
15

Gibbs sampling

The authors are grateful to Rolando Somma for reviewing this chapter.

Rough overview (in words)

Gibbs sampling is the task of preparing a quantum state in thermal equilibrium.

This task is interesting in its own right as a means of testing the thermodynamic

properties of quantum systems in a controlled way, but it is also a subroutine

that is surprisingly useful within other quantum algorithms. Formally, given

a Hamiltonian and a temperature, the task is to prepare the Gibbs state (also

known as the thermal state) of that Hamiltonian at the associated temperature,

or equivalently, to sample eigenstates of the Hamiltonian with probability pro-

portional to their Boltzmann weights (motivating the name Gibbs sampling).

Physically, Gibbs sampling is routinely achieved in experiments via cool-

ing as a manifestation of open-system thermodynamics, although theoreti-

cal understanding of such processes has been largely heuristic. Computation-

ally, quantum Gibbs sampling is the quantum analog of the same classical

task in the computational basis, often achieved by Markov chain Monte Carlo

(MCMC) methods. As a representative example, the Metropolis–Hastings al-

gorithm [512] performs local accept-reject steps to construct a Markov chain

whose stationary state is the classical Gibbs distribution; the Gibbs distribu-

tion can be efficiently sampled if the Markov chain mixes rapidly. Nowadays,

Monte Carlo methods have already outgrown their original intent and found

ubiquitous applications in optimization and machine learning due to their sim-

plicity and versatility. It is natural to wonder if the same features will be present

for quantum Gibbs sampling.

The most direct quantum algorithms for Gibbs sampling (for noncommuting

Hamiltonians) suffer from an explicit cost exponential in the size of the sys-
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244 15. Gibbs sampling

tem. Another approach is to quantize classical Monte Carlo algorithms [984],

but this approach has faced serious technical challenges rooted in quantum

mechanics: the energy-time uncertainty principle (for imposing the Boltzmann

weights) and the no-cloning theorem (for “rejecting” a quantum state). Re-

cently, a new wave [256, 939, 856, 260, 259] of proposals revisits the issue

from the angle of open-system thermodynamics and gives nature-inspired al-

gorithms for Gibbs sampling. These more directly resemble the dynamical pro-

cess of thermalization and have the potential to achieve better runtimes for

specific systems where thermalization is expected to be fast.

Rough overview (in math)

Given a Hamiltonian H =
∑

i Ei|ψi⟩⟨ψi| over n qubits, a desired inverse tem-

perature β, and an error parameter ϵ, the Gibbs sampling task is to prepare an

n-qubit quantum state ρ such that

∥ρ − σβ∥tr ≤ ϵ ,

where

σβ :=
e−βH

Z ∝
∑

i

e−βEi |ψi⟩⟨ψi| and Z := tr[e−βH].

The quantity Z is known as the partition function. The above uses the con-

venient error metric given by the trace norm ∥·∥tr, which controls the error

for arbitrary bounded (possibly nonlocal) observables. In some applications, it

could be sufficient to give a state ρ that approximates all local observables up

to high precision, even if the global distance between ρ and σβ is large. Note

that σβ corresponds to an ensemble of eigenstates of H, where an eigenstate

with energy Ei occurs with probability proportional to the Boltzmann weight

e−βEi (β has units of inverse energy so that βEi is dimensionless).

To solve this problem, the quantum algorithm requires access to H, for

example, through a block-encoding of H. Block-encodings can often be ef-

ficiently constructed, for instance, when H is a sparse matrix or when H is

given as a sum of poly(n) local interaction terms. Henceforth, assume that H

is offset such that it is guaranteed to be a non-negative operator (no negative

energies).

An early approach [838] for Gibbs sampling relied on quantum phase es-

timation (QPE) and amplitude amplification. In particular, one starts with a

2n-qubit maximally entangled state (for which the reduced density matrix on

the first n qubits is the maximally mixed state) and applies QPE to the first

n qubits, reading an estimate of the energy into an ancilla register. Under the
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15. Gibbs sampling 245

simplification that QPE has perfect resolution, one now has the state

1√
2n

∑

i

|ψi⟩|ϕi⟩|Ei⟩ ,

where |ψi⟩ is the i-th eigenstate of H, Ei is the associated energy, and the states

|ϕi⟩ form an arbitrary (unimportant) orthonormal basis. Next, one coherently

rotates an ancilla qubit to put the correct Boltzmann weight into the amplitude:

1√
2n

∑

i

|ψi⟩|ϕi⟩|Ei⟩
(
e−βEi/2|0⟩ +

√
1 − e−βEi |1⟩

)
.

Note that the probability of measuring the final qubit in |0⟩ is precisely Z/2n.

