
The Journal of Symbolic Logic

Volume 88, Number 1, March 2023

ADDITIVE COVERS AND THE CANONICAL BASE PROPERTY

MICHAEL LOESCH

Abstract. We give a new approach to the failure of the Canonical Base Property (CBP) in the so
far only known counterexample, produced by Hrushovski, Palacı́n and Pillay. For this purpose, we will
give an alternative presentation of the counterexample as an additive cover of an algebraically closed
field. We isolate two fundamental weakenings of the CBP, which already appeared in work of Chatzidakis
and Moosa-Pillay and show that they do not hold in the counterexample. In order to do so, a study of
imaginaries in additive covers is developed. As a by-product of the presentation, we observe that a pure
binding-group-theoretic account of the CBP is unlikely.

§1. Introduction. Internality is a fundamental notion in geometric model theory
in order to understand a complete stable theory of finite Lascar rank in terms of
its building blocks, its minimal types of rank one. A type p is internal, resp. almost
internal to the family P of all non-locally modular minimal types, if there exists a set
of parameters C such that every realization a of p is definable, resp. algebraic over
C, e where e is a tuple of realizations of types (each one based over C) in P.

Motivated by results of Campana [3] on algebraic coreductions, Pillay and Ziegler
[19] showed that in the finite rank part of the theory of differentially closed fields
in characteristic zero, the type of the canonical base of a stationary type over a
realization is almost internal to the constants. With this result Pillay and Ziegler
reproved the function field case of the Mordell-Lang conjecture in characteristic
zero following Hrushovski’s original proof but with considerable simplifications.

The above phenomena is captured in the notion of the Canonical Base Property
(CBP), which was introduced and studied by Moosa and Pillay [14]: Over a
realization of a stationary type, its canonical base is almost P-internal. Chatzidakis
[4] showed that the CBP already implies a seemingly stronger statement, the so-
called uniform canonical base property (UCBP): Whenever the type of a realization
of the stationary type p over some set C of parameters is almost P-internal, then so
is stp(Cb(p)/C ). For the proof, she isolated two remarkable properties which hold
in every theory of finite rank with the CBP: Almost internality to P transfers to
intersections and more generally to quotients. Motivated by her work, we introduce
the following two notions. A stationary type is good, resp. special, if the condition
for the CBP, resp. UCBP, holds for this type. (See Definitions 2.1 and 2.3 for a precise
formulation.) The following result relates these two notions to the aforementioned
properties.
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ADDITIVE COVERS AND THE CANONICAL BASE PROPERTY 119

Theorem A (Propositions 2.5 and 2.8). The theory T transfers internality to
intersections, resp. to quotients, if and only if every stationary almost P-internal type
in T eq is good, resp. special.

It already follows from the proofs of [13, Theorem 3.7 and Proposition 4.2] that the
theory transfers internality to quotients whenever every stationary almostP-internal
type is special. However, we will provide a more direct argument.

Though most relevant examples of theories satisfy the CBP, Hrushovski et al.
[8] produced the so far only known example of an uncountably categorical theory
without the CBP. We will give an alternative description of their counterexample
in terms of additive covers of an algebraically closed field of characteristic zero.
Covers are already present in early work of Hrushovski [7], Ahlbrandt and Ziegler
[1] as well as of Hodges and Pillay [6]. For an additive cover M of an algebraically
closed field, the sort S is the home-sort and P is the field-sort. The automorphism
group Aut(M/P) embeds canonically in the group of all additive maps on P.
Notice that if the sort S is almost P-internal, the CBP holds for trivial reasons.
The counterexample to the CBP has a ring structure on the sort S and the ring
multiplication ⊗ is a lifting of the field multiplication. The automorphism group
over P corresponds to the group of derivations, which ensures that the sort S is not
almost P-internal. We prove the following result.

Theorem B (Propositions 5.2 and 5.4). The CBP holds whenever every additive
map on P induces an automorphism in Aut(M/P). However, if every element of
Aut(M/P) corresponds to a derivation, then the CBP does not hold in M.

A standard argument shows that the CBP holds whenever it holds for all real
stationary types. We show show that no additive cover can eliminate imaginaries,
whenever the sort S is not almost P-internal. On the other side, the counterexample
to the CBP does eliminate finite imaginaries and furthermore the corresponding
real versions of goodness and specialness hold, namely, every real stationary almost
P-internal type is special. However the version for real types does not imply the full
condition and gives a new proof of the failure of the CBP.

Theorem C (Propositions 6.1 and 6.3). The counterexample to the CBP does not
transfer internality to intersections.

Palacı́n and Pillay [15] considered a strengthening of the CBP, called the strong
canonical base property, which we show cannot hold in any additive cover, where S
is not almost P-internal. Proposition 3.11 and Lemma 5.6 support the thesis that a
pure binding-group-theoretic account of the CBP is unlikely, regarding a question
stated in [15].

§2. The canonical base property and related properties. In this section we
introduce two properties related to the canonical base property. We assume
throughout this article a solid knowledge in geometric stability theory [18, 20].
Most of the results in this section can be found in [4].

Let us fix a complete stable theory of finite Lascar rank. As usual, we work inside
a sufficiently saturated ambient model. We denote by P the ∅-invariant family of all
non-locally modular minimal types.
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120 MICHAEL LOESCH

The following notions provide an equivalent formulation of the CBP and the
UCBP. They will play a crucial role in our attempt to weaken the CBP to other
contexts.

Definition 2.1. A stationary type p is:

• good if stp(Cb(p)/a) is almost P-internal for some (any) realization a of
p and

• special if, for every parameter set C and every realization a of p, whenever
stp(a/C ) almost P-internal, so is stp(Cb(p)/C ) almost P-internal.

Let us recall the notion of preservation of P-internality [5], which already appeared
in [13] as being P-Moishezon. A strong type stp(b/a) preserves P-internality if the
type stp(b/C ) is almost P-internal whenever stp(a/C ) is. In the above terminology,
a stationary type p is special if and only if for some realization a of p the type
stp(Cb(p)/a) preserves P-internality.

Remark 2.2.

(a) Note that every special type is good, by setting C = {a}.
(b) It is immediate from the definitions that the theory T has the CBP, resp.

the UCBP, if and only if every stationary type in T eq is good, resp.
special.

(c) Analog to [17, Remark 2.6], it can be easily shown that whether or not
every stationary type is good, resp. special, is preserved under naming
parameters.

Chatzidakis showed in [4, Theorem 2.5] that the CBP already implies the UCBP
for (simple) theories of finite rank. Her proof consists of two main steps:

• First, she shows in [4, Proposition 2.2] that, under the CBP, the type
tp

(
b/acl eq(a) ∩ acl eq(b)

)
is almost P-internal, whenever stp(b/a) is almost

P-internal. Note that this was first shown by Moosa and Pillay [14, Theorem
1.3 (b)] in the stable case.

• Secondly, she proves in [4, Lemma 2.3] that tp
(
b/acl eq(a1) ∩ acl eq(a2)

)
is

almost P-internal, if both stp(b/a1) and tp(b/a2) are.

Motivated by her work, we now introduce two notions capturing these
intermediate steps and study their relation to the CBP.

Definition 2.3. The theory T transfers internality to intersections if the type

tp
(
b/acl eq(a) ∩ acl eq(b)

)
is almost P-internal, whenever stp(b/a) is almost P-internal.

The theory transfers internality to quotients if the type

tp
(
b/acl eq(a1) ∩ acl eq(a2)

)
is almost P-internal, whenever both stp(b/a1) and stp(b/a2) are.
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b

a

acl eq(a) ∩ acl eq(b)

almost P-int.

almost P-int.

b

a1 a2

acl eq(a1) ∩ acl eq(a2)

almost P-int.almost P-int.

almost P-int.

Note that transfer of internality to quotients implies transfer of internality to
intersections, by setting a1 = a and a2 = b. It is not difficult to see that a weakening
of transfer of internality to quotients holds in every complete stable theory, when the
quotients are independent: If the types stp(b/a1) and stp(b/a2) are almostP-internal
and a1 |� a2, then the type stp(b) is almost P-internal.

The above notions have been already considered in the literature. In [13, 14]
generating families and pairs of fibrations were introduced and studied. Transfer
of internality to intersections is equivalent to saying that whenever a stationary
type admits a generating family with almost P-internal fibers, then it is itself almost
P-internal. Similarly the theory transfers internality to quotients if and only if every
stationary type generated by a pair of fibrations whose fibres are almost P-internal
is itself almost P-internal.

