, and this matter remained unsettled until it was
cleared up later by Zeuthen.2 We shall consider in this present
paper the case when G is a curve of the fourth order; this simplifies
the problem somewhat, for although heterotypic solutions can be
numerous enough for a quartic curve they are by no means so
numerous as for curves of higher orders.

1 This is the well-known Cayley-Brill correspondence theorem, the result being
first stated by Cayley and afterwards proved by Brill. For a proof see Zeuthen's text-
book, referred to below, pp. 205-210.

2 Lehrbuch der abzahlenden Methoden der Geometrie (Leipzig, 1914), 249-253.
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The problem of the in-and-circumscribed polygon for a plane
quartic without multiple points has been solved recently1; in this
present paper the problem is solved for any plane quartic with only
ordinary singularities. The number Nm of in-and-circumscribed
m-gons is calculated for values of m up to 10; the detailed work of
calculating the number of heterotypic solutions becomes tedious for
the larger values of m, but the aim has been to work out the problem
to such a stage that the calculation of Nm for larger values of m
offers no further theoretical difficulty. The work proceeds step by
step; the value of N3 being known already we first calculate Nit then
N5 and so on. The results are tabulated at the end of the paper.
The curve being a quartic we have n = 4 and 2p = X — 6 + K, where
K is the number of cusps; hence the equation for Nm is

2mNm = 2 (Z - 2) (Z - 3)™-1 + (Z - 6 + K) ym - Hm.

By considering the relations connecting the successive corre-
spondences Sm we find, as in C. P. §21, that the valency ym satisfies
the difference equation

Ym+(X- 6) ym_1 + (X - 3) ym_2 = 0.

Since (cf. C. P. § 5) y i = Z — 6 and y2 = - (Z2 - 13 Z + 38), the
values of 73, y4, .. . . , can be calculated seriatim from this difference
equation; the fact that yx = Z — 6 causes every ym to have Z — 6 as
a factor when m is odd.

3. Before proceeding further one or two remarks must be made
concerning the number of times a point of C4 must be included in
Hm when this point is a united point of Sm and is not a vertex of an in-
and-circumscribed m-gon. Let Po be such a point of C4; then of those
points which correspond to PQ in Sm a certain number, v say, coincide
with Po. If then Px is taken to be a point of C4 near to Po there are
v points P^;

+1> Pm+i. • • • •, Pm+i which correspond to P1 in Sm and
which are also near Po. Suppose now that the coordinates of the
points of (74 in the neighbourhood of Po are expressed in terms of a
parameter, the point Po itself being given by the zero value of the
parameter. The parameter of Px will then be an infinitesimal. Taking
this parameter of P1 as the principal infinitesimal the v parameters of
the points P™+1, P£f+1 , P%+1 will be infinitesimals of certain

: E d g e : "Cayley's problem of the in-and circumscribed triangle"; Proc. London
Math. Soc. (2), 36 (1933), 142-171. This paper will be referred to as 0. P .
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orders; in all the cases with which we shall be concerned these v
parameters will be infinitesimals of the same order, say of order a.
Then the point Po makes a contribution av to the number Hm. This rule
is due to Zeuthen.1 When a = 1 the number of times that P o is to
be reckoned as a contribution to Hm is equal to the number of points
that correspond to P o in Sm and at the same time coincide with Po;
this often happens, but care should always be taken to see that
Zeuthen's rule is properly applied. We will, however, in order
to shorten the work, not allude to Zeuthen's rule in those cases
when a = 1.

In-and-circumscribed quadrilaterals.
4. The valency of the correspondence $4 on the quartic curve

C4 is found, by use of the difference equation, to be

y4 = - {X4 - 21 Xs + 26IX2 - 1073X + 1590};

hence the total number of united points of the correspondence $4 is

2(X - 2){X — 3 ) 3 - ( X - 6 + K ) ( X 4 - 2 7 X 3 + 261X2 - 1073X + 1590)
= - X5 + 35X4 - 445X3 + 2729X2 - 8190X + 9648

- K (X4 - 27X3 + 261X2 - 1073X + 1590).

