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1. Consider a plane curve C of order » and clags X; it is to be
supposed throughout that C has only ordinary Pliicker singularities,
t.e. nodes, cusps, inflections and bitangents. Through any point
P, of C there pass, apart from the tangent at P, itself, X — 2 lines
which touch C; let 7'y, be the point of contact of any one of these
tangents and P, any one of the n — 3 further intersections of P, 7,
with C. Through P, there pass, apart from the tangent at P, itself
and the line P, P;, X — 3 lines which touch C; let T'53 be the point
of contact of any one of these with C' and P; any one of its n — 3
further intersections with C. Proceeding in this way we obtain points
P, P, ...., P, each line P,_, P; being a tangent of C. If we can
so arrange matters that P, coincides with P, we obtain a polygon
of m sides whose vertices all lie on C' and whose sides all touch C,
each of the m points of contact being, it must be understood, distinct
from the vertices; this polygon is both inscribed and circumscribed
to C, and is called an in-and-circumscribed m-gon of ¢. The number
of in-and-circumscribed triangles of a plane curve was found by
Cayley.!

The determination of the number of in-and-circumscribed m-gons
of a curve is one of those problems which, as soon as they have been
propounded, seem immediately to suggest that a solution will be
forthcoming by application of the theory of correspondence. In fact,
given a point P; of C there are X — 2 tangents P; T, each of which
meets C in n — 3 further points—corresponding to P, there are
(X — 2)(n — 3) positions of P,. Similarly, to each position of P, there
correspond (X — 3)(n — 3) positions of Pj, so that to any position of
P, on C there correspond (X — 2)(X — 3) (n — 3)? positions of P,
Proceeding in this manner we find that to any position of P, there
correspond (X — 2)(X — 3)y"~!(n — 3)" positions of P,,.;. We will

1 Phil. Trans. Roy. Soc , 161 (1871), 369-412 ; or Papers, 8, 212-257.
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denote the correspondence between the points P, and P, .1 by S,; it
is clearly a symmetrical correspondence, and if y,, is its valency and
p the genus of C the number of united points of §,, is!

2(X — 2)(X — 3" (n — 3)" + 2Py

These united points include all the vertices of all the in-and-
circumscribed m-gons of C; indeed they include each vertex twice
over. For if 4, 4,.... A, is any in-and-circumscribed m-gon we
may take P, at any vertex and proceed round the polygon in either
direction; if P, is, for example, at 4, we may take P, to be either of
the two vertices 4,, 4, which are contiguous to 4;, and in either
case we obtain a position of P, ., at 4,. Thus, if N,, is the number
of in-and-circumscribed m-gons of C we have the relation

2mN,, = 2(X — 2)(X — 3y*~1(n — 3)" + 2py,, — H,,

where H,, is the number of points of C which are united points of
S,, without being vertices of in-and-circumscribed m-gons, each of
these points being included according to its proper degree of multiplicity.
We say, following Cayley, that the problem has H,, heterotypic
solutions. This much is easy; the whole difficulty, and it is not an
inconsiderable one, lies in calculating H,. In order to calculate
H,, we have first to discover all those points of C which are united
points of 8,, without being vertices of in-and-circumscribed m-gons;
secondly we have to decide how often each of these points is to be
included in the number H,,.

2. Cayley solved the problem in the case when m =3 not by
means of correspondence theory but by means of his functional
method; he gave indications of the solution by correspondence
theory but he was unable satisfactorily to account for the hetero-
typic solutions, and this matter remained unsettled until it was
cleared up later by Zeuthen.? We shall consider in this present
paper the case when C is a curve of the fourth order; this simplifies
the problem somewhat, for although heterotypic solutions can be
numerous enough for a quartic curve they are by no means so
numerous as for curves of higher orders.

1 This is the well-known Cayley-Brill correspondence theorem, the result being
first stated by Cayley and afterwards proved by Brill. For a proof see Zeuthen’s text-
book, referred to below, pp. 205-210.

2 Lehrbuch der abzihlenden Methoden der Geometrie (Leipzig, 1914), 249-253,
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The problem of the in-and-circumseribed polygon for a plane
quartic without multiple points has been solved recently'; in this
present paper the problem is solved for any plane quartic with only
ordinary singularities. The number N, of in-and-circumscribed
m-gons is calculated for values of m up to 10; the detailed work of
calculating the number of heterotypic solutions becomes tedious for
the larger values of m, but the aim has been to work out the problem
to such a stage that the calculation of N, for larger values of m
offers no further theoretical difficulty. The work proceeds step by
step; the value of N; being known already we first calculate N,, then
N; and so on. The results are tabulated at the end of the paper.
The curve being a quartic we have n = 4 and 2p = X — 6 + «, where
x is the number of cusps; hence the equation for IV, is

2m Ny = 2(X — 2)(X =3y 1+ (X — 6 + «) v — Hp.

