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Abstract

The aim of this paper is to develop the theory of weighted Diophantine approxima-
tion of rational numbers to p-adic numbers. Firstly, we establish complete analogues of
Khintchine’s theorem, the Duffin–Schaeffer theorem and the Jarník–Besicovitch theorem
for ‘weighted’ simultaneous Diophantine approximation in the p-adic case. Secondly, we
obtain a lower bound for the Hausdorff dimension of weighted simultaneously approximable
points lying on p-adic manifolds. This is valid for very general classes of curves and man-
ifolds and have natural constraints on the exponents of approximation. The key tools we
use in our proofs are the Mass Transference Principle, including its recent extension due to
Wang and Wu in 2019, and a Zero-One law for weighted p-adic approximations established
in this paper.

2020 Mathematics Subject Classification: 11J83 (Primary); 11J61 (Secondary)

1. Introduction

One of the central themes in the theory of Diophantine approximation is to understand
how rational points simultaneously approximate several given numbers. In this paper we
will investigate simultaneous rational approximations to p-adic numbers. To begin with, we
give a brief overview of relevant results in the real case, which is far better understood.
Throughout � = (ψ1, . . . ,ψn) will be an n-tuple of approximation functions ψi : R+ →R+
(1 ≤ i ≤ n) such that ψi(q) → 0 as q → ∞. Here and elsewhere R+ is the set of positive real
numbers. Given any � as above and q ∈N, let

Aq(�) =
⋃

p=(p1,...,pn)∈Zn

{
x = (x1, . . . , xn) ∈Rn :

∣∣∣∣xi − pi

q

∣∣∣∣< ψi(q)

q
for all 1 ≤ i ≤ n

}

and

Wn(�) = lim sup
q→∞

Aq(�).

Thus Wn(�) is the set of points x such that there are infinitely many rational points p/q
that approximate x with the error ψi(q)/q in the ith coordinate. In the case all approx-
imation functions in � are the same, that is ψ1 = · · · =ψn, Wn(�) is the standard set
of simultaneously ψ-approximable points in Rn, in which case we will write Wn(ψ)

C© The Author(s), 2023. Published by Cambridge University Press on behalf of Cambridge Philosophical Society.

https://doi.org/10.1017/S0305004122000470 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000470
https://doi.org/10.1017/S0305004122000470


14 V. BERESNEVICH ET AL.

for Wn(�). If the approximation functions have the form ψi(q) = q−τi for some expo-
nents of approximation τ = (τ1, . . . τn) ∈Rn+ we will use the notation Wn(τ ) for Wn(�).
Furthermore, if τ = (τ , . . . , τ ) for some τ > 0 we will write Wn(τ ) for Wn(τ ). Note that
Wn(�) + a =Wn(�) for any a ∈Zn and therefore Wn(�) is often restricted to [0, 1]n for
convenience.

The following is a well–known result that was originally proved by Khintchine [49] in
1926 when ψ1 = · · · =ψn with a slightly more restrictive condition on the approximation
function and which can be found in [40] in full generality.

THEOREM 1·1. Let ψi : N→R+ be monotonically decreasing functions for each
1 ≤ i ≤ n. Then

λn
(Wn(�) ∩ [0, 1]n)=

⎧⎨
⎩

0 if
∑∞

q=1
∏n

i=1 ψi(q)<∞,

1 if
∑∞

q=1
∏n

i=1 ψi(q) = ∞,

where λn is n-dimensional Lebesgue measure.

To gather more precise information about the sets of measure zero arising from Theorem
1·1 one often appeals to Hausdorff measures and Hausdorff dimension. We now briefly recall
these notions. Let (X, d) be a separable metric space and suppose that U ⊆ X. For any ρ > 0,
a ρ-cover of U is a countable collection of balls {Bi} of radii ri > 0 such that U ⊂ ∪iBi and
ri ≤ ρ for all i. A dimension function f : R+ →R+ is an increasing continuous function for
which f (r) → 0 as r → 0. Define

Hf
ρ(U) = inf

{∑
i

f (ri) : {Bi} is a ρ-cover of U

}
,

where the infimum is taken over all ρ-covers of U. The Hausdorff f -measure, Hf (U), of U
is defined as

Hf (U) = lim
ρ→0+ Hf

ρ(U).

When the dimension function f (x) = xs we will write Hs for Hf . The Hausdorff dimension
of U is defined as

dim U = inf{s ≥ 0 : Hs(U) = 0}.
Regarding the set Wn(τ ) Rynne proved the following general statement [57].

THEOREM 1·2. Let τ = (τ1, . . . , τn) ∈Rn+ be such that τ1 ≥ · · · ≥ τn and
∑n

i=1 τi ≥ 1.
Then

dim Wn(τ ) = min
1≤k≤n

{
n + 1 +∑n

i=k (τk − τi)

τk + 1

}
.

Note that the condition
∑n

i=1 τi ≥ 1 on the exponents is optimal since, by Dirichlet’s theo-
rem, Wn(τ ) =Rn whenever

∑n
i=1 τi ≤ 1. The version of Theorem 1·2 with τ1 = · · · = τn is a

classical result independently established by Jarník [47] and Besicovitch [25]. Furthermore,
Jarník proved a stronger Hausdorff measure result [47].
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Simultaneous p-adic Diophantine approximation 15

When the coordinates of x are confined by some functional relations, that is they are
dependent, we fall into the area of Diophantine approximation on manifolds, see [10, 14,
24, 50, 65] for a general introduction. In this context, generalisations of Khintchine’s theo-
rem and the Jarník–Besicovitch theorem to submanifolds of Rn have been studied in great
depth. Indeed, the theory for non-degenerate planar curves was essentially completed in [10,
20, 67], also see [5, 17, 23, 42, 44] for subsequent developments. Note that if a planar curve
is non-degenerate everywhere it means that the curvature of the curve is defined and non-
zero everywhere except possibly at a countable number of points. In relation to manifolds
in higher dimensions non-degeneracy implies that the manifolds are sufficiently curved so
as to deviate from any hyperplane, see [50] for a formal definition. The divergence case of
Khintchine’s theorem was obtained for arbitrary analytic non-degenerate manifolds in [7]
and for arbitrary (not necessarily analytic) non-degenerate curves [16]. The convergence
case was obtained for various classes of manifolds, see [15, 45, 43, 56, 62] and references
within, before being fully proven in [22]. Note that the fact that the points x lie on a sub-
manifold of Rn implies that approximating rational points have to lie close to the manifold.
Note that in [22] a count on the number of rational points lying close to non-degenerate
manifolds was established with the error term estimating the measure of ψ-approximable
points as opposed to counting rational points that contribute to the error term.

In relation to Hausdorff dimension, the Jarník–Besicovitch theorem with weights was
obtained in [20] for non-degenerate planar curves. This reads as follows.

THEOREM 1·3. Let f ∈ C(3)(I0), where I0 ∈R is an interval, and Cf := {(x, f (x)) : x ∈ I0}.
Let τ = (τ1, τ2) be an exponent vector with

0<min{τ1, τ2}< 1 and τ1 + τ2 ≥ 1,

and assume that

dim
{
x ∈ I0 : f ′′(x) = 0

}≤ 2 − min{τ1, τ2}
1 + max{τ1, τ2} . (1·1)

Then

dim W2(τ ) ∩ Cf = 2 − min{τ1, τ2}
1 + max{τ1, τ2} .

In establishing the upper bound of Theorem 1·3, an estimate due to Huxley [46] is used
as the key ingredient of the proof. To be more specific, Huxley’s estimate proves that for a
twice continuously differentiable function f : R→R defined on some interval I ⊂R where
f ′′ is bounded away from zero and any ε > 0 for all sufficiently large Q ∈N one has that

#

{(
p1

q
,

p2

q

)
∈Q2 :

q ≤ Q, p1
q ∈ I,∣∣∣f(p1

q

)
− p2

q

∣∣∣<ψ(Q)/Q

}
≤ψ(Q)Q2+ε , (1·2)

provided qψ(q) → ∞ as q → ∞. Later Vaughan and Velani [67] replaced the Qε term from
Huxley’s estimate by a constant, thus obtaining the best possible (up to that constant) esti-
mate. Also note that a matching lower bound was obtained in [10] for C3 functions f and
this was later extended to a class of C1 functions [23]. Furthermore, [10] and [23] establish
the ubiquity property of rational points near the planar curves in question, which lies at the
heart of the proof of the lower bound in Theorem 1·3.
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16 V. BERESNEVICH ET AL.

However, as was later discovered in [12] in the case of equal weights, the lower bound in
Theorem 1·3 and indeed for C2 manifolds in arbitrary dimensions can be proven using the
Mass Transference Principle (MTP) of [18] that has become a standard part of the toolkit
when attacking such problems. In fact, in this paper we will too utilise the MTP, or rather its
more recent versions. Regarding approximations with weights, the following theorem was
established in [13].

THEOREM 1·4 (See [13]). Let M := {
(x, f (x)) : x ∈U ⊂Rd

}
, where f : U →Rm with

f ∈ C(2). Let τ = (τ1, . . . , τn) ∈Rn+ with

τ1 ≥ · · · ≥ τd ≥ max
d+1≤i≤n

{
τd+1,

1 −∑m
i=1 τd+i

d

}
and

m∑
i=1

τd+i < 1.

Then

dim(Wn(τ ) ∩M)≥ min
1≤j≤d

{
n + 1 +∑n

i=j (τj − τi)

τj + 1
− m

}
.

In dimensions n> 2 the complementary upper bound is known only in the case of equal
exponents τ1 = · · · = τn = τ . Furthermore, there are various constrains on the manifolds and
the exponent τ , see [15, 22, 43, 45, 62]. The difficulty in obtaining the upper bounds is
primarily associated with the difficulty to count rational points lying close to a manifold.

Note that unlike Theorems 1·3 and 1·4 and other results for manifolds, Rynne’s theo-
rem does not have any constrains on τ except the absolutely necessary requirement that∑n

i=1 τi ≥ 1. In particular, the exponents of approximation in Theorems 1·3 and 1·4 have
to obey certain upper and lower bounds. The case of larger exponents has also been
investigated, albeit it relies on studying rational points on manifolds. For example, [31]
computes the Hausdorff dimension of Wn(τ ) ∩ C for polynomial curves C defined over Q
for τ ≥ max(deg(C)−1, 1). Further generalisations of [31] can be found in [4, 59, 60], where
the condition on τ was relaxed.

The main aim of this paper is to kick-start a similar theory in the case of Diophantine
approximations to p-adic variables. Specifically, we establish p-adic analogues of Theorems
1·1, 1·2, and 1·4.

2. p-adic approximations: overview and new results

As mentioned above, this paper is primarily concerned with establishing the p-adic ver-
sions of the results mentioned in Section 1. For a general introduction to the theory of p-adic
numbers and their functions we refer the reader to [39, 54, 58]. Throughout the rest of this
paper p ∈N will be a fixed prime number and Qp will stand for the completion of Q with
respect to the p-adic absolute value | · |p : Q→ [0, ∞), where

|x|p =
{

p−νp(x) if x 
= 0,

0 if x = 0,

and νp(x) is the unique integer 	 such that x = p	(a/b), a, b ∈Z and gcd(a, p) =
gcd(b, p) = 1. Let Zp := {x ∈Qp : |x|p ≤ 1} be the set of p-adic integers and letμp denote the
(uniquely defined translation invariant) Haar measure on Qp normalised so that μp(Zp) = 1.
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Simultaneous p-adic Diophantine approximation 17

When considering the space Qn
p, we will denote the corresponding product measure by μp,n.

Thus, μp,n
(
Zn

p

)= 1.
The real setting described in Section 1 moves readily enough into the p-adic setting. Let

� = (ψ1, . . . ,ψn) be as in Section 1 and for any a0 ∈N let

Aa0(�) =
⋃

(a1,...,an)∈Zn

|ai|≤a0 (1≤i≤n)

{
x = (x1, . . . , xn) ∈Zn

p :

∣∣∣∣xi − ai

a0

∣∣∣∣
p
<ψi(a0) for all 1 ≤ i ≤ n

}
.

