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Abstract

We show how the modular representation theory of inner forms of general linear groups
over a non-Archimedean local field can be brought to bear on the complex theory
in a remarkable way. Let F be a non-Archimedean locally compact field of residue
characteristic p, and let G be an inner form of the general linear group GLn(F) for
n > 1. We consider the problem of describing explicitly the local Jacquet–Langlands
correspondence π 7→ JLπ between the complex discrete series representations of G and
GLn(F), in terms of type theory. We show that the congruence properties of the local
Jacquet–Langlands correspondence exhibited by A. Mı́nguez and the first author give
information about the explicit description of this correspondence. We prove that the
problem of the invariance of the endo-class by the Jacquet–Langlands correspondence
can be reduced to the case where the representations π and JLπ are both cuspidal
with torsion number 1. We also give an explicit description of the Jacquet–Langlands
correspondence for all essentially tame discrete series representations of G, up to
an unramified twist, in terms of admissible pairs, generalizing previous results by
Bushnell and Henniart. In positive depth, our results are the first beyond the case
where π and JLπ are both cuspidal.

1. Introduction

1.1 Background
Let F be a non-Archimedean locally compact field of residue characteristic p, let H be the general
linear group GLn(F) for n > 1, and let G be an inner form of H. This is a group of the form
GLm(D), where m divides n and D is a central division F-algebra whose reduced degree is
denoted by d, with n = md. Let D(G,C) denote the set of all isomorphism classes of essentially
square-integrable, irreducible complex smooth representations of G. The local Jacquet–Langlands
correspondence [JL70, Rog83, DKV84, Bad02] is a bijection

D(G,C) → D(H,C)

π 7→ JLπ

specified by a character relation on elliptic regular conjugacy classes. Bushnell and Henniart have
elaborated a vast programme that aims to give an explicit description of this correspondence
[Hen93, BH00, BH05a, BH11a]. The present article is a contribution to this programme.

We first have to explain what we mean by an explicit description of the Jacquet–Langlands
correspondence. Essentially square-integrable representations of G can be described in terms of
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parabolic induction. Given such a representation π, there exist a unique integer r dividing m
and a cuspidal irreducible representation ρ of GLm/r(D), unique up to isomorphism, such that
π is isomorphic to the unique irreducible quotient of the parabolically induced representation

ρ× ρνs(ρ) × · · · × ρνs(ρ)(r−1),

where ν is the unramified character ‘absolute value of the reduced norm’ and s(ρ) is a positive
integer dividing d, associated to ρ in [Tad90]. The essentially square-integrable representation
π is entirely characterized by the pair (ρ, r); this goes back to Bernstein and Zelevinski [Zel80]
in the case where D is equal to F, and to Tadić [Tad90] in the general case (see also Badulescu
[Bad07] for the case where F has positive characteristic). In particular, we may write s(π) = s(ρ).
Similarly, associated with the Jacquet-Langlands transfer JLπ are an integer u dividing n and a
cuspidal irreducible representation σ of GLn/u(F). The integers r and u are related by the identity
u = rs(π). It remains to understand how the cuspidal representations ρ and σ are related.

Thanks to the theory of simple types, developed by Bushnell and Kutzko [BK93] for the
general linear group GLn(F) and by Broussous [Bro98] and the authors [Séc04, Séc05a, Séc05b,
SS08] for its inner forms, the cuspidal representation ρ is compactly induced from a compact-
mod-centre, open subgroup. More precisely, there is an extended maximal simple type, composed
of a compact-mod-centre subgroup J of GLm/r(D) and an irreducible representation λ of J,
both constructed in a very specific way, such that the compact induction of λ to GLm/r(D) is
irreducible and isomorphic to ρ. Such a type is uniquely determined up to conjugacy. Giving an
explicit description of the local Jacquet–Langlands correspondence will thus consist of describing
the extended maximal simple type associated with the representation σ in terms of that of ρ.

This programme was first carried out for essentially square-integrable representations of
depth zero by Silberger and Zink [SZ03, SZ05] and by Bushnell and Henniart [BH11b]. Before
explaining the other cases which have already been dealt with, we need to introduce two numerical
invariants associated to an essentially square-integrable, irreducible representation of G. Such a
representation π has: a torsion number t(π), the number of unramified characters χ of G such
that the twisted representation πχ is isomorphic to π; and a parametric degree δ(π), defined in
[BH11a] via the theory of simple types, which is a multiple of t(π) and divides n. Both of these
integers are invariant under the Jacquet–Langlands correspondence [BH11a]. It is interesting to
note that the invariance of the parametric degree implies that δ(π)s(π) = n/r. Consequently,
the representation JLπ is cuspidal if and only if the parametric degree of π is equal to n.

In [BH11a], Bushnell and Henniart treat the case where the cuspidal representation π is
essentially tame (that is, δ(π)/t(π) is prime to p) and of parametric degree n. In that case,
they explicitly describe the Jacquet–Langlands correspondence by parametrizing the conjugacy
classes of extended maximal simple types in G and H by objects called admissible pairs [How77].
(We will see these objects in § 9.)

In [BH05a], Bushnell and Henniart also treat the case which is in some sense at the opposite
extreme to the essentially tame case, where n is of the form pk, with k > 1 and p 6= 2, and π is a
cuspidal representation of D× which is maximal totally ramified (that is, δ(π) = n and t(π) = 1).

In [IT18], Imai and Tsushima treat the case where π is an epipelagic cuspidal representation
of G, that is, of depth 1/n. Such representations are maximal totally ramified.

With the exception of [SZ03, SZ05] and [BH11b], these results all concern cases where the
representations π and JLπ are both cuspidal, that is, where π is of parametric degree n. In
such cases, since the cuspidal representation π can be expressed as the compact induction of
an extended maximal simple type (J,λ), there is a relatively straightforward formula giving the
trace of π at an elliptic regular element in terms of the trace of λ (see [BH96, Theorem A.14]
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and [BH11a, (1.2.2)]). The strategies followed in [BH11a, BH05a] and [IT18] depend crucially on
such a formula. When considering a non-cuspidal essentially square-integrable representation,
we are in a much less favourable situation. For the group GLn(F), Broussous [Bro14] and
Broussous together with Schneider [BS17] have obtained formulae expressing the trace of such a
representation at an elliptic regular element by bringing in the theory of simple types. However,
in this article, we follow a different route.

1.2 Preservation of endo-classes
An important first step towards the general case is to look at the behaviour of the local
Jacquet–Langlands correspondence with respect to endo-classes. An endo-class (over F) is a
type-theoretic invariant associated to any essentially square-integrable representation of any
inner form of any general linear group over F, whose construction requires considerable machinery
[BH96, BSS12]. However, for cuspidal representations of H, it turns out to have a rather simple
arithmetical interpretation through the local Langlands correspondence [BH03]. Indeed, two
cuspidal irreducible representations of general linear groups over F have the same endo-class if
and only if the irreducible representations of the absolute Weil group WF associated to them by
the local Langlands correspondence share an irreducible component when restricted to the wild
inertia subgroup PF. The local Langlands correspondence thus induces a bijection between the
set of WF-conjugacy classes of irreducible representations of PF and the set E(F) of endo-classes
over F.

It is expected that the local Jacquet–Langlands correspondence preserves endo-classes. More
precisely, there is the following conjecture.

Endo-class Invariance Conjecture. For any essentially square-integrable, irreducible
complex representation π of G, the endo-classes of π and JLπ are the same.

Our first main result is the following (see Theorem 7.1), which reduces this conjecture to the
case of maximal totally ramified cuspidal representations.

Theorem A. Assume that, for all F and n and for all cuspidal irreducible complex
representations π of G such that δ(π) = n and t(π) = 1, the cuspidal representations π and

JLπ have the same endo-class. Then the Endo-class Invariance Conjecture is true.

Before explaining our strategy, we must first take a detour through the modular
representation theory of G and explain recent developments concerning the modular properties
of the Jacquet–Langlands correspondence. Fix a prime number ` different from p, and consider
the smooth `-adic representations of G, that is, those with coefficients in the algebraic closure
Q` of the field of `-adic numbers. There is then the notion of integral irreducible representation
of G: one containing a G-stable Z`-lattice (where Z` is the ring of integers of Q`), which can
then be reduced modulo `. More precisely, given such a representation π containing a stable
Z`-lattice Λ, Vignéras [Vig96, Vig04] showed that the representation Λ⊗ Z`

F` is smooth of finite

length (where F` is the residue field of Z`), and its semi-simplification is independent of the
choice of Λ; we call this semi-simplification the reduction mod ` of π. Thus we can say that two
integral irreducible `-adic representations of G are congruent mod ` if their reductions mod `
are isomorphic.

To relate this to the local Jacquet–Langlands correspondence, we fix an isomorphism of
fields between C and Q`; replacing one by the other via this isomorphism, we get an `-adic
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Jacquet–Langlands correspondence

D(G,Q`)
'−→ D(H,Q`)

which is independent of the choice of isomorphism. Thus one can study the compatibility of
this correspondence with the relation of congruence mod `, which was done by Dat [Dat12] and
then in full generality by Mı́nguez and the first author [MS17]: two integral representations of
D(G,Q`) are congruent mod ` if and only if their images under the `-adic Jacquet–Langlands
correspondence are congruent mod ` (see [MS17, Théorème 1.1]).

We now need to explain how modular representation theory can give us information on the
complex representation theory. The starting point of our strategy to prove Theorem A using
modular methods is the fact that two representations of D(G,Q`) which are congruent mod `
have the same endo-class. The converse is of course not true, but we will see that one can
nevertheless link two essentially square-integrable representations with the same endo-class by a
chain of congruence relations. Let us explain this in more detail.

Firstly, for any irreducible `-adic representation of G, we have a notion of mod-
` inertial supercuspidal support (see Definition 4.1 and also [Hel16] in the split case), coming
from the notion of supercuspidal support for irreducible representations of G with coefficients
in F`, defined in [MS14a]. Two irreducible complex representations of G are said to be `-linked
(Definitions 5.1 and 4.2) if there is a field isomorphism C 'Q` such that the resulting irreducible
`-adic representations have the same mod-` inertial supercuspidal support. This is independent
of the choice of field isomorphism, and it is not hard to show, using the work done in [MS17],
that the Jacquet–Langlands correspondence preserves the relation of being `-linked for essentially
square-integrable representations (Propositions 6.1 and 6.2). We can now introduce the following
definition (Definition 5.6).

Definition. Two irreducible complex representations π and π′ of G are said to be linked if
there are a finite sequence of prime numbers `1, . . . , `r, all different from p, and a finite sequence
of irreducible complex representations π = π0, π1, . . . , πr = π′ such that, for each i ∈ {1, . . . , r},
the representations πi−1 and πi are `i-linked.

Two essentially square-integrable complex representations which are linked have the same
endo-class. More generally, if we define the semi-simple endo-class of an irreducible representation
to be the weighted formal sum of the endo-classes of the cuspidal representations in its cuspidal
support (with multiplicities determined by the sizes of the groups, see (5.2)), then two irreducible
representations which are linked have the same semi-simple endo-class. The interest of the
definition is apparent from the following theorem (see Theorem 5.10), which says that the
converse is also true.

Theorem B. Two irreducible complex representations of G are linked if and only if they have
the same semi-simple endo-class.

In particular, two essentially square-integrable complex representations have the same endo-
class if and only if they are linked; moreover, one can then link them by a sequence of essentially
square-integrable representations (Remark 5.9).

Theorem B gives a remarkable reinterpretation of what it means for two irreducible complex
representations to have the same semi-simple endo-class. Beyond the intrinsic interest in
explicating the notion of endo-class and its relation with modular representation theory, the
main interest in this reformulation comes from the fact that, applying results from [MS17], we
prove the following (Theorem 6.3).
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Theorem C. Two essentially square-integrable complex representations of G are linked if and
only if their transfers to H are linked.

It follows from Theorems B and C that two essentially square-integrable complex
representations of G have the same endo-class if and only if their transfers to H have the
same endo-class. Thus, denoting by En(F) the set of endo-classes over F with degree dividing n,
the Jacquet–Langlands correspondence induces a bijection

π1 : En(F) → En(F).

We now make the following observation (Proposition 6.5).

Proposition. For every essentially square-integrable complex representation of G, there is a
cuspidal complex representation of G with the same endo-class and with parametric degree n.

To prove the conjecture (that is, to prove that π1 is the identity map), it is therefore sufficient
to prove that, for every cuspidal complex representation π of G of parametric degree n, the
representations π and JLπ have the same endo-class. Using techniques developed in [BH11a, § 6],
we can go further and show that one need only consider cuspidal representations of parametric
degree n and torsion number 1, thus obtaining Theorem C. Therefore, to prove the Endo-class
Invariance Conjecture, it remains only to prove the following conjecture. We say that an endo-
class is totally ramified if it has residual degree 1, that is, if its tame parameter field (in the sense
of [BH14, § 2]) is totally ramified.