By considering the relations connecting the successive corre-
spondences §,, we find, as in C. P.§21, that the valency y,, satisfies
the difference equation

Ym + (X - 6)7171,—1 + (X'— 3) Ym—2 = 0.

Since (¢f. C. P. §5) =X — 6 and y, = — (X2 — 13X + 38), the
values of y3, y4, .. .., can be calculated seriatim from this difference
equation; the fact that y; = X — 6 causes every y, to have X — 6 as
a factor when m is odd.

3. Before proceeding further one or two remarks must be made
concerning the number of times a point of C* must be included in
H,, when this point is a united point of §,, and is not a vertex of an in-
and-circumscribed m-gon. Let Py be such a point of C*; then of those
points which correspond to P, in S, a certain number, v say, coincide
with Py. If then P, is taken to be a point of C* near to P, there are
vy points PQ)q, P® ,, ...., PY,, which correspond to P; in S, and
which are also near P,. Suppose now that the coordinates of the
points of C*in the neighbourhood of P, are expressed in terms of a
parameter, the point P, itself being given by the zero value of the
parameter. The parameter of P, will then be an infinitesimal. Taking
this parameter of P; as the principal infinitesimal the v parameters of

the points P ., P® ., ...., P , will be infinitesimals of certain

1 Edge: ‘“Cayley’s problem of the in-and circumscribed triangle ”; Proc. London
Math. Soc. (2), 36 (1933), 142-171. This paper will be referred to as C. P.
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orders; in all the cases with which we shall be concerned these v
parameters will be infinitesimals of the same order, say of order a.
Then the point Py, makes a contribution av to the number H,,. This rule
is due to Zeuthen.! When a =1 the number of times that P, is to
be reckoned as a contribution to H,, is equal to the number of points
that correspond to P, in §,, and at the same time coincide with Py;
this often happens, but care should always be taken to see that
Zeuthen’s rule is properly applied. We will, however, in order
to shorten the work, not allude to Zeuthen’s rule in those cases
when a = 1.

In-and-circumscribed quadriluterals.

4. The valency of the correspondence §, on the qua.rtlc curve
C* is found, by use of the difference equation, to be

ys = — {X* — 27X3 4 261X2 — 1073X + 1590};
hence the total number of united points of the correspondence S is

2(X — 2)(X—38)2— (X —6 + «) (X*— 27X® + 261X% — 1073X + 1590)
= — X° 4 35X* — 445X3 + 2720X2% — 8190X + 9648
— k(X4 — 27X3 4 261X2 — 1073X + 1590).

We have now to account for the heterotypic solutions.

Let us first consider those heterotypic solutions which are associ-
ated with the nodes of C*. Frowm each node there are X — 4 tangents
to the curve; let the points of contact of those from a particular node
D be dW, d@, . ..., dX-9, Suppose P;is at D; then any one of the
X — 4 tangents from D, say DdW, gives a position of P, on the other
branch of the curve at D. To obtain P; we may take any one of the
X —4 tangents from D other than Dd®; each of these X —5 tangents
gives a position of Pj coinciding with P;. Then we have a choice of
X — 5 tangents each of which gives a position of P, on the other
branch of the curve at D, while a final choice of X — 5 tangents
gives P; coinciding with P;. Thus of the (X — 2)(X — 3)® points
which correspond to P; in the correspondence §,, (X —4)(X — 5)3
coincide with P,. This is true if P, is on either branch of the curve
at D, so that there arise in this way 238 (X — 4) (X — 5)2 heterotypic
solutions associated with the nodes of C*, where 8 is the number of
nodes.