We have now to account for the heterotypic solutions.
Let us first consider those heterotypic solutions which are associ-

ated with the nodes of C4. From each node there are X — 4 tangents
to the curve; let the points of contact of those from a particular node
D be d(1), cH2) , d(x~4). Suppose Pa is at D; then any one of the
X — 4 tangents from D, say Ddf-V, gives a position of P 2 on the other
branch of the curve at D. To obtain P 3 we may take any one of the
X —4 tangents from D other than Ddm; each of these X —5 tangents
gives a position of P 3 coinciding with Px. Then we have a choice of
X — 5 tangents each of which gives a position of P4 on the other
branch of the curve a t D, while a final choice of X — 5 tangents
gives P 5 coinciding with Px. Thus of the (X — 2) (X — 3)3 points
which correspond to P1 in the correspondence S4, (X — 4) (X — 5)3

coincide with P a . This is true if P, is on either branch of the curve
at D, so that there arise in this way 28 (X — 4) (X — 5)3 heterotypic
solutions associated with the nodes of C4, where 8 is the number of
nodes.

1 Loc. cit., p. 186. See also Enriques : Teoria geometrica delle equazioni, Vol. 1
(Bologna 1929), 160. The statement of this rule in G. P. (pp. 151-152) is not as
accurate as it might have been ; it is not the lengths of infinitesimal arcs that must be
considered, but infinitesimal differences of parameters.
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Now the tangents to C4 at a node have each one further inter-
section with the curve; let the two tangents of the node D meet
C4 again in dx and d2 respectively. Then dx and dz are also united
points of #4. For suppose P1 is at dx. One of the X — 2 tangents
from d] to the curve is d^D; the remaining intersection of this
tangent with C4 is at D, on the branch which it does not touch;
taking this intersection as P2 there are X — 4 tangents from it to
C* each giving a position of P3 on the other branch at D; from P3 there
is then a choice of X — 5 tangents each of which gives a position of
P4 coinciding with P2. From P4 we can then return to Pl along the
tangent Ddu thus giving a position of P5 coinciding with Px. It is
important to notice that, of the X — 2 tangents from P4 to the curve,
two coincide with the tangent to that branch at the node on which
P4 does not lie. Thus, when Px is at du 2 (X — 4) (X — 5) of its
corresponding points in <S4 coincide with it. In this way there arise
48 (X — 4) (X — 5) heterotypic solutions. But, further, each of the
tangents, other than dxD, from d1 to C4 meets C4 in a point which is
also a united point of 54. For let rfn be an intersection of C* with
a tangent d1dli, other than dxD, from dx. Then if Px is at dn we
may take P2 at d\, P3 at D on that branch of the curve which dxD
does not touch, P4 again at d± and P5 at d^. We are justified in
saying that P4 may be at dx because, in order to pass from P3 to
P4 we must choose one of the X — 2 tangents, other than P%P2, from
P3; this condition is not violated here, although P3 P2 and P3 P4 are
the same tangent, because in this case P3 is at a node and, as has
already been remarked, two of the X — 2 tangents from P3 coincide
with P3 dx. Since there are two points dlt d2 associated with each
node D, and since there are, apart from the tangent at the node,
X — 3 tangents of C4 passing through each of them, the number of
heterotypic solutions arising in this way is 28 (X — 3). The total
number of heterotypic solutions associated with the nodes of C4 is
therefore

28 (X - 4) (X - 5)3 + 48 (X - 4) (X - 5) + 28 (X - 3).

Suppose now that 7 is a point of inflection of C4; the tangent at
/ has one remaining intersection j with C4, and there are X — 3 other
tangents from I to the curve. Let Pi be the remaining intersection
of one of these X — 3 tangents with (74; then we may take P2 at /
and P3 at j . Since, / being an inflection, two of the X — 2 tangents
from j to C4 coincide with jl, we may take P4 to be at / , and then
P5 at Pi, which is therefore a united point of £4. Hence we have,
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associated with the inflections of Gi, (X — 3)t heterotypic solutions, i
being the number of inflections of G*.