(2·1)
Define the set of p-adic simultaneously �-approximable points in Zp as

Wn(�) = lim sup
a0→∞

Aa0(�).

Similarly to the real case we adopt the following simplified notation for Wn(�) for �
of a special form: Wn(ψ) if ψ1 = · · · =ψn =ψ ; Wn(τ ) if ψi(q) = q−τi for some τ =
(τ1, . . . τn) ∈Rn+; and Wn(τ ) if furthermore τ = (τ , . . . , τ ) for some τ > 0.

Notice that unlike the real setting the values ai (for 1 ≤ i ≤ n) are bounded by a0. This
is because in the p-adic setting leaving the ai values unbounded allows one to achieve
increasingly close approximations regardless of the choice of a0.

It will be convenient to consider the slightly smaller subset of Wn(�) defined by requiring
that the rational approximations in each coordinate are reduced rational fractions. Indeed,
this is the setting that was considered by Haynes in [41], where he showed that, in the case ψ
is not monotonic, establishing a zero-one law for Wn(ψ) requires this additional condition.
For each a0 ∈N, let

A′
a0

(�) =
⋃

(a1,..., an)∈Zn

|ai|≤a0 & (ai,a0)=1 (1≤i≤n)

{
x ∈Zn

p :

∣∣∣∣xi − ai

a0

∣∣∣∣
p
<ψi(a0) for all 1 ≤ i ≤ n

}
(2·2)

and define the corresponding limsup set as

W′
n(�) = lim sup

a0→∞
A′

a0
(�).

We now state the main results of this paper, which are the p-adic analogues of Theorems
1·1, 1·2, and 1·4. We begin with the p-adic equivalent of Theorem 1·1.

THEOREM 2·1. Let ψi : N→R+ be approximation functions with ψi(q) � 1/q for each
1 ≤ i ≤ n and let � = (ψ1, . . . ,ψn). Suppose that

∏n
i=1 ψi is monotonically decreasing.

Then

μp,n
(
W′

n(�)
)=

⎧⎨
⎩

0 if
∑∞

q=1 qn ∏n
i=1 ψi(q)<∞,

1 if
∑∞

q=1 qn ∏n
i=1 ψi(q) = ∞.

Remark 2·2. Note that the condition that each ψi(q) � 1/q is necessary, since the p-adic
distance between any two rational integers can be made arbitrarily small. This is in stark
contrast to the real case where ψ(q)< 1/2 is sufficient to ensure rectangles in the same
‘layer’ Aq(�) are non-intersecting.
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18 V. BERESNEVICH ET AL.

The p-adic simultaneous version of this theorem, that is when ψ1 = · · · =ψn, was estab-
lished by Jarník in [48]. Jarník’s theorem was further generalised by Lutz [53] to systems of
linear forms. We remark that the monotonicity condition is only required in the divergence
case. We remove the monotonicity condition of Theorem 2·1 by establishing the following
Duffin–Schaeffer type theorem [35].

THEOREM 2·3. Let ψi : N→R+ be approximation functions with ψi(q) � 1/q for 1 ≤
i ≤ n and let � = (ψ1, . . . ,ψn). Suppose that

lim sup
N→∞

∑N
q=1 ϕ(q)n ∏n

i=1 ψi(q)∑N
q=1 qn

∏n
i=1 ψi(q)

> 0 , (2·3)

where ϕ is the Euler phi-function. Then

μp,n(W′
n(�)) =

⎧⎨
⎩

0 if
∑∞

q=1 ϕ(q)n ∏n
i=1 ψi(q)<∞,

1 if
∑∞

q=1 ϕ(q)n ∏n
i=1 ψi(q) = ∞.

Note that in both Theorem 2·1 and Theorem 2·3 if
∏n

i=1 ψi(q)< q−n−1−ε for any ε > 0,
then μp,n

(
W′

n(�)
)= 0. To quantify the size of this set further depending on how small this

product is we use Hausdorff dimension to establish a p-adic version of Theorem 1·2.

THEOREM 2·4. Let τ = (τ1, . . . , τn) ∈Rn+ be such that
∑n

i=1 τi > n + 1 and τi > 1 for
each 1 ≤ i ≤ n. Then

dim Wn(τ ) = min
1≤i≤n

{
n + 1 +∑

τj<τi

(
τi − τj

)
τi

}
.

Remark 2·5. We note that the condition on the summation of the exponent vector τ is present
due to the fact that if

∑n
i=1 τi ≤ n + 1, then, by the p-adic version of Dirichlet’s Theorem,

we have that Wn(τ ) =Zn
p.

Remark 2·6. The condition that each τi > 1 may seem unnecessarily restrictive, however,
the following reasoning shows why this must be the case. Similarly to Remark 2·2 the key
reasoning behind the condition is that Z is dense in Zp so in any coordinate axis where
τi < 1 all points along the axis can be approximated, regardless of the choice of a0 in our
approximation sets. If, for example, we considered the approximation set W2((1 − ε, τ2))
for ε > 0 and τ2 > 2 then the above argument gives us that W2((1 − ε, τ2)) =Zp ×W1(τ2).
Using well–known bounds on the Hausdorff dimension of product spaces (see e.g [66]) we
have that

dim W1(τ2) + dim Zp ≤ dim W2((1 − ε, τ2)) ≤ dim W1(τ2) + dimB Zp,

where dimB is the box-counting dimension, we have that

dim W2((1 − ε, τ2)) = 2

τ2
+ 1. (2·4)
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Simultaneous p-adic Diophantine approximation 19

However, if Theorem 2·4 was applicable we would have that

dim W2((1 − ε, τ2)) = min

{
3 + (τ2 − (1 − ε))

τ2
,

3

1 − ε

}
= 2

τ2
+ τ2 + ε

τ2
,

contrary to (2·4).

Theorem 2·4 can be further extended to general approximation functions. Suppose that
the limits

vi = lim
q→∞

− logψi(q)

log q
, (2·5)

exist and are positive for each 1 ≤ i ≤ n. Define the exponents vector v = (v1, . . . , vn) ∈Rn+.

COROLLARY 2·7. Let � be such that the limits (2·5) exist and are positive. Suppose that∑n
i=1 vi > n + 1 and each vi > 1. Then

dim Wn(�) = min
1≤i≤n

{
n + 1 +∑

vj<vi

(
vi − vj

)
vi

}
.

Proof. By the condition that each function ψi has corresponding positive limit (2·5), for
any ε > 0 we have that

q−(vi+ε) ≤ψi(q) ≤ q−(vi−ε) (1 ≤ i ≤ n)

for all sufficiently large q ∈N. Let ε = (ε, . . . , ε) ∈Rn+. Then, we have that

Wn(v + ε) ⊆Wn(�) ⊆Wn(v − ε).

By letting ε→ 0, and applying Theorem 2·4 we get the required result.

When it comes to p-adic approximations on curves and manifolds, less is known. In [51]
Kleinbock and Tomanov generalised the key results from [50] to the S-arithmetic setting,
which includes the p-adic setting. In particular, Kleinbock and Tomanov proved that under
the natural assumption

∑n
i=1 τi > n + 1 the set Wn(τ ) ∩ C has zero measure on C for a large

and natural class of manifolds in Qn
p. Whilst there are no results relating to the Haar mea-

sure of Wn(�) ∩ C for C a p-adic curve or manifold in the case � is a general n-tuple of
approximation functions, there are several results for dual approximation including inhomo-
geneous setting, see [8, 11, 28, 29, 30, 33, 34, 55]. Regarding the Hausdorff dimension of
Wn(τ ) ∩ C, Bugeaud, Budarina, Dickinson and O’Donnell [32] and more lately Badziahin,
Bugeaud and Schleischitz [6] calculated dim (Wn(τ ) ∩ C) in the case C = (x, . . . , xn) for rel-
atively large exponents τ . Apart from these pair of findings nothing else seems to be known.
In this paper we obtain a sharp lower bound on the dimension of Wn(τ ) ∩ C for a natural
and very general class of manifolds defined over Zd

p and relatively small exponent vector
τ . Specifically we will consider manifolds immersed by maps with the following property,
which is a multivariable analogue of C1 functions given in for example [61].

Definition 2·8. A function f : U →Qp defined on an open set U ⊂Qd
p will be referred

to as differentiable with quadratic error (DQE) at x ∈U if there exists constants C> 0 and
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20 V. BERESNEVICH ET AL.

ε > 0 and p-adic numbers ∂f (x)/∂x	 ∈Qp(1 ≤ 	≤ d), which will be referred to as partial
derivatives of f at x, such that, for any y ∈ B(x, ε) ⊂U ,∣∣∣∣∣f (y) − f (x) −

d∑
i=1

∂f (x)

∂xi
(yi − xi)

∣∣∣∣∣
p

<C max
1≤i≤d

|yi − xi|2p . (2·6)

We will say that a map f = (f1, . . . , fm) : U →Zm
p is DQE at x if each coordinate function fj

is DQE at x. We will say that f (resp. f) is DQE on U if it is DQE at each point x ∈U .

Remark 2·9. Note that if the right–hand side of (2·6) was simply o
(
max1≤j≤d |yj − xj|p

)
then

f would be simply differentiable at x. The above definition imposes a stronger condition than
differentiability in the sense that the error term in (2·6) is quadratic. It is readily verified that
any C2 function, as defined in [58] (see also [51] for a brief survey of p-adic Ck functions),
is DQE at every point. The converse may not be true. Mahler’s normal functions are C∞ and
so they are DQE.

We are now in position to state our results for τ -approximable points on manifolds given
as Cf = {(x, f(x)) : x ∈U} for some map f : U →Qm

p , U ⊂Zd
p, thus extending Theorem 1·4 to

the p-adic setting. This can be done in two ways: by stating our results for exactly the set
Wn(τ ) ∩ Cf, or by stating them for the set of x ∈U such that F(x) := (x, f(x)) ∈Wn(τ ). We
opt for the latter since it requires fewer assumptions, albeit the two ways are equivalent if we
assume that f is a Lipschitz map, which follows from Proposition 3·4. Thus, our statements
will be about the Hausdorff measure and dimension of

F−1 (Wn(τ )) := {x ∈U : F(x) = (x, f(x)) ∈Wn(τ )} .

It is easily seen that this set is a subset of the projection of Wn(τ ) onto the first d coordinates.

THEOREM 2·10. Let f : U →Zm
p be DQE on an open set U ⊆Zd

p and for x ∈U let F(x) =
(x, f(x)). Suppose

1 + 1

n
< τ < 1 + 1

m

Then

dim(F−1 (Wn(τ ))≥ s := n + 1

τ
− m . (2·7)

Furthermore, if f is Lipschitz on U then for any ball B ⊂U
Hs

(
B ∩ F−1 (Wn(τ ))

)
=Hs(B). (2·8)

THEOREM 2·11. Let f, U and F be as in Theorem 2·10 and additionally assume that
d = 1 and so m = n − 1. Suppose that τ = (τ1, τ2, . . . , τn) ∈Rn+ satisfies the conditions

τ̃ :=
n∑

j=2

τj < n, τ1 ≥ max
2≤i≤n

{τi, n + 1 − τ̃ } and τi > 1 for 2 ≤ i ≤ n.

Then

dim F−1 (Wn(τ ))≥ s := n + 1 +∑n
j=2 (τ1 − τj)

τ1
− (n − 1) = n + 1 − τ̃

τ1
. (2·9)
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Simultaneous p-adic Diophantine approximation 21

Furthermore, if f is Lipschitz on U then for any ball B ⊂U
Hs

(
B ∩ F−1 (Wn(τ ))

)
=Hs(B). (2·10)

THEOREM 2·12. Let f, U and F be as in Theorem 2·10 and suppose that τ =
(τ1, τ2, . . . , τn) ∈Rn+ satisfies the conditions

τi > 1 (1 ≤ i ≤ n),
m∑

i=1

τd+i <m + 1,
n∑

i=1

τi > n + 1, and min
1≤i≤d

τi ≥ max
1≤j≤m

τd+j.