1 Loc. cit., p. 186. See also Enriques: Teoria geometrica delle equazieni, Vol. 1
(Bologna 1929), 160. The statement of this rule in C. P. (pp. 151-152) is not as
accurate as it might have been; it is not the lengths of infinitesimal arcs that must be
considered, but infinitesimal differences of parameters.
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Now the tangents to C* at a node have each one further inter-
section with the curve; let the two tangents of the node D meet
C* again in d, and d, respectively. Then d; and d, are also united
points of 8,. For suppose P, is at d;. One of the X — 2 tangents
from d; to the curve is d,D; the remaining intersection of this
tangent with C* is at D, on the branch which it does not touch;
taking this intersection as P, there are X — 4 tangents from it to
C* each giving a position of P on the other branch at D; from P, there
is then a choice of X — 5 tangents each of which gives a position of
P, coinciding with P,. From P, we can then return to P, along the
tangent Dd,, thus giving a position of P; coinciding with P,. It is
important to notice that, of the X — 2 tangents from P, to the curve,
two coincide with the tangent to that branch at the node on which
P, does not lie. Thus, when P, is at d;, 2(X —4) (X — 5) of its
corresponding points in 8, coincide with it. In this way there arise
43 (X — 4) (X — 5) heterotypic solutions. But, further, each of the
tangents, other than d,D, from d, to C* meets C* in a point which is
also a united point of S,, For let d;; be an intersection of C* with
a tangent d,d,;, other than d,D, from d,. Then if P, is at d; we
may take P, at d;, P; at D on that branch of the curve which d,D
does not touch, P, again at d; and P; at d;;. We are justified in
saying that P, may be at d, because, in order to pass from P; to
P, we must choose one of the X — 2 tangents, other than P, P,, from
Py; this condition is not violated here, although P; P, and Pg P, are
the same tangent, because in this case P;is at a node and, as has
already been remarked, two of the X — 2 tangents from P; coincide
with P3d,. Since there are two points d;, d; associated with each
node D, and since there are, apart from the tangent at the node,
X —- 3 tangents of C* passing through each of them, the number of
heterotypic solutions arising in this way is 25 (X — 3). The total
number of heterotypic solutions associated with the nodes of C* is
therefore

26(X —4)(X —5)% + 45 (X —4) (X — 5) 4+ 25(X — 3).

Suppose now that I is a point of inflection of C*; the tangent at
I has one remaining intersection j with C*, and there are X — 3 other
tangents from I to the curve. Let P; be the remaining intersection
of one of these X — 3 tangents with C*; then we may take P, at I
and P; at j. Since, I being an inflection, two of the X — 2 tangents
from j to C* coincide with jI, we may take P, to be at I, and then
P; at P, which is therefore a united point of §;. Hence we have,
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associated with the inflections of C*, (X — 3). heterotypic solutions, ¢
being the number of inflections of C*.

5. It remains now to consider those heterotypic solutions
associated with the cusps of C*; here it is a little more difficult to
arrive at the result because the application of Zeuthen’s rule has to
be considered. Let K be a cusp of C*; there are X — 3 tangents,
other than the cuspidal tangent, of C* which pass through K.
Suppose P, is at K; then any one of these X — 3 tangents has its
remaining intersection P, also at K; there are then X — 4.tangents
which may be used for passing from P, to P;, P; being also at K;
we have then a choice of X — 4 tangents for P; P, and of X — 4
tangents for P, P;, both P, and P; being at K. Hence K is a united
point of §,, and the number of corresponding points which coincide
with it is (X — 3) (X —4)3. To find how many times K is to be
counted among the heterotypic solutions we apply Zeuthen’s rule: if
P, is taken near K we also have a position of P; near K; when the
points near K on the curve are expressed in terms of a parameter in
such a way that the value of the parameter at the cusp itself is zero
the parameters of P, and P; will both be infinitesimal. If the para-
meter of P, is taken as the principal infinitesimal the difference
between the parameters of P, and P; will be an infinitesimal of a
certain order o« and, in order to find how many times K must be
reckoned among the heterotypic solutions, it is necessary to take the
product of o and the number of points which correspond to K in the
correspondence 8, and coincide with it.

In order to calculate a it will be sufficient to take a particular
quartic curve; let us therefore, as on a previous occasion,! take the
curve for which

z:y:1=am?)®:a®mA?(A% + 1) : m2A2 + a% (A% 4 1)2

Referred to ordinary rectangular Cartesian coordinates this is a
bicircular quartic with a cusp at the origin, the parameter of the
cusp being A = 0. If then we take P, to have the parameter A =
we find a point P, whose parameter is A = p— 8u? as far as the second
order of u; the difference between the parameters of P; and P; is
thus 8u2, and is an infinitesimal of the second order. Hence a = 2.
Wherefore the number of times that K is to be counted among the
heterotypic solutions is 2 (X — 3)(X — 4)3.