The CBP implies almost P-internality of stp
(
Cb(a/b)/acl eq(a) ∩ acl eq(b)

)
for

every stationary type stp(a/b) [4, Theorem 2.1]. A close inspection of the proof
of [14, Theorem 1.3 (b)] yields that, if stp

(
Cb(a/b)/acl eq(a) ∩ acl eq(b)

)
is almost

P-internal whenever the stationary type stp(a/b) is almost P-internal, then the
theory transfers internality to intersections. Without assuming the CBP, it could
be the case that the type stp(Cb(a/b)/a) is almost P-internal, yet the restriction
stp

(
Cb(a/b)/acl eq(a) ∩ acl eq(b)

)
is not. We do not see how to deduce directly from

the aforementioned proofs that transfer of internality to intersections already follows
if every almost P-internal stationary type is good (in the proof of [4, Theorem 2.1]
an induction argument is applied to a type which need not be almost P-internal).
For the sake of completeness, we will now include a reformulation of transfer of
internality in terms of good types in Proposition 2.5. In order to do so, we first need
the following observation.

Fact 2.4 ([4, Proposition 1.18] and [16, Theorem 3.6]). Let stp(b/A) and
stp(b/C ) be two P-analysable types.

(a) The type stp
(
b/acl eq(A) ∩ acl eq(C )

)
is again P-analysable. In particular, so is

stp
(
b/acl eq(A) ∩ acl eq(b)

)
also P-analysable.

(b) Let bA be the maximal subset of acl eq(A, b) such that stp(bA/A) is almost
P-internal. The tuple bA (in some fixed enumeration) dominates b over A, that
is, for every set of parameters D ⊃ A,

b |�
A

D whenever bA |�
A

D.

Furthermore, whenever acl eq(D) ∩ acl eq(A, bA) = acl eq(A), so is

acl eq(D) ∩ acl eq(A, b) = acl eq(A).
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122 MICHAEL LOESCH

Proposition 2.5. The theory T transfers internality to intersections if and only if
every stationary almost P-internal type in T eq is good.

Proof. We assume first that every stationary almost P-internal type is good, but
the conclusion fails, witnessed by two tuples a and b. By Remark 2.2, we may assume

acl eq(a) ∩ acl eq(b) = acl eq(∅).

Thus, the type stp(b/a) is almost P-internal, but the type stp(b) is not. Note that
stp(b) is P-analysable, by Fact 2.4.

Among all possible (imaginary) tuples in the ambient model take now a′ such
that stp(b/a′) is almost P-internal and

acl eq(a′) ∩ acl eq(b) = acl eq(∅)

with U(b∅/a′) maximal. Since stp(b/a′) is almost P-internal, there is a set of
parameters A containing a′ with A |�a′

b such that b is algebraic over Ae, where e
is a tuple of realizations of types (each one based over A) in P. Since each type in
the family P is minimal, we may assume, after possibly enlarging A, that e and b are
interalgebraic over A.

Let now e′ be a maximal subtuple of e independent from b∅ over A, so

e′ |�
A

b∅ and e ∈ acl eq(A, e′, b∅).

Hence, the tuple b is algebraic over Ae′b∅ and

acl eq(A, e′) ∩ acl eq(b∅) ⊂ acl eq(a′) ∩ acl eq(b) = acl eq(∅).

Therefore acl eq(A, e′) ∩ acl eq(b) = acl eq(∅), by Fact 2.4.
Notice that stp(b/A, e′) is almost P-internal, yet this does not yield any

contradiction since U(b∅/A, e′) = U(b∅/a′). Choose now b′ realizing stp(b/A, e′)
independent from b over A, e′. An easy forking computation yields

acl eq(b′) ∩ acl eq(b) = acl eq(∅).

By the hypothesis we have that the almost P-internal type

stp
(
b′/acl eq(A, e′)

)
= stp

(
b/acl eq(A, e′)

)
is good, so we deduce that stp(Cb(b/A, e′)/b′) is almost P-internal. Remark that b
is algebraic over Cb(b/A, e′, b∅) and thus also algebraic over b∅Cb(b/A, e′).

Putting all of the above together, we conclude that the type stp(b/b′) is almost
P-internal. Since

U(b∅/b
′) ≥ U(b∅/A, e

′, b′) = U(b∅/A, e
′) = U(b∅/a

′),

we deduce by the maximality of U(b∅/a′) that U(b∅/b′) = U(b∅/A, e′, b′), that is,

b∅ |�
acl eq(A,e′)∩acl eq(b′)

A, e′, b′.

Hence b∅ |� b
′, so b |� b

′, by Fact 2.4, contradicting that stp(b) is not almost
P-internal.
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For the other direction, we need to show that the almost P-internal type stp(a/b)
is good, that is, that stp(Cb(a/b)/a) is almost P-internal. We may assume that b
equals the canonical base Cb(a/b). Superstability yields that b is contained in the
algebraic closure of finitely many b-conjugates of a. By transfer of internality to
intersections, the type tp

(
a/acl eq(a) ∩ acl eq(b)

)
is almost P-internal, so it follows

that

tp
(
b/acl eq(a) ∩ acl eq(b)

)
is almost P-internal. Hence, the type stp(b/a) is almost P-internal, as desired. 	

It follows now from Remark 2.2 that transfer of internality to intersections does
not depend on constants being named.

Corollary 2.6. Transfer of internality to intersections is invariant under naming
and forgetting parameters.

Remark 2.7. By Remark 2.2 and Proposition 2.5, the CBP is equivalent to the
property that whenever b = Cb(a/b), then tp

(
b/acl eq(a) ∩ acl eq(b)

)
is almost P-

internal, which was already shown in [4, Theorem 2.1].

We would like to express our gratitude to the anonymous referee for pointing
out that a close inspection of the proofs of [13, Theorem 3.7 and Proposition 4.2]
yields that every stationary type generated by a pair of fibrations whose fibres are
almost P-internal is itself almost P-internal (that is, the theory transfers internality
to quotients), whenever every stationary almost P-internal type is special. We will
however provide a direct proof for the sake of completeness.

Proposition 2.8. The theory T transfers internality to quotients if and only if every
stationary almost P-internal type in T eq is special.

Proof. Assume that every stationary almost P-internal type is special. We want
to show that

tp
(
b/acl eq(a1) ∩ acl eq(a2)

)
is almost P-internal, whenever both stp(b/a1) and stp(b/a2) are. By Remark 2.2, we
may assume that

acl eq(a1) ∩ acl eq(a2) = acl eq(∅).

Note that the type stp(b) is P-analysable, by Fact 2.4, so recall that b∅ is the maximal
almost P-internal subset of acl eq(b). As in the proof of Proposition 2.5 there is a set
of parameters A1 containing a1 such that A1 |�a1

b and b is interalgebraic over A1

with some tuple e of realizations of types (each one based over A1) in P. Choosing
a maximal subtuple e′ of e with e′ |�A1

b∅, it follows that b is algebraic over b∅A1e
′

and that

acl eq(b∅) ∩ acl eq(A1, e
′) ⊂ acl eq(a1).

Hence

acl eq(b) ∩ acl eq(A1, e
′) ∩ acl eq(a2) = acl eq(∅), (�)
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124 MICHAEL LOESCH

by Fact 2.4. Since the almost P-internal type stp(b/A1, e
′) is special, we have that

stp
(

Cb(b/A1,e
′)/a2

)
is almost P-internal. Therefore

stp
(

Cb(b/A1,e
′)/acl eq(A1,e

′)∩acl eq(a2)
)

is almost P-internal by Remark 2.2 and Proposition 2.5. Since

b |�
Cb(b/A1,e

′),b∅

A1, e
′

and b is algebraic over b∅A1e
′, the tuple b is algebraic over Cb(b/A1, e

′)b∅. In
particular, the type

stp
(
b/acl eq(A1, e

′) ∩ acl eq(a2)
)

is almost P-internal and hence so is stp(b) because of (�).
In order to prove the other direction, we want to show that the almost P-internal

type stp(a/b) is special. Fix C some a set of parameters such that stp(a/C ) is almost
P-internal. By transfer of internality to quotients, the type

stp
(
a/acl eq(b) ∩ acl eq(C )

)
is almost P-internal and so is

stp
(

Cb(a/b)/acl eq(b)∩acl eq(C )
)
,

since the canonical base Cb(a/b) is algebraic over finitely many b-conjugates
of a. 	

We deduce now the analog of Corollary 2.6 for transfer of internality to quotients.

Corollary 2.9. Transfer of internality to quotients is invariant under naming and
forgetting parameters.