Then

dim
(

F−1 (Wn(τ ))
)

≥ min
1≤i≤d

{
n + 1 +∑

τj<τi

(
τi − τj

)
τi

− m

}
. (2·11)

Remark 2·13. Note that the dimension results of Theorems 2·10–2·11 are contained within
Theorem 2·12. However, due to the method of proof we are not able to obtain the Hausdorff
measure result in Theorem 2·12. Also note that the statements remain true if the assumptions
imposed on f are imposed on a sufficiently small ball B ⊂U instead of U .

Remark 2·14. The assumption that the approximations over the independent variables (τ1 in
Theorem 2·11 and τ1, . . . , τd in Theorem 2·12) are larger than the approximations over the
dependent variables is merely technical. Observe that this condition is not needed amongst
the approximations over each respective variable, since we may permute the variables to
obtain the desired ordering. However, the other requirements placed on τ are necessary
to allow the result to hold for as general set of manifolds as possible. In particular, the
conditions that

∑m
i=1 τd+i <m + 1 and τi > 1 for 1 ≤ i ≤ n ensure that even if the manifold is

a hyperplane passing through badly approximable points we will still have an infinite number
of rational approximations. If these conditions do not hold a counterexample can be readily
obtained on modifying the example of Remark 3 in [12]. It is also easy to see that the lower
bound τ1 ≥ n + 1 − τ̃ is necessary for otherwise (2·9) would be false. The upper bound τ̃ < n
on τ̃ can likely be improved, however this will require imposing additional conditions on
the curves such as non-degeneracy (meaning 1, x, f1(x), . . . , fn−1(x) are linearly independent
over Zp in the case these are analytic/Mahler’s normal functions), and will require a different
approach such as that of [7]. We plan to address the problem for non-degenerate curves
separately in a subsequent publication.

Remark 2·15. We expect that the lower bound of Theorem 2·10-2·12 is sharp and each
dimension result should indeed be equality at least for non-degenerate curves. Obtaining the
upper bounds represents a challenging open problem even in dimension 2. We would like to
stress that there is currently no equivalent to Huxley’s estimate [46] in the p-adic setting, let
alone the sharper Vaughan–Velani result [67].

3. Auxiliary concepts and results

Before giving the proofs of Theorems 2·1, 2·4 and 2·10-2·12, we collect together some
auxiliary results and concepts which we will need. We begin by recalling the Borel–Cantelli
lemma [27], which can be found in numerous publications and texts on probability theory.
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LEMMA 3·1. Let (
, A,μ), be a measure space and (Ei)∞i=1 is a sequence of
μ-measurable subsets in 
 satisfying

∞∑
i=1

μ(Ei)<∞.

Then,

μ

(
lim sup

i→∞
Ei

)
= 0.

We will also use the following converse of the Borel-Cantelli lemma, see [63, p.165] or
[64, chapter 1, section 3], which was first established in a slightly weaker form by Erdos and
Renyi [36] and for arbitrary probability spaces by Kochen and Stone [52].

LEMMA 3·2. Let (
, A,μ) be a measure space with μ(
)<∞. Suppose that (Ei)∞i=1 is
a family of μ-measurable subsets in 
 such that

∞∑
i=1

μ(Ei) = ∞.

Then,

μ

(
lim sup

n→∞
Ei

)
≥ lim sup

n→∞

(∑n
i=1 μ(Ei)

)2

∑n
i,j=1 μ

(
Ei ∩ Ej

) . (3·1)

The following lemma is a variant of Minkowski’s Theorem for systems of linear forms in
the p-adic case.

LEMMA 3·3. Let Li(x), with i = 1, . . . , n, be linear forms in x = (x0, x1, . . . , xn) with
p-adic integer coefficients. Let τ = (τ1, . . . , τn) ∈Rn+ satisfy

∑n
i=1 τi = n + 1 and σ =

(σ1, . . . , σn) ∈Rn satisfy
∑n

i=1 σi = n. Then there exists Hσ > 0 such that for all inte-
gers H0, . . . , Hn ≥ 1 such that Tn+1 := (H0 + 1) · · · (Hn + 1) ≥ Hσ there exists a non-zero
rational integer vector x = (x0, x1, . . . , xn) satisfying

|xi| ≤ Hi for all 0 ≤ i ≤ n (3·2)

and

|Li(x)|p ≤ pσiT−τi for all 1 ≤ i ≤ n . (3·3)

Proof. The proof of this lemma is standard and uses Dirichlet’s pigeonhole principle.
Nevertheless, as it is used in the proofs of our main results, for completeness we provide
its details here. To begin with, note that there are Tn+1 different rational integer vectors
x = (x0, . . . , xn) satisfying (3·2), subject to the condition that xi ≥ 0 for each i. Let ε ∈ (0, 1)
and Tε = T − ε. For each i = 1, . . . , n let δi be the unique integer such that

pδi−1 ≤ p−σiTτi
ε < pδi . (3·4)
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Assuming Hσ , which can be found explicitly, is sufficiently large we ensure that δi ≥ 0 for
each i. Clearly, for each x ∈Zn we have that L(x) := (L1(x), . . . , Ln(x)) ∈Zn

p. Split Zn
p into

the subsets S(a) given by

S(a) =
n∏

i=1

{
xi ∈Zp : |xi − ai|p ≤ p−δi

}

for each a = (a1, . . . , an) ∈Zn with 0 ≤ ai < pδi . It is readily seen that the sets S(a) are dis-
joint and cover the whole of Zn

p. Furthermore, using the facts that
∑

i τi = n + 1,
∑

i σi = n
and (3·4), we find that the number of sets S(a) is

p
∑

i δi ≤ T
∑

i τi
ε = Tn+1

ε < Tn+1 .

Hence, by the pigeonhole principle, at least one of the sets S(a) contains L(xi) for at least
two distinct integer points x1 and x2 as specified above. Let x = x1 − x2. Clearly, (3·2) is
satisfied and x is non-zero. Furthermore, for each i = 1, . . . , n we have that

|Li(x)| = |Li(x1 − x2)|p = |Li(x1) − Li(x2)|p ≤ p−δi
(3.4)
< pσiT−τi

ε . (3·5)

Since there are only finitely many integer vectors x = (x0, . . . , xn) satisfying (3·2), there is a
non-zero x subject to (3·2) satisfying (3·5) for every ε ∈ (0, 1). Letting ε→ 0 verifies (3·3)
and completes the proof.

It is well known that the Hausdorff dimension is preserved by bi-Lipschitz mappings. We
now state this formally in relation to Zn

p for future reference, but omit the proof as it is a
very well–known fact. For instance, in the Euclidean case this can be found in [37]. In what
follows, given a vector x = (x1, . . . , xn) ∈Zn

p, we define |x|p := max
{|xi|p : 1 ≤ i ≤ n

}
.

PROPOSITION 3·4. Let F ⊂Zn
p and g : F →Zm

p be a Lipschitz map, that is |g(x) − g(y)|p ≤
c|x − y|p for x, y ∈ F for some constant c> 0. Then, for each s> 0

Hs(g(F)) ≤ csHs(F)

and so dim g(F) ≤ dim F. In particular, if F is a bi-Lipschitz map, then dim g(F) = dim F.

3·1. Mass transference principles

For the proofs of Theorems 2·4 and 2·10 we will use the Mass transference principle
(MTP) of [18] and some of its recent generalisations. The development of the MTP in [18]
has prompted a significant amount of subsequent research and is now part of the standard
machinery for studying many problems in metric Diophantine approximation, see [3] for
a survey. The first generalisation of the MTP was for systems of linear forms established
in [19], which was further generalised in [2]. Subsequently, Allen and Baker [1] proved a
general MTP for a wide variety of sets satisfying certain conditions, these sets included self
similar sets and smooth compact manifolds. A generalisation of the MTP capable of dealing
with problems on Diophantine approximation with weights was established by Wang, Wu
and Xu [69]. More recently, Wang and Wu [68] established a stronger and in a sense more
versatile version of the MTP obtained in [69], albeit this stronger version requires a ubiquity
hypothesis similar to that of [9]. In this paper we will deploy this latest result of Wang and
Wu to establish Theorem 2·4, in which context verifying the ubiquity hypothesis is relatively
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simple. Regarding Theorem 2·10 we will utilise the original MTP of [18]. We expect that
on blending the techniques of this paper together with other variations of the MTP our ideas
can be carried forwards to establish results similar to Theorem 2·4 for systems of linear
forms and Theorem 2·10 to manifolds of arbitrary dimension. However, attaining optimal
conditions on the exponents will likely require additional considerations.

In what follows, let (X, d) be a locally compact metric space. A continuous function
g : (0, ∞) → (0, ∞) is said to be doubling if there exists a constant λ> 1 such that for all
x> 0,

g(2x) ≤ λg(x).

Suppose there exists constants 0< c1 < 1< c2 <∞ and r0 > 0 such that

c1g(r(B)) ≤Hg(B) ≤ c2g(r(B)), (3·6)

for any ball B = B(x, r) centred at x ∈ X with radius r(B) = r ≤ r0. Then we will say that
(X, d) is g-Ahlfors regular. Next, given a dimension function f and a ball B = B(x, r), define

Bf ,g = B
(

x, g−1(f (r))
)

. (3·7)

Note that the centre and radius of a ball may not be unique. Indeed, this is the case in
Qp. Thus, in (3·7) and elsewhere by a ball we understand the pair of its centre and radius.
However, when using a ball in set theoretic expressions by a ball we will mean the corre-
sponding set of points. Also note that, by (3·7), we have that Bg,g = B. Now we are ready to
state the general MTP as given in [18, theorem 3], see also [1, theorem 1].

THEOREM 3·5 (General mass transference principle). Let (X, d) be a locally compact
metric space, g be a doubling dimension function. Suppose that (X, d) is g-Ahlfors regular.
Let (Bi)i∈N be a sequence of balls in X with r(Bi) → 0 as i → ∞. Let f be a dimension
function such that f (x)/g(x) is monotonic and suppose that for any ball B ⊂ X

Hg
(

B ∩ lim sup
i→∞

Bf ,g
i

)
=Hg(B).

Then, for any ball B ⊂ X

Hf
(

B ∩ lim sup
i→∞

Bi

)
=Hf (B).

Now let us turn our attention to the Mass transference principle from rectangles to rect-
angles (MTPRR) of Wang and Wu [68], which will be a vital component of our proof of
Theorem 2·4. To begin with, we state the notion of local ubiquity for rectangles introduced
in [68], which is a generalisation of the notion of local ubiquity for balls introduced in [9].
Fix an integer n ≥ 1, and for each 1 ≤ i ≤ n let (Xi, | · |i, mi) be a bounded locally compact
measure-metric space, where | · |i denotes the metric and mi denotes a measure over Xi,
which will be assume to be a δi-Ahlfors regular probability measure. Consider the product
space (X, | · |, m), where

X =
n∏

i=1

Xi, m =
n∏

i=1

mi, | · | = max
1≤i≤n

| · |i
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are defined in the usual way. In view of the application we have in mind, we will take
Xi =Zp, mi =μp and | · |i = | · |p for each 1 ≤ i ≤ n. So X =Zn

p, m =μp,n, and | · | is the
usual sup norm. For any x ∈ X and r ∈R+ define the open ball

B(x, r) =
{

y ∈ X : max
1≤i≤n

|xi − yi|i < r

}
=

n∏
i=1

Bi(xi, r),

where Bi are the usual open r-balls associated with the ith metric space Xi. Let J be a count-
ably infinite index set, and β : J →R+, α �→ βα a positive function satisfying the condition
that for any N ∈N

# {α ∈ J : βα <N}<∞.

Let ln, un be two sequences in R+ such that un ≥ ln with ln → ∞ as n → ∞. Define

Jn = {α ∈ J : ln ≤ βα ≤ un}.
Let ρ : R+ →R+ be a non-increasing function such that ρ(x) → 0 as x → ∞. For each
1 ≤ i ≤ n, let (Rα,i)α∈J be a sequence of subsets in Xi. The family of sets (Rα)α∈J

where

Rα =
n∏

i=1

Rα,i,

for each α ∈ J, are called resonant sets. For a = (a1, . . . , an) ∈Rn+ define

�
(
Rα , ρ(r)a)=

n∏
i=1

�′(Rα,i, ρ(r)ai
)
,

where for some set A ⊂ Xi and b ∈R+

�′(A, b) =
⋃
a∈A

B(a, b)

is the union of balls in Xi of radius b centred at all possible points in A.