1¢. P., p. 160.

https://doi.org/10.1017/50013091500008129 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500008129

IN-AND-CIRCUMSCRIBED POLYGON FOR A PLANE QUARTIC CURVE 127

The tangent at the cusp K meets C!in one further point, say ¢,
and ¢ occurs among the united points of 8,. Indeed if P, is at ¢ the
tangent {K has its fourth intersection with C* at K, and so P, is at
K. Any one of the X — 3 tangents from K then gives P, also
at K, while any one of the remaining X — 4 tangents from K gives
P, at K; we may then take the tangent P,P; to be Ki, giving a
position of P; at £. It appears then that when P, is at ¢ there are
(X — 3) (X — 4) of its corresponding points in S, also at £. Further
it is found that, when the application of Zeuthen’s rule is considered,
we have to multiply this number by 2 in order to obtain the number
of times which ¢ must be reckoned among the united points of S,.
The total number of heterotypic solutions associated with the cusps
of C*is therefore

2 (X — 3) (X — 4)3 + 2« (X — 3) (X — 4).
The total number of heterotypic solutions of the problem is therefore
Hy=28(X —4)(X —5)° + 45 (X - 4) (X — 5) + 25 (X — 3)
+ (X — 3)+ 2k (X — 3) (X — 4)® 4+ 2« (X — 3) (X — 4).

We can now substitute for & and . in this expression for H, from
Pliicker’s equations, which give

26 =12 — X — 3«, ¢ =3X — 12 4 «.
We then find, after some reduction,

H,= — X514 31X* — 365X3 | 2089X2 — 5862X + 6480
+ k(— X* 4 27X3 — 241X2% 4 897X — 1206).

When this is subtracted from the number, already found, of united
points of S, we obtain

8N, =4X*—80X% 4 640X2— 2328X + 3168 —« (20X2— 176X + 384)
or

2N, = (X — 4){X3 — 16X% 4 96X — 198 — « (5X — 24)}.

It is simpler, especially for higher values of m, to work with
y =X — 4 instead of with X, and this we shall do. In terms of y
we have

2Ny =y{y*— 4y® + 16y — 6 — « (5y — 4)}
and ys = — (y* — 11y2 4 33y% — 25y + 2).
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In-and-circumscribed pentagons.

6. The valency of S; is
vs = (y — 2) (y* — 12y + 38y — 20y + 1);
hence the total number of united points of S; is
2(X—2)(X =3+ (X —6+«)ys

=2 +2)@+D*+(y—2+4)
= y% — 1495 4 102¢y* — 1924> 4 265y2 — 66y + 8 4+ kys;.

We must now enumerate those united points of §; which are not
vertices of in-and-circumscribed pentagons.

Consider first heterotypic solutions associated with the bitangents
of Ct. Through a point of contact of a bitangent there pass X — 3
tangents of C*, other than the bitangent itself; let 2, be the remaining
intersection of any one of these X — 3 tangents with C* Then
through », there pass X — 3 further tangents of C*; let A, be the
remaining intersection of any one of these tangents with C* 1Itis
easily seen that k, is a united point of S;; for let P, be at h,. Then
we obtain a position of P, at h; and a position of P; at the point of
contact of the bitangent. We can then choose the bitangent itself as
the tangent P3P, so that P, coincides with P;: we can then take
Py at hy and Pg at h,. Thus we have Py coinciding with P;. Since
each bitangent gives rise to 2 (X — 3) points %, and each point 4, to
(X — 3) points k, we obtain 27 (X — 3)% heterotypic solutions associ-
ated with the bitangents of C*%, r being the number of bitangents.

Consider now heterotypic solutions associated with the cusps of
Ct. If K is a cusp of C* we see, arguing as in the case of the corre-
spondence S, that (X — 3) (X — 4)* of those points which correspond
to K in 8; coincide with K. In this case however the application
of Zeuthen’s rule does not lead to the introduction of any further
numerical factor; for if P, is a point near K any point P; which
corresponds to P; in the correspondence §;, and which is also near
K, is on the opposite side of K to P,; thus the difference of the two
infinitesimal parameters which give the two points P, and Py must be
an infinitesimal of the same order as the parameter of P;. We see
also that ¢, the intersection of C* with its tangent at K, is a united
point of §;, and that (X — 3)(X — 4)% of its corresponding points
coincide with it; here again it is not necessary to multiply this by
any numerical factor. TFurther: if any one of the X — 3 tangents,
other than tK, from ¢ to C* meets C* again in a point ¢, ¢; is also a
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united point of S; and coincides with X — 3 of its corresponding
points; in this way we have (X — 3)2 heterotypic solutions associated
with each cusp. The aggregate of the heterotypic solutions associated
with the cusps of C* is therefore

KX —3) (X — 4+ (X — 3) (X ~ 42 + (X — 3)3.
The total number of heterotypic solutions now obtained is

271 (X =8P + w{(X = 3) (X —4) + (X = 3)(X — 4+ (X - 3)3
=27y + 1P+ eyt @+ )+ 92 F+ 1)+ (y+ 13

These are in fact all the heterotypic solutions associated with the
singularities of C*. If we now, using Pliicker’s equations, substitute

27 = X% —~ 10X + 32 — 3k = 9% — 2y + 8 — 3,

and subtract this total number of heterotypic solutions from the
number of united points of S;, the result is

y®— 1495+ 101y*— 19243+ 260y2—80y + « (— 15y*+61y°—95y2 1 45y).