The equivalence of the CBP and the UCBP motivates the following question,
after localizing to almost P-internal types.

Question 1. Are transfer of internality to intersections and to quotients equivalent
properties for theories of finite rank?

At the moment of writing, we do not know whether the previous question has a
positive answer. Note that providing a structure which answers negatively the above
question means in particular a new theory of finite rank without the CBP, since we
will see in Section 4 that the so far only known counterexample to the CBP given in
[8] does not transfer internality to intersections.

It was remarked in [2, Lemma 2.11] that the CBP holds whenever it holds for
stationary real types, or equivalently, for real types over models. A natural question
is whether the same holds for the above properties of transfer of internality.

Question 2. Does a theory of finite rank transfer internality to intersections, resp.
to quotients, if every stationary real almost P-internal type is good, resp. special?

Additive covers of the algebraically closed field C, which will be introduced in the
following section, will provide a negative answer (see Corollary 6.5) to Question 2.
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§3. Additive covers. The only known example so far of a stable theory of finite
rank without the CBP appeared in [8]. We will consider this example from the
perspective of additive covers of the algebraically closed field C, which are based on
the general notion of covers appearing in [1, 6, 7].

From now on, given the canonical projection of the sort S = C× C onto the first
coordinate P = C, we will denote the elements of P with the greek letters α, � , etc.,
while the elements of S will be seen accordingly as pairs (α, a′) and so on.

Definition 3.1. An additive cover of the algebraically closed field C is a structure
M = (P, S, �, �,⊕, ...) with the distinguished sorts P = C and S = C× C such that
the following conditions hold:

• The sort P carries the full field structure.
• The map � : S → P is the projection onto the first coordinate.
• The map � : P × S → S defines an action of P on S given by

α � (�, b′) = (�, b′ + α).

• The map ⊕ : S × S → S is a group homomorphism given by(
(α, a′), (�, b′)

)
�→ (α + �, a′ + b′).

• The structureM is a (definitional) reduct of the full structure (C,C× C), which
is equipped with both projections, so every ∅-definable set in M is ∅-definable
in (C,C× C).

Example 3.2.

• The full structure M̃ = (C,C× C) is an additive cover.
• The additive cover M0 = (P, S, �, �,⊕) with no additional structure.
• The additive cover M1 = (P, S, �, �,⊕,⊗) with the product

⊗ : S × S → S(
(α, a′), (�, b′)

)
�→ (α�, αb′ + �a′).

Note that (S,⊕,⊗) is a commutative ring with multiplicative neutral element
(1, 0). The zero-divisors are exactly the elements a in S with �(a) = 0, that is,
the pairs a = (0, a′).

Given an additive cover M, there is a canonical embedding

Aut(M/P) ↪→ {F : C → C additive}
� �→ F�

uniquely determined by the identity �(x) = F�(�(x)) � x. Note that F� is well-
defined and the identity

�
(
(α, a′)

)
=

(
α, a′ + F�(α)

)
(�)

holds for all (α, a′) in S.
For the additive coverM0 of Example 3.2, the above embedding defines a bijection

Aut(M0/P) ↔ {F : C → C additive}

https://doi.org/10.1017/jsl.2021.64 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.64


126 MICHAEL LOESCH

and a straight-forward calculation yields that

Aut(M1/P) ↔ {F : C → C derivation}.

Indeed, for elements a = (α, a′) and b = (�, b′) in S, we have

�(a ⊗ b) = F�(α�) � (a ⊗ b) and

�(a) ⊗ �(b) =
(
F�(α) � a

)
⊗

(
F�(�) � b

)
=

(
α�, α

(
b′ + F�(�)

)
+ �

(
a′ + F�(α)

))
=

(
αF�(�) + �F�(α)

)
� (a ⊗ b).

Remark 3.3. Every additive cover M is a saturated uncountably categorical
structure, where P is the unique strongly minimal set up to non-orthogonality. The
sort S has Morley rank two and degree one, and is P-analysable in two steps.
Moreover, each fiber �–1(α) is strongly minimal.

Therefore, for additive covers, almost P-internality in the CBP is equivalent to
almost internality to P. If S is almost P-internal, then the CBP trivially holds.

Remark 3.4. The counterexample to the CBP given in [8] is an additive cover,
including for every irreducible variety V defined overQalg a predicate in the sort S for
the tangent bundle of V. It is easy to see that this structure has the same definable sets
as the additive cover M1 given in Example 3.2, since every polynomial expression
over Qalg in P lifts to a polynomial equation in S, using the ring operations ⊕
and ⊗.

A key ingredient in the proof that the sort S in the above counterexample is not
almost P-internal [8, Corollary 3.3] is that every derivation on the algebraically
closed field C induces an automorphism in Aut(M1/P).

For the following sections, we will need some auxiliary lemmas on the structure
of additive covers, and particularly those where the sort S is not almost P-internal.
However, note that there are additive covers whose sort S is P-internal, besides the
full structure M̃: Consider the additive cover

M = (P, S, �, �,⊕, R),

where the relation R on S2 × P is given by

R
(
(α, a′), (�, b′), 	

)
⇐⇒ (�, b′) = (	 · α, 	 · a′).

Note that the sort S is P-algebraic (actually P-definable), after naming any element
in S with non-zero projection onto the first coordinate (e.g., the element (1, 0)).
Furthermore, the identity (�) yields that

Aut(M/P) ∼= {F : C → C | F (α) = 
 · α, 
 ∈ C} ∼= (C,+),

so the additive cover M is not equal to M̃, which has a trivial automorphism group
over P.

The following notion will be helpful in the following chapter.

Definition 3.5. Given elements a1 = (α, a′1), ... , an = (α, a′n) of S all in the same
fiber �–1(α), their average is the element(

α,
a′1 + ··· + a′n

n

)
.
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Lemma 3.6. Given a non-empty finite set A of elements of S, all lying in the same
fiber, every automorphism � of the additive cover maps the average of A to the average
of �[A]. In particular, the average of A is definable over the canonical parameter of A.

Proof. We proceed by induction on the size n of the non-empty set A. For n = 1,
there is nothing to prove. Assume A contains at least two elements, and choose a
some element of A. Set b = �(a). Inductively, we have that � maps the average d1

of A\{a} to the average d2 of �[A]\{b}. Let ε1 and ε2 be the unique elements in P
such that ε1 � d1 = a and ε2 � d2 = b. A straight-forward computation yields that
ε1
n � d1, resp. ε2n � d2, is the average of A, resp. of �[A]. Now the claim follows since
� maps ε1n to ε2n . 	

Lemma 3.7. Let a1 = (α1, 0), ... , an = (αn, 0) be elements in S. The type
tp(a1, ... , an/α1, ... , αn) is stationary.

Proof. Since RM(ai/ᾱ) = 1, where ᾱ = (α1, ... , αn), we may assume after
possibly reordering that RM(a1, ... , am/ᾱ) = m = RM(a1, ... , an/ᾱ). In particular,
the realization ai of the strongly minimal type tp(ai/αi) is algebraic over ᾱ, â, where
â = (a1, ... , am). Set bi = (αi , b′i ) the average of the finite set of {ᾱ, â}-conjugates
of ai . The element bi is definable over ᾱ, â, by Lemma 3.6.

Claim. The second coordinate b′i of the average bi is definable (as an element of P)
over ᾱ.

Proof of the Claim. We need only show that b′i is fixed by every automorphism
� of the sort P fixing ᾱ. The map � = (�, � × �) is an automorphism of the full
structure M̃, and hence of the reduct M. Since �(0) = 0, the automorphism � fixes
ᾱ, a1, ... , an. Hence �(bi) = bi , so in particular �(b′i ) = b′i . 	Claim.

Therefore ai = (– b′i ) � bi is definable over ᾱ, â. Since the fibers of the projection
� are strongly minimal (see Remark 3.3), the type tp(â/ᾱ) is stationary, so we obtain
the desired conclusion. 	

The above Lemma (and its proof) yields in particular the following result.

Lemma 3.8.

(a) For every automorphism � of P fixing A pointwise the map � = (�, � × �) is an
automorphism of the additive cover M which fixes all the elements of S of the
form (α, 0), with α in A.

(b) The definable and algebraic closure of P in the sort S coincide. Moreover, for
every set B of parameters

S ∩ acl(B,P) = S ∩ dcl(B,P).

(c) Given a set of parameters A in S and an element � in the sort P, all elements
of the strongly minimal fiber �–1(�) have the same type over A,P whenever the
element b = (�, 0) of S is not algebraic over A,P.