Definition 3·6 (Local ubiquitous system of rectangles). Call the pair
(
(Rα)α∈J , β

)
a local

ubiquitous system of rectangles with respect to (ρ, a) if there exists a constant c> 0 such
that for any ball B ⊂ X

lim sup
n→∞

m

⎛
⎝B ∩

⋃
α∈Jn

�
(
Rα , ρ(un)a)

⎞
⎠≥ cm(B).

The second property needed to state the Wang–Wu theorem is a local scaling property,
which was first introduced in [1], and which is a version of the intersection properties of [9].
In our setting the condition will be satisfied for k = 0 and holds trivially. Nevertheless, we
include the condition for the sake of completeness.

Definition 3·7 (k-scaling property). Let 0 ≤ k< 1 and 1 ≤ i ≤ n. The sequence {Rα,i}α∈J

has k-scaling property if for any α ∈ J, any ball B(xi, r) ⊂ Xi with centre xi ∈ Rα,i, and 0<
ε < r then
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c2rδikεδi(1−k) ≤ mi
(
B(xi, r) ∩�(Rα,i, ε)

)≤ c3rδikεδi(1−k),

for some constants c2, c3 > 0.

Finally, for t = (t1, . . . , tn) ∈Rn+, define

W(t) = lim sup
α∈J

�
(
Rα , ρ(βα)a+t) .

We now state the following theorems due to Wang and Wu [68].

THEOREM 3·8 (Mass transference principle from rectangles to rectangles with
ubiquity). Let (X, | · |, m) be a product space of n bounded locally compact metric spaces
(Xi, | · |i, mi) with mi a δi-Ahlfors probability measure, for 1 ≤ i ≤ n. Let (Rα)α∈J be a
sequence of subsets contained in X and assume that ((Rα)α∈J , β) is a local ubiquitous sys-
tem of rectangles with respect to (ρ, a) for some a = (a1, . . . , an) ∈Rn+, and that (Rα)α∈J

satisfies the k-scaling property. Then, for any t = (t1, . . . , tn) ∈Rn+

dim W(t) ≥ min
Ai∈A

⎧⎨
⎩
∑
j∈K1

δj +
∑
j∈K2

δj + k
∑
j∈K3

δj + (1 − k)

∑
j∈K3

ajδj −∑
j∈K3

tjδj

Ai

⎫⎬
⎭= s,

where A = {
ai, ai + ti, 1 ≤ i ≤ n

}
and K1, K2, K3 are a partition of {1, . . . , n} defined as

K1 = {
j : aj ≥ Ai

}
, K2 = {

j : aj + tj ≤ Ai
} \K1, K3 = {1, . . . n}\(K1 ∪ K2).

Furthermore, for any ball B ⊂ X

Hs(B ∩ W(t)) =Hs(B). (3·8)

THEOREM 3·9 (Mass transference principle from rectangles to rectangles without ubiq-
uity). Suppose that each measure mi is δi-Ahlfors regular and Rα,i has k-scaling property for
each α ∈ J (1 ≤ i ≤ n). Suppose

m

(
lim sup
α∈J

�
(
Rα , ρ(βα)a))= m(X).

Then

dim W(t) ≥ s ,

where s is the same as in Theorem 3·8.

Remark 3·10. Note that the full measure statement of Theorem 3·9 is far easier to establish
than the local ubiquity statement required in Theorem 3·8, however this shortcut comes at
the cost of s-Hausdorff measure statement.

4. A zero-one law

In what follows we will need a statement showing that, given a sequence of balls, if
the radii of the balls are multiplied by some constant, then the Haar measure of the corre-
sponding lim sup set remains unchanged. We establish this lemma in greater generality for
arbitrary ultrametric spaces where such a statement may be useful when solving problems
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of the same ilk, for example, in Diophantine approximation over locally compact fields of
positive characteristic.

LEMMA 4·1. Let (X, d) be a separable ultrametric space and μ be a Borel regular mea-
sure on X. Let (Bi)i∈N be a sequence of balls in X with radii ri → 0 as i → ∞. Let (Ui)i∈N
be a sequence of μ-measurable sets such that Ui ⊂ Bi for all i. Assume that for some c> 0

μ(Ui) ≥ cμ(Bi), for all i . (4·1)

Then the limsup sets

U = lim sup
i→∞

Ui :=
∞⋂

j=1

⋃
i≥j

Ui and B = lim sup
i→∞

Bi :=
∞⋂

j=1

⋃
i≥j

Bi

have the same μ-measure.

The Rn version of this statement is well known and can be found for example in [21,
lemma 1], which proof is originally due to Cassels and uses Lebesgue’s density theorem.
Below we give a full proof of Lemma 4·1 for completeness. Our proof is built on the ideas
of [21, lemma 1] and [63, lemma 1 in part II, chapter 1].

Proof. Let Uj := ⋃
i≥j Ui and Dj := B \Uj. Then, D := B \U =⋃

j Dj and we need to
prove that D has μ-measure zero. Assume the contrary. Then, since every set Dj is μ-
measurable and Dj ⊆Dj+1 for all j, by the continuity of μ, there is an 	 ∈N such that
μ(D	)> 0. Since μ is Borel regular μ(D	) = inf{μ(A) : D	 ⊂ A, A is open}. Since X is sep-
arable and ultrametric, every open set A can be written as a disjoint countable union of balls.
Hence, for any ε > 0 there exists a countable collection of disjoint balls (Ai) such that

D	 ⊂
⋃

i

Ai and
∑

i

μ(Ai) − ε≤μ(D	) ≤
∑

i

μ(Ai) . (4·2)

Let

λ := sup

{
μ(Ai ∩D	)

μ(Ai)
: i ∈N, μ(Ai)> 0

}
.

Note that, since μ(D	)> 0, the above set is non-empty and therefore λ ∈ [0, 1]. Then, by
(4·2), we have that

μ(D	) =
∑

i

μ(Ai ∩D	) ≤ λ
∑

i

μ(Ai) ≤ λ(μ(D	) + ε) .

Therefore,

λ≥ μ(D	)

μ(D	) + ε
.

Since μ(D	)> 0, on taking ε > 0 small enough, we can ensure that λ> 1 − c. Then, by the
definition of λ, there exists i0 ∈N such that μ

(
Ai0

)
> 0 and

μ
(
Ai0 ∩D	

)
μ
(
Ai0

) > 1 − c . (4·3)
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Take j ≥ 	 sufficiently large so that for every i ≥ j the radius of Bi is less than the radius of
Ai0 . Then, since X is ultrametric, for all i ≥ j if Bi ∩ Ai0 
=∅ then Bi ⊂ Ai0 . Since D	 ⊂D ⊂
B ⊂⋃

i≥j Bi, we have that

Ai0 ∩D	 ⊂
⋃

i≥j, Bi∩Ai0 
=∅

Bi ∩D	 . (4·4)

Without loss of generality assume the Bi over i ≥ j are disjoint, since if not we can take a
disjoint sub-collection of (Bi)i≥j such that the union of balls in this subcollection is again⋃

i≥j Bi and so the sub-collection would satisfy (4·4). Such sub-collection is possible to
choose since X is ultrametric. Therefore, by (4·4), we have that

μ
(
Ai0 ∩D	

)≤
∑

i≥j, Bi∩Ai0 
=∅

μ(Bi ∩D	) . (4·5)

By construction Di ∩ Ui = ∅ for every i. Thus, in view of (4·1) and the fact that Ui ⊂ Bi we
have that

μ(Bi) ≥μ(Ui ∩ Bi) +μ(Di ∩ Bi) ≥ cμ(Bi) +μ(Di ∩ Bi)

and so μ(Di ∩ Bi) ≤ (1 − c) μ(Bi) for all i. In particular, since Di ⊂Di+1 for all i and j ≥ 	
we get that

μ(D	 ∩ Bi) ≤μ(Di ∩ Bi) ≤ (1 − c) μ(Bi) for all i ≥ j .

Hence, by (4·5) and the assumption that the Bi for i ≥ j are disjoint, we get that

μ
(
Ai0 ∩D	

)≤
∑

i≥j, Bi∩Ai0 
=∅

(1 − c)μ(Bi) = (1 − c)μ

⎛
⎝ ⋃

i≥j, Bi∩Ai0 
=∅

Bi

⎞
⎠≤ (1 − c)μ

(
Ai0

)
.

This contradicts (4·3). The proof is thus complete.

Note that Lemma 4·1 is only applicable to limsup sets contained between two balls with
radius varying by some constant. Since many of our sets of interest are lim sup sets of
rectangles we make the following extension to Lemma 4·1.

LEMMA 4·2. Let n ∈N. For each 1 ≤ j ≤ n let
(
Xj, dj

)
be a separable ultrametric space

equipped with a Borel regular σ -finite measure μj,
(
B(j)

i

)
i∈N be a sequence of balls in Xj with

radii r(j)
i → 0 as i → ∞,

(
U(j)

i

)
i∈N be a sequence of μj-measurable sets such that U(j)

i ⊂ B(j)
i

for all i and assume that for some c(j) > 0

μj

(
U(j)

i

)
≥ c(j)μj

(
B(j)

i

)
for all i ∈N. (4·6)

Let X =∏n
j=1 Xj, d = maxj dj be the metric on X, μ=∏n

j=1 μj be the product of measure on

X and for each i ∈N let Bi =∏n
j=1 B(j)

i and Ui =∏n
j=1 U(j)

i . Then the limsup sets

U = lim sup
i→∞

Ui and B = lim sup
i→∞

Bi (4·7)

have the same μ-measure.
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The key ingredients in the proof of Lemma 4·2 are Lemma 4·1 and Fubini’s Theorem,
which we recall below in the special case of integrating the characteristic function of a
measurable set, see [26, p. 233] or [38, section 2·6·2].

THEOREM 4·3 (Fubini’s theorem). Let μ1 be a σ -finite measure over X and μ2 be a
σ -finite measure over Y. Then μ1 ×μ2 is a regular measure over X × Y. Let S ⊆ X × Y be a
μ1 ×μ2 measurable set and let

Sx := {y : (x, y) ∈ S},
Sy := {x : (x, y) ∈ S}.

Then

(μ1 ×μ2)(S) =
∫

Y
μ1(Sy)dμ2 =

∫
X
μ2(Sx)dμ1.

We now proceed with the proof of Lemma 4·2.

Proof. We initially prove that

μ

⎛
⎝lim sup

i→∞
B(1)

i ×
n∏

j=2

B(j)
i

⎞
⎠=μ

⎛
⎝lim sup

i→∞
U(1)

i ×
n∏

j=2

B(j)
i

⎞
⎠ ,

and note that Lemma 4·2 follows inductively. For ease of notation let

μ̂=
n∏

j=2

μj, B̂i =
n∏

j=2

B(j)
i , X̂ =

n∏
j=2

Xj.

For any y ∈ X̂ let

Iy = {i : y ∈ B̂i},
and for any F ⊆ X let Fy denote the fiber of F at y, that is

Fy = {x : (x, y) ∈ F} ⊆ X1.

Observe that

A :=
(

lim sup
i→∞

B(1)
i × B̂i

)
y
= lim sup

i→∞
i∈Iy

B(1)
i =: D. (4·8)

Indeed, if x ∈ A then it implies there exists an infinite sequence {ik} such that

(x, y) ∈ B(1)
ik

× B̂ik for all ik.

Hence {ik} ⊆ Iy and so x ∈ D.
Conversely, if x ∈ D then D is non-empty and so Iy must be infinite. By the definition of

Iy and the fact that x ∈ D we have that x ∈ B(1)
i for infinitely many i ∈ Iy, and so x ∈ A.
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Similarly, we have that (
lim sup

i→∞
U(1)

i × B̂i

)
y
= lim sup

i→∞
i∈Iy

U(1)
i . (4·9)

Applying Fubini’s theorem we have that

μ

(
lim sup

i→∞
B(1)

i × B̂i

)
=
∫

X̂
μ1

((
lim sup

i→∞
B(1)

i × B̂i

)
y

)
dμ̂,

(4.8)=
∫

X̂
μ1

⎛
⎜⎝lim sup

i→∞
i∈Iy

B(1)
i

⎞
⎟⎠ dμ̂,

Lemma 4.1=
∫

X̂
μ1

⎛
⎜⎝lim sup

i→∞
i∈Iy

U(1)
i

⎞
⎟⎠

y

dμ̂,

(4.9)=
∫

X̂
μ1

((
lim sup

i→∞
U(1)

i × B̂i

)
y

)
dμ̂,

=μ

(
lim sup

i→∞
U(1)

i × B̂i

)
.