7. We have not yet however arrived at the formula giving ten
times the number of in-and-circumscribed pentagons, for there are
now heterotypic solutions other than those associated with the singu-
larities of C*. For suppose efg is any in-and-circumscribed triangle of
C*; through any one of its vertices, say through e, there pass, apart
from the two sides of the triangle which meet in that vertex, X — 4
tangents of C*; if v, is the remaining intersection of any one of these
tangents with C* then v, occurs twice among the united points of
S5 (¢f. C. P., p. 170). Thus we have, associated with each of the
N, triangles efg, 6y heterotypic solutions. Hence the number which
we have just obtained by subtracting the number of heterotypic
solutions associated with the singularities of C* from the number of
united points of §; is equal to 10N, + 6yN;. We know that

6N; =y {y® — 9y + 38y — 24 — 3« (3y — 5)};
hence we obtain
10N ;=y {y°— 15y* + 110y® — 23032+ 284y — 80 — 5 (3y> — 14y% + 22y —9)}.

The number of in-and-circumscribed pentagons of any given plane
quartic is obtained at once from this formula by substituting the
appropriate values for y and «; the results are given in the table at
the end of the paper.
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In-and-circumscribed hexagons.

8. We pass now to the consideration of the correspondence
S¢ and its united points. It is found that

— yg = y® — 175 + 100y* — 24243 + 22542 — 61y + 2,
and that the total number of united points of S is
— 47 + 21y5 — 120y5 + 482y* — 64933 + 56142 — 102y + 8 + «ys.

Let us now enquire as to the nature of the heterotypic solutions
that are associated with the singularities of C4.

We commence by finding the heterotypic solutions that are
associated with the nodes of C% Suppose, exactly as in the case of
the correspondence Sy, that D is a node of C*; let, again, d; be the
intersection of C* with either of its two tangents at D and d,, the
remaining intersection of C* with any of its tangents from d, other
than d,D. We must now introduce also the point d,,;, this being the
remaining intersection of C* with any of its tangents other than
dy, dy from any of the points dy;. Associated with each node D of
C* there are two points d,, 2 (X — 3) points d;; and 2 (X — 3)2 points
dqi11-  All these points are united points of Sg. A discussion similar
to that above concerning the correspondence S, explains that each
branch of the node at D is to be counted (X — 4) (X — 5)® times
among the united points of Sg each point d;, is to be counted
2(X — 4) (X — 5)® times, each point d;; 2 (X — 4) (X — 5) times and
each point d,,; once. Hence the total number of heterotypic solu-
tions associated with the nodes of C*is

28 {(X —4) (X —5)°+2(X — 4) (X —5)*+2(X—4) (X —5)(X —3)+ (X — 3)%}
=28y (y — 1+ 2y(y— 1* + 2y (42 — 1) + (¥ + 1)3.

Next there are heterotypic solutions associated with the inflections
of Ct. Let I be an inflection, p, the remaining intersection of C* with
any one of the X — 3 tangents (other than the inflectional tangent
itself) from I to the curve; through each point p, there pass X — 3
other tangents of C%, apart from p,I; let p,; be the remaining
intersection of C* with any one of those tangents. There are
(X — 3)2 points p;; associated with each inflection I of C*, and each
of them is a united point of Sg; if we take a position of P, at p;; we
can take Py, Ps, P, P;; Py, P, respectively to be at py, I, 4, I, py, p1g,
where j is, as before, the remaining intersection of C* with its
inflectional tangent at I. Hence we have, when P, is at p;, a
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position of P; coinciding with it; wherefore p;; is a united point of
Sg. Hence we have, associated with the inflections of (%, a number
of heterotypic solutions equal to (X — 3)% or (y + 1)%.

Lastly, in order to obtain the total number of heterotypic
solutions associated with the singularities of C*, we must consider
those associated with the cusps. As in the discussion of the hetero-
typic solutions belonging to §,, let K be a cusp of C* and ¢ the
intersection of C* with its cuspidal tangent at K. We have now also
to introduce the points ¢;, where ¢, is the remaining intersection of
C* with any one of its X — 3 tangents, other than ¢K, which pass
through ¢. Arguing as we did for the correspondence S, we find that
K, t, t; are all united points of Sg; of those points which correspond
to K in the correspondence S; there are (X — 3) (X — 4)° which
coincide with K; of those which correspond to ¢ there are (X — 3)
(X —4)® which coincide with { and of those which correspond to
t; there are (X — 3) (X — 4) which coincide with ¢;. Moreover, in
order to find how many solutions these points contribute to the
number Hy we must in each case multiply by 2 as we see on appealing
to Zeuthen’s rule. Hence, as there are X — 3 points #; associated
with K, the number of heterotypic solutions associated with the
cusps of C* is

2k (X —3) (X —4) {(X—4)* + (X —4)*+ X —3}=2«y (y+1) (y*+¥*+y+1).