Proof. Note that (a) is immediate since � is an automorphism of the full
structure (C,C× C) and every ∅-definable set in M is ∅-definable in (C,C× C).
For (b), let a be an element in S algebraic over B,P. The average b of the finite set of
B,P-conjugates of a is definable over B,P, by Lemma 3.6. Since �(b) = �(a) and
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the definable action � of P is transitive on each fiber, it follows that a is definable
over B,P, as desired. For (c), let b1 and b2 be two elements in the fiber of � with
distinct types over A,P. Strong minimality of the fiber implies that either b1 or b2

is algebraic over A,P. Now b = 	1 � b1 = 	2 � b2 for some 	1 and 	2 in P, so b is
algebraic over A,P. 	

Lemma 3.9. Let a1 = (α1, 0), ... , an = (αn, 0) be elements in the sort S with generic
independent elementsαi in P (over the empty set). If the sort S is not almost P-internal,
then the ai ’s are generic independent, that is, the rank RM(a1, ... , an) equals 2n.

Proof. Choose some generic element � in P independent from α1 and set a =
� � a1 = (α1, �). Note that the Morley rank of a is two. If a1 were not generic, then
a1 must be algebraic over the generic element α1 of P. Since a = � � a1, it would
follow that the generic element a of S is algebraic over P, which contradicts our
assumption that the sort S is not almost P-internal. Hence a1 is generic in S.

Now, we inductively assume that the tuple ā<n(a1, ... , an–1) consists of generic
independent elements and want to show that an |� ā<n. Assume otherwise that
an � |� ā<n. Note that αn is not algebraic over ā<n, by Lemma 3.8(a), since αn is not
algebraic over ᾱ<n. Thus an � |�αn

ā<n, so an is algebraic over αnā<n. Choose now

some element 	 in P generic over (α1, ... , αn) and set c = (αn, 	) = 	 � an in S. Note
that c is algebraic over ā<nP. Observe that RM(c/ā<n) = 2, by the choice of 	, so
we conclude that S is almost P-internal, which gives the desired contradiction. 	

We conclude this section with a full description of binding groups of stationary
P-internal types in additive covers, whenever the sort S is not almost P-internal. We
consider first the case of real stationary P-internal types. Let (a, 	) be a realization
of such a type q over B, where a = (a1, ... , an) is a tuple of elements in S and 	 is a
tuple in P. The canonical embedding

Aut(M/P) ↪→ {F : C → C additive}
yields that the binding group Aut(q/P,B) with its action on the set Q of realizations
of q is naturally isomorphic to the group action of

G =
{

(g1, ... , gn) ∈ Pn |
n∧
i=1

F�(ai) = gi for some � ∈ Aut(M/P,B)
}

on Q given by �. Note that G is definable, for it equals{
(g1, ... , gn) ∈ Pn | g1 � a1, ... , gn � an ≡B,P a1, ... , an

}
.

Moreover, the type q is fundamental, meaning that every realization of q is algebraic
over c, P for some (every) realization c of q, by the following lemma.

Lemma 3.10. Suppose the sort S of the additive cover M is not almost P-internal.
If the type tp(a/B) for a tuple a = (a1, ... , an) of elements in S is almost P-internal,
then each projection �(ai) is algebraic over B.

Proof. Clearly, it suffices to show that, whenever the real type stp(a/B) is almost
P-internal, with a a single element in S, then α = �(a) is algebraic over B. Choose
a set of parameters B1 with B1 |�B

a such that a is algebraic over B1, P. We need
only show that α is algebraic over B1. Otherwise, choose an element a1 of S in the
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fiber of α generic over B1. The elements a and a1 are interdefinable over P, so a1 is
algebraic over B1, P, contradicting that S is not almost P-internal. 	

More generally, given now an imaginary e = f(a, 	), where again a = (a1, ... , an)
is a tuple of elements in S, the tuple 	 is in P and f is an ∅-interpretable function,
the binding group of the stationary P-internal type tp(e/B) equals

{(g1, ... , gn) ∈ Pn | f(g1 � a1, ... , gn � an, 	) ≡B,P e}.
In order to give a complete description of binding groups appearing in additive

covers, we introduce the following notation: Given a tuple a = (a1, ... , an) in Sn and
G a definable subgroup of (Pn,+), we will consider the definable set

G � a =
{

(x1, ... , xn) ∈ Sn |
n∧
i=1

gi � ai = xi for some (g1, ... , gn) ∈ G
}

with canonical parameter �G � a�. Note thatG � a is a coset of the additive subgroup
G � 0Sn of (Sn,⊕).

Proposition 3.11. With the above notation,

�(G � a) = G � a ⇐⇒ �(a) ∈ G � a
for every automorphism � in Aut(M/P). The stationary type q = stp(a/�G � a�) is
P-internal and fundamental. Its binding group is a subgroup (with the above
identifications in mind ) of G. Moreover, it is equal to G whenever S is not almost
P-internal and a is a tuple of generic independent elements in S.

Thus, whenever S is not P-internal, every definable subgroup of (Cn,+) appears (in
the sense discussed above) as a binding group and conversely every binding group is
(naturally isomorphic to) such a subgroup.

Proof. The equivalence in the statement holds trivially, since G � a is a coset of
the P-definable group G � 0Sn .

The type q is clearly P-internal and fundamental, because �(a) = (α1, ... , αn) is
definable over �G � a�. Given a realization b of q, it lies in G � a, so b = g � a, for
some g in G. With the above identification, we deduce that the binding group of
q is a subgroup of G. In case a1, ... , an are generic independent, we have equality
of these two groups: the element ak , for 1 ≤ k ≤ n, is not algebraic over ā<k, P,
since S is not almost P-internal, so Lemma 3.8(c) yields that all elements in the
fiber �–1(αk) have the same type over ā<k, P. For any g = (g1, ... , gn) in G we can
recursively construct an automorphism � in Aut(M/P) with �(ak) = gk � ak for
1 ≤ k ≤ n. By the previous equivalence, the automorphism � permutes G � a and
therefore induces an automorphism in the binding group of q.

That every binding group is of the claimed form follows from the discussion before
the proposition. Let us now conclude by showing that every definable subgroup G of
(Cn,+) appears as a binding group, if S is not almost P-internal. Choose a generic
independent tuple a in Sn. By the above, the binding group of the P-internal type
stp(a/�G � a�) equals G. 	

§4. Imaginaries in additive covers. In order to answer Question 2, we are led to
study imaginaries in additive covers, with a particular focus to the additive covers
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in the Example 3.2. We will first show that neither the counterexample M1 to the
CBP of [8] nor the additive cover M0 eliminate imaginaries.

Lemma 4.1. Let M be an additive cover such that for every derivation D on C the
induced map �D : M → M which is the identity on P and maps the element a of S to
D(�(a)) � a is an automorphism of M. Then M does not eliminate imaginaries.

Proof. Set α = �(a) and � = �(b), for two generic independent elements a and
b in the sort S. Fix a derivation D with kernelQalg and let G be the definable subgroup
of (P2,+) given byD(�)x – D(α)y = 0. Let us assume for a contradiction that the
definable set G � (a, b) has a real canonical parameter e. By hypothesis, the induced
map �D is in Aut(M/P). By Proposition 3.11, the automorphism �D permutes the
set G � (a, b), since �D(a, b) = (D(α) � a,D(�) � b) lies in G � (a, b) because the
tuple (D(α), D(�)) is an element of G. By the choice of the derivation D, every
real element fixed by �D belongs to the set P ∪ �–1(Qalg). In particular, we deduce
that the tuple e lies in this set. Thus, the definable set G � (a, b) is permuted by
every automorphism induced by a derivation, because every derivation vanishes on
Qalg (note that we no longer need that the kernel of the derivation is exactly Qalg).
Choose now a derivationD1 withD1(α) = 1 andD1(�) = 0, and note that �D1 does
not permute G � (a, b), since (1, 0) is not an element of G, which gives the desired
contradiction. 	

The proof of [8, Corollary 3.3] shows that the sort S in an additive cover M
is not almost P-internal, whenever every derivation on C induces (in the sense of
Lemma 4.1) an automorphism in Aut(M/P). We will now give a strengthening of
the Lemma 4.1.

Proposition 4.2. If the additive cover M eliminates imaginaries, then the sort S is
P-internal.