5. I t remains now to consider those heterotypic solutions
associated with the cusps of C4; here it is a little more difficult to
arrive at the result because the application of Zeuthen's rule has to
be considered. Let I be a cusp of C4; there are X — 3 tangents,
other than the cuspidal tangent, of C4 which pass through K.
Suppose P x is at K; then any one of these X — 3 tangents has its
remaining intersection P 2 also at K; there are then X — 4. tangents
which may be used for passing from P 2 to P3, P 3 being also at K;
we have then a choice of X — 4 tangents for P 3 P 4 and of X — 4
tangents for P^P^, both P 4 and P5 being at K. Hence K is a united
point of #4, and the number of corresponding points which coincide
with it is (X — 3) (X — 4)3. To find how many times K is to be
counted among the heterotypic solutions we apply Zeuthen's rule: if
P x is taken near K we also have a position of P 5 near K; when the
points near K on the curve are expressed in terms of a parameter in
such a way that the value of the parameter at the cusp itself is zero
the parameters of Pi and P 5 will both be infinitesimal. If the para-
meter of Pi is taken as the principal infinitesimal the difference
between the parameters of Pi and P 5 will be an infinitesimal of a
certain order a and, in order to find how many times K must be
reckoned among the heterotypic solutions, it is necessary to take the
product of a and the number of points which correspond to K in the
correspondence 84 and coincide with it.

In order to calculate a it will be sufficient to take a particular
quartic curve; let us therefore, as on a previous occasion,1 take the
curve for which

x : y : 1 = am2 A3 : a2mA2 (A2 + 1) : m2A2 + a2 (A2 + I)2.

Referred to ordinary rectangular Cartesian coordinates this is a
bicircular quartic with a cusp at the origin, the parameter of the
cusp being A = 0. If then we take Px to have the parameter A = /u.
we find a point P 5 whose parameter is A = /J, — 8p2 as far as the second
order of JU.; the difference between the parameters of Pj and P 5 is
thus 8/̂ 2, and is an infinitesimal of the second order. Hence a = 2.
Wherefore the number of times that K is to be counted among the
heterotypic solutions is 2 (X — 3) (X — 4)3.

1 a p., p. 160.
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The tangent at the cusp K meets Ci in one further point, say t,
and t occurs among the united points of 8t. Indeed if P x is at t the
tangent tK has its fourth intersection with C* at K, and so P 2 is at
K. Any one of the Z — 3 tangents from K then gives P 3 also
at K, while any one of the remaining Z — 4 tangents from K gives
P4 at K\ we may then take the tangent PiP0 to be Kt, giving a
position of P 5 at t. I t appears then that when P1 is at t there are
(X — 3) (X — 4) of its corresponding points in S4 also at t. Further
it is found that, when the application of Zeuthen's rule is considered,
we have bo multiply this number by 2 in order to obtain the number
of times which t must be reckoned among the united points of #4.
The total number of heterotypic solutions associated with the cusps
of C* is therefore

2/c (X - 3) (X - 4)3
 + 2K(X~ 3) (Z - 4).

The total number of heterotypic solutions of the problem is therefore

Hi = 28 (Z - 4) (Z - 5)3 + 48 (Z - 4) (Z - 5) + 28 (Z - 3)
+ i (Z - 3) + 2K (Z - 3) (Z - 4)3 + 2/c (Z - 3) (Z - 4).

We can now substitute for 8 and i in this expression for Ht from
Pliicker's equations, which give

28 = 12 - Z - 3/c, ( = 3Z - 12 + *.

We then find, after some reduction,

H4 = - Z 5 + 31Z4 - 365Z3 + 2089Z2 - 5862Z + 6480
+ K(- Z 4 + 27Z3 - 241Z2 + 897Z — 1206).

When this is subtracted from the number, already found, of united
points of St we obtain

8N4 = 4Z4 - 80Z3 + 640Z 2 - 2328Z + 3168 - K (20Z2 - 176Z + 384)
or
2iV4 = (Z - 4) {Z3 - 16Z2 + 96Z - 198 — K (5X - 24)}.

It is simpler, especially for higher values of m, to work with
y = X — 4 instead of with Z , and this we shall do. In terms of y
we have

8 - * ( 5 y - 4)}

and y4 = _ (y* _ 1 \yt + 33 / - 2oy + 2).
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In-and-circumscribed pentagons.