9. We have now obtained the total number of heterotypic
solutions associated with the singularities of C*; it is

By —1P+2(y— 1+ 29— 1)+ + 1)}
+ey+ 12+ 2y + 1) (¥t + 9>+ y+ 1)
Since Pliicker’s equations give
26 =8 — y — 3«, t= 3y + «,
this total number of heterotypic solutions is
—y7 4+ 13y8 — 52y° + 110y* — 121y% + 105y% — 22y + 8
— k(Y8 — 17¢° + 34y* — 46y® + 3192 — 13y + 2).

When this number is subtracted from the total number of united
points of Sg the result is

8y®— 68y° + 372y*— 528y -+ 4562 — 80y — « (66y*—196y°+ 194y% — 48y).

Any further united points of S¢ which are not vertices of in-and-
circumscribed hexagons are associated with in-and-circumscribed
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polygons with a lesser number of sides. In the first place a vertex
of an in-and-circumscribed triangle counts twice among the united
points of Sg; if efg is an in-and-circumscribed triangle and we take
P, to be at e then we have two positions of P, also at e; we can take
the sequence of points Py, P,, Ps, Py, P;, Pg, P; to be either ¢, f, g,
e,f,g,eoreqg,f,e g,f e Again: through each vertex of an in-and-
circumscribed quadrilateral there pass X — 4 tangents of C* apart
from the two sides of the quadrilateral which meet in that vertex;
if u, is the remaining intersection of C* with any such tangent then
u; occurs twice among the united points of 8¢ (¢f. C. P., p. 170).
Thus the number just obtained by subtracting the heterotypic
solutions associated with the singularities of C* from the total number
of united points of S is equal to 12N, 4 6N; 4- 8yN,. Since

6N; =y {y® — 9y% + 38y — 24 — 3« (3y — 5)}
and 2N, =y {y* — 4y® + 16y — 6 — « (5y — 4)},

we obtain finally

12N = y {8y° — T2y*+ 387y3— 58332+ 442y— 56 — « (66y°— 21652+ 201y—33)}.

In-and-circumscribed heptagons.

10. For the correspondence §; it is found that

yr=(y — 2) (y® — 18y + 111y* — 268y> + 207y% — 42y + 1),
while the total number of united points is
y®— 20y7 4 203y® — 730y°+ 1823y* — 1832y°+ 1069y%2— 146y + 8 + «y7.

As in the case of the correspondence S5 there are heterotypic solu-
tions associated with bitangents and heterotypic solutions associated
with cusps. Through each of the points %, introduced in considering
the correspondence S; there pass, apart from the tangent kg b, X — 3
further tangents of C*; if A4 is the remaining intersection of any one
of these tangents with C* then it is easily seen that k; is a united
point of S;. We thus obtain 27(X — 3)3 heterotypic solutions
associated with the bitangents of C*.

If K is a cusp of C%, ¢ the remaining intersection of C* with its
cuspidal tangent at K, ¢; the remaining intersection of C* with any
one of the X — 3 tangents other than ¢tK which pass through ¢, ¢;; the
remaining intersection of C* with any one of the X — 3 tangents
other than ¢, ¢ which pass through ¢;, then the points K,¢,¢,,¢;, are
united points of S;. Of those points which correspond to K in
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S; there are (X — 3) (X — 4)® which coincide with K; of the points
which correspond to ¢, (X — 3) (X — 4)* coincide with ¢; of the points
which correspond to ¢, (X — 3) (X — 4)? coincide with ¢ and of the
points which correspond to ¢;;, X — 3 coincide with ¢,;. Since there
are X — 3 points ¢, and (X — 3)% points ¢,, associated with each cusp
of C* the number of heterotypic solutions associated with the cusps
of C*is

k(X — 3) (X — 4)84+ (X — 3) (X — 4)+ (X — 3)2(X — 4)2+ (X — 3)8).

The total number of heterotypic solutions associated with the
singularities of C* is therefore

27y + 1P+l ly+ D+ @+ D+ g+ 12+ (y+ 1)
which, since 2r = y2 — 2y + 8 — 3k, is equal to
Yo+ ¢t + 5y + 1992 + 22y + 8 + « (¥ + ¥® + ¥° + 2yt — 5y —6y—2).