Conjecture. For all F and n, and for every totally ramified F-endo-class Θ of degree n, there
is a cuspidal complex representation π of G with endo-class Θ such that JLπ has endo-class Θ.

This conjecture is known to be true in all the cases where the explicit correspondence is known
(see § 1.1). See also the remark at the end of this introduction for more recent developments.

1.3 The level-zero part
We now leave to one side the preservation of endo-classes and move on to the next step
towards an explicit description of the Jacquet–Langlands correspondence. We will see that the
modular methods described in the previous paragraphs can be pushed further to yield additional
information. Let Θ be an endo-class of degree dividing n, and suppose that it is invariant
under the Jacquet–Langlands correspondence, that is, π1(Θ) = Θ. (See the remark at the end
of this introduction for a discussion of this assumption.) The correspondence thus induces a
bijection between isomorphism classes of essentially square-integrable complex representations of
G with endo-class Θ and those of H. Since the correspondence is also compatible with unramified
twisting, we get a bijection

D0(G,Θ)
'−→ D0(H,Θ),

where D0(G,Θ) denotes the set of inertial classes of essentially square-integrable complex
representations of G with endo-class Θ. The theory of simple types [BK93, Séc05b, SS08, SS12]
gives us a canonical bijection between D0(G,Θ) and the set T(G,Θ) of G-conjugacy classes
of simple types, for G with endo-class Θ. More precisely, the inertial class of an essentially
square-integrable complex representation π corresponds to the conjugacy class of a simple type
(J, λ), formed of a compact open subgroup J of G and an irreducible representation λ of J, if
and only if λ is an irreducible component of the restriction of π to J. Thus we get a bijection

T(G,Θ)
'−→ T(H,Θ). (1.1)

To go further, we need to enter into the detail of the structure of simple types (see § 3.3).
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Given a simple type (J, λ) of G with endo-class Θ, the group J contains a unique maximal
normal pro-p subgroup, denoted by J1. The restriction of λ to J1 is isotypic, that is, it is a direct
sum of copies of a single irreducible representation η. This representation η can be extended to
a representation of J with the same intertwining set as η. If we fix such an extension κ, then the
representation λ can be expressed in the form κ⊗σ, where σ is an irreducible representation of
J that is trivial on J1.

The quotient group J/J1 is (non-canonically) isomorphic to a product of copies of a single
general linear group over a finite field d, and σ, viewed as a representation of such a product,
is the tensor product of copies of a single cuspidal representation. A theorem of Green [Gre96]
allows us to parametrize σ by a character of k×, where k is a suitable extension of d. This
character is determined up to conjugation by the Galois group of k over a certain subfield e of d.

We denote by X the group of characters of k× and by Γ the Galois group Gal(k/e). Fixing
once and for all a choice of representation κ for a maximal simple type in G with endo-class Θ,
we get a bijection from X/Γ to T(G,Θ) (see § 3.3 for details). Making a similar choice for H, we
also get a bijection from X/Γ to T(H,Θ). Composing this with (1.1) gives a permutation

Υ : X/Γ → X/Γ,

which depends on various choices (see § 8.1). Although one could fix choices, it is not clear which
are the natural ones in general, so we must take care with them. In particular, we will see that in
the essentially tame case, one can make sense of the notion of a compatible choice for G and H.

We write [α] for the Γ-orbit of a character α ∈ X. The following result (see Proposition 8.8),
which again is proved via modular methods, suggests that in order to determine the permutation
Υ it is sufficient to compute the value of Υ([α]) for certain characters α only.

Proposition. Let α ∈ X and let l be the unique subfield of k such that the stabilizer of α in Γ
is Gal(k/l). Suppose that there are a Γ-regular character β ∈ X and a prime number ` 6= p prime
to the order of l× such that the order of βα−1 is a power of `. Suppose further that Υ([β]) = [βµ]
for some character µ ∈ X. Then Υ([α]) = [αν], where ν ∈ X is the unique character of order
prime to ` such that µν−1 has order a power of `.

In fact we need a more powerful version of this result, which we do not explain here, that
requires being able to pass from G to a bigger group GLm′(D), with m′ >m. (See § 8, in particular
§ 8.3.)

To conclude, in the final section of the paper we illustrate this principle in the essentially
tame case. We start from the Parametrization Theorem [BH11a, 6.1], which gives a canonical
bijection

(L/F, ξ) 7→ Π(G, ξ) (1.2)

between isomorphism classes of admissible pairs of degree n and isomorphism classes of essentially
tame cuspidal irreducible representations of G of parametric degree n. The First Comparison
Theorem [BH11a, 6.1] shows how to translate the Jacquet–Langlands correspondence for these
cuspidal representations in terms of admissible pairs: for any admissible pair (L/F, ξ) of degree
n, there is a canonically determined tamely ramified character ν of L× such that ν2 = 1 and

JLΠ(G, ξ) = Π(H, ξν).

We show that, for appropriate choices, this result can be rephrased in terms of our α-parameters
and gives us an explicit formula for Υ([α]) for all Γ-regular characters α ∈ X. Applying the
proposition above, we then prove that this explicit formula actually holds for any α ∈ X.
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As in [BH11a], we formulate our result in terms of admissible pairs. We first define a bijection

[L/F, ξ] 7→ Π0[G, ξ] (1.3)

between inertial classes of admissible pairs (see Definition 9.5) of degree dividing n and inertial

classes of discrete series representations of G with essentially tame endo-class, extending (1.2) up

to inertia. In the case where G is the group H, this bijection is canonical, but for a general G it

depends a priori on various choices. We prove the following result (see Theorem 9.13).

Theorem D. Let [L/F, ξ] be an inertial class of admissible pairs of degree dividing n. There is a

canonically determined tamely ramified character µ of the group of units of the ring of integers

of L such that µ2 = 1 and

JLΠ0[G, ξ] = Π0[H, ξµ].

We thus deduce a posteriori that our bijection (1.3) is canonical, that is, it does not depend

on the various choices we have made (see Remark 9.15).

Remark. After this paper was written, Dotto proved the Endo-class Invariance Conjecture

in [Dot17], using methods developed here and in [BH11a]. He goes further and gives an explicit

description of the Jacquet–Langlands correspondence up to inertia.

2. Notation

We fix a non-Archimedean locally compact field F with residual characteristic p. Write q for the

cardinality of the residue field of F.

Given a finite-dimensional central division F-algebra D and a positive integer m > 1, we

write Mm(D) for the algebra of m×m matrices with coefficients in D and GLm(D) for the group

of its invertible elements. Choose an m > 1 and write G = GLm(D). Write d for the reduced

degree of D over F, and define n = md.

Given an algebraically closed field R of characteristic different from p, we will consider smooth

representations of the locally profinite group G with coefficients in R. We write Irr(G,R) for the

set of isomorphism classes of irreducible representations of G and R(G,R) for the Grothendieck

group of its finite-length representations, identified with the free abelian group with basis

Irr(G,R). If π is a representation of G, the integer m is called its degree.

Given α= (m1, . . . ,mr) a family of positive integers with summ, we write iα for the functor of

standard parabolic induction associated with α, normalized with respect to the choice of a square

root in the field R of the cardinality q of the residual field of F. Given, for each i ∈ {1, . . . , r}, a

representation πi of GLmi(D), we write

π1 × · · · × πr = iα(π1 ⊗ · · · ⊗ πr).

Given a representation π and a character χ of G, we write πχ for the twisted representation

defined by g 7→ χ(g)π(g).

We fix once and for all a smooth additive character ψ : F → R×, trivial on the maximal ideal

p of the ring of integers O of F but not trivial on O.

We write ν for the unramified R-character of G given by composing the reduced norm from

G to F× with the absolute value of F which takes any uniformizer to the inverse of q in R.
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V. Sécherre and S. Stevens

3. Preliminaries

In this section, we let R be an algebraically closed field of characteristic different from p.

3.1 Let ρ be a cuspidal irreducible R-representation of G. Associated with ρ, there is a positive
integer s(ρ) defined in [MS14b, § 3.4] (see also Remark 3.8). When R is the field of complex
numbers, s(ρ) is the unique positive integer k such that ρ× ρνk is reducible, and it is related to
the parametric degree δ(ρ) defined in [BH11a, § 2] by the formula s(ρ)δ(ρ) = n. For the general
case, see Remark 3.8.

In [MS14a] we attach to ρ and any integer r > 1 an irreducible subrepresentation Z(ρ, r) and
an irreducible quotient L(ρ, r) of the induced representation

ρ× ρνρ × · · · × ρνr−1
ρ (3.1)

(see [MS14a, Paragraph 7.2 and Définition 7.5]), where νρ is the character νs(ρ).
When R is the field of complex numbers, Z(ρ, r) and L(ρ, r) are uniquely determined in this

way, and all essentially square-integrable representations of G are isomorphic to a representation
of the form L(ρ, r) for a unique pair (ρ, r).

For an arbitrary R, the representation L(ρ, r) is called a discrete series R-representation of G,
and Z(ρ, r) is called a Speh R-representation. If ρ is supercuspidal, Z(ρ, r) is called a super-Speh
representation.

According to [MS14a, § 8.1], where the notion of residually nondegenerate representation is
defined, the induced representation (3.1) contains a unique residually nondegenerate irreducible
subquotient, denoted by

Sp(ρ, r).

When R has characteristic 0, this is equal to L(ρ, r). When R has characteristic ` > 0, however,
it may differ from L(ρ, r) (see [MS14a, Remark 8.14]).

Assume that R has characteristic ` > 0, and write ω(ρ) for the smallest positive integer i > 1
such that ρνiρ is isomorphic to ρ. Then the irreducible representation

Sp(ρ, ω(ρ)`v) (3.2)

is cuspidal for any integer v > 0. Moreover, any cuspidal non-supercuspidal irreducible
representation is of the form (3.2) for a supercuspidal irreducible representation ρ and a unique
integer v > 0 (see [MS14a, Théorème 6.14]). We record this latter fact for future reference.

Proposition 3.1. Assume that R has positive characteristic `, and let ρ be a cuspidal irreducible
representation of G. There exist a unique positive integer k = k(ρ) and a supercuspidal irreducible
representation τ of degree m/k such that ρ is isomorphic to Sp(τ, k).

3.2 In this subsection, we assume that R is an algebraic closure Q` of the field of `-adic numbers.
Recall (see [Vig96]) that an irreducible `-adic representation of G is integral if it contains a
G-stable Z`-lattice. Let ρ̃ be an `-adic cuspidal irreducible representation of G. By [Vig96,
II.4.12], it is integral if and only if its central character has values in Z`. In particular, there is
always an unramified twist of ρ̃ which is integral.

Assume that ρ̃ is integral and write a = a(ρ̃) for the length of its reduction mod `, denoted
by r`(ρ̃).

Proposition 3.2 [MS14b, Theorem 3.15]. Let ρ be an irreducible factor of r`(ρ̃). Then

r`(ρ̃) = ρ+ ρν + · · ·+ ρνa−1,

where ν denotes the unramified mod-` character ‘absolute value of the reduced norm’.
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3.3 We recall briefly the language of simple strata, though we do not require much of the detail
of the constructions. For a detailed presentation, see [Séc05b, MS14b]. For simple strata, we use
the simplified notation of [BH14, ch. 2].

Let [a, β] be a simple stratum in the simple central F-algebra Mm(D). Rather than giving the
precise definition, we simply recall that it is composed of an element β ∈ Mm(D) such that the
F-algebra F[β] is a field and a hereditary order a ⊆Mm(D) normalized by F[β]×. The centralizer
of β in Mm(D), denoted by B, is a simple central F[β]-algebra. There are an F[β]-division algebra
D′ and an integer m′ > 1 such that

B ' Mm′(D
′). (3.3)

The intersection b = a ∩ B is a hereditary order in B.
Recall [Séc04, MS14b] that associated with [a, β] are compact open subgroups

H1(a, β) ⊆ J1(a, β) ⊆ J(a, β)

of G, together with a non-empty finite set C(a, β) depending on the choice of ψ made in § 2.
These groups are normal in J(a, β), and the elements of C(a, β) are R-characters of H1(a, β),
called simple characters. Besides, H1(a, β) and J1(a, β) are pro-p-groups, and J(a, β) is equal to
b×J1(a, β).

Attached to a simple character θ ∈ C(a, β) is an invariant called its endo-class. We do not
recall the precise definition of this invariant, which can be found in [BH96, BSS12]. We only need
a few properties of endo-classes, which we will recall when they are needed. Endo-classes form a
set E(F) which depends only on F.