6. The valency of S5 is

Ys=(y- 2 ) (y* - 122/3 + 382/2 - 20y + 1);

hence the total number of united points of S5 is

2 (X - 2) (X - 3)4 + (X - 6 + K) yh

= 2 (y + 2) (y + 1)* + (y - 2 + K) yb

= y6 — \±yh + 102yi — 192y3 + 265y2 — 66j/ + 8

We must now enumerate those united points of 8$ which are not
vertices of in-and-circumscribed pentagons.

Consider first heterotypic solutions associated with the bitangents
of C4. Through a point of contact of a bitangent there pass X — 3
tangents of Ci, other than the bitangent itself; let hx be the remaining
intersection of any one of these X — 3 tangents with C4. Then
through hx there pass X — 3 further tangents of C4; let h2 be the
remaining intersection of any one of these tangents with C4. It is
easily seen that h2 is a united point of S5; for let Px be at h2. Then
we obtain a position of P2 at ht and a position of P3 at the point of
contact of the bitangent. We can then choose the bitangent itself as
the tangent P3Pi, so that P4 coincides with P3: we can then take
P5 at hx and P6 at h2. Thus we have P6 coinciding with Px. Since
each bitangent gives rise to 2 (X — 3) points hi and each point hx to
(X — 3) points h2 we obtain 2T (X — 3)2 heterotypic solutions associ-
ated with the bitangents of (74, T being the number of bitangents.

Consider now heterotypic solutions associated with the cusps of
C4. If K is a cusp of C4 we see, arguing as in the case of the corre-
spondence #4, that (X — 3) (X — 4)4 of those points which correspond
to K in Sb coincide with K. In this case however the application
of Zeuthen's rule does not lead to the introduction of any further
numerical factor; for if Px is a point near K any point P6 which
corresponds to Px in the correspondence <S5, and which is also near
K, is on the opposite side of K to P1; thus the difference of the two
infinitesimal parameters which give the two points Px and P6 must be
an infinitesimal of the same order as the parameter of P±. We see
also that t, the intersection of C4 with its tangent at K, is a united
point of Sb, and that (X — 3) (X — 4)2 of its corresponding points
coincide with it; here again it is not necessary to multiply this by
any numerical factor. Further: if any one of the X — 3 tangents,
other than tK, from t to C4 meets C* again in a point tlt tx is also a
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united point of #5 and coincides with X — 3 of its corresponding
points; in this way we have (X — 3)2 heterotypic solutions associated
with each cusp. The aggregate of the heterotypic solutions associated
with the cusps of C4 is therefore

K {(X - 3) (X - 4)4 + (X - 3) (X - 4)2 + (X - 3)2}.

The total number of heterotypic solutions now obtained is

2T (X- 3)2 + K {(X -3){X- 4)4 + (X - 3) (X - 4)2 + (X - 3)2}
= 2T {y + I)2 + K {y* (y + 1) + y2 (*/ + 1) + (y + I)2}.

These are in fact all the heterotypic solutions associated with the
singularities of C4. If we now, using Pliicker's equations, substitute

2T = X2 — 10X + 32 - 3K = y2 - 2y + 8 - 3/c,

and subtract this total number of heterotypic solutions from the
number of united points of S5, the result is

7. We have not yet however arrived at the formula giving ten
times the number of in-and-circumscribed pentagons, for there are
now heterotypic solutions other than those associated with the singu-
larities of C*. For suppose efg is any in-and-circumscribed triangle of
Cim, through any one of its vertices, say through e, there pass, apart
from the two sides of the triangle which meet in that vertex, X — 4
tangents of C4; if v1 is the remaining intersection of any one of these
tangents with (74 then Vi occurs twice among the united points of
S5 {cf. G. P., p. 170). Thus we have, associated with each of the
N3 triangles efg, 6y heterotypic solutions. Hence the number which
we have just obtained by subtracting the number of heterotypic
solutions associated with the singularities of C4 from the number of
united points of 85 is equal to ION5 + §yNz. We know that

6^3 = y{y* - V + 38t/ - 24 - 3K (3y - 5)};

hence we obtain

The number of in-and-circumscribed pentagons of any given plane
quartic is obtained at once from this formula by substituting the
appropriate values for y and K ; the results are given in the table at
the end of the paper.
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In-and-circumscribed hexagons.

