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ENRIQUES INVOLUTIONS AND BRAUER CLASSES

A. N. SKOROBOGATOV and D. VALLONI

Abstract. We prove that every element of order 2 in the Brauer group of a

complex Kummer surface X descends to an Enriques quotient of X. In generic

cases, this gives a bijection between the set Enr(X) of Enriques quotients of

X up to isomorphism and the set of Brauer classes of X of order 2. For some

K3 surfaces of Picard rank 20, we prove that the fibers of Enr(X)→ Br(X)[2]

above the nonzero points have the same cardinality.

§1. Introduction

Let S be a complex Enriques surface, and let π : X → S be its K3 étale double cover.

J.-L. Colliot-Thélène asked whether the induced map of Brauer groups π∗ : Br(S)� Z/2→
Br(X) is injective or zero1. Beauville has given a necessary and sufficient condition for the

injectivity of π∗ [B, Cor. 5.7] and showed that the Enriques surfaces S for which this map

is zero form a countable union of hypersurfaces in the moduli space of Enriques surfaces [B,

Cor. 6.5]. Enriques surfaces with injective π∗ are used in explicit constructions of Enriques

surfaces over Q for which the Brauer–Manin obstruction fails to control weak approximation

[HS1] and the Hasse principle [VV]). Enriques surfaces over Q such that the map π∗ is zero

have been constructed in [HS2, GS].

From a different perspective, one can start with a K3 surface X and consider the set

F(X)⊂Aut(X) of fixed point free involutions σ : X→X, which are precisely the involutions

such that the quotient X/σ is an Enriques surface.

In this paper, we are interested in the map

ΦX : F(X)−→ Br(X)[2],

which sends σ ∈F(X) to π∗(bS), where π : X →X/σ = S is the quotient morphism, and bS
is the unique nonzero element of Br(S). A combination of results of Beauville and of Keum

and Ohashi show that Im(ΦX) depends only on the isomorphism class of the transcendental

lattice T (X) of X (see Corollary 2.6). A description of all lattices T (X) such that F(X) �= ∅
can be found in [BSV, Th. 1.6].

Let Enr(X) be the set of Enriques quotients of X, considered up to isomorphism of

varieties. Equivalently, Enr(X) is the set of conjugacy classes of Aut(X) contained in F(X)

(see [O1, Prop. 2.1]). Ohashi proved that the set Enr(X) is always finite [O1, Cor. 0.4]

although its size is not bounded [O1, Th. 0.1]. The map ΦX is Aut(X)-equivariant, where

Aut(X) acts on F(X) by conjugation, so ΦX descends to a map

ϕX : Enr(X)−→ Br(X)[2]/Aut(X).
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The action of Aut(X) on Br(X)[2] factors through the action of the group of Hodge

isometries of the integral Hodge structure on T (X), so when AutHdg(T (X)) = {±1}
the action of Aut(X) on Br(X)[2] is trivial. In such a generic situation, ϕX is a map

Enr(X)→ Br(X)[2]. In this case, the set Enr(X) depends only on the isomorphism class

of the lattice T (X) (see the discussion after Theorem 2.5).

Examples show that the set Enr(X) can be empty or very large, so in general ϕX is neither

surjective nor injective. A very general Enriques surface S (corresponding to the points of

the moduli space outside a countable union of hypersurfaces) is the unique Enriques quotient

of its K3 cover X ; by Beauville, in this case, ϕX(Enr(X)) is a certain nonzero element of

Br(X)[2].

The aim of this paper is to clarify the structure of ΦX and ϕX in some favourable

situations. Keum [K, Th. 2] proved that every Kummer surface is a double cover of some

Enriques surface. His method can be used to prove the following.

Theorem A. Let X be a Kummer surface. Then, for every α ∈Br(X) of order 2, there

is an Enriques quotient πS : X → S such that α= π∗
S(bS).

In other words, for Kummer surfaces, the set Br(X)[2]\{0} is contained in the image of

ΦX . As a kind of partial converse, in Corollary 2.7, we show that if X is a K3 surface such

that the abelian group Br(X)[2] is generated by the image of ΦX , then the transcendental

lattice of X is divisible by 2 as an even lattice. We do not know if there exist Kummer

surfaces such that Φ−1
X (0) is non-empty. At the end of §2, we give examples of non-Kummer

K3 surfaces such that Im(ΦX) = {0}.
In two generic cases, Ohashi classified all Enriques quotients of a given K3 surface.

Combining Theorem A with his results [O1, Th. 4.1], [O2, Th. 1.1] we obtain the following

corollary.

Corollary B. Let X be the Kummer surface attached to any of the following abelian

surfaces:

(i) a product of two non-isogenous elliptic curves;

(ii) the Jacobian J of a curve of genus 2 such that NS(J)∼= Z.