Lemma 3.3 [BSS12, Lemma 4.7]. Given a simple character θ ∈ C(a, β) with endo-class Θ, the
degree, ramification index and residue degree of F[β] over F depend only on Θ. These integers
are called the degree, the ramification index and the residue degree of Θ, respectively.

The endo-class of a simple character in G has degree dividing n. Conversely, any endo-class
of degree dividing n occurs as the endo-class of some simple character in G.

A β-extension of a simple character θ ∈ C(a, β) is an irreducible representation of J(a, β)
with coefficients in R whose restriction to J1(a, β) is irreducible, whose restriction to H1(a, β)
contains θ and which is intertwined by any element of B× (see [Séc05a, MS14b]).

Assume now that b is a maximal order in B, in which case we say that the simple stratum
[a, β], the simple characters in C(a, β) and their β-extensions are maximal. Let us fix an
isomorphism (3.3) such that the image of b is the maximal order made of all matrices with
integer entries. There is a natural group isomorphism

J(a, β)/J1(a, β) ' GLm′(d),

where d is the residue field of D′. We write G for the group on the right-hand side. Let us fix a
β-extension κ of some simple character θ ∈ C(a, β). We write J = J(a, β) and J1 = J1(a, β).

We fix a finite extension k of d of degree m′. We write Σ for the Galois group of this extension
and X for the group of R-characters of k×. Given α ∈ X, there is a unique subfield d ⊆ d[α] ⊆ k
such that the Σ-stabilizer of α is Gal(k/d[α]), and then a character α0 of d[α]× such that α is
equal to α0 composed with the norm of k over d[α]. If we write u for the degree of d[α] over d,
then α0 defines a supercuspidal irreducible R-representation σ0 of GLu(d); see [Gre96] for the
case where R has characteristic 0, and [Dip85] or [MS15] otherwise.
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Remark 3.4. More precisely, if R has characteristic 0, fix an embedding of d[α] in Mu(d). Then

σ0 is the unique (up to isomorphism) irreducible representation of GLu(d) such that

trσ0(g) = (−1)u−1 ·
∑
γ

αγ0(g)

for all g ∈ d[α]× of degree u over d, where γ runs over Gal(d[α]/d).

The character α ∈ X thus defines a supercuspidal R-representation

σ(α) = σ0 ⊗ · · · ⊗ σ0

of the Levi subgroup GLu(d)×· · ·×GLu(d) in G. Moreover, the fibres of the map α 7→ σ(α) are

the Σ-orbits of X. Write r for the integer defined by ru = m′. The maximal order b contains a

unique principal order br of period r whose image under (3.3) consists of matrices with entries

in the ring of integers of D′ whose reduction modulo its maximal ideal is upper triangular by

blocks of size r. We write ar for the unique order normalized by F[β]× such that ar ∩B = br,

and κr for the transfer of κ with respect to the simple stratum [ar, β] in the sense of [MS14b,

Proposition 2.3]. Considering σ(α) as a representation of the group Jr = J(ar, β) that is trivial

on J1(ar, β), we define

λ(α) = κr ⊗ σ(α),

which is a simple supertype in G defined on Jr in the sense of [SS16]. Write Γ for the Galois

group of k over e, where e denotes the residue field of F[β].

Write Θ for the endo-class of the simple character θ ∈ C(a, β), and T(G,Θ,R) for the set of

isomorphism classes of simple R-supertypes in G with endo-class Θ, that is, simple R-supertypes

whose associated simple character has endo-class Θ.

Recall [SS16, Definition 6.1] that two simple R-supertypes in G are said to be equivalent if

the representations of G obtained from them by compact induction are isomorphic.

Proposition 3.5. The map

α 7→ λ(α) (3.4)

induces a surjection from X onto the set of equivalence classes of T(G,Θ,R). The fibres of this

map are the Γ-orbits of X.

Proof. Surjectivity follows from the definition of a simple supertype [SS16, § 2.2] and the fact

that any supercuspidal irreducible R-representation of G is of the form σ(α) for some α ∈ X with

trivial Σ-stabilizer.

The description of the fibres follows from [SS12, Theorem 7.2] together with the fact that the

map α 7→ σ(α) is Γ-equivariant, with fibres being the Σ-orbits of X. Note that [SS12] is written for

complex representations, but [SS12, Theorem 7.2] holds in any characteristic different from p. 2

Proposition 3.6. The bijection

{Γ-orbits of X} ↔ {equivalence classes of T(G,Θ,R)} (3.5)

depends only on the choice of κ, not on that of the isomorphism (3.3).
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Proof. Choosing another isomorphism B ' Mm′(D
′) such that the image of b is the maximal

order made of all matrices with integer entries has the effect (according to the Skolem–Noether
Theorem) of conjugating by an element g ∈ GLm′(D

′) normalizing this standard maximal order.
Thus, if σ′(α) is the representation of Jr trivial on J1(ar, β) corresponding to α with respect to
that choice of isomorphism, it differs from σ(α) by conjugation by g. 2

Remark 3.7. Suppose that k1 is another extension of d of degree m′. Write X1 for the group
of R-characters of its invertible elements and Γ1 for the Galois group Gal(k1/e). Let t denote
the bijection (3.5) and write t1 for its analogue obtained by replacing k with k1. Choosing an
isomorphism of e-algebras k → k1 induces a bijection

b : X1/Γ1 → X/Γ

which does not depend on this choice, and one has t1 = t ◦ b.

3.4 Recall [MS14b] that any supercuspidal R-representation ρ of G contains a maximal simple
character, uniquely determined up to G-conjugacy. We define the endo-class of ρ to be the
endo-class of any simple character contained in ρ. If we write Θ for this endo-class, then ρ
contains a simple R-supertype λ(α) ∈ T(G,Θ,R) for some α ∈ X with trivial Σ-stabilizer.

Remark 3.8. The positive integer s(ρ) associated with ρ in § 3.1 is the order of the Γ-stabilizer
of α.

3.5 We call an inertial class of supercuspidal pairs of G simple if it contains a pair of the form

(GLm/r(D)r, ρ⊗ · · · ⊗ ρ) (3.6)

for some integer r dividing m and some supercuspidal R-representation ρ of GLm/r(D), and we
define the endo-class of such an inertial class to be the endo-class of ρ, that is, the endo-class of any
simple character contained in ρ. By [SS16, § 8], there is a bijective correspondence between simple
inertial classes of supercuspidal pairs of G and equivalence classes of simple supertypes of G,
that preserves endo-classes. More precisely, the inertial class of (3.6), denoted by Ω, corresponds
to the equivalence class of a simple supertype (J, λ) if and only if the irreducible representations
of G occurring as a subquotient of the compact induction of λ to G are exactly those irreducible
representations of G occurring as a subquotient of the parabolic induction to G of an element
of Ω.

From the previous subsection, we have an endo-class Θ and a maximal β-extension κ.
Combining the map (3.4) with the correspondence between simple inertial classes of super-
cuspidal pairs and equivalence classes of simple supertypes, we get the following result. Given
α ∈ X, we write Ω(α) for the inertial class of supercuspidal pairs of G that corresponds to λ(α).

Proposition 3.9. The map
α 7→ Ω(α) (3.7)

induces a surjection from X to the set of simple inertial classes of supercuspidal pairs of G with
associated endo-class Θ. Its fibres are the Γ-orbits of X.

Let us recall the following important result [MS14a, Théorème 8.16]: given an irreducible
R-representation π of G, there are integers m1, . . . ,mr > 1 such that m1 + · · · + mr = m and
supercuspidal irreducible representations ρ1, . . . , ρr of GLm1(D), . . . ,GLmr(D), respectively, such
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that π occurs as a subquotient of the induced representation ρ1 × · · · × ρr. Moreover, up to

renumbering, the supercuspidal representations ρ1, . . . , ρr are unique. The conjugacy class of the

supercuspidal pair (GLm1(D)× · · · ×GLmr(D), ρ1⊗ . . . ⊗ ρr) is called the supercuspidal support

of π.

Let us call an irreducible R-representation of G simple if the inertial class of its supercuspidal

support is simple. For instance, any discrete series R-representation of G is simple. We define the

endo-class of a simple irreducible representation to be that of its supercuspidal support.

Definition 3.10. Let π be a simple irreducible representation of G with endo-class Θ. The

parametrizing class of π is the Γ-orbit of a character α ∈ X such that the two following equivalent

conditions hold:

(1) the supercuspidal support of π belongs to the inertial class Ω(α);

(2) the representation π occurs as a subquotient of the compact induction of λ(α) to G.

The parametrizing class of π is denoted by X(κ, π), or simply X(π) if there is no ambiguity as

to the maximal β-extension κ.

Remark 3.11. Let κ′ be another maximal β-extension of the simple character θ ∈ C(a, β) in G. By

[Séc05a, Théorème 2.28] there is a character χ of e× such that κ′ = κζ, where ζ is the character

of J trivial on J1 that corresponds to the character χ ◦ Nd/e ◦ det of G, where Nd/e is the norm

map with respect to d/e. Then we have α′ ∈ X(κ′, π) if and only if α′µ ∈ X(κ, π), where µ is the

character χ ◦Nk/e of k×.

Remark 3.12. When R has characteristic 0, the two equivalent conditions of Definition 3.10 are

also equivalent to:

(3) the representation π occurs as a quotient of the compact induction of λ(α) to G.

Equivalently, the restriction of π to Jr contains λ(α) as a subrepresentation.

4. Linked `-adic representations

In this section, we fix a prime number ` different from p. We will distinguish between `-adic and

mod ` representations by using a tilde ˜ for `-adic representations.

4.1 Let π̃ be an irreducible `-adic representation of G. Fix a representative (M, ρ̃) in the inertial

class of its cuspidal support, with M a standard Levi subgroup GLm1(D)× · · · ×GLmr(D) and

ρ̃ of the form ρ̃1 ⊗ · · · ⊗ ρ̃r where ρ̃i is an `-adic cuspidal irreducible representation of GLmi(D)

for i ∈ {1, . . . , r}, and with m1 + · · · + mr = m. Since ρ̃i is determined up to an unramified

twist, we may assume that it is integral (see § 3.2) and fix an irreducible subquotient ρi of its

reduction mod `. By the classification of mod ` irreducible cuspidal representations in terms of

supercuspidal representations [MS14a, Théorème 6.14], there are a unique integer ui > 1 dividing

mi and a supercuspidal irreducible representation τi of degree ui such that the supercuspidal

support of ρi is inertially equivalent to

(GLui(D)× · · · ×GLui(D), τi ⊗ · · · ⊗ τi)

where the factors are repeated ki times, with mi = kiui.
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Definition 4.1. Let π̃ be an irreducible `-adic representation of G as above. Let us write

L = GLu1(D)k1 × · · · ×GLur(D)kr , τ = τ1 ⊗ · · · ⊗ τ1︸ ︷︷ ︸
k1 times

⊗ · · · ⊗ τr ⊗ · · · ⊗ τr︸ ︷︷ ︸
kr times

.

The inertial class in G of the supercuspidal pair (L, τ), denoted by i`(π̃), is uniquely determined
by the irreducible representation π̃. It is called the mod -` inertial supercuspidal support of π̃.

Definition 4.2. Two irreducible `-adic representations π̃1 and π̃2 of G are said to belong to the
same `-block if i`(π̃1) = i`(π̃2).

An `-block in the set Irr(G,Q`) of all isomorphism classes of irreducible `-adic representations
of G is an equivalence class for the equivalence relation defined by i`.

Let π̃ be an irreducible `-adic representation of G as above. By definition, i`(π̃) depends only
on the inertial class of the supercuspidal support of π̃. Assume that π̃ is integral.

Lemma 4.3. All irreducible subquotients occurring in r`(π̃), the reduction mod ` of π̃, have their
supercuspidal support in i`(π̃).

Proof. The representation π̃ is a subquotient of ρ̃1 × · · · × ρ̃r. Since π̃ is integral, all the ρ̃i are
integral and, by Proposition 3.2, for each i there is an integer ai > 1 such that

r`(ρ̃i) = ρi + ρiν + · · ·+ ρiν
ai−1,

where ν denotes the unramified mod-` character ‘absolute value of the reduced norm’. Thus any
irreducible subquotient of r`(π̃) occurs as a subquotient of ρ1ν

i1 × · · · × ρrνir for some integers
i1, . . . , ir ∈ N. The result now follows by looking at the supercuspidal support of each ρi. 2

Corollary 4.4. Any two integral irreducible `-adic representations of G whose reductions mod `
share a common irreducible component belong to the same `-block.