Note that in the above argument we have not made use of the fact B̂i are products of balls; we
only used the fact that these are measurable sets. Hence, the above argument can be repeated
n − 1 more times, for 	= 2, . . . , n − 1 each time replacing B(	)

i by U(	)
i so that at step 	 we

get that

μ

⎛
⎝lim sup

i→∞

	−1∏
j=1

U(j)
i ×

n∏
j=	

B(j)
i

⎞
⎠=μ

⎛
⎝lim sup

i→∞

	∏
j=1

U(j)
i ×

	+1∏
j=1

B(j)
i

⎞
⎠ .

Putting all these equations for 	= 1, . . . , n together we get (4·7) as claimed.

Lemma 3·2 only proves positive measure for a lim sup set. In the context of Theorem 2·1
we need a Zero-one law. In [41] Haynes proved a zero-full result for the simultaneous case.
We adapt this method of proof for the weighted case.

LEMMA 4·4. Let n ∈N, p be a prime and � = (ψ1, . . . ,ψn) be any n-tuple of approxi-
mation functions. Then

μp,n
(
W′

n(�)
) ∈ {0, 1}.

Remark 4·5. Haynes proved this result for the more general setting of S-arithmetic approxi-
mation. We note that Lemma 4·4 can also be proven in the S-arithmetic setting, however we
limit ourselves to the p-adic case to avoid introducing further notation and concepts which
are not dealt with in this paper.
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Proof. Firstly, note that the sets A′
a0

(�) used to construct our lim sup set have the prop-
erty that if p | a0, then A′

a0
(�) = ∅ or Zn

p, so assume p � a0. Define the map π : Zp →Zp as
follows. For a p-adic integer x ∈Zp with p-adic expansion

x =
∞∑

i=0

uip
i, ui ∈ {0, . . . , p − 1},

define

π(x) =
⎧⎨
⎩
∑∞

i=0 ui+1pi, if u0 = 0,

1 +∑∞
i=0 ui+1pi, otherwise.

Let πn : Zn
p →Zn

p be the transformation (x1, . . . , xn) �→ (π(x1), . . . , π(xn)). By using the fact
that p � a0, and that each (ai, a0) = 1, it can be shown that under such mapping

πn
(
W′

n(�)
)⊆W′

n(p�),

where p� means each component of � has to be multiplied by p. This can be
repeated inductively to show that πK

n

(
W′

n(�)
)⊆W′

n

(
pK�

)
for any K ∈N. Assuming that

μp,n
(
W′

n(�)
)
> 0, then by a p-adic version of the Lebesgue density theorem (see e.g.

Lemma 1 in [63, part II, chapter 1]) for any ε > 0 there exists integer vector x0 ∈Zn and
N ∈N such that

μp,n
({

x ∈W′
n(�) : |x − x0|p ≤ p−N})≥ (1 − ε)p−N .

Further, we have that

πN
n

({
x ∈W′

n(�) : |x − x0|p ≤ p−N})⊆W′
n

(
pN�

)
,

and so

μp,n
(
W′

n

(
pN�

))≥μp,n
(
πN

n

({
x ∈W′

n(�) : |x − x0|p ≤ p−N}))
≥ pN(1 − ε)p−N

= (1 − ε).

Since ε is arbitrary we have that μp,n
(⋃∞

N=1 W
′
n

(
pN�

))= 1. Now observe that

W′
n(�) ⊂W′

n(p�) ⊂W′
n

(
p2�

)
⊂ · · ·

and so, by Lemma 4·2 with X =Zn
p, d given by the sup norm, and μ=μp,n, we have that

μp,n
(
W′

n(�)
)=μp,n

(
W′

n

(
pN�

))
for every N ∈N. Hence,

μp,n
(
W′

n(�)
)= lim

N→∞μp,n
(
W′

n

(
pN�

))=μp,n

( ∞⋃
N=1

W′
n

(
pN�

))= 1 ,

thus finishing the proof.

5. Proof of Theorems 2·1 and 2·3
By Lemmas 3·1–3·2 it is clear that we need bounds on the measure of A′

a0
(�) and

A′
a0

(�) ∩A′
b0

(�) for a0, b0 ∈N. As we are considering these measures at fixed values of
a0 and b0 the monotonicity condition of Theorem 2·1 does not appear until we consider
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the summations over the measures of these sets. For that reason Theorems 2·1 and 2·3 are
proven in tandem up to such point.

Since (a0, ai) = 1 observe that we must have p � a0. If p | a0 then the reduced fractions
ai/a0 used in the composition of A′

a0
(�) would satisfy |ai/a0|p > 1 for any component 1 ≤

i ≤ n. And so for sufficiently large a0 we have that{
x ∈Zn

p :

∣∣∣∣xi − ai

a0

∣∣∣∣
p
<ψi(a0), 1 ≤ i ≤ n

}
= ∅.

Hence without loss of generality when considering the measure of A′
a0

(�) and A′
a0

(�) ∩
A′

b0
(�) we will assume that p � a0, b0.

With regards to the condition that each ψi(q) � 1/q note that Lemma 4·2 allows us to
reduce this to the condition that each ψi(q)< 1/q for 1 ≤ i ≤ n and the measure results will
remain unchanged. Similarly such constants adjustment would not effect the convergence or
divergence of the sums of interest.

Note that for any x ∈Zp and 0< r< 1 there exists t ∈N0 such that B(x, r) = B(x, p−t). For
each 1 ≤ i ≤ n define the function ti : N→N0 with ti(a0) satisfying

p−ti(a0) <ψi(a0) ≤ p−ti(a0)+1.

Then for any 1 ≤ i ≤ n and a0 ∈N we have that ψi(a0) � p−ti(a0) and

B(x,ψi(a0))= B
(

x, p−ti(a0)+1
)

.

Hence, without loss of generality we could replace the n-tuple of approximation functions
� with the function T given by T(a0) = (

p−t1(a0)+1, . . . , p−tn(a0)+1
)
. Thus, we have that

μp,n(Wn(�)) =μp,n(Wn(T)).
For a0, b0 ∈N and ϕ Euler’s totient function we prove the following claims:

(a) μp,n
(
A′

a0
(�)

)� ϕ(a0)n ∏n
i=1 ψi(a0);

(b) μp,n
(
A′

a0
(�)

)� ϕ(a0)n ∏n
i=1 ψi(a0);

(c) μp,n
(
Aa0 (�) ∩Ab0(�)

)� an
0bn

0

∏n
i=1 ψi(a0)ψi(b0).

Beginning with (a) observe that

μp,n
(
A′

a0
(�)

)=μp,n

⎛
⎜⎜⎜⎝

⋃
|ai|≤a0

gcd(ai,a0)=1, 1≤i≤n

n∏
i=1

B

(
ai

a0
,ψi(a0)

)
⎞
⎟⎟⎟⎠ . (5·1)

If each rectangle in the above composition is disjoint then

μp,n
(
A′

a0
(�)

)=
∑

|ai|≤a0
gcd(ai,a0)=1, 1≤i≤n

μp,n

(
n∏

i=1

B

(
ai

a0
,ψi(a0)

))
� ϕ(a0)n

n∏
i=1

ψi(a0), (5·2)

since μp,n is the product measure of n copies of μp, and so the measure of the product of the
balls in the above expression equals the product of their measures. This provides us with an
upper bound on μp,n

(
A′

a0
(�)

)
, since any non-empty intersections in the union within (5·1)

would only make the measure of the union smaller than their sum given by (5·2).
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To prove (b) we simply need to show that the union within (5·1) contains no non-empty
intersections. Suppose this is not the case, say(

n∏
i=1

B

(
bi

a0
,ψi(a0)

))⋂(
n∏

i=1

B

(
ci

a0
,ψi(a0)

))

= ∅,

for some points b = (b1, . . . , bn), c = (c1, . . . , cn) ∈Zn with |bi|, |ci| ≤ a0 and b 
= c. Then
we have that

|bi − ci|p ≤ψi(a0), 1 ≤ i ≤ n,

since |a0|p = 1. Such inequalities would hold if and only if ψi(a0) ≥ 1/a0 for all 1 ≤ i ≤ n
such that bj 
= cj. However, we have that ψi(q)< 1/q for all 1 ≤ i ≤ n and q ∈N and thus, by
(5·2), we have the required lower bound on μp,n

(
A′

a0
(�)

)
.

To prove (c) define the set

Q :=
{

(a, b) ∈Z2 : |a| ≤ a0, |b| ≤ b0, gcd(a, a0) = gcd(b, b0) = 1
}

.

Observe that

μp,n

(
A′

a0
(�) ∩A′

b0
(�)

)
�

n∏
i=1

#

{
(ai, bi) ∈ Q :

∣∣∣∣ ai

a0
− bi

b0

∣∣∣∣
p
<�i

}
δi, (5·3)

where

�i = max{ψi(a0),ψi(b0)} and δi = min{ψi(a0),ψi(b0)} .

Fix any i and without loss of generality suppose that �i =ψi(a0) ≥ψi(b0) = δi. Note
that since p � a0, b0 then the inequality in the above equation is equivalent to (ai, bi) ∈ Q
satisfying

|aib0 − bia0|p <ψi(a0). (5·4)

To count solutions satisfying (5·4) we observe that such solutions also solve the
congruence

bia0 − aib0 ≡ 0 mod pti(a0). (5·5)

Let d = gcd(a0, b0), and let a′
0 = a0/d and b′

0 = b0/d. Suppose that

bia
′
0 − aib

′
0 = k,

for some integer k, with |k| ≤ 2a0b0/d. The bounds on k follow on the observation that

|bia0 − aib0| ≤ 2a0b0,

for all (ai, bi) ∈ Q. Considering the congruence

aib
′
0 ≡ bia

′
0 − k mod a′

0,

note that per k there is at most one solution ai modulo a′
0, and so at most 2a0/a′

0 = 2d
possible ai with |ai| ≤ a0. Clearly, each bi is uniquely determined by each ai and k, so per
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fixed k there are at most 2d possible pairs (ai, bi) ∈ Q. To solve (5·5) we must have that

k ≡ 0 mod pti(a0), (5·6)

of which there are at most

4a0b0

d pti(a0)
+ 1

possible k satisfying |k| ≤ 2a0b0/d. Note that one such possible value of k satisfying (5·6) is
k = 0. But this is impossible, since it implies that

a′
0bi = aib

′
0.

Indeed, assuming a0 > b0, we get that a0 
= 1 and gcd(a′
0, ai) = gcd(a′

0, b′
0) = 1, and so we

must have that bia′
0 − aib′

0 
= 0. If b0 > a0 then the argument is similar. Hence there are at
most

4a0b0

d pti(a0)

values of k that have corresponding solutions in Q, and so there are at most

2d
4a0b0

d pti(a0)
� a0b0ψi(a0)

pairs (ai, bi) ∈ Q that solve (5·4). Combining this upper bound with (5·3) we have that

μp,n

(
A′

a0
(�) ∩A′

b0
(�)

)
� an

0bn
0

n∏
i=1

ψi(a0)ψi(b0).

By (c), we have that

N∑
a0,b0=1

μp,n

(
A′

a0
(�) ∩A′

b0
(�)

)
�

N∑
a0,b0=1

an
0bn

0

n∏
i=1

ψi(a0)ψi(b0) �
⎛
⎝ N∑

a0=1

an
0

n∏
i=1

ψi(a0)

⎞
⎠

2

.