Proof. We will mimic the proof of Lemma 4.1. Assume for a contradiction that
the sort S is not P-internal and choose two generic independent elements a and b
in S. Consider now the definable set G � (a, b) where G is given by the equation
F�(�)x – F�(α)y = 0, for some suitable automorphism � to be determined later
on. If we can construct the automorphism � (which plays the role of �D in the
proof of Lemma 4.1) in Aut(M/P) such that the only real elements fixed by � are
those definable over P, we conclude as before that the real canonical parameter e of
the definable set G � (a, b) is definable over P. This yields immediately the desired
contradiction, if S were not P-internal, for there is an automorphism � in Aut(M/P)
which fixes b and moves a, but �(a, b) = (F�(α) � a, b) does not belong toG � (a, b),
since (0, 0) �= (F�(α), 0) is not in G, since F�(�) · F�(α) �= 0.

Hence, we need only show in the rest of the proof that there exists such an
automorphism �.

Choose a transcendence basis ᾱ = (αi)i<2ℵ0 of the algebraically closed field C

and set

ā = (ai)i<2ℵ0 =
(
(αi , 0)

)
i<2ℵ0

for i < 2ℵ0 . We construct a (possibly empty) subtuple

b̄ = (bi)i<κ =
(
(�i , 0)

)
i<κ
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of P × {0} =
(
(ε, 0)

)
ε∈C

in the following way: Assume (bi)i<� has already been
constructed. If some element (ε, 0) is not algebraic over ā, (bi)i<�, then choose it least
possible according to some fixed enumeration of C and set b� = (ε, 0). Otherwise
set κ = �.

Set �̄ = (�i)i<κ. For i < κ, we denote by 〈α〉i the unique subtuple of ᾱ of smallest
length such that �i is algebraic over 〈α〉i . Write X for the set of all finite subtuples
of ᾱ and consider the maps

Φ : X → 2ℵ0

(αi1 , ... , αin ) �→ max(i1, ... , in)

and

F : {αi , �j | i < 2ℵ0 , j < κ} → {αi | i < 2ℵ0}

defined by

F (αi) = α�i+1 and F (�j) = α
�

max(j,Φ(〈α〉j ))+1
+�j
.

It follows inductively from Lemma 3.8(c) that

ā, b̄ ≡P F (ᾱ) � ā, F (�̄) � b̄,

so there is an automorphism � in Aut(M/P) with

�(ai) = F (αi) � ai and �(bj) = F (�j) � bj.

Claim. Every element in S which is fixed by � is definable over P.

Proof of the Claim. Assume that the element (	, c′) of S is fixed by �. Note
that the automorphism � also fixes c = (	, 0), for (	, c′) = c′ � c. Thus, it suffices to
show that c is definable over P. By construction of the tuples ā and b̄, the element c
must be algebraic over ā, b̄ and therefore definable over ā, b̄, P, by Lemma 3.8(b).
Choose subtuples of least possible length

â = (ai1 , ... , aim ) of ā and b̂ = (bj1 , ... , bjn ) of b̄

such that c is definable over â, b̂, P. We need to show that m = n = 0. In order to
reach a contradiction, assume that max(n,m) > 0. Note that every element in the
fiber of 	 is definable over â, b̂, P. The type

tp(â, b̂, c/α̂, �̂ , 	)

is fundamental and stationary by Lemma 3.7. Its binding group G is a definable
additive subgroup of Cm+n+1, by Proposition 3.11. Note that 	 must be algebraic
over α̂, �̂ : otherwise, Lemma 3.9 yields that c |� â, b̂, so stp(c) is P-internal (for c

is definable over â, b̂, P) and hence so is S, contradicting our assumption.
Hence, the binding group G of p = tp(â, b̂, c/α̂, �̂ , 	) is definable over

A = acl(α̂, 〈α〉j1 , ... , 〈α〉jn ) ⊃ {α̂, �̂}.
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By the discussion before Proposition 3.11, the group G is given by a system G of
linear equations of the form

�1 · x1 + ··· + �m+n+1 · xm+n+1 = 0,

with coefficients �i in A and the tuple

(F (αi1 ), ... , F (αim ), F (�j1), ... , F (�jn ), 0)

is a solution, since

�(ai) = F (αi) � ai , �(bj) = F (�j) � bj and �(c) = 0 � c.

Set now ε = Φ
(
α̂�〈α〉j1

� ···�〈α〉jn
)
. If αε = αik for some 1 ≤ k ≤ m, denote

i(ε) = ik = ε. Otherwise set i(ε) = j� if 1 ≤ � ≤ n is the least index such that αε is
an element in the tuple 〈α〉j� .

Observe that there is a linear equation in the system G such that the coefficient �i(ε)
is non-trivial, for otherwise every automorphism in Aut(M/P) fixing all coordinates
except (possibly) the element di(ε), which is the i(ε)th-coordinate of the tuple (â, b̂),
must also fix c, contradicting the minimality of m and n. The set

B = {F (αi1 ), ... , F (αim ), F (�j1), ... , F (�jn )}
consists of distinct elements, since F clearly is injective. Therefore, if suffices to show
that the element F (di(ε)) is not algebraic over

A ∪
(
B\{F (di(ε))}

)
to reach the desired contradiction. For this we need only show that the element
F (di(ε)) is not contained in the set

{α̂, 〈α〉j1 , ... , 〈α〉jn}.
If di(ε) = αi(ε), we obtain the result since

Φ(F (di(ε))) = Φ(F (αε))

= Φ(α�ε+1 )

= �ε+1 ≥ ε + 1

> ε = Φ
(
α̂�〈α〉j1

� ···�〈α〉jn
)
.

Otherwise di(ε) = �i(ε), so

Φ(F (di(ε))) = Φ(F (�i(ε)))

= �max(i(ε),Φ(〈α〉i(ε)))+1 + �i(ε)

> �Φ(〈α〉i(ε))+1 = �ε+1,

and we conclude the result analogous to the first case. 	Claim.
	

Whilst the additive cover does not eliminate imaginaries whenever the sort S is
not P-internal, the situation is different for finite imaginaries. We will see below that
the additive cover M0 does not eliminate finite imaginaries, but the additive cover
M1 does.
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Remark 4.3. Choose two generic independent elements α and � in the sort P.
The finite subset {(α, 0), (�, 0)} of S has no real canonical parameter in M0.

Proof. Assume that the tuple e is a real canonical parameter of the set {a, b},
with a = (α, 0) and b = (�, 0). We will first show that every element c in S appearing
in the real tuple e is definable over a ⊕ b, P. Since the canonical embedding

Aut(M0/P) ↪→ {F : C → C additive}
is an isomorphism (see Example 3.2), every additive map vanishing on α and �
must vanish on �(c). We deduce that the projection �(c) is a linear combination of
α and � with rational coefficients, so �(c) = � · α + 
 · � for some rational numbers
� and 
. Note that there is a field automorphism � sending α to � and � to α, so
the automorphism � = (�, � × �) of Lemma 3.8(a) permutes a and b, hence it fixes
c. Therefore,

� · α + 
 · � = �(c) = �(�(c)) = �(� · α + 
 · �) = � · � + 
 · α,
so � = 
, since α and � are generic independent. We deduce that c is definable over
a ⊕ b, P, because every additive map vanishing on the element α + � vanishes on
� · (α + �) = �(c).

Choose now an additive map F with F (α) = 1 and F (�) = –1. The induced
automorphism �F in Aut(M/P) with �F (x) = F (�(x)) � x for elements x in S
fixes a ⊕ b, because

�F (a ⊕ b) = �F (a) ⊕ �F (b) = (1 � a) ⊕ (– 1 � b) = (α, 1) ⊕ (�, – 1) = a ⊕ b.
Therefore �F fixes the real tuple e, which gives the desired contradiction, since �F
does not permute the set {(α, 0), (�, 0)}. 	

In order to show that the additive cover M1 eliminates finite imaginaries, we first
provide a sufficient condition.

Proposition 4.4. An additive coverM eliminates finite imaginaries, whenever every
finite subset of S on which � is injective has a real canonical parameter.

Proof. Let A be the finite set {ā1, ... , ān} of real m-tuples. Every function Φ :
{1, ... , m} −→ {P, S} determines a subset AΦ of A, according to whether the jth-
coordinate lies in P or S. Every automorphism permuting A permutes each AΦ, so
we may assume that for every tuple in A, the coordinates have the same configuration
(given by the function Φ).

Since the canonical parameter is only determined up to interdefinability, we may
further assume (after possibly permuting the coordinates) that there is a natural
number 0 ≤ k ≤ m such that for each tuple āi in A:

• The jth-coordinate aji lies in S for 1 ≤ j ≤ k.
• The � th-coordinate a�i lies in P for k < � ≤ m.

