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1.  Introduction
The Greek architect Kostas Vittas published in 2006 a beautiful theorem

([1]) on the cyclic quadrilateral as follows:

Theorem 1 (Kostas Vittas, 2006): If  is a cyclic quadrilateral with
being the intersection of two diagonals  and , then the four Euler lines
of the triangles , ,  and  are concurrent.

ABCD P
AC BD

PAB PBC PCD PDA

A proof of Vittas' theorem and its converse using geometric
transformations can be found in [2]. Theorem 1 also has an interesting
converse as follows:

Theorem 2 (Converse of Theorem 1): If  is a quadrilateral with
being the intersection of two diagonals  and  and the angle between
them being different from  and , then, if the four Euler lines of the
triangles , ,  and  are concurrent,  is a cyclic
quadrilateral.

ABCD P
AC BD

60° 90°
PAB PBC PCD PDA ABCD

In this Article, we present a new proof to Vittas' theorem.
Simultaneously, we establish two important extensions for this theorem.
Finally, we introduce a theorem that is general to both Vittas' theorem and
its converse. In all the proofs, we use complex coordinates.

We now introduce the first extension of Theorem 1, which is more
detailed about the parallel case of Euler lines.

Theorem 3 (More details for Theorem 1): If  is a cyclic quadrilateral
with  being the intersection of two diagonals  and , then

ABCD
P AC BD

(i) the Euler lines of the triangles , ,  and  are concurrent
at a point ;

PAB PBC PCD PDA
Q

(ii) the concurrency point  is at infinity if, and only if,  or
.

Q ∠APB = 60°
∠APB = 120°

Along with that, we give another extension about the locus of the point
of concurrency where the two diagonals of the quadrilateral always rotate at
a constant angle around a constant point inside a fixed circle.

Theorem 4 (An extension of Theorem 1): If diagonals  and  of a cyclic
quadrilateral  in a fixed circle are met at the constant point  and the
angle  is a constant, then the locus of point , common point of
the Euler lines of triangles , ,  and  proved previously in
Theorem 3, is a circle with centre that lies on the line .

AC BD
ABCD P

∠APB = ϕ Q
PAB PBC PCD PDA

OP
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Finally, we propose a further generalisation of Vittas' theorem and its
converse as follows:

Theorem 5 (Further generalisation of Vittas' theorem and its converse): Let
 be a triangle and  be different from ,  and . Take two

arbitrary points  and  on the lines  and , respectively. If the Euler
line of triangle  passes through a fixed point  of the Euler line of

, then the perpendicular bisector of  passes through a constant point
 of the perpendicular bisector of  and conversely.

ABC BAC 60° 90° 120°
B1 C1 CA AB
AB1C1 Q

ABC B1C1
P BC

Remark: If  is a cyclic quadrilateral with  being the intersection of
two diagonals  and , we consider triangle  (points  and  lie on
the lines  and , respectively). Since perpendicular bisectors of ,
and  pass through a point (circumcentre of ), the Euler lines of
triangles ,  and  must go through a point lying on the Euler line
of triangle . This means that the four Euler lines of triangles , ,

 and  are concurrent.

ABCD P
AC BD PAB C D

PA PB AD DC
CB ABCD

PAD PDC PCB
PAB PAD PDC

PCB PAB
Conversely, consider quadrilateral  with  being the intersection

of two diagonals  and  (we further assume that the angle formed by
the two lines  and  is different from  and ). We also consider
triangle  (points  and  lie on the lines  and , respectively). If the
Euler lines of triangles  and  are concurrent, according to the
converse part of Theorem 5, the perpendicular bisectors of  and  must
have a common point lying on the perpendicular bisector of , meaning
that  is a cyclic quadrilateral.

ABCD P
AC BD

AC BD 60° 90°
PAB C D PA PB

PAB,  PBC PCD
BC CD

AB
ABCD
 We now see that Theorem 5 is a generalisation of Vittas' theorem and

its converse.

2.  Proofs of theorems
In this section, we shall introduce proofs of the theorems in the above

section using complex numbers. First, we introduce three lemmas about
complex numbers; some proofs of these lemmas are already in the
references, so we shall not repeat them.

Lemma 1: The intersection  of two chords  and  on the unit complex
circle is given for their affixes by

P AC BD

p =
ac (b + d) − bd (a + c)

ac − bd
and

p¯ =
bd (b + d) − ac (a + c)

bd − ac
.

For a proof, see [3].
Without loss of generality, we use the conventions that the counter-

clockwise direction is positive, that quadrilaterals and triangles on the unit
circle always have a positive direction and that all angles are directional.
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Lemma 2: If the cyclic quadrilateral  is on the unit complex circle and
the intersection of the diagonals is the point , ,

ABCD
P ∠APB = ϕthen, writing 

bd = ac (cos 2ϕ + i sin 2ϕ) .