(5·7)
Now assuming the monotonicity of

∏n
i=1 ψi(q), by (a), (b), we have that

N∑
a0=1

μp,n
(
A′

a0
(�)

)�
N∑

a0=1

ϕ(a0)n
n∏

i=1

ψi(a0) �
N∑

a0=1

an
0

n∏
i=1

ψi(a0) . (5·8)

Hence (5·8) completes the convergence case of Theorem 2·1 via Lemma 3·1. In turn,
(5·7) and (5·8) together with Lemma 3·2 proves that μp,n

(
W′

n(�)
)
> 0 and finally applying

Lemma 4·4 completes the proof of Theorem 2·1.
Regarding Theorem 2·3, claim (a), completes the convergence case via Lemma 3·1. In the

divergence case we note that claim (b), (5·7) and condition (2·3) imply that

lim sup
N→∞

(∑N
a0=1 ϕ(a0)n ∏n

i=1 ψi(a0)∑N
a0=1 an

0

∏n
i=1 ψi(a0)

)2

> 0.

Hence, Lemma 3·2 is applicable and we get that μp,n
(
W′

n(�)
)
> 0. Applying Lemma 4·4

completes the proof of Theorem 2·3.
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6. Proof of Theorem 2·4
As with many Hausdorff dimension results we prove the upper bound and lower bound

independently. As we are working with lim sup sets of hyperrectangles defined by (2·1) we
will naturally appeal to Theorem 3·8 to get the lower bound. We start with the upper bound
which takes advantage of a standard cover of Wn(τ ).

Upper bound in Theorem 2·4. Recall that Wn(�) = lim supa0→∞ Aa0(�) , where Aa0(�)
is given by (2·1), that is

Aa0(�) =
⋃

(a1,...,an)∈Zn

|ai|≤a0 (1≤i≤n)

Ra0,a1,...,an(�)

and

Ra0,a1,...,an(�) =
{

x = (x1, . . . , xn) ∈Zn
p :

∣∣∣∣xi − ai

a0

∣∣∣∣
p
<ψi(a0) for 1 ≤ i ≤ n

}
.

Throughout this proof � = (
q−τ1 , . . . , q−τn

)
. Then for every i ∈ {1, . . . , n} we can trivially

cover Ra0,a1,...,an(τ ) := Ra0,a1,...,an(�) by a finite collection B(a0) of balls of radius a−τi
0 such

that

#B(a0) �
n∏

j=1

max

{
1,

a
−τj
0

a−τi
0

}
= a

∑
τj<τi

(
τi−τj

)
0 ,

where the power of a0 on the R.H.S of the above inequality can be obtained by removing the
cases where a

−τj
0 /a−τi

0 < 1. Let s0 = (
n + 1 +∑

τj<τi

(
τi − τj

)+ δ
)
/τi for some δ > 0. Then,

for any N > 0,

Hs0(Wn(τ )) �
∑

a0≥N

∑
|ai|≤a0
1≤i≤n

#B(a0)a−s0τi
0 ,

�
∑

a0≥N

a
n+∑

τj<τi

(
τi−τj

)
−s0τi

0 ,

=
∑

a0≥N

a−1−δ
0 → 0 as N → ∞.

This implies that dim Wn(τ ) ≤ s0. The above argument follows for any choice of τi, hence
we may choose the minimum over the set of all τi and so the upper bound for the dimension
in Theorem 2·4 follows on letting δ→ 0.

Lower bound in Theorem 2·4. In order to apply Theorem 3·8 we need to construct a set of
resonant points that we can show are a locally ubiquitous system of rectangles. Let

R̂a0,i =
{

ai

a0
∈Q : |ai| ≤ a0

}
,

for each 1 ≤ i ≤ n, and let R̂a0 =∏n
i=1 Ra0,i. In line with the notation prior to Theorem 3·8 let

J =N, and β : J →R+ be β(a0) = a0. Choose ρ : R+ →R+ to be ρ(a0) = a−1
0 , and choose
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the two sequences lk = Mk, and uk = Mk+1, for some fixed integer M ≥ 2 to be chosen later,
so that

Jk =
{

a0 ∈N : Mk ≤ a0 ≤ Mk+1
}

.

In order to show such set of resonant points is a local ubiquitous system of rectangles we
prove the following proposition.

PROPOSITION 6·1. Let R̂a0 , J, β, and ρ be defined as above. Let α = (α1, . . . , αn) ∈Rn+
with each αi > 1 be a vector satisfying

n∑
i=1

αi = n + 1. (6·1)

There are constants M> 1 and c1 > 0 such that for any ball B ⊂Zn
p

μp,n

⎛
⎝B ∩

⋃
Mk≤a0≤Mk+1

�
(

Ra0 ,
( c1

Mk+1

)α)⎞⎠≥ 1
2 μp,n(B)

for all sufficiently large k ∈N.

Proof. Fix some ball B = B(y, r) for some y ∈Zn
p and r ∈ {

pi : i ∈N∪ {0}}. We will

assume that k is sufficiently large so that Mkr ≥ 1. In view of (6·1) and the fact that
αi > 1 for all i, by Lemma 3·3, we have that for any x = (x1, . . . , xn) ∈ B there exists
(a0, . . . , an) ∈Zn+1, satisfying

|ai| ≤ Mk (1 ≤ i ≤ n), 0< a0 <Mk+1 (6·2)

and

|a0xi − ai|p < p
(

Mk+ 1
n+1

)−αi
(1 ≤ i ≤ n). (6·3)

Since αi > 1 for each 1 ≤ i ≤ n, (6·3) combined with 0< a0 ≤ Mk+1 implies that |ai|p ≤
|a0|p for each 1 ≤ i ≤ n, provided that k is sufficiently large. Let λ be the integer such that
|a0|p = p−λ. Write a′

0 = a0p−λ and a′
i = aip−λ. Since |ai|p ≤ |a0|p, we have that a′

0, a′
i ∈Z.

Also, by definition,

0< a′
0 ≤ p−λMk+1, |a′

i| ≤ p−λMk (6·4)

for each 1 ≤ i ≤ n and, by (6·3) and the fact that gcd(a′
0, p) = 1, that∣∣∣∣xi − a′

i

a′
0

∣∣∣∣
p

= ∣∣a′
0xi − a′

i

∣∣
p = pλ|a0xi − ai|p < pλ+1

(
Mk+ 1

n+1

)−αi
(6·5)

for 1 ≤ i ≤ n. We want to remove the a′
0 values that are divisible by too high a power of p,

that is |a′
0|p < p−λ0 for some fixed λ0 ∈N to be chosen later. We consider the integer vectors(

a′
0, . . . , a′

n

)
satisfying (6·4) such that(

a′
1

a′
0

, . . . ,
a′

n

a′
0

)
∈ B(y, r) ,
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where r is a poser of p. Considering the congruence equations for a′
0 fixed we have that there

are (
2p−λMkr + 1

)n
<
(

3p−λMkr
)n

such points. Hence

μp,n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B ∩
⋃
λ≥λ0

⋃
|a′

i|≤ Mk

pλ

0<a′
0≤ Mk+1

pλ

⋃
(

a′
1

a′
0

,..., a′
n

a′
0

)
∈B

n∏
i=1

B

(
a′

i

a′
0

, pλ+1
(

Mk+ 1
n+1

)−αi
)
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤
∑
λ≥λ0

Mk+1

pλ

(
3

Mk

pλ
r

)n

pnλ+nM−k(n+1)−1,

=
∑
λ≥λ0

μp,n(B)3npn−λ,

≤ 3n pn+1−λ0

p − 1
μp,n(B).

Taking λ0 sufficiently large, e.g. pλ0 > 4(3npn+1)/(p − 1), then we have that

μp,n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B ∩
⋃
λ≥λ0

⋃
|ai|≤ Mk

pλ

0<a′
0≤ Mk+1

pλ

⋃
(

a′
1

a′
0

,..., a′
n

a′
0

)
∈B

n∏
i=1

B

(
a′

i

a′
0

, pλ0+1
(

Mk+ 1
n+1

)−αi
)
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 1
4μp,n(B).

(6·6)
Using similar calculations to those of above we have that

μp,n

⎛
⎜⎜⎜⎜⎝B ∩

⋃
|ai|≤Mk

0<a0≤Mk : |a0|p≥p−λ0

n∏
i=1

B

(
ai

a0
, pλ0+1

(
Mk+ 1

n+1

)−αi
)
⎞
⎟⎟⎟⎟⎠≤ 3npnλ0+n

M
μp,n(B)

≤ 1
4μp,n(B) (6·7)

provided that M > 4 3npnλ0+n. Combining (6·6) and (6·7) with the fact that (6·2) and (6·3)
can be solved in integers (a0, . . . , an) for all x, we get that

μp,n

⎛
⎜⎜⎜⎜⎝B ∩

⋃
|ai|≤Mk

Mk<a0≤Mk+1 : |a0|p≥p−λ0

n∏
i=1

B

(
ai

a0
, pλ0+1

(
Mk+ 1

n+1

)−αi
)
⎞
⎟⎟⎟⎟⎠≥ 1

2 μp,n(B).
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Taking the constant

c1 = max
1≤i≤n

p
λ0+1
αi M1− 1

n+1

completes the proof.

Given Proposition 6·1, we have that (Ra0 , β) is a local ubiquitous system with respect
to (ρ, α), provided

∑n
i=1 αi = n + 1. Using the setup provided for Theorem 3·8 let τ =

(τ1, . . . , τn) = (α1 + t1, . . . , αn + tn) ∈Rn+, then Wn(τ ) = W(t). Without loss of generality
let τ1 ≥ · · · ≥ τn. Define αi recursively as

αi = min

{
τi,

n + 1 −∑n
j=n−i+1 αj

n − i

}
.

Since
∑n

i=1 τi > n + 1 and
∑n

i=1 αi = n + 1 such recursive formula is possible and we have
that αi ≤ τi for each 1 ≤ i ≤ n, so t is well defined. Since τ1 ≥ · · · ≥ τn we have that α1 ≥
· · · ≥ αn, and furthermore there exists k ∈ {1, . . . , n} such that for all 1 ≤ i ≤ n − k

αi =
n + 1 −∑n

j=n−k+1 αj

n − k
.

Such observation follows by noting that at least

α1 = n + 1 −
n∑

j=n−1

αj

by the fact that
∑n

i=1 αi = n + 1. Note that for each metric space Xi =Zp the Haar mea-
sure μp is a 1-Ahlfors probability measure. With reference to Theorem 3·8, consider the
following three cases:

(i) Ai ∈ {α1, . . . αn−k}: For these values of Ai we have that

K1 = {1, . . . , n − k}, K2 = {n − k + 1, . . . , n}, K3 = ∅.

Applying Theorem 3·8 we get that

dim Wn(τ ) ≥ min
Ai

{
(n − k)αi + (n − (n − k + 1) + 1)αi −∑n

j=n−k tj

αi

}
,

= min
Ai

{
n −

∑n
j=n−k+1 tj

αi

}
.

Since ti = 0 for n − k< i ≤ n we have that dim Wn(τ ) ≥ n.

(ii) Ai ∈ {αn−k+1, . . . , αn}: For such values of Ai observe that

K1 = {1, . . . , i}, K2 = {i + 1, . . . , n}, K3 = ∅.

Applying Theorem 3·8 we have, in this case,

dim Wn(τ ) ≥ min
Ai

{
iαi + (n − i)αi −∑n

j=i+1 tj

αi

}
.
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Similarly to the previous case, since tj = 0 for n − k + 1 ≤ i ≤ n the r.h.s of the above
equation is n, the maximal dimension of Wn(τ ).

(iii) Ai ∈ {τ1, . . . , τn}: Since τi = αi for n − k + 1 ≤ i ≤ n, ii) covers such result. So we
only need to consider the set of Ai ∈ {τ1, . . . τn−k}. If Ai is contained in such set,
then

K1 = ∅, K2 = {i, . . . , n}, K3 = {1, . . . , i − 1}.