For every coordinate 1 ≤ j ≤ k setAj = {aji | 1 ≤ i ≤ n} and dji the average of the
subset Aj ∩ �–1(�(aji )). For 1 ≤ i ≤ n let now εji be the unique element in P with
aji = εji � d

j
i . Consider the tuples εi = (ε1

i , ... , ε
k
i ) and

αi = (�(a1
i ), ... , �(aki ), ak+1

i , ... , ami )
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in P. We need only show that the tuple

e =
(
�{(ε1, α1), ... , (εn, αn)}�, �{d 1

1 , ... , d
1
n }�, ... , �{dk1 , ... , d kn }�

)
is a canonical parameter of A. Note that e is a real tuple since the sort P with the full
field structure eliminates imaginaries and all the sets {dj1 , ... , d

j
n } have real canonical

parameters, by our assumption.
Let � be an automorphism. If � permutes the set A, Lemma 3.6 yields that

� permutes each set {dj1 , ... , d
j
n } since the image of Aj ∩ �–1(�(aji )) under � is

Aj ∩ �–1(�(aj
i(�))) for some index i(�) with �(aji ) = aj

i(�) and �(αi) = �(αi(�)).

Therefore �(εi) = εi(�), since �(dji ) = dj
i(�). Hence � fixes e.

Assume now that � fixes the tuple e. The tuple αi is mapped to αi(�) and

�(aji ) = �(εji ) � �(dji ) = εj
i(�) � �(dji ).

It suffices to show that �(dji ) = dj
i(�) to conclude that � permutes A. This follows

immediately from

�(�(dji )) = �(�(dji )) = �(αji ) = αj
i(�),

since � permutes the set {dj1 , ... , d
j
n }. 	

Thus, we will deduce that the additive cover M1 eliminates finite imaginaries, by
applying Proposition 4.4, lifting the corresponding canonical parameters of finite
subsets of P to S using the ring operations.

Corollary 4.5. The additive cover M1 eliminates finite imaginaries.

Proof. By Proposition 4.4, we need only show that every subset {a1, ... , an} of
S, with pairwise distinct projections �(ai) = αi , has a real canonical parameter.

For 1 ≤ i ≤ n lift the i th-symmetric function to S:

bi =
∑

1≤j1<···<ji≤n
aj1 ⊗ ··· ⊗ aji . (♠)

We claim that the tuple b = (b1, ... , bn) is a canonical parameter of the set A =
{a1, ... , an}. If the automorphism � permutes A, then it clearly fixes b. Assume now
that � fixes the tuple b. Since

�i =
∑

1≤j1<···<ji≤n
αj1 ···αji ,

the tuple (�1, ... , �n) encodes the finite set {α1, ... , αn}. In particular the automor-
phism � induces a permutation of the set {1, ... , n} (which we will also denote by
�) such that

�(ai) = ��(i) � a�(i)

for some ��(i) in P. We need only show that each �j equals 0.
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Write each element ai of A as ai = (αi , a′i ), and similarly bi = (�i , b′i ). In the full
structure M̃ the definable condition (♠) is equivalent to

�i =
∑

1≤j1<···<ji≤n
αj1 ···αji

together with the system of linear equations:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 ··· 1∑
j 
=1
αj

∑
j 
=2
αj ···

∑
j 
=n
αj∑

j1<j2
j1,j2 
=1

αj1αj2
∑
j1<j2
j1,j2 
=2

αj1αj2 ···
∑
j1<j2
j1,j2 
=n

αj1αj2

...
...

. . .
...∏

j 
=1
αj

∏
j 
=2
αj ···

∏
j 
=n
αj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a′1
a′2
...
...
...
a′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b′1
b′2
...
...
...
b′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Since

bi = �(bi) =
∑

1≤j1<···<ji≤n
(��–1(j1) � aj1) ⊗ ··· ⊗ (��–1(ji )

� aji ),

we conclude that �1 = ··· = �n = 0, because the above matrix has determinant∏
i<j(αi – αj) �= 0. 	

§5. The CBP in additive covers. As already stated in Remark 3.4, the CBP does
not hold in the additive cover M1 (see Example 3.2). For the sake of completeness,
we will now sketch a proof, using the terminology introduced so far. For generic
independent elements a, b and c in S, set d = (a ⊗ c) ⊕ b. The canonical base
Cb(c, d/a, b) is interdefinable with (a, b), since the intersection of the two lines
y = (a1 ⊗ x) ⊕ b1 and y = (a2 ⊗ x) ⊕ b2 with (a1, b1) �= (a2, b2) has Morley rank
at most one. Assuming the CBP, the type stp(a/c, d ) is therefore almost P-internal.
As the elements a, c and d are again (generic) independent, we conclude that the type
stp(a) is almost P-internal, contradicting the fact that S is not almost P-internal.

The above is a lifting to the sort S of a configuration witnessing that the field P is
not one-based. We will now present another proof that the additive cover M1 does
not have the CBP, using the so called group version of the CBP [8, Fact 1.3], which
was already present in [10, Theorem 4.1].

Fact 5.1. Let G be a definable group in a theory with the CBP. If the type p =
stp(g/B) of an element g of G has finite stabilizer, then p is almost internal to the
family of all non-locally modular minimal types.

The failure of the group version of the CBP is another example of such a lifting
approach: Set c = a ⊗ b for two generic independent elements a and b of S and
consider (a, b, c) as an element of the definable group (S3,⊕). Note that elements
(g1, g2, g3) of the stabilizer of stp(a, b, c) must satisfy α · �(g2) + � · �(g1) = �(g3).
Assuming the tuple (g1, g2, g3) to be independent from a, b, c, we deduce that
0 = �(g1) = �(g2) = �(g3). Hence, there are 	i in P with 	i � 0S = gi and we
deduce further that α · 	2 + � · 	1 = 	3. The independence 	1, 	2, 	3 |� α, � now
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yields 0 = 	1 = 	2 = 	3 and we conclude that the stabilizer of stp(a, b, c) is trivial.
Therefore the above Fact 5.1 implies, assuming the CBP, that the sort S is almost
P-internal, which is a contradiction.

Now we will see that the failure of the CBP in the additive cover M1 is already
determined by its automorphism group over P.

Proposition 5.2. If M is an additive cover such that Aut(M/P) corresponds to
the group of derivations on C, then the CBP does not hold in M.

Proof. Choose two generic independent elements α and � in P and consider
the elements a = (α, 0), b = (�, 0) and c = (α · �, 0) in S. We first show that c is
definable over a, b. So, let � be an automorphism ofM fixing a and b. The restriction
�|P is a field automorphism and induces an automorphism �̃ = (�|P, �|P × �|P) of
M, by Lemma 3.8(a). Note that the automorphism �̃–1 ◦ � fixes P, a, b. By our
assumption, it corresponds to a derivation D with D(α) = 0 = D(�). In particular

�̃–1 ◦ �(c) = D(α · �) � c = c,

so

�(c) = �̃
(
(�̃–1 ◦ �)(c)

)
= �̃(c) = c,

as desired.
By Fact 5.1, we need only show that stp(a, b, c) has trivial stabilizer (since S

is not almost P-internal). As in the discussion above, it follows that every tuple
(g1, g2, g3) in the stabilizer must have trivial projection onto the first coordinates, so
write gi = 	i � 0S . Note that gi and 	i are interdefinable, so we may assume that

	1, 	2, 	3 |� a, b, c.

We have that (	1 � a, 	2 � b) ≡P (a, b) by Lemma 3.8(c). Hence, there is an
automorphism � fixing P pointwise (and hence a derivation D� , by assumption)
such that D�(α) = 	1 and D�(�) = 	2. As

(a ⊕ g1, b ⊕ g2, c ⊕ g3) = (	1 � a, 	2 � b, 	3 � c) ≡ (a, b, c),

and both �(c) and 	3 � c are definable over 	1 � a, 	2 � b by the same formula, we
deduce that

	3 = D�(α · �) = 	1 · � + α · 	2.

The independence

	1, 	2, 	3 |� α, �

yields that all 	i ’s are trivial, as desired. 	

Remark 5.3. Choosing a formula ϕ(a, b, z) which defines c over the elements a
and b, it is easy to conclude, following Marker and Pillay’s work [12, Fact 1.5], that
the multiplication⊗ is globally definable (with parameters) inM as the composition
of germs of elements in

X =
{
a ∈ S | ϕ(ε � a, b, (ε � a) ⊗ b) for every generic b independent

from a and every element ε in P
}
.
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We will now show that the CBP holds in the additive coverM0 and, more generally,
whenever there is essentially no additional structure on the sort S.