8. We pass now to the consideration of the correspondence
S6 and its united points. I t is found that

_ y6 = y6 - nys -f 10(h/4 - 242t/3 + 2252/2 - &1V + 2>

and that the total number of united points of S6 is

— y7 + 21?/6 — 120*/5 + 482t/4 — 649t/3 + 561*/2 — 102y + 8 + «ry6.

Let us now enquire as to the nature of the heterotypic solutions
that are associated with the singularities of C*.

We commence by rinding the heterotypic solutions that are
associated with the nodes of C4. Suppose, exactly as in the case of
the correspondence Si, tha t D is a node of C4; let, again, d-y be the
intersection of C4 with either of its two tangents at D and dn the
remaining intersection of C4 with any of its tangents from dx other
than d±D. We must now introduce also the point dul, this being the
remaining intersection of C4 with any of its tangents other than
dtldi from any of the points diX. Associated with each node D of
C4 there are two points dx, 2 (X — 3) points dn and 2 (X — 3)2 points
dxll. All these points are united points of S6. A discussion similar
to that above concerning the correspondence S± explains that each
branch of the node at D is to be counted (X — 4) (X — 5)5 times
among the united points of $6, each point dx is to be counted
2 (X — 4) (X — 5)3 times, each point dn 2 (X — 4) (X — 5) times and
each point diu once. Hence the total number of heterotypic solu-
tions associated with the nodes of C4 is

= 28 \y (y - I)5 +2y(y- I)3 + 2y (y* - 1) + (y + I)2}.

Next there are heterotypic solutions associated with the inflections
of C*. Let I be an inflection, px the remaining intersection of C4 with
any one of the X — 3 tangents (other than the inflectional tangent
itself) from / to the curve; through each point p^ there pass X — 3
other tangents of C4, apart from pj; let pn be the remaining
intersection of C4 with any one of those tangents. There are
(X — 3)2 points £>n associated with each inflection / of C4, and each
of them is a united point of SG; if we take a position of P± at pu we
can take P2, P3, Pi, -Ps. P&, Pi respectively to be at px, I, j , I, Pl, pn,
where j is, as before, the remaining intersection of C4 with its
inflectional tangent at / . Hence we have, when Px is at pllt a
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position of P7 coinciding with it; wherefore pxi is a united point of
*S6. Hence we have, associated with the inflections of C4, a number
of heterotypic solutions equal to (X — 3)2t or (y + l)2i.

Lastly, in order to obtain the total number of heterotypic
solutions associated with the singularities of 04, we must consider
those associated with the cusps. As in the discussion of the hetero-
typic solutions belonging to Sit let K be a cusp of C4 and t the
intersection of C74 with its cuspidal tangent at K. We have now also
to introduce the points t1} where t^ is the remaining intersection of
C4 with any one of its X — 3 tangents, other than tK, which pass
through t. Arguing as we did for the correspondence $4 we find that
K, t, tx are all united points of S6; of those points which correspond
to K in the correspondence 86 there are (X — 3) (X — 4)5 which
coincide with K; of those which correspond to t there are (X — 3)
(X — 4)3 which coincide with t and of those which correspond to
<! there are (X — 3) (X — 4) which coincide with tx. Moreover, in
order to find how many solutions these points contribute to the
number HQ we must in each case multiply by 2 as we see on appealing
to Zeuthen's rule. Hence, as there are X — 3 points tx associated
with K, the number of heterotypic solutions associated with the
cusps of C4 is

9. We have now obtained the total number of heterotypic
solutions associated with the singularities of C4; it is

28{y(y - I)5 + 2y(y- I)3 + 2y (if - 1) + (y + I)2}

+ L (y + I)2 + 2Ky (y + 1) (?/4 + y2 + y + 1).