Thus, by Theorem 3·8, we have that

dim Wn(τ ) ≥ min
Ai

{
(n − i + 1)τi +∑i−1

j=1 aj −∑n
j=i tj

τi

}
,

= min
Ai

⎧⎪⎪⎨
⎪⎪⎩

(n − i + 1)τi + (i − 1)

(
n+1−∑n

j=n−k+1 aj

n−k

)
−∑n−k

j=i (τj − aj) −∑n
j=n−k+1 tj

τi

⎫⎪⎪⎬
⎪⎪⎭ ,

= min
Ai

⎧⎪⎪⎨
⎪⎪⎩

(n − i + 1)τi + (n − k)

(
n+1−∑n

j=n−k+1 aj

n−k

)
−∑n−k

j=i τj −∑n
j=n−k+1 tj

τi

⎫⎪⎪⎬
⎪⎪⎭ ,

= min
Ai

{
n + 1 +∑n

j=i

(
τi − τj

)
τi

}
,

since aj + tj = τj.

These are all possible choices of Ai. The proof of Theorem 2·4 is thus complete.

7. Dirichlet-style theorem on p-adic manifolds

This section provides a full measure statement needed to deploy a Mass transference
principle for the proofs of Theorems 2·10–2·12.

THEOREM 7·1. Let f = (f1, . . . , fm) : U →Zm
p be a map defined on an open subset U ⊆

Zd
p, x ∈U and suppose that f is DQE at x and let λ be given by

max

⎧⎪⎨
⎪⎩1, max

1≤i≤d
1≤j≤m

∣∣∣∣ ∂fj
∂xi

(x)

∣∣∣∣
p

⎫⎪⎬
⎪⎭= pλ . (7·1)

Let τ = (τ1, . . . , τm) ∈Rm+, v = (v1, . . . , vd) ∈Rd+ and

∑m
i=1 τi <m + 1, τi > 1, (1 ≤ i ≤ m),∑d

i=1 vi = n + 1 −∑m
i=1 τi, vi > 1, (1 ≤ i ≤ d) .
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Then there exist H0 ∈N such that for all H >H0 and some k ∈Z the following system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∣∣∣xi − ai
a0

∣∣∣
p
< p(n+mλ)/dpkH−vi (1 ≤ i ≤ d),∣∣∣fj ( a1

a0
, . . . , ad

a0

)
− ad+j

a0

∣∣∣
p
< (p−kH)−τj (1 ≤ j ≤ m),

max
0≤i≤n

|ai| ≤ p−kH

(7·2)

has a solution (a0, . . . , an) ∈Zn+1 satisfying

(a0, p) = 1, gcd(a0, . . . , an) = 1 and
(

a1
a0

, . . . , ad
a0

)
∈U . (7·3)

Proof. By Lemma 3·3 with σ = ((n + mλ)/d, . . . , (n + mλ)/d, −λ, . . . , −λ), H0 = · · · =
Hn = H and T = H + 1, for any integer H ≥ H1/(n+1)

σ the following system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|b0xi − bi|p < p(n+mλ)/dH−vi (1 ≤ i ≤ d),∣∣∣∣∣b0pλfj(x) −
d∑

i=1

pλ
∂fj
∂xi

(x) (b0xi − bi)− pλbd+j

∣∣∣∣∣
p

< p−λH−τj (1 ≤ j ≤ m),

max
0≤i≤n

|bi| ≤ H

(7·4)

has a non-zero integer solution (b0, b1, . . . , bn) ∈Zn+1. Without loss of generality we can
assume that d = gcd(b0, b1, . . . , bn) is a power of p as otherwise we can divide (7·4) through
by any other prime powers in the factorisation of d without affecting (7·4). Let C> 0 and 0<
ε < 1 be the constants that satisfy Definition 2·8 for all fj simultaneously. In particular, we
have that B(x, ε) ⊆U . Let vmin := min1≤i≤d vi and τmax := max1≤j≤m τj. Let H0 be defined
as follows

H0 := max

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C
2

2vmin−τmax , (α1)

C
1

vmin−1 , (α2)(
ε−1p(n+mλ)/d

) 1
vmin

−1
, (β)

p
n+nλ

d(vmin−1) , (γ )

H1/(n+1)
σ (δ)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

Note that H0 is a well defined positive real number since vmin − 1> 0 and 2vmin − τmax > 0.
The latter follows from the facts that each τj > 1 and

∑m
j=1 τj <m + 1 and so τj < 2, and

the condition that each vi > 1. Note that (γ ) implies that p(n+mλ)/dH−vi <H−1 whenever
H >H0. We will use this observation a few times in this proof.

We will now prove two statements concerning the integer solution (b0, b1, . . . , bn) to
(7·4). First we verify that b0 
= 0. Suppose the contrary, that is b0 = 0. Then by the first
inequality of (7·4) we have that |bi|p < p(n+mλ)/dH−vi <H−1. As |bi| ≤ H and H >H0, we
have that bi = 0 for 1 ≤ i ≤ d. Considering the second set of inequalities of (7·4), for each
1 ≤ j ≤ m we have that |bd+j|p <H−τj which also forces us to conclude that bd+j = 0, since
τj > 1 for each 1 ≤ j ≤ m. Thus (b0, b1, . . . , bn) = 0, a contradiction. So we must have that
b0 
= 0.
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Now we show that bi/b0 is a p-adic integer for all 1 ≤ i ≤ d. Since b0 
= 0, we may rewrite
the first inequality of (7·4) to get

|b0|p
∣∣∣∣xi − bi

b0

∣∣∣∣
p
< p(n+mλ)/dH−vi , 1 ≤ i ≤ d.

Suppose that |bi/b0|p > 1 for some 1 ≤ i ≤ d, then |bi/b0|p > |xi|p since x ∈U ⊆Zd
p so, by

the strong triangle inequality, we have that

|bi|p = |b0|p max

{
|xi|p,

∣∣∣∣ bi

b0

∣∣∣∣
p

}
= |b0|p

∣∣∣∣xi − bi

b0

∣∣∣∣
p
< p(n+mλ)/dH−vi <H−1

for H >H0. Such inequality fails unless bi = 0, since |bi| ≤ H. Thus, bi/b0 ∈Zp for all 1 ≤
i ≤ d.

Now we are ready to construct (a0, . . . , an) with (a0, p) = 1. Let k ≥ 0 be the unique
integer such that pk|b0 but pk+1 � b0. Then, since bi/b0 ∈Zp so we have that pk|bi for all
1 ≤ i ≤ d. By (7·4), we get that

|bd+j|p ≤ max

⎧⎨
⎩
∣∣∣∣∣b0fj(x) −

d∑
i=1

∂fj
∂xi

(x) (b0xi − bi)− bd+j

∣∣∣∣∣
p

, |b0fj(x)|p,

∣∣∣∣∣
d∑

i=1

∂fj
∂xi

(x) (b0xi − bi)

∣∣∣∣∣
p

⎫⎬
⎭

≤ max
{

H−τj , p−k, pλp(n+mλ)/dH−vmin
}

= p−k,

since τj > 1 and H >H0. Therefore, pk|bd+j and we have that bd+j/b0 ∈Zp for each
1 ≤ j ≤ m. In particular we have that d = gcd(b0, b1, . . . , bn) = pk. For 0 ≤ i ≤ n define the
numbers ai = p−kbi, which, by what we have proven above, are all integers satisfying
gcd(a0, a1, . . . , an) = 1 and, by the choice of k, (a0, p) = 1. By the third inequality of (7·4),
we have that max0≤i≤n |ai| ≤ p−kH, which verifies the third inequality in (7·2). Further,
using the first set of inequalities of (7·4), we get that

|a0x − ai|p = |p−kb0x − p−kbi|p = pk|b0x − bi|p < p(n+mλ)/dpkH−vi (7·5)

for each 1 ≤ i ≤ d, since vi > 1. This verifies the first set of inequalities in (7·2).
By (7·5) and the fact that pk ≤ H, we get that(

a1

a0
, . . . ,

ad

a0

)
∈ B

(
x, p(n+mλ)/dH−vmin+1

)
⊆ B(x, ε) ⊆U ,

where the last inclusion follows from condition (β) on H0. Thus, y = (a1/a0, . . . , ad/a0) ∈U
and, in particular, fj (a1/a0, . . . , ad/a0) is well defined and (2·6) is applicable to f = fj for
each 1 ≤ j ≤ m.

Using the fact that each fj is DQE at x we get that∣∣∣∣∣∣fj
(

a1

a0
, . . . ,

ad

a0

)
− fj(x) −

∑
1≤i≤d

∂fj
∂xi

(x)

(
ai

a0
− xi

)∣∣∣∣∣∣
p

<C max
1≤i≤d

∣∣∣∣ ai

a0
− xi

∣∣∣∣
2

p
(7·6)

< (p−kH)−τj
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for each 1 ≤ j ≤ m, where the last inequality follows since

C max
1≤i≤d

∣∣∣∣ ai

a0
− xi

∣∣∣∣
2

p

(7.5)
< Cp(2n+2mλ)/dp2kH−2vmin

= Cp(2n+2mλ)/dp−2k(vmin−1)(p−kH)−2vmin

(∗)≤ (p−kH)−τmax ≤ (p−kH)−τj .

Here ( ∗ ) follows from condition (α1) on H0 if pk ≤ H1/2
0 and it follows from condition (α2)

on H0 if pk >H1/2
0 , and we also use the facts that vmin > 1 and 2vmin > τmax.

For each 1 ≤ j ≤ m in the second row of inequalities of (7·4) we may divide through by
pk = |b0|−1

p and pλ, and combine with (7·6) to obtain

∣∣∣∣fj
(

a1

a0
, . . . ,

ad

a0

)
− ad+j

a0

∣∣∣∣
p
< (p−kH)−τj

for each 1 ≤ j ≤ m. This verifies the second set of inequalities in (7·2), while the first set of
inequalities in (7·2) follows from (7·5). The proof is thus complete.

In order to use a Mass transference principle, namely Theorem 3·9, we now establish the
following Corollary.

COROLLARY 7·2. Let f, τ and v be as in Theorem 7·1. Let x ∈U\Qd and λ be given by
(7·1). Then the following system⎧⎪⎨

⎪⎩
∣∣∣xi − ai

a0

∣∣∣
p
< p(n+mλ)/dh−vi (1 ≤ i ≤ d),∣∣∣fj ( a1

a0
, . . . , ad

a0

)
− ad+j

a0

∣∣∣
p
< h−τj (1 ≤ j ≤ m) ,

(7·7)

where h = max
0≤i≤n

|ai|, has infinitely many integer solutions (a0, . . . , an) ∈Zn+1 satisfying

(7·3).

Proof. First, observe that (7·7) is a consequence of (7·2) since h = max0≤i≤n |ai| ≤ p−kH
and vi > 1 for all i. So we only need to verify that there are infinitely many different solutions
(a0, . . . , an) to (7·2) as H varies. Suppose the contrary. Then, since x ∈Zd

p\Qd, there is
1 ≤ i ≤ d such that xi − ai/a0 
= 0 and so

δ := min

∣∣∣∣xi − ai

a0

∣∣∣∣
p
> 0, (7·8)

where the minimum is taken amongst the solutions (a0, a1, . . . , an) to (7·2) over all H ≥ H0.
On the other hand, by (7·2), we have δ < p(n+mλ)/dpkH−vi ≤ p(n+mλ)/dH−vi+1 → 0 as H →
∞ since vi > 1, giving a contradiction for large H.

COROLLARY 7·3. Let f, τ and v be as in Theorem 7·1 and suppose that f is DQE for
almost every x ∈U . Let δ > 0 be any constant. Then for almost every x ∈U the following
system
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⎪⎩
∣∣∣xi − ai

a0

∣∣∣
p
< δh−vi (1 ≤ i ≤ d),∣∣∣fj ( a1

a0
, . . . , ad

a0

)
− ad+j

a0

∣∣∣
p
< h−τj (1 ≤ j ≤ m) ,

(7·9)

where h = max
0≤i≤n

|ai|, has infinitely many integer solutions (a0, . . . , an) ∈Zn+1 satisfying

(7·3).