Proposition 5.4. The CBP holds in an additive cover M, whenever every additive
map on C induces an automorphism in Aut(M/P).

In particular, the additive cover M0 has the CBP.

Proof. Recall that we need only consider real types over models in order to
deduce that the CBP holds. Let p(x) be the type of some finite real tuple ā of length
k over an elementary substructure N. In order to show that the type stp(Cb(p)/ā) is
almost P-internal, choose a formula ϕ(x; b̄, 	) in p of least Morley rank and Morley
degree one, where b̄ is a tuple of elements in S ∩N and 	 is a tuple of elements in
P ∩N .

We claim that every automorphism in Aut(M/P, ā) fixes the canonical base
Cb(p), which is (interdefinable with) the canonical parameter �dpxϕ(x; y)�. For
this, it suffices to show that every such automorphism � sends the tuple b̄ to another
realization of the formula dpxϕ(x; y1, 	).

Write ā = (a1, ... , ak) and

αi =

{
�(ai), if ai is in S,
ai otherwise.

For b̄ = (b1, ... , bn), set �i = �(bi). We may assume (after possibly reordering) that
(�1, ... , �m) is a maximal subtuple of �̄ which is Q-linearly independent over ᾱ. So,

�j =
m∑
i=1

qi · �i +
k∑
i=1

ri · αi

for m + 1 ≤ j ≤ n and rational numbers qi and ri . In order to show that b̄ is
mapped by the automorphism � of Aut(M/P, ā) to another realization of the
formula dpxϕ(x; y1, 	), it suffices to show that

N |= ∀ε1, ... , εm ∈ P dpxϕ(x; ε̄ � b̄, 	),

where ε̄ = (ε1, ... , εn) with

εj =
m∑
i=1

qi · εi

for m + 1 ≤ j ≤ n. Indeed: since N is an elementary substructure of M, the above
implies that

M |= ∀ε1, ... , εm ∈ P dpxϕ(x, ε̄ � b̄, 	),

so we deduce from

F�(�j) =
m∑
i=1

qi · F�(�i) +
k∑
i=1

ri · F�(αi) =
m∑
i=1

qi · F�(�i) + 0

for m + 1 ≤ j ≤ n, that �(b̄) = F�(b̄) � b̄ realizes dpxϕ(x; ȳ1, 	), as desired.
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So, let ε1, ... , εm be in P ∩N and set εj =
∑m
i=1 qi · εi form + 1 ≤ j ≤ n. Choose

an additive map G vanishing onαi for 1 ≤ i ≤ k and withG(�i) = εi for 1 ≤ i ≤ m.
Hence

G(�j) =
m∑
i=1

qi · εi ,

so the image of b̄ under the automorphism �G induced by G lies in N. Hence
�G(b̄) = ε̄ � b̄ realizes dpxϕ(x, y1, 	) since �G(ā) = ā, as desired. 	

Remark 5.5. The above proof shows that the canonical base of a real stationary
type stp(a/N ) is definable over a, P which is stronger than P-internality. As we will
see below this does not hold for all imaginary types.

Palacı́n and Pillay [15] considered a strengthening of the CBP, called the strong
canonical base property, which we reformulate in the setting of additive covers: Given
a (possibly imaginary) type p = stp(a/B), its canonical base Cb(p) is algebraic over
a, d̄ , where stp(d̄ ) is P-internal. If we denote by Q the family types over acl eq(∅)
which are P-internal, then the strong CBP holds if and only if every binding group
G relative to Q is rigid [15, Theorem 3.4], that is, the connected component of every
definable subgroup of G is definable over acl eq(�G�).

Notice that no additive cover where the sort S is not almost P-internal can have the
strong CBP: For the two generic independent elements a = (α, 0) and b = (�, 0) in
S, the stationary P-internal type p = tp(a, b/α, �) is fundamental and has (relative
to P) binding group G = (C2,+), see the discussion before Proposition 3.11. This
is clearly a Q-internal type whose binding group H (relative to Q) is a definable
subgroup of the connected group G. Since vector groups are never rigid, it suffices
to show thatH = G (compare to [9, Proposition 4.9]). Otherwise, the Morley rank
of H is at most 1, so

RM(a, b/α, �,Q) ≤ 1,

by [15, Fact 1.2]. In particular, there is a tuple d̄ such that stp(d̄ ) belongs to Q and
(up to relabeling) the element b is algebraic over a, d̄ (note that stp(�) is in Q).
Hence, the type stp(b/a), and thus S, is almost P-internal.

The question whether a binding-theoretic interpretation of the CBP exists arose
in [15]. We conclude this section with an observation that a pure binding-group-
theoretic account of the CBP is heuristically unlikely. We already noticed in
Proposition 3.11 that, whenever the sort S in an additive cover is not almost P-
internal, then the binding groups relative to P are precisely all definable subgroups
of (Cn,+), as n varies. In particular, all such additive covers share the same binding
groups (relative to P). We will now see that the same holds for the binding groups
relative to Q.

Lemma 5.6. Every definable subgroup of (Cn,+), for n in N, occurs as a binding
group relative to Q in each additive cover where the sort S is not almost P-internal. In
particular all such additive covers share the same binding groups relative to Q.

Proof. Note that Q-internality coincides with P-internality. Moreover, the
binding group relative to Q is a subgroup of the binding group relative to P, which
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by Proposition 3.11 is a definable subgroup of some (Cn,+). So it suffices to show
that every definable subgroup G of (Cn,+) appears as a binding group relative to Q.

Choose a tuple ā of elements a1 = (α1, 0), ... , an = (αn, 0) in the sort S with
generic independent elements αi in P and consider the set G � ā. By Proposition
3.11, the stationary type stp(ā/�G � ā�) is P-internal and fundamental with binding
group G.

We now show that the binding group H of stp(ā/�G � ā�) relative to Q equals G.
Assume for a contradiction that H is a proper subgroup of G. Since G is connected,
the Morley rank RM(H ) < RM(G), so

RM(ā/�G � ā�,Q) < RM(ā/�G � ā�, P),

by [15, Fact 1.2]. Note that �(ā) is definable over �G � ā�. It follows that for some
1 ≤ k ≤ n there is a tuple d̄ with stp(d̄ ) in Q such that the coordinate ak of ā is not
algebraic over ā<k, �G � ā�, yet it is algebraic over ā<k, �G � ā�, d̄ .

By P-internality of stp(d̄ ), there is a set of parameters C with C |� d̄, ā, �G � ā�
such that d̄ is definable over C,P. Therefore ak is algebraic over

ā<k, �G � ā�, C, P.

We deduce now from Lemma 3.8(c) that

stp(ā/�G � ā�, C ) � tp(ā/�G � ā�, C, P),

which contradicts that ak is not algebraic over ā<k, �G � ā�, by the independence
C |� ā, �G � ā�. 	

§6. Transfer of internality in additive covers. In this section we will show that the
additive cover M1 does not transfer internality to intersections nor internality to
quotients. We will start with the latter, whose proof is considerably simpler.

Proposition 6.1. The additive cover M1 does not transfer internality to quotients.

Proof. Choose generic independent elements a, b and c in the sort S and set
d = (a ⊗ c) ⊕ b. Consider now the following definable set:

E =
{
(x, y) ∈ S2 | �(x) = �(a) & �(y) = �(b) & d = (x ⊗ c) ⊕ y

}
.

Since the canonical parameter �E� is clearly definable over c, d, �(a), �(b) and the
type stp(c, d, �(a), �(b)/�(c), �(d )) is P-internal, we deduce that the type

stp
(
�E�/�(c), �(d )

)
is P-internal.

Claim. The type stp
(
�E�/�(a), �(b)

)
is P-internal.

Proof of the Claim. Choose elements a1 and b1 in the fiber of �(a), resp. �(b),
such that

a1, b1 |�
�(a),�(b)

�E�.
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Note that every automorphism � in Aut(M1/P) fixing the elements a1 and b1 must
fix �–1

(
�(a)

)
× �–1

(
�(b)

)
⊇ E, so � fixes E pointwise. In particular, the canonical

parameter �E� is definable over a1, b1, P, as desired. 	Claim.

We assume now that M1 transfers internality to quotients in order to reach a
contradiction. Since

acl eq(�(a), �(b)
)
∩ acl eq(�(c), �(d )

)
= acl eq(∅),

we deduce that the type stp(�E�) is almost P-internal. It follows that the type
stp(b/a) is almost P-internal, since b is definable over �E�, a. Now, the indepen-
dence b |� a yields the desired contradiction, because the sort S is not almost
P-internal. 	