4.2 Let π̃ be a simple irreducible `-adic representation of G. There are an integer r > 1
dividing m and a cuspidal irreducible representation ρ̃ of Gm/r such that the inertial class of its
cuspidal support contains

(GLm/r(D)r, ρ̃⊗ · · · ⊗ ρ̃). (4.1)

We may assume that ρ̃ is integral. We fix an irreducible subquotient ρ of its reduction modulo
`. As in § 4.1, there are a unique integer u > 1 dividing m/r and a supercuspidal irreducible
representation τ of degree u such that the supercuspidal support of ρ is inertially equivalent to
(GLu(D)×· · ·×GLu(D), τ ⊗· · ·⊗ τ), with m = kur. Therefore, the mod-` inertial supercuspidal
support i`(π̃) of the `-adic simple irreducible representation π̃ is the inertial class of the pair

(GLu(D)kr, τ ⊗ · · · ⊗ τ).

In particular, it is simple.
Recall that, according to [MS14a, Théorème 6.11], any supercuspidal irreducible mod-`

representation can be lifted to an `-adic irreducible representation. The following lemma is an
immediate consequence of the definition of the mod-` inertial supercuspidal support.

Lemma 4.5. Let τ̃ be an `-adic lift of τ . Any simple irreducible `-adic representation whose
cuspidal support is inertially equivalent to

(GLu(D)kr, τ̃ ⊗ · · · ⊗ τ̃)

is in the same `-block as π̃. In particular, the `-adic discrete series representation L(τ̃ , kr) is in
the same `-block as π̃.
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4.3 Recall that we have fixed in § 2 a smooth character ψ` : F → Q×` that is trivial on p but
not on O. Since F is the union of the p−i for i > 1 and p is invertible in Z`, it has values in Z×` .
For any simple stratum [a, β] in Mm(D), the set of simple `-adic characters associated with [a, β]
will be defined with respect to ψ` (see § 3.3), whereas the set of `-modular simple characters
associated with [a, β] will be defined with respect to the reduction mod ` of ψ`. Reduction mod `
thus induces a bijection between `-adic and `-modular simple characters associated with [a, β].
It also induces a bijection between endo-classes of `-adic and `-modular simple characters. Thus
we will speak of endo-classes of simple characters, without referring to the coefficient field.

Let Θ be the endo-class of §§ 3.3–3.5. Fix a β-extension κ̃ of a maximal `-adic simple character
in G of endo-class Θ, and write X` for the group of `-adic characters of k×. The map (3.4) gives

us a bijection λ̃` from X`/Γ onto the set of equivalence classes of T(G,Θ,Q`). Also write Y` for
the group of `-modular characters of k×, and κ for the reduction mod ` of κ̃. This gives us a
bijection λ` from Y`/Γ onto the set of equivalence classes of T(G,Θ,F`). These two bijections
are compatible in the following sense.

Proposition 4.6. Let π̃ be a simple irreducible `-adic representation of G with endo-class Θ, let
α ∈ X`(π̃) and let φ ∈ Y` be the reduction mod ` of α. Then the inertial class i`(π̃) corresponds
through (3.5) and (3.7) to the equivalence class of the simple supertype λ`(φ).

Proof. Write the inertial class of the cuspidal support of π̃ as in (4.1). Let r be the degree of
k over d[α] and σ̃0 the `-adic supercuspidal representation of GLu(k) associated to α, where
m′ = ru. There is a maximal β-extension κ̃0 of GLm/r(D) such that κ̃0⊗ σ̃0 is a maximal simple
type contained in ρ̃. More precisely, with the notation of § 3.3 and writing Mr for the Levi
subgroup GLm/r(D) × · · · × GLm/r(D) ⊆ G and Ur for the unipotent radical of the parabolic
subgroup comprising upper r × r block triangular matrices of G, the representation of Jr ∩Mr

on the Jr ∩Ur-invariant subspace of κ̃r is κ̃0 ⊗ · · · ⊗ κ̃0.
Let ρ be an irreducible component of the reduction mod ` of ρ̃. Then ρ contains the maximal

simple type κ0⊗σ0, where κ0 is the reduction mod ` of κ̃0 and σ0 is that of σ̃0.
Let t be the degree of k over d[φ]. By [MS17, Lemme 3.2], if we write ρ in the form Sp(τ, k)

with τ supercuspidal (see Proposition 3.1), then kr = t and σ0 is the unique nondegenerate
irreducible subquotient of the induced representation σ1×· · ·×σ1, where σ1 is the supercuspidal
mod-` representation of GLm′/t(d) corresponding to φ. Moreover, if κ1 denotes the maximal
β-extension of GLm/t(D) such that the representation of Jt ∩Mt on the Jt ∩Ut-invariant subspace
of κt is κ1⊗· · ·⊗κ1, then κ1⊗σ1 is a maximal simple type contained in τ . The result follows. 2

We keep in mind the following straightforward but important fact.

Remark 4.7. Two simple irreducible `-adic representations of G in the same `-block have the
same endo-class.

The converse does not hold in general, but we have the following result. Given α ∈ X, write
[α] for its Γ-orbit and φ for its reduction mod `. The orbit [φ] depends only on [α] and is called
the reduction mod ` of [α].

Proposition 4.8. Two simple irreducible `-adic representations of G of endo-class Θ are in the
same `-block if and only if their parametrizing classes have the same reduction mod `.

Proof. This follows from Propositions 3.5 and 4.6. 2
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5. Linked complex representations

5.1 We fix a prime number ` different from p and an isomorphism of fields ι` : C ' Q`. If π is a
complex representation of G, write ι∗`π for the `-adic representation of G obtained by extending
scalars from C to Q` along ι`.

Definition 5.1. Two irreducible complex representations π1 and π2 of G are said to be `-linked
if the irreducible `-adic representations ι∗`π1 and ι∗`π2 are in the same `-block.

Lemma 5.2. This definition does not depend on the choice of ι`.

Proof. It is enough to prove that for any field automorphism θ ∈ Aut(Q`), two simple `-adic
representations π̃1 and π̃2 of G are in the same `-block if and only if π̃θ1 and π̃θ2 are in the same
`-block.

Given an irreducible `-adic representation π̃, let (L, τ) be an element of its mod-` inertial
supercuspidal support as in Definition 4.1. Then the mod-` inertial supercuspidal support of the
irreducible representation π̃θ is the inertial class of (L, τ θ). The result follows. 2

5.2 Recall that we have fixed in § 2 a smooth character ψ : F → C× that is trivial on p but not
on O. For any simple stratum [a, β], the set of simple complex characters associated with [a, β]
will be defined with respect to this choice (see §§ 3.3 and 4.3). We may and will assume that
the character ι` ◦ ψ is the character ψ` of § 4.3. This gives us a bijection between endo-classes
of complex and `-adic simple characters of G. Again, we will speak of endo-classes of simple
characters, without referring to the coefficient field.

Let κ be a β-extension of some maximal complex simple character in G having endo-class Θ.
Write X for the group of complex characters of k×.

Lemma 5.3. Let π be a simple irreducible complex representation of G with endo-class Θ. Then

α ∈ X(κ, π) ⇔ ι` ◦ α ∈ X`(ι
∗
`κ, ι

∗
`π).

Proof. We have α ∈ X(κ, π) if and only if π contains the simple type λ(α) = κ(α)⊗σ(α), which
occurs if and only if ι∗`π contains the `-adic simple type ι∗`λ(α). Thus it suffices to prove that

ι∗`λ(α) is equal to λ̃`(ι` ◦α), where λ̃` is the map as in § 4.3 defined with respect to the maximal
β-extension ι∗`κ.

Firstly, the `-adic β-extension κ̃`(ι` ◦α) associated with ι` ◦α with respect to ι∗`κ is equal to
ι∗`κ(α). Secondly, the `-adic supercuspidal representation σ̃`(ι` ◦ α) associated with ι` ◦ α (with
respect to the choice of an isomorphism (3.3)) is equal to ι∗`σ(α), since it is characterized by a
trace formula (see Remark 3.4). The result follows. 2

Definition 5.4. Let α ∈ X. The `-regular part of α is the unique complex character α` ∈ X
whose order is prime to ` and such that αα−1

` has order a power of `.

Given α ∈ X, the orbit [α`] depends only on [α]. It is called the `-regular part of [α], denoted
by [α]`.

Proposition 5.5. Two simple irreducible complex representations of G with endo-class Θ are
`-linked if and only if the `-regular parts of their parametrizing classes are equal.
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V. Sécherre and S. Stevens

Proof. Let π1 and π2 be simple irreducible complex representations of G with endo-class Θ. We
fix αi ∈ X(κ, πi) for each i = 1, 2. By Lemma 5.3 and Proposition 4.8, the representations π1

and π2 are `-linked if and only if [ι` ◦ α1] and [ι` ◦ α2] have the same reduction mod `. But the
reduction mod ` of [ι` ◦ α], for a character α ∈ X, is the same as that of [ι` ◦ α`]. It follows that
we have [ι` ◦ (α1)`] = [ι` ◦ (α2)`], so [α1]` = [α2]`. 2

5.3 Recall that q is the cardinality of the residue field of F. For each prime number ` dividing

(qn − 1)(qn−1 − 1) . . . (q − 1) (5.1)

we fix an isomorphism of fields ι` : C ' Q`.

Definition 5.6. Two irreducible complex representations π and π′ of G are linked if there
are a finite family `1, . . . , `r of prime numbers dividing (5.1) and a finite family of irreducible
complex representations π = π0, π1, . . . , πr = π′ such that, for all integers i ∈ {1, . . . , r}, the
representations πi−1 and πi are `i-linked.

Remark 5.7. By Lemma 5.2, this does not depend on the choice of the isomorphisms ι` for `
dividing (5.1).

Two linked simple complex representations of G have the same endo-class (see Remark 4.7).
The converse is given by the following proposition.

Proposition 5.8. Two simple irreducible complex representations are linked if and only if they
have the same endo-class.

Proof. Assume that π and π′ are simple irreducible complex representations with the same
endo-class Θ. Let α and α′ be characters in X(π) and X(π′), respectively, and write ξ = α′α−1.
Let `1, . . . , `r be the prime numbers dividing (5.1). The character ξ decomposes uniquely as

ξ = ξ1 . . . ξr,

where the order of ξi is a power of `i, for i ∈ {1, . . . , r}. Write α0 = α and define inductively

αi = αi−1 · ξi

for all i ∈ {1, . . . , r}. Let πi be a simple irreducible complex representation of endo-class Θ and
parametrizing class [αi]. The result follows from Proposition 5.5. 2

Remark 5.9. Suppose that π and π′ are discrete series representations with the same endo-class.
The proof of Proposition 5.8 shows that the simple representations π1, . . . , πr−1 linking π to π′

can be chosen to be discrete series representations as well.

5.4 Let π be an irreducible complex representation of G. Fix a representative (M, ρ) in its
cuspidal support, with M = GLm1(D) × · · · × GLmr(D) and ρ = ρ1 ⊗ · · · ⊗ ρr, where ρi is a
cuspidal irreducible representation of GLmi(D), for i ∈ {1, . . . , r}, and m1 + · · ·+mr = m. Write
Θi for the endo-class of ρi and gi for the degree of Θi. We define the semi-simple endo-class of
π to be the formal sum

Θ(π) =
r∑
i=1

mid

gi
·Θi (5.2)
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in the free abelian semigroup generated by all F-endo-classes. It depends only on the inertial
class of the cuspidal support of π.

Note that if π is a simple irreducible representation with endo-class Θ, then its semi-simple
endo-class is Θ(π) = (n/g) ·Θ where g is the degree of Θ.

The following theorem, which is our first main result, generalizes Proposition 5.8.

Theorem 5.10. Two irreducible complex representations are linked if and only if they have the
same semi-simple endo-class.

Proof. Any two linked irreducible complex representations automatically have the same semi-
simple endo-class. We therefore start with two irreducible complex representations π and π′

with the same semi-simple endo-class. By [MS14b, Théorème 4.16], the representation π can be
written as

π = π1 × π2 × · · · × πk
where π1, π2, . . . , πk are simple irreducible representations whose inertial cuspidal supports are
pairwise distinct, and this decomposition is unique up to renumbering. We have the following
straightforward lemma.

Lemma 5.11. Let δ be an irreducible complex representation of GLm−k(D) for some integer
k ∈ {1, . . . ,m− 1}. Let σ and σ′ be two irreducible complex representations of GLk(D), and let
π and π′ be irreducible subquotients of σ× δ and σ′× δ, respectively. If σ and σ′ are linked, then
π and π′ are linked.