When this is subtracted from the total number of united points of
S, the result is

Y8 — 20y" + 203y% — 731y° + 1822y* — 1837y% + 1050y% — 168y
— k (219° — 1465 + 492y* — 74333 + 4512 — 91y).

This result includes, as well as the vertices of the in-and-circumscribed
heptagons all counted twice, certain heterotypic solutions associated
with in-and-circumscribed polygons with a lesser number of sides.
In view of the discussions which have already taken place it will be
sufficient merely to state that the value of this last expression is
14N, + 10yN; 4+ 6y (y + 1) N;. On substituting their known values
for 10V; and 6NV, we find after calculation that

14N, = y{y" — 218 + 217y° — 833y* + 202355 — 2135y 4+ 1154y — 168
— Tk (3y> — 23y* + 79y® — 121y% + 73y — 13)},

and the different values of N, can now be tabulated forthwith.

In-and-circumscribed polygons for which m > 1.

11. Whatever the length of the calculations required to evaluate
the number N, of in-and-circumscribed m-gons of C*, the general lines
on which the work proceeds should now be clear enough. There are
two types of heterotypic solutions occurring in the number H,, which
is to be subtracted from the total number of united points of the
correspondence S,; heterotypic solutions of one type are associated
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with the singularities of C while heterotypic solutions of the other
type are associated with in-and-circumscribed polygons of a lesser
number of sides. The nature of the heterotypic solutions that are
associated with the singularities of C* depends on the parity of m.
If m is odd there is a set of heterotypic solutions associated with
the bitangents and a chain of heterotypic solutions associated with
the cusps; if m = 2p 4 1 it is found that the number of heterotypic
solutions that arise in this way is

27 (X — 37 + (X — 3) (X — 4+ 3 (X — 37 (X — )22
v=0
=(H—29+8 —3<) (y + 1)+ (y + ) ™ + 2D{n;(y + 1y g3,

If however m is even, there is a set of heterotypic solutions associated

with the inflections, a chain of heterotypic solutions associated with

the nodes and also a chain of heterotypic solutions associated with

the cusps; if m = 2p the total number of these solutions is found

to be

(X —3)P 1+ 28{(X —4)(X —5)2P -1 (X —-3)P~1+2(X —4) $> 2(X—3)"(X—5)21"2"‘3}

v=0

+ 26 (X — 3) (X — 9 {(X — 422 4T (X — 3 (X — 424,
v=0

the factor 2 in front of « being demanded by the rule of Zeuthen.
This expression may be written

p=2
(By-+r) (y+ 107 +(8—y =3 y(y=1)7 7+ (y+1)? "1+ 29 2 (y+1)(y—1)7 >3
p—2
+ 2y + NP+ 2 Y+ Dy

It is not so easy to enumerate precisely those heterotypic solu-
tions which are associated with in-and-circumscribed polygons whose
sides are less than m in number, as these solutions depend on the
divisors of the numbers m, m — 2, m —4, .... But when the number
of heterotypic solutions associated with the singularities of C* is
subtracted from the total number of united points of §,, the result
is the sum of a certain number of terms. Among this sum is always
included the expression

omN,, + 2y S (m — 20) (y + 17~ Ny,

the summation being with respect to » from 1 to the integral part of
3 (m — 3). Alsoif p is any divisor of m greater than or equal to 3
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there occurs a term 2uN, in addition to those just enumerated; if
p (= 8) is any divisor of m — 2 there occurs a term 2uyN, ; if u (= 3)
is any divisor of m — 4 there occurs a term 2uy (y + 1) N,.; if p (= 3)
is any divisor of m — 6 there occurs a term 2uy (y + 1)°N,; and so on.
This process accounts for all the terms of the sum.

12. Without going into the details of the arithmetical calcula-
tions we now give the salient points in the calculation of the numbers
of in-and-circumseribed polygons of eight and nine sides.

The correspondence Sg has valency yg where
— yg= 48— 23y"+ 203y®— 867y° + 1865y*—1925y° + 833y~ — 113y + 2,
while the total number of its united points is

—y? 4+ 27y% — 231y" + 1343y% — 3445y° + 5865y* — 45012
+ 1877y% — 198y + 8 -+ y,.