Remark 6.2. The previous set is definable in every additive cover, since E equals
G � (a, b), where G is the definable subgroup of (P2,+) given by the equation
�(c) · x + y = 0. The main cause for the failure of transfer of internality to quotients
in M1 is that E is definable over c, d, P.

Proposition 6.3. The additive cover M1 does not transfer internality to intersec-
tions.

Proof. Choose generic independent elements a1 and a2 in S and ε in P generic
over a1, a2. Set ᾱ = (α1, α2) =

(
�(a1), �(a2)

)
and let G be the definable subgroup

of (P2,+) given by ε · x + y = 0. Consider now the definable set G � (a1, a2) and
choose �1 in P generic over �G � (a1, a2)�, ᾱ, ε as well as elements �2 and �3 in P
with

0 = �1α1 +
1
2
�2α

2
1 +

1
3
�3α

3
1 + α2 (1)

0 = �1 + �2α1 + �3α
2
1 – ε (2)

This is possible because the matrix (
α2

1
2

α3
1

3
α1 α2

1

)

has determinant α
4
1

2 – α
4
1

3 �= 0. Since �2 and �3 are definable over �1, ᾱ, ε, we get the
independence

�̄ |�
ᾱ,ε

�G � (a1, a2)�, (♦)

where �̄ = (�1, �2, �3).

Claim 1. The type stp
(
�G � (a1, a2)�/�̄

)
is P-internal.

Proof of the Claim 1. Let b1, b2 and b3 be elements in S such that bi is in the
fiber of �i with

b1, b2, b3 |�
�̄

�G � (a1, a2)�, ᾱ, ε.
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We show that every automorphism � in Aut(M1/P) fixing b1, b2 and b3 must
permute G � (a1, a2). Recall that F� is the derivation on C induced by the
automorphism �. Since F�(�i) = 0, we deduce from Equations (1) and (2) that
ε · F�(α1) + F�(α2) = 0. Since the tuple

(
F�(α1), F�(α2)

)
lies in G, we have that

�(a1, a2) = (F�(α1) � a1, F�(α2) � a2) belongs to G � (a1, a2),

so the automorphism � permutes the setG � (a1, a2), by Proposition 3.11. 	Claim 1

Claim 2. The intersection acleq(�G � (a1, a2)�
)
∩ acleq(�̄) = acleq(∅).

Proof of the Claim 2. Because of the independence (�), we need only show that

acl eq(�̄) ∩ acl eq(ᾱ, ε) = acl eq(∅).

Choose tuples �̄ ′, ᾱ′, ε′, �̄ ′′, ᾱ′′, ε′′, �̄ ′′′ such that

�̄ , ᾱ, ε
st≡ �̄ ′, ᾱ, ε st≡ �̄ ′, ᾱ′, ε′

st≡ �̄ ′′, ᾱ′, ε′
st≡ �̄ ′′, ᾱ′′, ε′′

st≡ �̄ ′′′, ᾱ′′, ε′′

with

�̄ ′ |�
ᾱ,ε

�̄ ᾱ′, ε′ |�
�̄′
�̄ , ᾱ, ε �̄ ′′ |�

ᾱ′,ε′
�̄ , ᾱ, ε, �̄ ′ ᾱ′′, ε′′ |�

�̄′′
�̄ , ᾱ, ε, �̄ ′, ᾱ′, ε′

and

�̄ ′′′ |�
ᾱ′′,ε′′

�̄ , ᾱ, ε, �̄ ′, ᾱ′, ε′, �̄ ′′.

Since

acl eq(�̄) ∩ acl eq(ᾱ, ε) ⊂ acl eq(�̄) ∩ acl eq(�̄ ′′′),
we need only show the independence �̄ |� �̄

′′′. Note first that the whole
configuration has Morley rank 9:

RM
(
�̄ , ᾱ, ε, �̄ ′, ᾱ′, ε′, �̄ ′′, ᾱ′′, ε′′, �̄ ′′′

)
= RM

(
�1, α1, α2, ε, �

′
1, α

′
1, �

′′
1 , α

′′
1 , �

′′′
1

)
= 9.

Since

RM
(
�̄ ′′′, �̄ , α1, α

′
1, α

′′
1

)
= RM

(
�̄ ′′′/�̄, α1, α

′
1, α

′′
1

)
+ RM

(
α′′

1 /�̄, α1, α
′
1

)
+ RM

(
α′

1/�̄, α1
)

+ RM
(
α1/�̄

)
+ RM

(
�̄
)

= RM
(
�̄ ′′′/�̄, α1, α

′
1, α

′′
1

)
+ 6,

it suffices to show that α2, ε, �̄
′, α′

2, ε
′, �̄ ′′, α′′

2 and ε′′ are all algebraic over the
tuple (�̄ ′′′, �̄ , α1, α

′
1, α

′′
1 ). Clearly α2, ε, α

′′
2 and ε′′ are algebraic over �̄ ′′′, �̄ , α1, α

′′
1 .
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Furthermore we have the following system of linear equations:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6α1 3α2
1 2α3

1 0 0 0 0 0
1 α1 α2

1 0 0 0 0 0
6α′

1 3α′
1

2 2α′
1

3 6 0 0 0 0
1 α′

1 α′
1

2 0 1 0 0 0
0 0 0 6 0 6α′

1 3α′
1

2 2α′
1

3

0 0 0 0 1 1 α′
1 α′

1
2

0 0 0 0 0 6α′′
1 3α′′

1
2 2α′′

1
3

0 0 0 0 0 1 α′′
1 α′′

1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� ′1
� ′2
� ′3
α′

2
ε′

� ′′1
� ′′2
� ′′3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

– 6α2

ε
0
0
0
0

– 6α′′
2

ε′′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Thus, we need only show that the above matrix has non-zero determinant

6

∣∣∣∣∣∣
6α1 3α2

1 2α3
1

1 α1 α2
1

1 α′
1 α′

1
2

∣∣∣∣∣∣
∣∣∣∣∣∣∣
6α′

1 3α′
1

2 2α′
1

3

6α′′
1 3α′′

1
2 2α′′

1
3

1 α′′
1 α′′

1
2

∣∣∣∣∣∣∣ – 6

∣∣∣∣∣∣
6α1 3α2

1 2α3
1

1 α1 α2
1

6α′
1 3α′

1
2 2α′

1
3

∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 α′
1 α′

1
2

6α′′
1 3α′′

1
2 2α′′

1
3

1 α′′
1 α′′

1
2

∣∣∣∣∣∣∣
= 72α2

1α
′
1

2
α′′

1
2(α1 – α′

1)(α1 – α′′
1 )(α′′

1 – α′
1) �= 0. 	Claim 2

If M1 had transfer of internality to intersections, then the type

stp
(
�G � (a1, a2)�/acl eq(�G � (a1, a2)�) ∩ acl eq(�1, �2, �3)

)
would be almost P-internal, by Claim 1, and so would be stp(�G � (a1, a2)�),
by the previous claim, which yields a contradiction, exactly as in the proof of
Proposition 6.1. 	

Recall that an additive cover transfers internality to intersections, resp. to
quotients, if and only if every almost P-internal type is good, resp. special, by
Propositions 2.5 and 2.8. For real types, the property of being special follows directly
from almost internality.

Remark 6.4. Almost P-internal real types are special in every additive cover.

Proof. We may assume that the sort S is not almost P-internal. We want to show
that the almost P-internal type stp(a, 	/B) is special, where a is a tuple (a1, ... , an)
of elements in S and 	 is a tuple in P. So, assume that for some set C of parameters
the type stp(a, 	/C ) is almost P-internal. By Lemma 3.10, the projections �(ai) are
algebraic over B and over C. Hence, the type

stp
(
a, 	/acl eq(B) ∩ acl eq(C )

)
is almost P-internal and so is

stp
(

Cb(a,	/B)/acl eq(B)∩acl eq(C )
)
,

since Cb(a, 	/B) is algebraic over finitely many B-conjugates of a. 	
Propositions 6.3 and 6.1 and the above remark give a negative answer to

Question 2.

Corollary 6.5. There is a stable theory of finite Morley rank, where every
stationary real almost P-internal type is special, yet P-internality is not transferred to
intersections.
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In [11] we give necessary conditions for an additive cover to transfer internality
to quotients. This approach yields as a by-product new counterexamples to the
CBP. Furthermore, we will deduce that no additive cover which transfers internality
to quotients can eliminate finite imaginaries, whenever the sort S is not almost
P-internal, which generalizes Proposition 6.1.
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