For each i ∈ {1, . . . , k}, thanks to Lemma 5.11 and Proposition 5.8 we may and will assume
that πi is a discrete series representation of the form L(ρi, ri) for some cuspidal representation
ρi of GLmi(D) with the same endo-class as πi and for some integer ri, such that m1r1 + · · · +
mkrk = m. We may even assume that ρi has minimal degree among all cuspidal irreducible
representations of GLa(D), a > 1, with the same endo-class as πi. This amounts to saying that
mi is equal to gi/(gi, d), where gi is the degree of the endo-class of πi.

Moreover, if ρi and ρj have the same endo-class for some i, j ∈ {1, . . . , k}, then they have
the same degree, and so they are linked. We may thus assume that ρ1, . . . , ρk have distinct
endo-classes, denoted by Θ1, . . . ,Θk, respectively.

Similarly, we may assume that the representation π′ decomposes as a product π′1×π′2×· · ·×π′t,
where π′j is a discrete series representation of the form L(ρ′j , sj) for some cuspidal representation
ρ′j of GLm′j (D) and some integer sj > 1, and we may assume that the endo-classes Θ′1, . . . ,Θ

′
t

of ρ′1, . . . , ρ
′
t are distinct. It follows that k = t and, up to renumbering, we may assume that we

have Θ′i = Θi for each i ∈ {1, . . . , k}. It then follows that ρ′i and ρi have the same degree by
minimality of mi.

Since π and π′ have the same semi-simple endo-class, we have si = ri for all i, so πi and π′i
have the same degree. Proposition 5.8 then implies that πi and π′i are linked. Theorem 5.10 now
follows from Lemma 5.11 again. 2

6. Application to the local Jacquet–Langlands correspondence

We fix n = md and write G = GLm(D) and H = GLn(F). As in the introduction, we write
D(G,C) for the set of all isomorphism classes of complex discrete series representations of G,
and similarly for H. We write

π : D(G,C) → D(H,C) (6.1)

for the local Jacquet–Langlands correspondence.
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6.1 We fix an isomorphism of fields ι` : C ' Q` and write (as in [MS17])

π̃` : D(G,Q`) → D(H,Q`) (6.2)

for the `-adic local Jacquet–Langlands correspondence between `-adic discrete series representa-
tions of G and H. The correspondence (6.2) does not depend on the choice of ι` (see [MS17,
Remarque 10.1]). According to [Bad07, § 3.1], there is a unique surjective group homomorphism

J̃` : R(H,Q`) → R(G,Q`)

where R(G,Q`) is the Grothendieck group of finite-length `-adic representations of G, with the
following property: given positive integers n1, . . . , nr such that n1 + · · · + nr = n and an `-adic
discrete series representation σ̃i of GLni(F) for each i, the image of the product σ̃1× · · · × σ̃r by

J̃` is 0 if ni is not divisible by d for at least one i, and is π̃1× · · · × π̃r otherwise, where ni = mid
and π̃i is the `-adic discrete series representation of GLmi(D) whose Jacquet–Langlands transfer
is σ̃i for each i.

By [MS17, Théorème 12.4], there exists a unique surjective group homomorphism of
Grothendieck groups J` : R(H,F`) → R(G,F`) such that the diagram

R(H,Q`)
e

r`
��

J̃` // R(G,Q`)
e

r`
��

R(H,F`) J`
// R(G,F`)

is commutative, where R(G,Q`)
e is the subgroup of R(G,Q`) generated by integral irreducible

representations and R(G,F`) is the Grothendieck group of `-modular representations of G.

Proposition 6.1. Let π̃1 and π̃2 be `-adic discrete series representations of G, and write σ̃1 and
σ̃2 for their Jacquet–Langlands transfers to H, respectively. If σ̃1 and σ̃2 are in the same `-block
of H, then π̃1 and π̃2 are in the same `-block of G.

Proof. Let us write σ̃i = L(ρ̃i, ri) and ki = k(ρ̃i) for i = 1, 2. Then k1r1 = k2r2, which we denote
by v, and the mod-` inertial supercuspidal support of σ̃1 and σ̃2 contains the supercuspidal pair

(GLu(F)× · · · ×GLu(F), τ ⊗ · · · ⊗ τ)

with uv = m and for some mod-` supercuspidal representation τ of GLu(D). Fix an `-adic lift
τ̃ of τ and write σ̃ = L(τ̃ , v). The representation σ̃ is in the same `-block as σ̃1 and σ̃2, by
Lemma 4.5. If we write π̃ for the `-adic discrete series representation of G whose transfer to H
is σ̃, then it is enough to prove that π̃ is in the same `-block as π̃1.

In the remainder of the proof, it will be more convenient to deal with Speh representations
than with discrete series representations, as in [MS17]. We therefore apply the Zelevinski
involution to π̃, π̃1 and σ̃, σ̃1 and thus get `-adic Speh representations.

Let us write σ̃∗ for the Zelevinski dual of σ̃. Its reduction mod ` is the `-modular super-Speh
representation Z(τ, v), by [MS14a, Théorème 9.39]. If we write π̃∗ = Z(α̃, t) for the Zelevinski
dual of π̃, for some t dividing m and some cuspidal irreducible representation α̃ of GLm/t(D),
then its reduction mod ` contains the Speh representation Z(α, t) where α is an irreducible
component of the reduction mod ` of α̃ (see for instance [MS17, Proposition 1.10]). The cuspidal
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representation α need not be supercuspidal but, according to Proposition 3.1, it can be written
as Sp(β, k) for k = k(α) and some supercuspidal irreducible representation β.

We now look at the reduction mod ` of the Zelevinski dual of σ̃1. It is Z(ρ1, r1) where ρ1, the
reduction mod ` of ρ̃1, can be written as Sp(τχ, k1) for some unramified character χ. By twisting
π̃1 by an unramified character of G, we may assume that χ is trivial. According to [MS14a,
Lemme 9.41], the representation Z(ρ1, k1) decomposes as a Z-linear combination of products of
the form

Z(τνi1 , v1)× · · · × Z(τνir , vr)

with v1 + · · · + vr = v and i1, . . . , ir ∈ Z, where ν stands for the absolute value of the reduced
norm, as usual. (For an explicit formula for this decomposition, see [MS17, §§ 11 and 12].) Thanks
to the commutative diagram above, the reduction modulo ` of the Zelevinski dual of π̃1 will be
made of products of the form

Z(ανi1 , t1)× · · · × Z(ανir , tr)

with t1 + · · ·+ tr = t and i1, . . . , ir ∈ Z, all of whose irreducible subquotients have supercuspidal
support inertially equivalent to (GLw(D)× · · · ×GLw(D), β⊗ · · · ⊗ β) with wkt = m. The result
follows from Corollary 4.4. 2

6.2 Proposition 6.1 implies that two complex discrete series representations π1 and π2 of G are
linked if their Jacquet–Langlands transfers are linked. We have the following refinement.

Proposition 6.2. Let π̃1 and π̃2 be `-adic discrete series representations of G, and write σ̃1

and σ̃2 for their Jacquet–Langlands transfers to H, respectively. Then σ̃1 and σ̃2 are in the same
`-block of H if and only if π̃1 and π̃2 are in the same `-block of G.

Proof. Proposition 6.1 implies that the `-adic Jacquet–Langlands correspondence (6.2) induces
a well-defined map from `-blocks of discrete series representations of H to those of G: given an
`-block of H, if σ̃ is any `-adic discrete series representation in that block, then the `-block of the
transfer to G of σ̃ is independent of the choice of σ̃. This map also preserves depth so that, for
any non-negative rational number r ∈ Q+, we get a well-defined map from `-blocks of discrete
series representations of depth r of H to `-blocks of discrete series representations of depth r
of G. This map is between two finite sets of the same cardinality, since they are parametrized
by the same objects: an endo-class of depth r and, by Proposition 4.8, a parametrizing class up
to reduction mod `. It is clearly surjective, and so is also injective. 2

Allowing ` to vary, we deduce the following result.

Theorem 6.3. Two complex discrete series representations of G are linked if and only if their
transfers to H are linked.

It follows that Proposition 5.8 (together with Remark 5.9) induces a map

π1 : En(F) → En(F) (6.3)

depending on G, where En(F) is the set of F-endo-classes of degree dividing n. More precisely,
given an endo-class Θ ∈ En(F) and a complex discrete series representation π of G of endo-class
Θ, the endo-class of the Jacquet–Langlands transfer of π to H depends only on Θ: we denote it
by π1(Θ). This map does not depend on the choice of the isomorphisms ι` for ` dividing (5.1).
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Proposition 6.4. The map π1 is bijective.

Proof. This map is clearly surjective: given an endo-class Θ ∈ En(F) and any discrete series
representation σ ∈ D(H,C) with endo-class Θ, the endo-class of its inverse Jacquet–Langlands
transfer π−1(σ) ∈ D(G,C) is an antecedent of Θ by π1.

Now let π, π′ ∈ D(G,C) have Jacquet–Langlands transfers σ, σ′ to H with the same endo-
class. By Proposition 5.8 and Remark 5.9, the representations σ, σ′ are linked by a family of
discrete series representations. By Theorem 6.3, the same holds for π and π′. Thus they have
the same endo-class. 2

Recall that the parametric degree of a cuspidal representation of G has been defined in § 3.1.

Proposition 6.5. For every complex discrete series representation of G, there is a cuspidal
complex representation of G with the same endo-class and with parametric degree n.

Proof. Let π be a complex discrete series representation of G with endo-class Θ. To find a
complex cuspidal representation with the same endo-class and with parametric degree n, we
need to find a Gal(k/d)-regular complex character α ∈ X which is also Gal(k/e)-regular. The
latter implies the former, so let us find a Gal(k/e)-regular character α ∈ X. For this, it is enough
to choose for α a generator of the cyclic group X. 2

As an immediate consequence we see that, given an endo-class Θ in En(F), if there is a single
complex cuspidal representation ρ of G with endo-class Θ and parametric degree n such that
π(ρ) has endo-class Θ, then π1(Θ) is equal to Θ.

6.3 In this subsection the division algebra D is fixed, but we allow the positive integer m to
vary. Given an m > 1, we write π1,m for the map (6.3) induced by the Jacquet–Langlands
correspondence from D(GLm(D),C) to D(GLmd(F),C). Recall (see Lemma 3.3) that associated
with an endo-class Θ ∈ E(F) is an integer called its ramification index.

Theorem 6.6. (1) There is a unique map

j = jD : E(F) → E(F),

depending only on D, such that for any integer m > 1 the restriction of j to Emd(F) coincides
with the map π1,m.

(2) The map j is bijective, and it is the identity on all essentially tame endo-classes (that is,
all endo-classes whose ramification index is prime to p).

Proof. Uniqueness follows from the fact that E(F) is the union of the Emd(F) for m > 1.
In order to prove the existence of j, it suffices to prove that for all m, k > 1, the maps π1,m

and π1,k coincide on Emd(F)∩Ekd(F) = Erd(F), where r denotes the greatest common divisor of
m and k. For this, let Θ ∈ Erd(F), and let ρ be a cuspidal irreducible representation of GLr(D)
with endo-class Θ and parametric degree rd. Its Jacquet–Langlands transfer to GLrd(F) is a
cuspidal representation σ, whose endo-class is denoted by Θ′. Then, for any a > 1, the discrete
series representation L(ρ, a) of GLar(D) has endo-class Θ, and its transfer L(σ, a) to GLard(F)
has endo-class Θ′. It follows that π1,m(Θ) = π1,r(Θ) = Θ′. The bijectivity of j follows from the
fact that all the maps π1,m, for m > 1, are bijective.
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To prove the second part of statement (2), given an essentially tame endo-class Θ, it suffices

to find a single complex cuspidal representation ρ of G with endo-class Θ and parametric degree

n such that π(ρ) has endo-class Θ. But it follows from [BH11a], which gives an explicit type-

theoretic description of the Jacquet–Langlands transfer of complex cuspidal representations of

G with essentially tame endo-class and parametric degree n, that this is true of any complex

cuspidal representation ρ of G with endo-class Θ and parametric degree n. 2

Remark 6.7. After this paper was written, Dotto proved the Endo-class Invariance Conjecture

in [Dot17]. Thus it is now known that the map j of Theorem 6.6 is in fact the identity.

7. Reduction to the maximal totally ramified case

We continue with the previous notation, so that G = GLm(D) and H = GLn(F). In this section,

we closely follow the ideas of [BH11a, § 6] to make a further reduction to the maximal totally

ramified case (see § 1.1). All representations in this section are complex.

7.1 Let π be a cuspidal (complex) representation of G with parametric degree n. Let (J,λ) be an

extended maximal simple type of G contained in π [MS14b, § 3.1 and Théorème 3.11], attached

to a simple stratum [a, β] and a simple character θ ∈ C(a, β). Write B for the centralizer of β in

Mm(D), so that B'Mm′(D
′) for some integer m′ > 1 and F[β]-division algebra D′. Fix a maximal

unramified extension L of F[β] in B, and write K for the maximal unramified subextension of L

over F.