Since Plucker's equations give

28 = 8 — y — 3K, i = 3y + K,

this total number of heterotypic solutions is
- y7 + 13y6 — 52t/5 + 110/ — I21ys + 105y2 — 22y + 8

— K (y6 - 17?/5 + 34?/4 - 46y3 + 31y2 — 13?/ + 2).

When this number is subtracted from the total number of united
points of S6 the result is

Any further united points of $6 which are not vertices of in-and-
circumscribed hexagons are associated with in-and-circumscribed
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polygons with a lesser number of sides. In the first place a vertex
of an in-and-circumscribed triangle counts twice among the united
points of S&; if efg is an in-and-circumscribed triangle and we take
Pi to be at e then we have two positions of P7 also at e; we can take
the sequence of points P1; P2, Ps, Pit P5, P6, P7 to be either e, / , g,
e, f, g, e or e, g, f, e, g,f, e. Again: through each vertex of an in-and-
circumscribed quadrilateral there pass X — 4 tangents of (74 apart
from the two sides of the quadrilateral which meet in that vertex;
if ux is the remaining intersection of (74 with any such tangent then
«i occurs twice among the united points of S6 (cf. O. P., p. 170).
Thus the number just obtained by subtracting the heterotypic
solutions associated with the singularities of C4 from the total number
of united points of S6 is equal to 12JV6 + 6^3 + 8yN±. Since

= y{y3- V + 38y - 24 - 3K (By - 5)}
and 2iV4 = y{yi — 4i/2 + 16y — 6 - K [5y — 4)},

we obtain finally

= y{8y5 - 72y*+ 387*/3- 583y2+ 442?/- 56 - K (66y3- 216y2+ 20ly-33)}.

In-and-circumscribed heptagons.

10. For the correspondence S7 it is found that

Y7 = (V- 2) (y6 - IS?/5 + Illy4 - 2681/3 + 2O72/2 _

while the total number of united points is

y8- 20y7+ 203yQ - 730*/5+ 1823t/4 - 1832^3+ 10692/2- U6y + 8 + /cy7.

As in the case of the correspondence S5 there are heterotypic solu-
tions associated with bitangents and heterotypic solutions associated
with cusps. Through each of the points h2 introduced in considering
the correspondence S& there pass, apart from the tangent h2 A1; X — 3
further tangents of C4; if h3 is the remaining intersection of any one
of these tangents with C4 then it is easily seen that h3 is a united
point of S7. We thus obtain 2T(X —3)3 heterotypic solutions
associated with the bitangents of C4.

If K is a cusp of C4, t the remaining intersection of C4 with its
cuspidal tangent at K, t± the remaining intersection of 04 with any
one of the X — 3 tangents other than tK which pass through t, tu the
remaining intersection of C4 with any one of the X — 3 tangents
other than tx t which pass through tlt then the points K, t, tx, tn are
united points of S7. Of those points which correspond to K in
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<S7 there are (X — 3) (X — 4)6 which coincide with K\ of the points
which correspond to t, (X — 3) (X — 4)4 coincide with t; of the points
which correspond to tlt (X — 3) (X — 4)2 coincide with t± and of the
points which correspond to £n, X — 3 coincide with tn. Since there
are X — 3 points tx and (X — 3)2 points tu associated with each cusp
of C4 the number of heterotypic solutions associated with the cusps
of C4 is

K {(X - 3) (X - 4)6+ (X - 3) {X - 4)4+ (X - 3)2 (X - 4)2 + {X - 3)3}.

The total number of heterotypic solutions associated with the
singularities of C4 is therefore

2r (y + I)3 + K{ye (y + 1) + y* (y + 1) + y* (y + I)2 + (y + 1)3}

which, since 2T = ?/2 — 2y + 8 — 3/c, is equal to

8+ K(y7 + y6+ y5 + 2y* - 5y*-6y-2).

When this is subtracted from the total number of united points of
S7 the result is

y8 - 20y7 + 203i/6 — 731y5 + 1822?/4 — 1831y3 + 1050?/2 — lG8y
— K (21y* - 146y5 + 492yi — 7432/3 + 451y2 - 9ly).