The number of heterotypic solutions associated with the singularities
of C*is
— y® 4 15y%— T9y7 + 227y — 397y% 4 465y*— 317y% 4 189y> — 30y + 8

— s (y® — 23y7 + 67y% — 133y 4 153y* — 123y° + 57y2 — 17y + 2),

and when this number is subtracted from the total number of united
points of Sg we obtain the equation

16Ng+ 12yNg+ 8y (y + 1) Ny + 8N, + 6yN;
— 1248 —152y7-+ 111635 —3048y5+ 5400y* —4184y3+1688y% — 168y
— K (136y° — 73415 + 1712y* — 1802y° + T76y% — 96y).
The values of N3, N, and Ng have already been obtained, so that this
equation gives the value of Ng. Notice, to shorten the actual calcula-

tions somewhat, that the value of 12Ny + 6N; -+ 8yN, is given
explicitly in §9. The final result is

4Ng = y {3y”— 40y° + 296y°— 856y*+ 1485y%— 1172y% 4 432y — 36
— x(34y® — 200y* + 477y® — 504y% + 205y — 20)}.
The valency of S, is
o= (y—2) (55— 24y" 4 220y5 — 960y -+ 2022y — 1864y°+ 668y2—72y+ 1),
and the total number of its united points is

y10— 26° + 340y°— 1848y” + 6966y° — 13428y> + 16604y*— 992053
+ 3089y% — 258y + 8 + xy,.
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The number of heterotypic solutions associated with the singularities
of C*is
Yo + 2y° + 6yt 4+ 2493 + 41y + 30y + 8
+ (9 +y°+y" + 29° 4 3y° + 24 — 5y — 11y% — 8y — 2),

so that we obtain the equation
18Ny + 14yN; + 10y (y + 1) N5 -+ 6y (y + 1)> N3 + 6N,
=y10—26y°+ 340y5— 1848y 69565 — 1343045+ 16598y* — 9944y 4 3048y2— 288y
— k(2798 — 267y7 + 1402y° — 39395 + 5910y* — 440133 + 139742 — 153y).

This gives finally
18 Ny=y {¢°—27y®+ 360y"— 2052y°-+ 77105 — 15354y 1863513 — 1128312
+ 3282y —264—3x(y—1) (9y°—8Ty°+ 429y*— 105343+ 1185y2— 467y +46)}.

13. The work may be continued to any length. For the number
of in-and-circumscribed decagons we obtain the equation

20Ny + 16yNg + 12y (y+1)Ng + 8y (y + 1)°N, + 10N; + 8yN, + 6y (y + 1) N,
— 1640 — 268y° + 2508y® — 1039647 - 28708y® — 434564
4 40992y* — 19392y + 452842 — 288y — x(230y° — 182447
+ 6926y° — 1422295 + 15822y* — 8850%° + 2150% — 160y),
which gives
20N — y{16y?— 28075+ 266057 — 1152040+ 31823y5— 49217y - 4561045 —21370y
4516y — 208 — 5 (46y7— 3925+ 153255 — 3200y + 35613 — 195492+ 440y —23)),

Table of numerical results.

14. In conclusion we give a table of the numbers of in-and-
circumscribed m-gons of plane quartics, for 3 < m =< 10. The values
of N, are of course already known, as are also those of N, for all the
values of m tabulated, in the case when the curve has no multiple
points, i.e. in the case y = 8.

There are two types of plane quartic curves which do not appear
in the table. The tricuspidal quartic, for which y = — 1 and « =3,
does not appear since, being only of class 3, it cannot have any
in-and-circumscribed polygons. Nor does the quartic with two cusps
and one node, for which ¥ = 0 and « = 2, appear, since the value of
N,, for this curve is always zero. The problem however for a plane
quartic with two cusps and one node is poristic; there may be special
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curves, with two cusps and one node, having an infinite number
Indeed such curves have been
obtained by Roberts and Hilton!; Hilton’s method of obtaining them
is particularly simple, the problem being reduced by him to that of
polygons circumscribed to one conic and inscribed in another.
not possible, however, to obtain a plane quartic with a node and two
cusps that has an infinity of in-and-circumsecribed friangles.

of in-and-circumscribed polygons.

It is

1 Roberts : Proc. London Math. Soc., 23 (1892), 202.
Hilton : Plane Algebraic Curves (Oxford, 1920), 287.

Lok N | N | N N, N, N, N, Ny,
8| 0| 288 | 1512 | 12096 | 87696 | 685152 | 5375160 | 43059744 | 348636960
6| 0| 96| 486 | 3264 | 17048 | 117792 | 670518 | 4486496 | 27264912
5|1| 30| 195| 1230 | 5055 | 34710 | 160680 | 1010740 | 5072403
4|o0| 32| 116 640 | 2304 | 11168 | 47260| 216736 964384
3|1 12 33 192 544 2148 7350 28116 98586
210 8 18 48 116 312 810 2184 5880
212 6 6 42 105 294 732 2128 5727
1lt] 2 3 6 9 18 30 56 99
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