We fix a root of unity ζ ∈ K of order relatively prime to p such that K = F[ζ]. Write GK for

the centralizer of K in G. Let u be a pro-unipotent, elliptic regular element of GK in the sense

of [BH11a, § 1.6]. The element h = ζu then lies in the set Gell
reg of elliptic regular elements of G,

so we have

trπ(h) =
∑
x∈G/J

trλ(x−1hx)

as in [BH11a, (6.3.1)]. Write J = J(a, β) = J∩ a×. A coset xJ can contribute to the sum only if

x−1hx ∈ J or, equivalently, x−1hx ∈ J. As in [BH11a, 6.3 Lemma], such a coset xJ is contained

in NG(K)J, where NG(K) is the normalizer of K in G.

Write Ψ for the Galois group of K/F and Γ for that of L/F[β]. Restriction of

operators identifies Γ with a subgroup of Ψ. Write Ψt for the unique subgroup of Γ (and hence

of Ψ) of order m′s(π), where s(π) is the integer introduced in § 3.1. Thanks to the description of

the group J in [Séc05b, 5.1], we observe that Ψt is the image of J∩NG(K) under the surjective

map NG(K)/GK → Ψ. As in [BH11a, (6.3.2)], we have

trπ(ζu) =
∑

α∈Ψ/Ψt

∑
y∈GK/JK

trλ(y−1ζαuαy)

where JK = J∩GK.

Let us fix a uniformizer $F of F. We choose an irreducible representation κ of J such that:

(1) the restriction of κ to J is a β-extension of θ;

(2) the character det(κ) has order a power of p;

(3) the automorphism κ($F) is the identity.
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Note that such a representation is not unique. We now write

σ = HomJ1(κ,λ),

which carries an action of J given by g · f = λ(g) ◦ f ◦ κ(g)−1 for g ∈ J and f ∈ σ. This

representation is irreducible and trivial on J1 = J1(a, β), and we have the decomposition λ =

κ⊗σ. As in [BH11a, (6.4.1)], this gives

trπ(ζu) =
∑

α∈Ψ/Ψt

trσ(ζα)
∑

y∈GK/JK

trκ(y−1ζαuαy).

We are now going to interpret the sum over GK/JK as the trace of a cuspidal irreducible

representation of GK.

7.2 Write θK for the restriction of θ to H1(a, β)∩GK, which is the interior K/F-lift of the simple

character θ in the sense of [BSS12, § 5]. The group JK is also the normalizer of θK in GK. We

choose an irreducible representation κK of JK such that:

(1) the restriction of κK to JK is a β-extension of θK;

(2) the character det(κK) has order a power of p;

(3) the automorphism κK($F) is the identity.

Again, such a choice may not be unique. The pair (JK,κK) is an extended maximal simple type in

GK. It thus defines a cuspidal irreducible representation ρ of GK. By [BH10, (3.4.3) and (5.6.2)],

there is a sign ε ∈ {−1,+1} such that

trκ(y−1ζαuαy) = ε · trκK(y−1ζαuαy).

As in [BH11a, (6.4.2)], this gives

trπ(ζu) = ε
∑

α∈Ψ/Ψt

trσ(ζα) tr ρα
−1

(u). (7.1)

We do not know whether a result similar to [BH11a, 6.5 Lemma] holds, that is, we do not know

whether the Ψ-stabilizers of ρ and of its inertial class are both equal to Γ. However, let Ψ0

denote the stabilizer in Ψ of the inertial class of ρ and let X0 be a set of representatives for Ψ

mod Ψ0. For γ ∈ Ψ0 there is an unramified character χγ of GK such that ργ
−1 ' ρχγ . Since u is

pro-unipotent (and hence compact), we have χα
−1

γ (u) = 1 for all α ∈ Ψ/Ψt. Therefore (7.1) can

be rewritten as

trπ(ζu) = ε
∑
α∈X0

tr ρα
−1

(u)
∑

γ∈Ψ0/Ψt

trσ(ζαγ) (7.2)

Note that the map

w : ζ 7→
∑

γ∈Ψ0/Ψt

trσ(ζγ) (7.3)

is not identically zero on the set of K/F-regular roots of unity, by [SZ00, Theorem 1.1(ii)]. Thus

there is an α ∈ Ψ such that the coefficient w(ζα) in (7.2) is nonzero.
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7.3 Now write π′ for the Jacquet–Langlands transfer of π to H. Since π has parametric degree

n, the torsion number t(π) is equal to the degree of K over F. We now do for π′ what we did

for π.

Let (J′,λ′) be an extended maximal simple type of H contained in π′, attached to a

simple stratum [a′, β′]. Write B′ for the centralizer of β′ in Mn(F), fix a maximal unramified

extension L′ of F[β′] in B′ and write K′ for the maximal unramified subextension of L′ over F.

The relation t(π) = t(π′), together with the fact that π′ also has parametric degree n, implies

that K′ and K have the same degree over F. Therefore, we may identify the maximal unramified

subextension of L′/F with K.

We have an analogue σ′ of σ and an analogue ρ′ of ρ in the argument of the previous

subsection, so that we get

trπ′(ζu′) = ε′
∑
α′∈X′0

tr ρ′α
′−1

(u′)
∑

γ′∈Ψ′0/Ψ
′
t

trσ′(ζα
′γ′)

where ζ ∈ K is as above, u′ is a pro-unipotent elliptic regular element of the centralizer HK of K

in H, ε′ ∈ {−1,+1} is a sign, and the subgroups Ψ′t, Ψ′0 and X′0 are defined as in the previous

subsection. If ζu′ is chosen to have the same reduced characteristic polynomial over F as ζu,

this is equal to (−1)n−m · trπ(ζu), by the trace relation characterizing the Jacquet–Langlands

correspondence. We thus get

ε′
∑
α′∈X′0

w′(ζα
′
) tr ρ′α

′−1

(u′) = (−1)n−m · ε
∑
α∈X0

w(ζα) tr ρα
−1

(u),

where the function w and its analogue w′ are defined by (7.3).

We apply [BH11a, 6.6 Lemma] (note that ρ has maximal parametric degree since L/K is

maximal). The ρ′α
′−1

, α′ ∈ X′0, are not unramified twists of each other, and the same holds for

the Jacquet–Langlands transfers to HK of the ρα
−1

, α ∈ X0. Thanks to the linear independence

of characters, it follows that there is an α ∈ Ψ such that

πK(ρα
−1

) = ρ′χ

for some unramified character χ of HK, where πK is the local Jacquet–Langlands correspondence

from GK to HK.

Assume now that πK preserves K-endo-classes for maximal totally ramified cuspidal

representations of GK. Write E(F) for the set of endo-classes over F, and likewise E(K).

The representations ρα
−1

and ρ′ have the same endo-class in E(K). But the K-endo-class of

ρα
−1

(respectively, of ρ′) is a K/F-lift of the F-endo-class of π (respectively, of π′) in the sense

of [BH96, Definition 9.7]. It follows (for instance by applying the restriction map of [BH96,

Corollary 9.13] from E(K) to E(F)) that π and π′ have the same F-endo-class. Thus we have

proved Theorem A of the introduction, restated here.

Theorem 7.1. Assume that, for all F and n and for all maximal totally ramified, cuspidal

irreducible complex representations ρ of G, the representations ρ and π(ρ) have the same endo-

class. Then the map π1 is the identity.
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8. Explicit Jacquet–Langlands correspondence up to unramified twist

Now let us fix an endo-class Θ ∈ En(F) and suppose that π1(Θ) = Θ. Write D0(G,Θ) for the set
of inertial classes of discrete series representations of G with endo-class Θ. The local Jacquet–
Langlands correspondence (6.1) thus induces a bijective map

π0 : D0(G,Θ) → D0(H,Θ). (8.1)

The cuspidal support induces a bijection between D0(G,Θ) and the set of inertial classes
of simple supercuspidal pairs of G with endo-class Θ.

8.1 We fix a simple stratum [a, β] in Mm(D) such that b = a∩B is maximal in B, together
with a simple character θ ∈ C(a, β) with endo-class Θ and a β-extension κ of θ. The integer m′

coming from (3.3) is m′ = m(d, g)/g, where g denotes the degree of Θ. Write X for the group of
complex characters of k×. Thanks to Proposition 3.5 (see also (3.7)), we have a bijective map

X/Γ → D0(G,Θ)

[α] 7→ Ω(κ, α)
(8.2)

where Ω(κ, α) is the inertial class of discrete series representations of G that contain the simple
type λ(α).

Similarly, we choose a maximal simple character θ′ ∈ C(a′, β′) in H with endo-class Θ, together
with a maximal β-extension κ′ of θ′. We fix a finite extension k′ of the residue field e′ of F[β′] of
degree n′ = n/g, which gives us a parameter set X′/Γ′. We thus get a bijection [α′] 7→ Ω(κ′, α′)
between X′/Γ′ and D0(H,Θ), similar to (8.2).

Let us fix an isomorphism of f -extensions e ' e′, where f denotes the residue field of F. We
may thus assume that k′ = k, which identifies the parameter sets X′/Γ′ and X/Γ. Let Υ be the
unique bijective map such that the diagram

X/Γ

��

Υ // X/Γ

��
D0(G,Θ) π0

//// D0(H,Θ)

is commutative, where the vertical maps are given by (8.2) and its analogue for H. It depends
on the choice of the maximal β-extensions κ and κ′, as well as on the f -isomorphism e ' e′ (see
Remark 3.7 for the dependency in k). We would like to describe Υ. The purpose of Proposition 8.8
below is to show that, in a certain sense, by considering various m > 1 such that md is divisible
by the degree of Θ, one can reduce the computation of Υ([α]) to the case where α is suitably
regular.

By Proposition 5.5 and Corollary 6.2, we have the following fact.

Proposition 8.1. For any prime number `, the bijection Υ is compatible with taking `-regular
parts. More precisely, the Γ-orbits of α, β ∈ X have the same `-regular part if and only if the
Γ-orbits Υ([α]) and Υ([β]) have the same `-regular part.

Proposition 8.1 suggests that, with a suitable choice of `, it may be possible to deduce Υ([α])
from the knowledge of Υ([β]). We will illustrate this idea in Proposition 8.8 below.
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8.2 We first give another property of the map Υ. Set n′ = n/g = m′d′. Given α ∈ X, let f be
the cardinality of its Γ-orbit, and write

s(α) = sD([α]) =
d′

(f, d′)
. (8.3)

Recall that d′ is the degree of d over e (the residue field of F[β]), so d′ = d/(d, g). Note that the
cardinality of its Gal(k/d)-orbit is equal to f/(f, d′), which was denoted by u in § 3.3.

Definition 8.2. We call the integer f the parametric degree of α ∈ X.

This is related to the notion of parametric degree for a discrete series representation as
follows: any discrete series representation in Ω(κ, α) has parametric degree fg.

Since the local Jacquet–Langlands correspondence preserves the parametric degree
(see [BH11a]), we have the following result.

Lemma 8.3. For all α ∈ X, the parametric degrees of [α] and Υ([α]) are equal.

Note that Ω(κ, α) is made of cuspidal representations with cuspidal Jacquet–Langlands
transfers if and only if f = n′, that is, if and only if α is e-regular. Indeed, from [BH11a], a
discrete series representation of G is cuspidal with cuspidal Jacquet–Langlands transfer if and
only if its parametric degree is n.

8.3 Let a> 1 be a positive integer. We consider the simple stratum [a∗, β] in Mam(D), where a∗ is
the hereditary order Ma(a), and write θ∗ ∈ C(a∗, β) for the transfer of θ in the sense of [Séc04,
3.3.3]. Associated with κ is a coherent choice of a maximal β-extension κ∗ of the simple character
θ∗ (see [MS14b, Remarque 5.17]). We fix a finite extension k∗ of k of degree a. Write X∗ for
the group of complex characters of k∗× and Γ∗ for the Galois group of k∗/e. Repeating the
arguments of § 8.1 with GLam(D) and GLan(F), we get a bijective map Υ∗ : X∗/Γ∗ → X∗/Γ∗.
We have the following straightforward result.

Lemma 8.4. Let [α] ∈ X/Γ, and let L(ρ, r) be in the inertial class Ω(κ, α) for some integer r
dividing m and some irreducible cuspidal representation ρ of GLm/r(D). Then L(ρ, ar) is in the
inertial class Ω(κ∗, α∗), where α∗ is the character α ◦Nk∗/k of k∗×.

