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Abstract

We extend in different ways the class of null sequences of real numbers that are of bounded
variation and study the Walsh-Fourier series of integrable functions on the interval [0,1) with
such coefficients. We prove almost everywhere convergence as well as convergence in the pseu-
dometric of Z/(0,1) for 0 < r < 1.
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1. Introduction

We consider the Walsh orthonormal system {wk{x): k = 0,1,...} defined on
the interval [0,1) in the Paley enumeration (see, for example, [1, page 60]).
We will study the Walsh-Fourier series

(1.1) Y\akwk{x), ak= f{x)wk{x)dx,

of an integrable function / e L'(0,1). In this paper, the integrals and the
term "almost everywhere" (in abbreviation a.e.) are meant in the Lebesgue
sense.
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2. Main results

We denote by
n

sn{f,x) = ̂ akwk{x) (n = 0,1,...)
k=0

the partial sums of series (1.1). Furthermore, we write

Aak=ak-ak+u A2ak = Aak - Aak+i (k = 0,l,...)

for the first and second differences, and set

(2.1) An = [An] (n = 0 , l , . . . )

where A is a fixed real number, A > 1, and [•] means the integral part.

THEOREM 1. If f e L 1 (0,1) and

(2.2) lim lim sup \—- £ > „ -k + l)\Amak\ = 0
A l + 0 A n + \ * — 'A > l + 0 n—oo A n n + \

k=n

for m=\orl, then

(2.3) lim sn(f,x) = f(x) a.e.
n—^oo

THEOREM 2. Iff e Ll(0,1) and condition (2.2) is satisfied for m = 1 or 2,
then

(2.4) lim / \sn(f,x)-f(x)\rdx = 0 forO<r<l/m.
n—°oy0

Clearly, if condition (2.2) is satisfied for m = 1, then it is automatically
satisfied for m = 2, but the converse implication fails in general.

We draw two corollaries of Theorems 1 and 2.

COROLLARY 1. Iffe L'(0,1) and

(2.5) lim lim sup V |Ama*| = 0
A-»l+0 n-»oo f~^

k=n

for m — 1 or 2, then we have conclusions (2.3) and (2.4).

EXAMPLE. Let k = Aw = 1 +2~j forj= 1,2,... and consider the sequence
{ak} defined as follows:

if 22> < k < 22J + V for some > = 1,2,...;= i
0 otherwise.
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It is not hard to check that {ak} is a null sequence and condition (2.2) is
satisfied, but condition (2.5) is not. This example shows that Theorem 1 is
more general than Corollary 1.

Corollary 1 applies to many particular cases. We refer the reader to [2]
where seven main cases and even further subcases are listed and discussed in
details. We present here one more special case of (2.5) which is not contained
in [2].

COROLLARY 2. / / / G Ll(0,1) and the finite limit

exists for m = 1 or 2, then we have conclusions (2.3) and (2.4).

We recall that a sequence {ak} is said to be of bounded variation if

<oo.

Obviously, if {a^} is of bounded variation, then (2.6) is satisfied with m = 1
(and a fortiori with m = 2) and L = 0. Thus, each of the conditions (2.2),
(2.5) and (2.6) for either m = 1 or m — 2 can be considered a generalization
of the notion of bounded variation.

We note that the counterpart of Corollary 1 for trigonometric Fourier series
was proved by Chen [2], while that of Corollary 2 was proved by Stanojevic
[5].

3. Proofs

We denote by

On{f,x) = -^-xYdSj(f,X) (/I = 0,1,.. .)

the first arithmetic means of series (1.1). It is well-known (see [3] and [4],
respectively) that if / e L'(0,1), then

(3.1) lim an{f,x)=f{x) a.e.
n—>oo

and

(3.2) lim / \an(f,x)-f(x)\dx = 0.
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Next, we consider the so-called generalized de la Vallee Poussin means
defined by

Tn(/, X, X) = —— J2 SJ(/> X)
j=n

where X > 1 and Xn is given by (2.1).
Using the representation

T ( / U x ) = n+

n(/U,) n,x
Xn — n + l

we have from (3.1) and (3.2) that for any fixed X > 1,
(3.3) Km T,,(/ ,A, *) = / (* ) a.e.

n—>oo
and
(3.4) lim f \rn(f,X,x)-f(x)\dx = O.

REMARK 1. Actually, we have (3.3) at each point x, at which (3.1) is
satisifed, Furthermore, if the convergence of an{f, x) is uniform on a certain
set E, then the convergence of xn{f,X,x) is also uniform on E for fixed X.

PROOF OF THEOREMS 1 AND 2 FOR m — 1. By definition,

(3.5) Tn(f,l,x)-sn(f,x)= . XI H akwk(x).