Proof. Define the set of integer points

Sτ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a0, . . . , an) ∈Zn+1:

(7.3) holds and for all 1 ≤ j ≤ m∣∣∣fj ( a1
a0

, . . . , ad
a0

)
− ad+j

a0

∣∣∣
p
< h−τd+j

where max
0≤i≤n

|ai| = h

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (7·10)

and for each a ∈ Sτ and δ > 0 consider the hyperrectangles

Ba(τ ; δ) =
{

x ∈Zd
p :

∣∣∣∣xi − ai

a0

∣∣∣∣
p
< δh−τi (1 ≤ i ≤ d)

}
. (7·11)

By Corollary 7·2, ⋃
δ>0

lim sup
a∈Sτ

Ba(τ ; δ) =U \Qd
p (7·12)

and therefore this union has full measure in U , since the sequence of sets in (7·12) is increas-
ing as δ increases. These are Borel sets and therefore measurable. Hence, by the continuity
of measure, we have that

lim
δ→+∞μp,n

(
lim sup

a∈Sτ

Ba(τ ; δ)

)
=μp,n

(⋃
δ>0

lim sup
a∈Sτ

Ba(τ ; δ)

)
=μp,n(U ) . (7·13)

By Lemma 4·2, every limsup set in (7·13) is of the same measure. Hence,

μp,n

(
lim sup

a∈Sτ

Ba(τ ; δ)

)
=μp,n(U )

for every δ > 0. This is exactly what we had to prove.

8. Proof of Theorems 2·10–2·12

We begin with the following proposition that lays the basis for applying the Mass
transference principles.

PROPOSITION 8·1. Let f : U →Zm
p , where U ⊆Zd

p is an open subset, and for x ∈U let
F(x) = (x, f(x)). Let U∗ be the subset of x ∈U such that f is DQE at x. Let τ = (τ1, . . . , τn) ∈
Rn+. Let Sτ and Ba(τ ; δ) be defined by (7·10) and (7·11) respectively. Then for any 0< δ ≤ 1

U∗ ∩ lim sup
a∈Sτ

Ba(τ ; δ) ⊂ F−1(Wn(τ )) (8·1)
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provided that

min
1≤i≤d

τi > max
1≤j≤m

τd+j . (8·2)

If

min
1≤i≤d

τi = max
1≤j≤m

τd+j (8·3)

and f is a Lipschitz map with the Lipschitz constant L, then (8·1) holds for any 0< δ ≤
min{1, L−1}.

Proof. Suppose x ∈U∗ ∩ Ba(τ ; δ). Then∣∣∣∣fj(x) − fj

(
a1

a0
, . . . ,

ad

a0

)∣∣∣∣
p
<max

{
max

1≤i≤d

∣∣∣∣∂fj(x)

∂xi

∣∣∣∣
p

max
1≤i≤d

∣∣∣∣xi − ai

a0

∣∣∣∣
p

, C max
1≤i≤d

∣∣∣∣xi − ai

a0

∣∣∣∣
2

p

}

<max

{
max

1≤i≤d

∣∣∣∣∂fj(x)

∂xi

∣∣∣∣
p
δh−τmin , Cδ2h−2τmin

}
< h−τd+j

for any 1 ≤ j ≤ m and all sufficiently large h if (8·2) holds. In turn, if (8·3) holds, we use the
fact that f is Lipschitz:∣∣∣∣fj(x) − fj

(
a1

a0
, . . . ,

ad

a0

)∣∣∣∣
p
< L max

1≤i≤d

∣∣∣∣xi − ai

a0

∣∣∣∣
p
< Lδh−τmin ≤ h−τd+j

for any 1 ≤ j ≤ m and all sufficiently large h since 0< δ ≤ L−1. In either case, if a ∈ Sτ ,
then∣∣∣∣fj(x) − ad+j

a0

∣∣∣∣
p
≤ max

{∣∣∣∣fj(x) − fj

(
a1

a0
, . . . ,

ad

a0

)∣∣∣∣
p

,

∣∣∣∣ad+j

a0
− fj

(
a1

a0
, . . . ,

ad

a0

)∣∣∣∣
p

}
< h−τd+j

provided that h is sufficiently large. Hence, assuming that x ∈U∗ ∩ lim sup
a∈Sτ

Ba(τ ;δ) we

conclude that the system of inequalities⎧⎪⎨
⎪⎩

|a0xi − ai|p < δh−τi ≤ h−τi , (1 ≤ i ≤ d),

|a0fj(x) − ad+j|p < h−τd+j (1 ≤ j ≤ m),

max{|a0|, . . . , |an|} = h,

(8·4)

holds for infinitely many a ∈Zn+1. Therefore, x ∈ F−1(Wn(τ )) and the proof is complete.

Proof of Theorems 2·10—2·11. First of all, note that (2·7) and (2·9) follow from Theorem
2·12. Thus we only need to verify the measure part of these theorems, that is (2·8) and
(2·10). Consequently, we will assume that f is Lipschitz on U . Let 0< δ ≤ min{1, L−1},
where L is the Lipschitz constant of f. With reference to the General mass transference
principle (Theorem 3·5), take the function g(x) = xd as our dimension function. Note that g
is doubling and that Hg �μp,d. For any ball B = B(x, r) and dimension function f (x) = xs,
define Bs = B

(
x, g−1(xs)

)
. Note that in Theorems 2·10 and 2·11 we have that τ1 = τ2 = · · · =

τd. Therefore the sets Ba(τ ; δ) defined by (7·11) are balls. Let the vector v = (v1, . . . , vd) be
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of the form v = (v, . . . , v), where

v = n + 1 −∑m
i=1 τd+i

d
.

Note that this v satisfies the requirements of Theorem 7·1 and its corollaries. Let

s = n + 1 −∑m
i=1 τd+i

τd
,

then

Bs
a(τd; δ) =

{
x ∈Zd

p : max
1≤i≤d

∣∣∣∣xi − ai

a0

∣∣∣∣
p
< δs/dh−v

}

and, by Corollary 7·3,

μp,d

(
lim sup

a∈Sτ

Bs
a(τd; δ)

)
=μp,d(U ).

Hence, for any ball B ⊂U ,

Hg

(
B ∩ lim sup

a∈Sτ

Bs
a(τd; δ)

)
=Hg(B) .

By the Mass transference principle (Theorem 3·5), we have that for any ball B ⊆U ,

Hs

(
B ∩ lim sup

a∈Sτ

Bg
a(τd; δ)

)
=Hs(B) . (8·5)

By Proposition 8·1 and the choice of δ, we have that (8·1) holds, where U∗ =U . Combining
(8·5) and (8·1) gives the required Hausdorff measure results and completes the proof.

Proof of Theorem 2·12. First of all, without loss of generality we can assume through-
out this proof that (8·2) holds. Otherwise we could consider τ ′ = (τ1 + ε, . . . , τd +
ε, τd+1, . . . , τn) for a suitably small ε > 0 and note that F−1

(
Wn(τ ′)

)⊂ F−1(Wn(τ )).
Hence, the validity of (2·11) for τ ′ would give us the bound

dim
(

F−1 (Wn(τ ))
)

≥ dim
(

F−1 (Wn(τ ′)
))≥ min

1≤i≤d

{
n + 1 +∑

τj<τi

(
τi − τj

)
τi + ε

− m

}

and on letting ε→ 0 we would get the required result for τ .
Now, since (8·2) holds, by Proposition 8·1 with δ = 1, get that

lim sup
a∈Sτ

Ba(τ ; 1) ⊂ F−1(Wn(τ )). (8·6)

Corollary 7·3 provides us with a full measure statement, which will be the basis for apply-
ing the Mass transference principle from rectangles to rectangles without Ubiquity (Theorem
3·9). With reference to the notation used in Theorem 3·9 take

J = Sτ , ρ(q) = q−1,

Rα =
{(

a1
a0

, . . . , an
a0

)}
, βα = a0 for α = (a0, . . . , an) ∈ Sτ
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and so

lim sup
a∈Sτ

Ba(v; 1) = lim sup
α∈J

�
(
Rα , ρ(βα)−v) . (8·7)

By Corollary 7·3 and (8·7), we have that

μp,d

(
lim sup
α∈J

�
(
Rα , ρ(βα)−v))=μp,d(U ) (8·8)

for any v = (v1, . . . , vd) ∈Rd+ satisfying

vi > 1,
d∑

i=1

vi = n + 1 −
m∑

j=1

τj. (8·9)

Without loss of generality we will assume that τ1 > τ2 > . . . > τd. Similarly to what pro-
ceeds the proof of Proposition 6·1 define each vi recursively, starting with r = 0, by

vd−r = min

{
τd−r,

n + 1 −∑m
j=1 τd+j −∑d

i=d−r+1 vi

d − i

}
.

Observe that this choice of v satisfies (8·9). Furthermore, there exists a 1 ≤ b ≤ d such that

vc = n + 1 −∑m
j=1 τd+j −∑d

i=d−b vi

d − b

for all 1 ≤ c ≤ d − b. Define t1, . . . , td from the equations

τj = vj + tj

then note that t = (t1, . . . , td) ∈Rd
≥0 and thus satisfies the conditions of Theorem 3·9. Thus,

the set W(t), defined in Theorem 3·9, is exactly the right–hand side of (8·6). Hence, by (8·6),
we get that

dim F−1(Wn(τ )) ≥ dim W(t) .

Also, in view of (8·8), Theorem 3·9 is applicable and so dim F−1(Wn(τ )) ≥ s, where s is the
same as in Theorem 3·9. The proof is now split into the following three cases.

(i) Ai ∈ {v1, . . . vd−b}: For these values of Ai, which are defined in Theorem 3·9, we have
that

K1 = {1, . . . , d − b}, K2 = {d − b + 1, . . . , d}, K3 = ∅.

Applying Theorem 3·9 gives

dim F−1(Wn(τ )) ≥ dim W(t)

≥ min
1≤i≤d−b

{
(d − b)vi + (d − (d − b + 1) + 1)vi −∑n

j=d−b tj

vi

}
,

= min
1≤i≤d−b

{
d −

∑d
j=d−b+1 tj

vi

}
.
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Since ti = 0 for d − b + 1 ≤ i ≤ d we have that dim F−1(Wn(τ )) ≥ d, which is the
maximal possible dimension for F−1(Wn(τ )).

(ii) Ai ∈ {vd−b+1, . . . , vd}: For such values of Ai observe that

K1 = {1, . . . , i}, K2 = {i + 1, . . . , d}, K3 = ∅.

Then in this case we have that

dim F−1(Wn(τ )) ≥ dim W(t) ≥ min
d−b+1≤i≤d

{
ivi + (d − i)vi −∑d

j=i+1 tj

vi

}
.

Similarly to the previous case, since tj = 0 for d − b + 1 ≤ j ≤ d the r.h.s of the above
equation is d.

(iii) Ai ∈ {τ1, . . . , τd}: Since τi = vi for d − b + 1 ≤ i ≤ d, ii) covers such result. So we
only need to consider the set of Ai ∈ {τ1, . . . τd−b}. If Ai is contained in such set, then

K1 = ∅, K2 = {i, . . . , d}, K3 = {1, . . . , i − 1}.
Thus, by Theorem 3·9, we have that

dim F−1(Wn(τ )) ≥ min
1≤i≤d

{
(d − i + 1)τi +∑i−1

j=1 vj −∑d
j=i tj

τi

}

= min
1≤i≤d

⎧⎪⎪⎨
⎪⎪⎩

(d − i + 1)τi + (i − 1)

(
n+1−∑m

j=1 τd+j−∑d
j=d−b+1 vj

d−b

)
−∑d−b

j=i (τj − vj) −∑d
j=d−b+1 tj

τi

⎫⎪⎪⎬
⎪⎪⎭

= min
1≤i≤d

⎧⎪⎪⎨
⎪⎪⎩

(d − i + 1)τi + (d − b)

(
n+1−∑m

j=1 τd+j−∑d
j=d−b+1 vj

d−b

)
−∑d−b

j=i τj −∑d
j=d−b+1 tj

τi

⎫⎪⎪⎬
⎪⎪⎭

= min
1≤i≤d

{
n + 1 +∑d

j=i

(
τi − τj

)−∑m
j=1 τd+j

τi

}

= min
1≤i≤d

{
n + 1 +∑n

j=i

(
τi − τj

)
τi

− m

}
.

Considering all cases we have that

dim F−1(W(τ )) ≥ dim W(t) ≥ min
1≤i≤d

{
n + 1 +∑n

j=i

(
τi − τj

)
τi

− m

}

as required.
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