Proof. With the notation of § 3.3 and writing M for the Levi subgroup G×· · ·×G⊆GLam(D) and
U for the unipotent radical of the parabolic subgroup composed of upper a× a block-triangular
matrices of GLam(D), this follows from the fact that the representation of J(a∗r , β)∩M on the
J(a∗r , β)∩U-invariant subspace of the transfer κ∗ar of κ∗ to J(a∗ar, β) is κ⊗ · · · ⊗ κ. 2

For α ∈ X, the orbit [α∗] depends only on [α], and we denote it [α]∗. By Lemma 8.4 we
therefore have

Υ∗([α∗]) = Υ(α)∗

for any character α ∈ X.
Given α ∈ X, we write f for its parametric degree and e[α] for the subfield of k of degree f

over e.

Lemma 8.5. Let α ∈ X. There exist an integer a > 1, a prime number ` 6= p not dividing the
order of e[α]× and an e-regular character β ∈ X∗ such that β ≡ α∗ mod `.
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Proof. First recall the following result, known as Zsigmondy’s Theorem [Zsi92].

Lemma 8.6. Let b, r > 2 be integers. There exists a prime number ` which divides br−1 but not
bi − 1 for any i ∈ {1, . . . , r − 1}, except when r = 6 and b = 2, and when r = 2 and b = 2k − 1
for some k > 1.

Let us write Q for the cardinality of e, and let us fix an a > 1 such that an′ > 6f . Applying
Lemma 8.6 with b = Qf and r = an′/f , we obtain a prime number ` dividing br − 1 but not
dividing bi − 1 for any i ∈ {1, . . . , r − 1}. It follows that b has order r in the group (Z/`Z)×.

Let ξ be a non-trivial character of k∗× of order `. Then the character β = ξα∗ is congruent
to α∗ mod `. Since the order of α is prime to ` (for it divides b−1), the cardinality of the Γ-orbit
of β is the least common multiple of f and the order of Q in (Z/`Z)×. This cardinality is equal
to fr = an′, and hence β is e-regular. 2

Remark 8.7. (1) The choice a = 1 is not always possible. For instance, if α is trivial, e has seven
elements and n′ = 2, then no prime number ` satisfies the required condition. We thank Guy
Henniart for a suggestion that led us to introduce the process described here.

(2) The proof of Lemma 8.5 shows that for any character α ∈ X, we can choose a to be
any integer greater than or equal to 7. Moreover, the choices of a and ` depend only on the
parametric degree f , not on α.

(3) Note that ` cannot be 2. Indeed, we have ` 6= p, and if p is odd, then the fact that ` does
not divide Qf − 1 (the order of e[α]×) implies that ` 6= 2.

With the notation of Lemma 8.5, we get the following result.

Proposition 8.8. Assume that Υ∗([β]) = [βµ] for some character µ ∈ X∗. Then µ` = ν∗ for some
character ν ∈ X and we have Υ([α]) = [αν].

Proof. Let us write Υ([α]) = [α′] for some α′ ∈ X. Then [α′∗] ≡ [βµ] mod `. By Lemma 8.3, the
parametric degree of α′ is f , and so e[α′] = e[α]. It follows that ` does not divide the order of α′.
Write β = ξα∗ for some character ξ whose order is a power of `. Taking `-regular parts, we get
[α′∗]` = [α′∗] = [α∗µ`]. Changing α′ in its Γ-orbit, we may assume that α′∗ = α∗µ`. Thus µ` = ν∗

for some ν ∈ X. Since Nk∗/k is surjective, we get Υ([α]) = [αν]. 2

9. The essentially tame case

The purpose of this section is to illustrate Proposition 8.8 in the essentially tame case. Assume
that Θ is essentially tame; we then have π1(Θ) = Θ by Corollary 6.6. As in § 8.1, we will fix
maximal simple characters θ and θ′ in G and H with endo-class Θ, but we must be careful here:
for our purpose, these choices have to be compatible, in a sense that we will define in § 9.1.

That we need to take care of this compatibility was brought to our attention by the work
of Dotto [Dot17], who resolved this rigidity problem in essentially the same way, though with a
slightly different language.

Recall (Corollary 6.6 and Lemma 3.3) that the tameness assumption on Θ means that F[β]
is tamely ramified over F, for any simple stratum [a, β] and any simple character θ ∈ C(a, β) of
endo-class Θ. We will see other properties of essentially tame endo-classes below. We also refer
the reader to [BH05b, § 1] for more details.

As in § 8, we write g for the degree of Θ and set n′ = n/g.
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9.1 In order to formulate our Compatibility Assumption below, it is convenient to use the notion
of ps-character defined in [BSS12, Definition 1.5]. Fix once and for all a separable closure F of F.
Its residue field f is an algebraic closure of the residue field f of F. Let k be the unique extension
of f of degree n′ contained in f and write X for the group of complex characters of k×.

Let us fix a ps-character (Θ, 0, β) of endo-class Θ with β ∈ F. Write E for the field F[β] and e
for its residue field, which canonically identifies with an extension of f contained in k. Write Γ
for the Galois group of k over e. Since Θ is essentially tame, E is tamely ramified over F.

We now fix a homomorphism ι : E → Mm(D) of F-algebras and a principal order a in Mm(D)
normalized by ιE×, such that the intersection b of a with the centralizer B of ιE in Mm(D) is
a maximal order. By [BSS12, Definition 1.5], this gives us a maximal simple stratum [a, ιβ]
in Mm(D) and a maximal simple character θ ∈ C(a, ιβ) of endo-class Θ. This also defines an
f -isomorphism

φι : e → eι,

where eι denotes the residue field of ιE. As in § 3.3, we fix an extension kι of eι. Write Xι

for the group of complex characters of (kι)
× and Γι for the Galois group of kι over eι. The

f -isomorphism φι allows us to identify X/Γ and Xι/Γι. Write κ for the unique β-extension of θ
whose determinant has order a power of p. This choice gives us a bijective map between Xι/Γι
and D0(G,Θ) as in (8.2). Composing with the identification above, we get a bijection

X/Γ → D0(G,Θ), (9.1)

denoted by ω, which depends on the various choices we have made.
Using the same ps-character (Θ, 0, β) as above, we now make similar choices for H:

an F-homomorphism ι′ : E → Mn(F) and a principal order a′. This gives us a maximal
simple character θ′, which is the transfer of θ in the sense of [Séc04, § 3.3.3]. Let κ′ be
its unique β-extension whose determinant has order a power of p. This gives us a bijection
X/Γ → D0(H,Θ), denoted by ω′. Putting the bijections ω and ω′ and the inertial Jacquet–
Langlands correspondence π0 of (8.1) together, we get a permutation Υ = ω′−1 ◦ π0 ◦ ω of
X/Γ.

Remark 9.1. This permutation depends a priori on the choice of the ps-character (Θ, 0, β)
with endo-class Θ, as well as on that of ι, a, ι′, a′. Under the Compatibility Assumption below,
Theorem 9.3 will show that Υ is actually independent of these choices.

We now go back to the simple character θ. Restricting it to the 1-units of b, it takes the
form ξθ ◦NrdB for a unique character ξθ of the 1-units 1 + pιE, where NrdB denotes the reduced
norm of B (see [Séc04, 3.3.2]). Composing with ι, we get a character ξθ ◦ ι of 1 + pE. Similarly,
we have a character ξθ′ ◦ ι′ of the same group.

Compatibility Assumption. We assume that

ξθ ◦ ι = ξθ′ ◦ ι′ (9.2)

on 1 + pE.

From now on, we assume that the Compatibility Assumption is satisfied. The character (9.2)
of the 1-units 1 + pE will be denoted by ξ0.

Remark 9.2. Let E(F) denote the set of all endo-classes over F, and define E(E) accordingly.
There is a canonical map

E(E) → E(F)
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given by [BH96, Corollary 9.3] (see also [BH14, ch. 2]), called the restriction map. It is surjective
with finite fibres. According to [BH05b, § 1.2], we can identify E-endo-classes of degree 1 with
characters of 1 +pE. The tameness assumption on Θ implies that the E/F-lifts of Θ, that is, the
endo-classes in E(E) whose restriction to E(F) is Θ, all have degree 1. Besides, ξ0 is one of these
lifts, and the map γ 7→ ξ0 ◦ γ induces a bijection between AutF(E) and the set of E/F-lifts of Θ
(see [BH14, Corollary 2.4])). This gives us a full description of the E/F-lifts of Θ.

Our purpose is to get a formula for Υ. In § 9.4, we will use the results of [BH11a] to compute
the Γ-orbit Υ([α]) for e-regular characters α ∈ X. We will then use Proposition 8.8 to extend
this formula to all characters α.

Theorem 9.3. There is a canonically determined character µ of k×, depending only on m, d
and Θ, such that µ2 = 1 and

Υ([α]) = [αµ]

for all characters α ∈ X.

More precisely, we will see that the character µ is the ‘rectifier’ given by Bushnell and
Henniart’s First Comparison Theorem [BH11a, 6.1] together with Corollary 6.9 and (6.7.4) in
[BH11a]. Since the results from [BH11a] we will use are formulated in terms of admissible pairs,
we first have to translate them in terms of our α-parameters.

Let us write Xreg for the set of e-regular characters in X.

9.2 We first recall the definition of admissible pairs [How77, BH11a], and basic facts about
them.

Definition 9.4. An admissible pair is a pair (L/F, ξ) consisting of a finite, tamely ramified field
extension L/F and a character ξ of L× such that:

(1) ξ does not factor through NL/K for any field K such that F ⊆ K ( L;

(2) if the restriction of ξ to the 1-units 1 + pL factors through NL/K for some field K such that
F ⊆ K ⊆ L, then L/K is unramified.

Two admissible pairs (Li/F, ξi), i = 1, 2, are said to be isomorphic if there is an
F-isomorphism φ : L2 → L1 such that ξ2 = ξ1 ◦ φ. The degree of an admissible pair (L/F, ξ)
is [L : F]. We also introduce the following definition, which will be convenient for our use.

Definition 9.5. Two admissible pairs (Li/F, ξi) for i = 1, 2, are said to be inertially equivalent
if there exist an unramified character χ of L×2 and an isomorphism φ : L2 → L1 of extensions of
F such that χξ2 = ξ1 ◦ φ. We will write [L1/F, ξ1] for the inertial class of (L1/F, ξ1).

Let (L/F, ξ) be an admissible pair. By [BH11a, 4.1 Lemma], there is a unique sub-extension
P/F of L/F such that ξ | 1 + pL factors through the norm NL/P and which is minimal for this
property. It is called the parameter field of the admissible pair. Then L/P is unramified and, if
we write ξ | 1 + pL = ξ1 ◦ NL/P for some character ξ1 of 1 + pP, then (P/F, ξ1) is an admissible
1-pair in the sense of [BH11a, 3.3], that is, ξ1 does not factor through NL/K for any field K
such that F ⊆ K ( L. According to [BH05b, Theorem 1.3], there is a canonical bijective map
between isomorphism classes of admissible 1-pairs over F and essentially tame endo-classes over
F. Therefore, the admissible 1-pair (P/F, ξ1) determines an essentially tame endo-class, which
depends on the inertial class of (L/F, ξ) only.
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Recall that we have fixed an endo-class Θ and a character ξ0 of 1 + pE in the Compatibility
Assumption of § 9.1.

Lemma 9.6. Any admissible pair having endo-class Θ is isomorphic to an admissible pair
(L/F, ξ) with associated 1-pair (E/F, ξ0).

Proof. Suppose that (L/F, ξ) has endo-class Θ, and let (P/F, ξ1) be its associated admissible
1-pair. By looking at [BH05b, § 1.3] in more detail, it follows that P is F-isomorphic to E. Up
to isomorphism, we may therefore assume that P is equal to E. By Remark 9.2, the characters
ξ1 and ξ0 of 1 + pE, which define the same endo-class Θ, are conjugate under the automorphism
group AutF(E). Therefore, up to isomorphism, we may assume that these characters ξ1 and ξ0

are equal. 2

9.3 Let (L/F, ξ) be an admissible pair with endo-class Θ and degree t dividing n. By Lemma 9.6,
we may assume that it has associated 1-pair (E/F, ξ0). We may also assume that L is contained
in F. By [BH11a, 4.3 Lemma 1], there is a unique character ξw of the group of units O×L such
that:

(1) the characters ξw and ξ coincide on the principal unit subgroup 1 + pL;

(2) the order of ξw is a power of p.

The character ξξ−1
w of O×L is tamely ramified; thus it induces a character ξt of l×, where l is the

residue field of L. This character depends only on the inertial class of (L/F, ξ).
Since (L/F, ξ) is an admissible pair with parameter field E, the residue field l is an extension

of e and ξt is an e-regular character of l×. Since L ⊆ F, the residue field l naturally embeds in
k. Write αξ for the character ξt ◦Nk/l of k×. Its parametric degree f is equal to [L : E]. We thus
have t = fg.