This result includes, as well as the vertices of the in-and-circumscribed
heptagons all counted twice, certain heterotypic solutions associated
with in-and-circumscribed polygons with a lesser number of sides.
In view of the discussions which have already taken place it will be
sufficient merely to state that the value of this last expression is
14LN7 + !0yN& + 6y (y + 1) Ns. On substituting their known values
for 10JV5 and 6.ZV3 we find after calculation that

14iV7 = y{y7 — 21y6 + 217?/3 - 833i/4 + 2023?/3— 2135y2+ 1154?/ — 168
- IK (3y5 - 2 3 / + 79s/3 - \2ly2 + 13y - 13)},

and the different values of N7 can now be tabulated forthwith.

In-and-circumscribed polygons for which m> 1.

11. Whatever the length of the calculations required to evaluate
the number Nm of in-and-circumscribed m-gons of 6'4, the general lines
on which the work proceeds should now be clear enough. There are
two types of heterotypic solutions occurring in the number Hm which
is to be subtracted from the total number of united points of the
correspondence Sm; heterotypic solutions of one type are associated
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with the singularities of C while heterotypic solutions of the other
type are associated with in-and-circumscribed polygons of a lesser
number of sides. The nature of the heterotypic solutions that are
associated with the singularities of 6'4 depends on the parity of m.
If m is odd there is a set of heterotypic solutions associated with
the bitangents and a chain of heterotypic solutions associated with
the cusps; if tn = 2p -f- 1 it is found that the number of heterotypic
solutions that arise in this way is

2T (X - 3)» + K (X - 3) {(X - 4)2*> +3>S1 (X - 3)- (X - 4)**-*-*}
0

= {y*-2y + 8-3K)(y+ 1)* + K (y + 1) {#** + 'f\y + 1)* y*p-*>-*).

If however m is even, there is a set of heterotypic solutions associated
with the inflections, a chain of heterotypic solutions associated with
the nodes and also a chain of heterotypic solutions associated with
the cusps; if m = 2p the total number of these solutions is found
to be

3

+ 2/c (X - 3) (X - 4) {(X - 4)2*-2 +*]£ (X — 3)" (X - 4) 2 P- 2 - - 4 } ,
v = Q

the factor 2 in front of K being demanded by the rule of Zeuthen.
This expression may be written

)
v=0

y *% (y + \yy^-^~%

It is not so easy to enumerate precisely those heterotypic solu-
tions which are associated with in-and-circumscribed polygons whose
sides are less than m in number, as these solutions depend on the
divisors of the numbers m, m — 2, m — 4, . . . . But when the number
of heterotypic solutions associated with the singularities of Gi is
subtracted from the total number of united points of Sm the result
is the sum of a certain number of terms. Among this sum is always
included the expression

2mNm + 2yX(m- 2r) (y + I ) ' - 1 Nm_2r,

the summation being with respect to r from 1 to the integral part of
\ (m — 3). Also if JU, is any divisor of m greater than or equal to 3
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there occurs a term 2/xI^ in addition to those just enumerated; if
fi (^ 3) is any divisor of m — 2 there occurs a term 2ixyNIL ; if ft (Si 3)
is any divisor of m — 4 there occurs a term 2fiy (y + 1) N^; if /x (^ 3)
is any divisor of m — 6 there occurs a term 2[iy (y + 1)2JVM; and so on.
This process accounts for all the terms of the sum.

12. Without going into the details of the arithmetical calcula-
tions we now give the salient points in the calculation of the numbers
of in-and-circumscribed polygons of eight and nine sides.

The correspondence <S8 has valency y8 where

_ y 8= / _ 2 3 / + 2 0 3 / - 867/ + 1865/-1925/ + 8 3 3 / - U3y + 2,

while the total number of its united points is

— / + 2 7 / - 2 3 1 / + 1343/ — 3445/ + 5865/ — 4501/
+ 1877/ - 1981/ + 8 + KY8.