Proof (See Figure 1): It is obvious that , ,
 and

ϕ = ϕ1 + ϕ2 ∠AOB = 2ϕ1
∠COD = 2ϕ2

b
a

= z1 = cos 2ϕ1 + i sin 2ϕ1

d
c

= z2 = cos 2ϕ2 + i sin 2ϕ2.

Hence  or .
bd
ac

= z1z2 bd = ac (cos 2ϕ + i sin 2ϕ)

B

C

D

OP

ϕ2

2ϕ2ϕ

ϕ1

2ϕ1

A

FIGURE 1: Proof of Lemma 2

Lemma 3: The circumcentre  of triangle  in the complex plane is given
by

o abc

o = −
| |
| |

.

aa¯ a 1
bb̄ b 1
cc¯ c 1

a a¯ 1
b b¯ 1
c c¯ 1

For a proof, see [4].
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Proofs of Theorem 3 and Theorem 4 (See Figure 2): Let the circle satisfying
the conditions be the unit complex circle and the line  be the real axis.OP

1

y

i

A Q
D

K G1 O1 O P
C

x
G2

B
O2

 FIGURE 2: Proofs of Theorem 3 and Theorem 4

Let ; since  from Lemma 2, we havew = cos ϕ + i sin ϕ ϕ = ∠APB

bd = ac (cos 2ϕ + i sin 2ϕ) = acw2.
Using Lemma 1, we have

p =
ac(b + d) − bd (c + a)

ac − bd
and  p¯ =

bd (b + d) − ac(c + a)
bd − ac

.

Using Lemma 3, the circumcentre of triangle  isPAB

o1 = −
| |
| |

=
| |

| |
pp¯ p 1

aa¯ a 1
bb̄ b 1

p p¯ 1

a a¯ 1
b b¯ 1

ac(b + d) − bd(c + a)
ac − bd ·bd(b + d) − ac(c + a)

bd − ac
ac(b + d) − bd(c + a)

ac − bd 1

1 a 1
1 b 1

ac(b + d) − bd(c + a)
ac − bd

bd(b + d) − ac(c + a)
bd − ac 1

a 1
a 1

b 1
b 1

=
ab (c − d)
ac − bd

.

Similarly, the circumcentre of  is .PBC o2 =
bc (a − d)
ac − bd

 The centroids of these triangles are  and
.

g1 = 1
3 (p + a + b)

g2 = 1
3 (p + b + c)
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 Therefore the intersection  of two Euler lines  and  is the
solution of system

q g1o1 g2o2

⎧

⎩
⎨
⎪

⎪

q − g1
q − o1

= (q − g1
q − o1)

⎯ ⎯⎯ ⎯

q − g2
q − o2

= (q − g2
q − o2)

⎯ ⎯⎯ ⎯
.

Solving this system, we obtain

q =
abcd (ac (a + c) − bd (b + d))

(bd)3 − (ac)3
(1)

or since , we getbd = acw2

q =
w2 (a + c − w2 (b + d))

w6 − 1
. (2)

Theorem 3
(i) From (1) if we substitute  and , we

conclude that the point  lies also on the Euler lines  and  of
triangles  and , respectively.

PAB ↔ PCD PBC ↔ PDA
q g3o3 g4o4

PCD PDA
(ii) From (2), the concurrency point  is at infinity (the Euler lines are

parallel) if, and only if,
q

w6 = 1 ⇔ cos 6ϕ + i sin 6ϕ = 1 ⇔ ϕ = 60° or ϕ = 120°.
This completes the proof of Theorem 3.

Theorem 4
Since ,  and  are collinear, we haveP A C

c − p
c − a

= (c − p
c − a)

⎯ ⎯⎯⎯⎯ ⎯

=
1
c − p
1
c − 1

a
.

This implies  so that .c =
p − a
1 − ap

a + c =
p (1 − a2)

1 − ap
Since ,  and  are collinear, we haveP B D

b − p
b − d

= ( b − p
b − d )

⎯ ⎯⎯⎯⎯ ⎯

=
1
b − p
1
b − 1

d
.

This implies  so that d =
p − b

1 − bp

b + d = p + pbd = p + pacw2 =
p − ap2 + pa(p − a)w2

1 − ap
.

From this, using (2), we have

q =
w2(p(1 − a2)

1 − ap
− w2p − ap2 + pa(p − a)w2

1 − ap )
w6 − 1

=
pw2(a2 − 1 + a2w2 − apw2)

(1 − ap)(w4 + w2 + 1) .
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Consider the point , which is a real constant point.