We write Pn(Θ) for the set of inertial classes of admissible pairs with endo-class Θ and
degree dividing n.

Lemma 9.7. (1) The character αξ is e-regular if and only if [L : F] = n.
(2) The map

[L/F, ξ] 7→ [αξ] (9.3)

induces a bijection between the set of inertial classes of admissible pairs in Pn(Θ) and X/Γ.

Remark 9.8. The map (9.3) depends on the choices we have made in § 9.1.

Proof. The character αξ is e-regular if and only if f = n′. Multiplying by g, this is equivalent to
t = n. This gives us the first part of the lemma.

Given α ∈ X, there is a uniquely determined field l such that e ⊆ l ⊆ k and α factors through
the norm Nk/l, and which is minimal for this property. Write α = β ◦Nk/l for some character β
of l×, which is e-regular by minimality of l. Let L be an unramified extension of E with residue
field l. Then β inflates to a tamely ramified character of the units subgroup of L, still denoted
by β. Now write ξw for the character of O×L of p-power order extending the character ξ0 ◦ NL/E

of the 1-units of L, and let ξ be any character of L× extending ξwβ. Since the character β is
e-regular, it follows that the pair (L/F, ξ) is admissible. The Γ-orbit [αξ] associated with its
inertial class is equal to [α]. The map (9.3) is therefore surjective.
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We now assume that we have two admissible pairs (Li/F, ξi) for i = 1, 2, with the same
image [α] in X/Γ. For each i, we may assume that (Li/F, ξi) has associated 1-pair (E/F, ξ0) by
Lemma 9.6, and we may further assume that Li ⊆ F. The character ξi | 1 + pLi thus factors
through NLi/E and E is minimal for this property. We have an e-regular character ξi,t of l×i ,
where li is the residue field of Li. Since [αξ1 ] and [αξ2 ] are equal, they have the same cardinality
f . The fields l1 and l2 therefore have the same degree over e, and L1 and L2 have the same
degree f over E. We thus have L1 = L2, denoted by L. We now have two characters ξ1,t and
ξ2,t of l×, which are conjugate under Gal(l/e). Changing again (L2/F, ξ2) in its isomorphism
class, we may assume that they are equal. Thus the admissible pairs (Li/F, ξi) for i = 1, 2, are
inertially equivalent. 2

9.4 The Parametrization Theorem in [BH11a, 6.1] gives us a canonical bijection

(L/F, ξ) 7→ Π(G, ξ) (9.4)

between isomorphism classes of admissible pairs of degree n and isomorphism classes of essentially
tame irreducible cuspidal representations of G (that is, cuspidal representations with essentially
tame endo-class) of parametric degree n.

Lemma 9.9. (1) Given an admissible pair (L/F, ξ) of degree n with associated 1-pair (E/F, ξ0),
the irreducible cuspidal representation Π(G, ξ) belongs to the inertial class Ω(κ, αξ).

(2) The bijection (9.4) induces a bijection between inertial classes of admissible pairs of degree
n and inertial classes of essentially tame cuspidal representations of G of parametric degree n.

Proof. By examining the construction of [BH11a, 4.2 and 4.3], we see that an essentially tame
irreducible cuspidal representation of endo-class Θ will correspond through (9.4) to an admissible
pair (L/F, ξ) with associated 1-pair (E/F, ξ0) if and only if it contains the maximal simple type
κ⊗σ, where σ is the irreducible cuspidal representation of G whose Green parameter in X/Γ is
[αξ]. Comparing with the construction of § 3.3, the simple type κ⊗σ is λ(αξ). This gives us the
first part of the lemma.

An inertial class of essentially tame cuspidal representations of G with endo-class Θ has the
form Ω(κ, α) for some α ∈ Xreg. The second part of the lemma thus follows from Lemma 9.7. 2

We now prove Theorem 9.3 for e-regular characters of X.

Proposition 9.10. (1) There is a canonically determined character µ ∈ X, depending on m, d
and Θ only, such that µ2 = 1 and

Υ([α]) = [αµ]

for all characters α ∈ Xreg.
(2) The character µ is non-trivial if and only if p 6= 2 and the integer

y(Θ,m, d) = m(d− 1) +m′(d′ − 1) + u(v − 1)

is odd, where the integers u, v > 1 are defined by uv = n/w and v = d/(d,w) with w = n/e(E/F).

Proof. Let α ∈ Xreg and let (L/F, ξ) be an admissible pair of degree n and endo-class Θ whose
inertial class is associated with [α]. By [BH11a, Theorem A], there is a tamely ramified character
ν of L× such that (L/F, ξν) is admissible, ν2 is trivial and the Jacquet–Langlands transfer of
Π(G, ξ) is Π(H, ξν).
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Now suppose that (L/F, ξ) has associated 1-pair (E/F, ξ0) and L is contained in F. Since
L/F has degree n and L is unramified over E, the residue field of L canonically identifies with k.
We write µ for the character of k× induced by the restriction of ν to the units subgroup of L.
This character is entirely described by [BH11a, Corollary 6.9], which gives us assertion (2) of the
proposition.

Taking inertial classes and using Lemma 9.9, the Jacquet–Langlands correspondence matches
together the inertial class Ω(κ, α) of Π(G, ξ) with that of Π(H, ξν), and the latter can be written
as Ω(κ′, α′) for [α′] = [αξν ] = [αµ]. The result follows. 2

9.5 We now prove Theorem 9.3. Following Remark 8.7, let us fix an odd integer a> 7. We will see
below why it is convenient to choose a odd. We use the notation introduced in § 8.3. In particular,
we have β-extensions κ∗ and κ′∗ and a permutation Υ∗ of X∗/Γ∗. We must pay attention to
the fact that the determinants of κ∗ and κ′∗ have orders which may not be powers of p, so
Proposition 9.10 may not apply to Υ∗ directly.

Let us write κ∗p for the β-extension on J(a∗, ιβ) whose determinant has order a power of p.
By Remark 3.11 there is a character ζ of J(a∗, ιβ) trivial on J1(a∗, ιβ) such that κ∗p = κ∗ζ. This
induces a character of GLm′(d) of the form χ ◦ φι ◦Nd/eι ◦ det for some character χ of e×.

Similarly, we have a β-extension κ′∗p whose determinant has order a power of p, as well as
characters ζ ′ and χ′ such that κ′∗p = κ′∗ζ ′ and ζ ′ induces the character χ′◦φι′◦det of GLn′(eι′). We
write Ψp for the permutation of X∗/Γ∗ corresponding to the maximal β-extensions κ∗p and κ′∗p .
We write δ for the character (χ′χ−1) ◦Nk∗/e ∈ X∗.

Lemma 9.11. The character δ is trivial.

Proof. Let β ∈ X∗ be an e-regular character. Applying Proposition 9.10 to Ψp gives us the
equality Ψp([β]) = [βλ] where λ ∈ X∗ is the rectifying character corresponding to am, d and Θ.
Since a has been chosen to be odd, we have

y(Θ, am, d) ≡ y(Θ,m, d) mod 2.

It follows that λ is trivial if and only if µ is, that is, λ = µ∗. We thus get Ψp([β]) = [βµ∗].
Now let ε be the character χ ◦ Nk∗/e and define ε′ similarly. Comparing Ψp and Υ∗, by

Remark 3.11 we get Υ∗([βε]) = [βµ∗ε′] for all e-regular character β ∈ X∗. Since βε−1 is e-regular
if and only if β is, this gives us

Υ∗([β]) = [βδµ∗] (9.5)

for all e-regular β ∈ X∗.
Now let α ∈ Xreg. By Lemma 8.5 there are a prime number ` 6= p not dividing the

order of k× and an e-regular character β ∈ X∗ such that β ≡ α∗ mod `. By (9.5) and
Proposition 8.8 we get Υ([α]) = [αν] for some ν ∈ X such that ν∗ is the `-regular part of
δµ∗. Since α is e-regular, Proposition 9.10 applied to Υ gives us Υ([α]) = [αµ]. Putting these
equalities together, we get

[α∗µ∗] ≡ [α∗µ∗δ] mod `.

The character δ can thus be written as ξ(α∗µ∗)Qi−1 for some integer i ∈ {0, . . . , n′−1} and some
ξ ∈ X∗ whose order is a power of `. (Recall that Q is the cardinality of e.) Since µ has order at

most 2, we get δ = ξ(α∗)Qi−1. Since the orders of δ and µ∗ both divide Q− 1, we have

α∗(Q
i−1)(Q−1) = ξ1−Q.

1883

https://doi.org/10.1112/S0010437X19007486 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007486
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Since both Q − 1 and the order of α are prime to `, we get ξ = 1. Hence the order of α, which
we may assume to be Qn′ − 1 by choosing for α a generator of X, divides (Qi − 1)(Q− 1). This
implies i = 0, so δ is trivial as expected. 2

Now let α ∈ X be arbitrary. By Lemma 8.5 there are a prime number ` 6= p not dividing the
order of e[α]× and an e-regular character β ∈ X∗ such that β is congruent to α∗ mod `. Since
δ = µ∗, the identity (9.5) gives us Υ∗([β]) = [βµ∗]. By Proposition 8.8, we have Υ([α]) = [αν]
for some character ν ∈ X such that ν∗ is the `-regular part of µ∗. Thus ν∗ = µ∗, which implies
ν = µ. This completes the proof of Theorem 9.3.

Corollary 9.12. The permutation Υ does not depend on the choice of the F-embeddings ι and
ι′ and the orders a and a′, nor on the choice of the ps-character (Θ, 0, β) of endo-class Θ.

9.6 We now reformulate Theorem 9.3 in terms of admissible pairs. Let (L/F, ξ) be an
admissible pair of degree dividing n and endo-class Θ. The orbit [αξ] ∈ X/Γ given by (9.3)
corresponds through (9.1) to an inertial class Ω(κ, αξ) of discrete series representations. Write
Π0(G, ξ) for this inertial class. The map

[L/F, ξ] 7→ Π0(G, ξ) (9.6)

is a bijection between Pn(Θ) and D0(G,Θ). This map depends a priori on various choices.

Theorem 9.13. Let (L/F, ξ) be an admissible pair with degree dividing n. There is a canonically
determined tamely ramified character µ of the units subgroup of L such that µ2 = 1 and

π0(Π0(G, ξ)) = Π0(H, ξµ).

It depends only on m, d and the restriction of ξ to the principal units 1 + pL.

Note that by Π0(H, ξµ) we mean the inertial class corresponding to the pair [L/F, ξµ̂] for
any choice of extension µ̂ of µ to L×; this is independent of the choice of µ̂.

Remark 9.14. Let t be the degree of L/F and write s for the integer s(αξ) defined by (8.3).
The parametric degree f = [L : E] of αξ divides m′d′. Therefore u = f/(f, d′) divides m′s and
hence m′. Let us define an integer r > 1 by m′ = ur, or equivalently by n= rst. Any discrete series
representation in Π0(G, ξ) has the form L(ρ, r) for some cuspidal representation ρ of GLm/r(D)
with parametric degree t.

Remark 9.15. An admissible pair (L/F, ξ) of degree t dividing n canonically defines, via the
canonical map (9.4), an isomorphism class of essentially tame cuspidal representations ρξ of the
group GLt(F). Passing to inertial classes, the map

(L/F, ξ) 7→ L

(
ρξ,

n

t

)
induces the map (9.6) when G = H, which is therefore canonical in that case. It follows from
Theorem 9.13 that (9.6) is a canonical bijection between Pn(Θ) and D0(G,Θ), for any inner
form G.
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Versailles, France

Shaun Stevens Shaun.Stevens@uea.ac.uk

School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK

1887

https://doi.org/10.1112/S0010437X19007486 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007486

	1 Introduction
	1.1 Background
	1.2 Preservation of endo-classes
	1.3 The level-zero part

	2 Notation
	3 Preliminaries
	3.1 
	3.2 
	3.3 
	3.4 
	3.5 

	4 Linked l-adic representations
	4.1 
	4.2 
	4.3 

	5 Linked complex representations
	5.1 
	5.2 
	5.3 
	5.4 

	6 Application to the local Jacquet–Langlands correspondence
	6.1 
	6.2 
	6.3 

	7 Reduction to the maximal totally ramified case
	7.1 
	7.2 
	7.3 

	8 Explicit Jacquet–Langlands correspondence up to unramified twist
	8.1 
	8.2 
	8.3 

	9 The essentially tame case
	9.1 
	9.2 
	9.3 
	9.4 
	9.5 
	9.6 

	Acknowledgements
	References