The number of heterotypic solutions associated with the singularities
of C4 is

- / + 15t/8- 79«/7 + 227?/6- 397j/5 + 465y4- 317^3 + 189/ - 30?/ + 8
- K (ys — 2 3 / + 6 7 / - 133/ + 153/ - 123/ + 5 7 / - lly + 2),

and when this number is subtracted from the total number of united
points of S8 we obtain the equation

16N& + l2yN6 + 8y(y+ 1) iV4 + 8iV4 + 6yNs

= 12/—152/+1116/-3048/+5400/-4184/+1688/-1682/
- K (136/ - 734/ + 1712/ - 1802/ + 776/ - 96*/).

The values of Nz, N± and N6 have already been obtained, so that this
equation gives the value of N8. Notice, to shorten the actual calcula-
tions somewhat, that the value of 121^ + 6N3 + 8yNt is given
explicitly in §9. The final result is

4IVg = y {3/— 40/ + 296/— 856/+ 1485/— 1172/ + 432?/ - 36
— K (34/ — 200/ + 477/ — 504/ + 205?/ - 20)}.

The valency of S9 is

Y9=(y—2) ( / - 2 4 / + 220/—960/ + 2022/- 1864/+668/-72^+1),

and the total number of its united points is

/ o - 26/ + 3 4 0 / - 1848/ + 6966/ - 13428/ + 16604/— 9920/
+ 3089/ — 258y + 8 + Ky&.
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The number of heterotypic solutions associated with the singularities
of C4 is

2/6 + 2y'° + 6y* + 24y» + 41y2 + 30y + 8
+ K (2/9 + y8 + V7 + W + 3y& + 2y* - 5y3 -Uy*-8y- 2),

so that we obtain the equation

18N9 + UyN7 + lOy (y + 1) N5 + 6y(y + I)2 JV3 + 6N3

=y10—2Gy9+340y8— 1848i/7+6956t/6— 13430i/5+16598y4 — 99442/3 + 3048t/2— 288y

— K (272/8 - 267y7 + 1402^6 - 39392/5 + 5910^ - 4401?/3 + 1397?/2 - 1532/).

This gives finally

9=2/{i/9—27J/8+360J/7—2052t/6+7710?/5-153542/4+186352/3-112832/2

+ 3282j/ — 264-3K(2 /— 1

13. The work may be continued to any length. For the number
of in-and-circumscribed decagons we obtain the equation

20N10 + 16yN8 + 12*/ (y+,l)N6 + 8y(y+ l)2iV4 + 10i^5 + 8yNt + 6y (y
= 16y10 — 268j/9 + 2508y8 - 10396?/7 + 287082/6 — 43456j/5

+ 409922/4 — 193922/3 + 4528t/2 — 288t/ — /c(230j/8 -

+ 69262/a — 14222?/5 + 15822j/4 - 8850?/3 + 2150j/2 - 160y),

which gives

= t/{162/9-2802/8+26602/7—11520j/6+ 318232/5-492172/4+456102/3-213702/2

+ 4516t/—208 —5KT(462/7—3922/6+15322/5-32002/4 + 356l2/3—1954t/2 + 4402/—23)}.

Table of numerical results.

14. In conclusion we give a table of the numbers of in-and-
circumscribed m-gons of plane quartics, for 3 ^ m ^ 10. The values
of Nz are of course already known, as are also those of Nm, for all the
values of m tabulated, in the case when the curve has no multiple
points, i.e. in the case y — 8.

There are two types of plane quartic curves which do not appear
in the table. The tricuspidal quartic, for which y = — 1 and K = 3,
does not appear since, being only of class 3, it cannot have any
in-and-circumscribed polygons. Nor does the quartic with two cusps
and one node, for which y = 0 and K = 2, appear, since the value of
Nm for this curve is always zero. The problem however for a plane
quartic with two cusps and one node is poristic; there may be special
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curves, with two cusps and one node, having an infinite number
of in-and-circumscribed polygons. Indeed such curves have been
obtained by Roberts and Hilton1; Hilton's method of obtaining them
is particularly simple, the problem being reduced by him to that of
polygons circumscribed to one conic and inscribed in another. It is
not possible, however, to obtain a plane quartic with a node and two
cusps that has an infinity of in-and-circumscribed triangles.

Roberts : Proc. London Math. Soc, 23 (1892), 202.
Hilton : Plane Algebraic Curves (Oxford, 1920), 287.
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