Its squared distance from  is

k =
−pw2

w4 + w2 + 1
q

|q − k|2 = (q − k) (q̄ − k¯ ) =
p2w2 (1 + w2)2

(w4 + w2 + 1)2 ,

which is also a constant. So the locus of  is a circle with centre

 and radius . Since  is a real

number,  lies on the line . These complete the proof of Theorem 4.

Q

K ( −pw2

w4 + w2 + 1) r2 =
p2w2 (1 + w2)2

(w4 + w2 + 1)2 k

K OP

1

y
i

B B1

A

G G1

O

O1

P x

C

C1

Q

FIGURE 3: Proof of Theorem 5

Proof of Theorem 5 (See Figure 3):
Let  be on the unit complex circle, the perpendicular bisector of

be the real axis, and the perpendicular bisector of  meet the
perpendicular bisector of  at a real point . We have

ABC BC
B1C1

BC P

c = b¯ =
1
b

, (3)

b1 = mb + (1 − m) a, (4)

c1 = nc + (1 − n) a =
n
b

+ (1 − n) a. (5)

Using (3), (4) and (5), we find that

g =
a + b + c

3
, (6)

g1 =
a + b1 + c1

3
=

3ab − abm + b2m + n − abn
3b

(7)

https://doi.org/10.1017/mag.2024.9 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.9


EXTENSIONS OF VITTAS' THEOREM 59

and the circumcentre (again by using Lemma 3)

o1 = −
| |
| |

=
a + bm + ab2n − ab2 − am − bn

(1 − b) (1 + b)
. (8)

aa¯ a 1
b1b1

⎯ b1 1

c1c1
⎯ c1 1

a a¯ 1
b1 b1

⎯
1

c1 c1
⎯ 1

Since  lies on the perpendicular bisector of  and using (4), (5), we haveP B1C1

|p − b1|
2 = |p − c1|

2 ,
which is equivalent to

� = (a − b)2m2 − (a − b)(a − b − p + abp)m + (1 − ab)n(1 − ab − n + abn − ap + bp)
= 0. (9)

Since  is the intersection of Euler lines of triangles  and  or the
intersection of lines  and , using (6), (7) and (8), we obtain

Q ABC AB1C1
OG O1G1

� = �m2 + �m + � = 0, (10)
where

� = (a − b)2 (1 + b2) (1 + ab + b2) ,

� = −(a − b)((1 + ab + b2)(a − 2b + 2ab2 − b3) − (1 − ab)(1 + b2 + b4)q),
and

� = (1 − ab)n((1 + ab + b2)(1 − 2ab + 2b2 − ab3 − (1 − ab)(1 + b2)n) − (a − b)(1 + b2 + b4)q).
Eliminating parameter  from the trinomials (9) and (10), by

considering the expression
m

(1 + b2) (1 + ab + b2)� � �

= (m − n)(a − b)(ab − 1)[b(1 + ab + b2) − (1 + b2)(1 + ab + b2)p + (1 + b2 + b4)q] .  (11)
From (9), (10) and (11) note that with ,  (because  is not
parallel to  for them to have the intersection ), and , we deduce that

a ≠ b m ≠ n B1C1
BC Q ab ≠ 1

b (1 + ab + b2) − (1 + b2) (1 + ab + b2) p + (1 + b2 + b4) q = 0

or

bc (a + b + c) − (b + c) (a + b + c) p + (b2 + bc + c2) q = 0.   (12)
Since  is not ,  or , so  and

. Then from (12) we conclude that
∠BAC 60° 90° 120° (b + c)(a + b + c) ≠ 0

b2 + bc + c2 ≠ 0

• if  is constant, then  is also constant,q p
• if  is constant, then  is also constant.p q

This completes the proof.
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Special cases
We still assume that the circle ( ) circumcircle of triangle  is the

unit circle and  is the origin. Let  and ,
then ; we get  or

O ABC
O ∠BAC = ϕ u = cos 2ϕ + i sin 2ϕ

∠BOC = 2ϕ c = bu

b2 + bc + c2 = b2u (1 + u +
1
u) = b2u (1 + 2 cos 2ϕ) .

If  or , then , but  is arbitrary, except if
 is parallel to , in which case  is constant, the orthogonal infinite

point of line .

b + c = 0 ∠BAC = 90° q ≡ A p
B1C1 BC p

BC
If  or  or  is equilateral  the Euler line of
 is not defined so we exclude this case.

a + b + c = 0 H = O ABC
ABC

If  or , which is equivalent to
 or , then  and .

Since  is isogonal to  and  is isogonal to , the Euler lines are
parallel to one bisector of the lines  and . Hence  is constant and
will be constant only when  is parallel to .

b2 + bc + c2 = 0 1 + 2 cos 2ϕ = 0
ϕ = 60° 120° AH = |2R cos A| = R = AO AH1 = AO1

AH AO AH1 AO1
AB AC q p

B1C1 BC
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