For each j > n + 2, a summation by parts yields
> 7 - 1

(3.6) J ] a;t^(x) = -aw+1Z)n(x)+ £ Dk(x)Aak +ajDj(x)
k=n+\ k=n+\

where

A,(JC) = £>* ( * ) (n = 0,l,...)

is the Dirichlet kernel for the Walsh system. It is well known (see, for exam-
ple, [3]) that

(3.7) \Dn{x)\<2lx (H = 0 , 1 , . . . ; 0 < J C < 1 ) .

From this, (3.5) and (3.6), a simple computation gives that for 0 < x < 1,

o(l) 2

A;=n+1
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where o(l) does not depend on x. Here we used the fact that / e L'(0,1)
implies that

(3.9) lim an = 0.
n

By (2.2) and (3.8), for every 0 < x < 1,

(3.10) lim \imswp\Tn{f,X,x)-sn{f,x)\ = Q
X—>l+0 n—*oo

and for every 0 < r < 1,

(3.11) ^limolimsup/ \tn{f,X,x) - sn(f,x)\r dx = 0.

Combining (3.3) and (3.10) yields (2.3), while combining (3.4) and (3.11)
yields (2.4) in the case m=\.

REMARK 2. It is easy to see that the convergence in (3.10) is uniform on
any interval [3,1) with 0 < 8 < 1.

PROOF OF THEOREMS 1 AND 2 FOR m = 2. We perform one more summa-
tion by parts on the right-hand side of (3.6), which results in the following:

j

(3.12) ^ akwk(x) =-an+lDn(x) - (n + l)Fn(x)Aan+l

k=n+\
J-2

+ £ (k + l)Fk(x)A2ak+jFj-l(x)Aaj-l+ajDj(x),
k=n+l

where

is the Fejer kernel for the Walsh system.
According to Fine [3], for all positive integers n and m, and for all x,

except possibly for a dyadic rational x,

(3.13) (n + l)\Fn(x)\ < x{x _4
2_m ) + ^ = C(x) if 2~m < x < 2~m+i.
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It follows from (3.5), (3.7), (3.9), (3.12) and (3.13) that for all 0 < x < 1,
except perhaps the dyadic rationals,

(3.14) \Tn(f,k,x)-Sn(f,x)\

( J-2
|Aan+i|+ Y, \A'

k=n+l

C( 1 X"~2

" k=n+\

where o(l) does not depend on x.
This and (2.2) imply that for all x, except the dyadic rationals, we have

(3.10).
L e t O < r < 1/2. By (3.14),

- l

\rn(f,k,x)-sn(f,x)\rdx

\ £( 1 \ T £ f '(x)dx.

By (3.13),

j j0

\ AT

p 7 ^
m=\

Putting the last two estimates together gives (3.11) for 0 < r < 1/2.
Finally, combining (3.3) and (3.10) yields (2.3), while combining (3.4) and

(3.11) yields (2.4) in the case m = 2.

PROOF OF COROLLARY 2. It is enough to show that condition (2.6) implies
(2.5). Clearly,

^•n i i 1— 1
mak\.

k=n k=n

n " k=l " " k=\
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Given any e > 0, by (2.6) we have

x" X - 1
(3.15) ^P|Ama/t| < — (L + e) (L - e)

k=n n n

Xn - n + 1 Aw + » - 1
= L H e

« n
provided n is large enough. Thus, it follows from (2.1) and (3.15) that

**| < (A-

Since e > 0 is arbitrary, hence we get (2.5).

4. Concluding remarks

It turns out from the proofs of Theorems 1 and 2 that we can also deduce
(2.3) and (2.4) when the "lim sup" in (2.2) equals zero for a specific value of
A > 1. Here we formulate only the case A = 2.

THEOREM 3. / / / e L'(0,1) and

i 2n
1

(4.1) lim —=—Y{2n- k
v ' n—oo n + 1 ^
for m = I or 2, then we have conclusions (2.3) and (2.4).

Condition (4.1) is also a generalization of the notion of bounded variation.
Another by-product of the proof of Theorem 1 relates to continuous func-

tions.

THEOREM 4. / / / e C[0,1) and condition (2.2) is satisfied for m = 1, then
for every 0 < x < 1,

(4.2) lim :?„(/,*) = /(*),
n—>oo

and this convergence is uniform on each interval [d, 1) with 0 < 5 < 1.

Relation (4.2) is an immediate consequence of Remarks 1 and 2 in Section
3 and the following well-known result (see [3]): if / e C[0,1), then for
every x

lim an{f,x) = f(x)
n—•oo

and this convergence is uniform on the whole interval [0,1).
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We note that the counterpart of Theorem 4 for trigonometric Fourier series
was proved by Chen [2].
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