Rather than measure and postselect, one now performs amplitude amplification

on the ancilla being |0⟩ to produce

1√
Z

∑

i

e−βEi/2|ψi⟩|ϕi⟩|Ei⟩

up to small error, which is a purification of the Gibbs state σβ =

Z−1 ∑
i e−βEi |ψi⟩⟨ψi|. While QPE does not exactly produce the operation

described above, a more complete analysis in [838, 272] shows the idea still

works. This approach is akin to classical rejection sampling (see also [822]),

where a state is chosen at random and accepted with probability e−βEi , such

that repeating until acceptance yields a sample from the correct distribution.

Due to amplitude amplification, the quantum algorithm enjoys a quadratic

speedup.

More advanced methods that have exponentially better ϵ dependence have

since been developed. Reference [289] used a linear combination of unitaries

approach to perform the imaginary-time evolution operator e−βH , again

followed by amplitude amplification. Technically, that work assumed access

to an operator similar to
√

H, but this requirement was removed in Gibbs

samplers appearing in [48, 45], which employ a method for implementing

smooth Hamiltonian functions. Alternatively, one can use the quantum

singular value transformation along with a polynomial approximation to the

function e−β(1−x)/2 on the interval x ∈ [−1, 1] [431, Section 5.3] and combine

this with (fixed-point) amplitude amplification [1067].

Another family of quantum algorithms is closer in spirit to classical Monte

Carlo methods. They quantize the Metropolis–Hastings algorithm (quantum

Metropolis sampling [984]) or simulate the dynamics arising from a system-

bath interaction [256, 939, 856, 260, 259]. These algorithms make fundamental

usage of QPE (or the quantum operator Fourier transform [260, 259]) for prob-

ing the energy, but most importantly (and most nontrivially), they construct
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246 15. Gibbs sampling

a detailed-balance “quantum Markov chain” via either discretely or continu-

ously “rejecting” the quantum state. Intuitively, the algorithm implements the

following rule:

“Apply a jump. If the energy increases, reject with some probability.”

Care must be taken to perform the rejection step coherently and to handle the

fact that the energies cannot be learned to infinite precision. Abstractly, Monte

Carlo–style quantum algorithms emulate a continuous-time quantum Markov

chain (i.e., a Lindbladian L)1 that converges to the Gibbs state after evolution

time tmix (often called the mixing time)

L[σβ] ≈ 0 and ∥eLtmix [ρ0] − σβ∥tr ≤ ϵ

for some initial state ρ0. Like the classical Metropolis–Hastings algorithm, for

some systems, tmix can be exponentially large (or worse) in the system size n,

while for other systems, it can be much smaller (polynomial or logarithmic).

It is a generally difficult problem to determine tmix. As a consequence, clas-

sical Monte Carlo algorithms rarely have convergence guarantees in practice.

Rather, they are employed in conjunction with a variety of heuristic conver-

gence tests.

Note that such a process can be further quantized to gain quadratic

speedup [1048, 260].

Dominant resource cost (gates/qubits)

Assuming one has access to a block-encoding of the Hamiltonian H, that is, a

unitary whose upper left block is the operator H/α, where α is a normalization

constant at least as large as the spectral norm of H, one can accomplish the

Gibbs sampling task using [48, Lemma 44] (see also [45, Corollary 16])

αβ

√
2n

Z · poly(log(1/ϵ), n) (15.1)

calls to the block-encoding and a similar number of other gates. Note that since

we have assumed H is non-negative, we have Z ≤ 2n. In the case that H is d-

sparse, we can take α = d∥H∥max, where ∥H∥max is the maximum absolute value

of any entry of the matrix H. In the case one has access to
√

H, the β depen-

dence can be reduced from β to
√
β [289]. This complexity statement might be

regarded as a quadratic speedup compared to the classical method of rejection

sampling, which requires 2n/Z samples on average; however, note that this

classical method only directly applies to diagonal (classical) Hamiltonians H.

1 Most constructions are continuous-time quantum Markov chains as they are mathematically
easier to work with than discrete-time quantum channels [984].
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15. Gibbs sampling 247

Otherwise, a classical approach may need to resort to exact diagonalization of

H, which has O (2n) space complexity and even worse time complexity.

Monte Carlo–style quantum Gibbs sampling algorithms have complexity de-

termined by

(mixing time) · (cost per unit evolution time eL). (15.2)

The mixing time is expected to vary significantly for different systems of in-

terest (based on classical Monte Carlo intuition), but for systems appearing

in nature, one may be optimistic based on the observed fast thermalization of

physically relevant observables. In fact, in many cases, rapidly thermalizing

metastable states will have physically relevant characteristics; in analogy with

classical ferromagnetic systems below the critical temperature. The cost per

unit evolution time is dominated by the QPE subroutine, which then scales with

a certain energy resolution. Typically, we may work in a convention where H

is given by poly(n) Hamiltonian terms each of strength O (1), enabling a block-

encoding of H with normalization α = poly(n) to be implemented in gate com-

plexity poly(n), or alternatively, the ability to perform black-box Hamiltonian

simulation for time t at gate cost t · poly(n).2 In this case, an overall gate com-

plexity for a rapidly mixing system (i.e., tmix ≤ poly(n)) can be poly(n, β, 1/ϵ);

see [260, Table I] for a catalog of existing constructions. A recent construc-

tion [259] improved the asymptotic cost per unit Lindbladian evolution time to

Õ(β) Hamiltonian simulation time assuming black-box access to Hamiltonian

simulation; for lattice Hamiltonians, this further simplifies as one merely needs

to simulate lattice patches of diameter Õ(β). To put together a practically rele-

vant end-to-end resource estimate, one needs to design better algorithms (see,

e.g., [351] for a single-ancilla variant for ground states) to reduce the per unit

time cost, as well as to estimate the mixing time (e.g., by exact diagonalization

of the map for small system sizes). Of course, if Gibbs sampling is employed

as a heuristic (as in many classical applications of Monte Carlo methods), the

cost will be empirical.

Caveats

On the one hand, the superpolynomial O(
√

2n) complexity for Gibbs sampling

that appears explicitly in Eq. (15.1) is necessary in general (for sufficiently

large β it allows one to solve NP-hard or even QMA-hard problems in the gen-

eral case). On the other hand, most physical Hamiltonians (if they appear to

2 In the model of black-box Hamiltonian simulation, one can apply the unitary Ui = eiHti for
user-specified choices of ti, and the goal is to minimize the cumulative total

∑
i ti over the

course of the algorithm. In this model, it is sensible for t and β to have the same units
(interpreted as time), as βH and iHt are both unitless.
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248 15. Gibbs sampling

thermalize in nature) should be simulable without exponential hidden prefac-

tors. The Monte Carlo–style approach to Gibbs sampling attempts to mimic

nature more closely than the other algorithms with guaranteed complexities

mentioned above; hence, it looks more promising for obtaining polynomial

runtimes, but this must be verified through system-specific analysis or hard-

ware demonstrations.

Finally, if the Hamiltonian comes from classical problems (such as solving

semidefinite programs), loading the instance may have exponential cost

(eΩ(n)), which in the above presentation is hidden in the assumption of a block-

encoding of classical data. Additionally, it is unclear whether Hamiltonians

arising from classical data—which would likely lack the local interaction

structure that one sees in chemical and physical systems—should be expected

to “thermalize” quickly (i.e., whether Monte Carlo–style algorithms converge

in a small number of iterations).

Example use cases

• Multiplicative weights update (MWU) method and conic programming:

Gibbs sampling is the main source of quantum speedup in the MWU

method, which is used to solve semidefinite programs and other conic

programs [181, 182, 48, 45, 46]. Existing analyses in this direction have

employed Gibbs samplers with a guaranteed quadratic (but no larger)

speedup, rather than the more heuristic and recent Monte Carlo–style

algorithms.

• Quantum chemistry: An important step of estimating the ground state en-

ergy of electronic structure Hamiltonians is generating an ansatz state that

has a large overlap with the ground state. This might be done via Gibbs sam-

pling at sufficiently low temperatures; the overlap with the ground state is

e−βE0/Z, which can be large when 1/β is sufficiently small compared to the

spectral gap between the ground and excited space of the Hamiltonian.

• Condensed matter physics: Similar to quantum chemistry, Gibbs sampling

provides a method for producing ansatz states for ground state energy calcu-

lations, which often capture the relevant physics. However, condensed mat-

ter physicists are also interested in material properties at finite temperatures

so that the Gibbs state itself might equally be of interest.

• Computing partition functions: One of the early references to develop quan-

tum Gibbs samplers [838] applied it to the problem of estimating the parti-

tion functionZ up to small relative error. The partition function contains all

the relevant thermodynamic information of the system.

• Combinatorial optimization: Many combinatorial optimization problems

can be viewed as finding the ground state of classical Hamiltonians (i.e.,
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15. Gibbs sampling 249

Hamiltonians that are diagonal in the computational basis), or finding a

low-energy state that achieves a high approximation ratio with the ground

state. Classical Monte Carlo algorithms are a key technique in this area,

and quantization of these methods can sample the same classical thermal

distribution with a quadratic speedup in the mixing time [944]. The full

power of Gibbs sampling for general nondiagonal Hamiltonians could be

useful in situations where one adds a noncommuting transverse field to the

classical Hamiltonian and wishes to prepare a low-energy state, such as in

quantum annealing or for training quantum Boltzmann machines [30].

Further reading

Gibbs sampling has been studied in several specific cases. For example, [152]

studied Gibbs sampling of local Hamiltonians in 1D. Moreover, [603] studied

commuting spatially local Hamiltonians and showed conditions under which

they thermalize in polynomial time, suggesting efficient Gibbs sampling via

Monte Carlo–style methods. These conditions hold for any 1D system at any

temperature, and in any higher-spatial dimension above a certain threshold

temperature.
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