Then ϕX is a bijection between Enr(X) and Br(X)[2]\{0}.
For some K3 surfaces of maximal Picard rank, the following result gives information

about the fibers of ϕX . Its proof uses a certain Galois action on Br(X)[2] constructed by

the second named author in [V].

Theorem C. Let X be a K3 surface of Picard rank 20. Let E =Q(
√
−d), where d is the

discriminant of the transcendental lattice T (X). Assume that EndHdg(T (X)) is the ring of

integers OE ⊂ E and, moreover, 2 is inert in E and E �=Q(
√
−3). Then AutHdg(T (X)) =

{±1} and the fibers of ϕX : Enr(X) → Br(X)[2] above the nonzero points have the same

cardinality.

The conditions in Theorem C are easy to check. Let(
2a b

b 2c

)

be the Gram matrix of T (X), where a,b,c ∈ Z, so that −d= b2−4ac < 0. Write −d= f2D,

where f ∈ Z and D is the discriminant of E. By [V, Th. 3.2] we have EndHdg(T (X)) =OE

https://doi.org/10.1017/nmj.2022.43 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.43


608 A. N. SKOROBOGATOV AND D. VALLONI

if and only if f = gcd(a,b,c). Next, 2 is inert in E if and only if D ≡ 5 mod 8. If f is odd, so

that −d≡ 5 mod 8, we have Enr(X) = ∅ by [S], so in this case, the fibers of ϕX are empty.

Using Theorem A, it is easy to see that for each D ≡ 5 mod 8, D �=−3, there are infinitely

many pairwise non-isomorphic K3 surfaces of Picard rank 20 with complex multiplication

by O
Q(

√
D) such that the fibers of ϕX above the nonzero points of Br(X)[2] have the same

positive number of elements.

It would be interesting to describe the K3 surfaces X such that ΦX is surjective onto

Br(X)[2] or onto Br(X)[2]\{0}. In this direction, we have the following result, whose proof

uses Nikulin’s theory of lattices [N] and surjectivity of the period map for K3 surfaces.

Theorem D. Let X be a K3 surface such that rk(NS(X)) ≥ 12. Then there exist

infinitely many K3 surfaces Y such that:

(1) T (X)Q ∼= T (Y )Q as polarized Hodge structures.

(2) The discriminants of T (Y ) are pairwise different.

(3) There is a natural isomorphism Br(X)[2]∼= Br(Y )[2] under which

Im(ΦX)\{0}= Im(ΦY )\{0}.

We recall results of Beauville, Keum, and Ohashi, and then prove some useful lemmas in

§2. Theorem A and Corollary B are proved in §3, Theorem C is proved in §4, and Theorem

D in §5.

§2. Lattices and the topology of Enriques quotients

A lattice L is a free finitely generated abelian group with a non-degenerate integral

symmetric bilinear form. Write L(2) for the same group with the form 2(x.y).

For a lattice L, we denote by AL = L∗/L the discriminant group of L. If L is even, then

qL : AL →Q/2Z is the associated quadratic form.

If L⊂M are lattices, we denote by L⊥
M the orthogonal complement to L in M. It is clear

that L⊥
M is a primitive sublattice of M.

Let U be the hyperbolic plane. Write U = Ze⊕Zf , where (e2) = (f2) = 0, (e.f) = 1. We

denote by E8 the negative-definite, even, unimodular lattice of the root system E8. Write

Λ = E⊕2
8 ⊕U⊕3, M =U(2)⊕E8(2), N =U⊕U(2)⊕E8(2).

Here, Λ is the K3 lattice. Let ι : Λ→ Λ be the involution permuting two copies of E8⊕U,

and acting as −1 on the third copy of U. Then Λ+ ∼= M and Λ− ∼= N , where Λ± is the

±1-eigenspace of ι. By [H2, (vii) on p. 305], for any Enriques quotient πS : X → S =X/σ,

the induced map

πS : H
2(S,Z)/tors −→H2(X,Z)
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can be identified with the composition

H2(S,Z)/tors �U⊕E8
diag−→ (U⊕E8)

⊕2 ⊂ Λ�H2(X,Z).

Here, the fixed point free involution σ : X →X induces the involution ι on Λ.

The lattice N has a canonical character N → Z/2 which will play a crucial role in what

follows.

Lemma 2.1. The homomorphism ε : N →Z/2 given by ε(x) :=
(
x.(e+f)

)
mod 2, where

e and f are standard generators of U ⊂ N , does not depend on the embedding of lattices

U ↪→N . Hence, α∗(ε) = ε for any α ∈Aut(N).

Proof. Let e′,f ′ be standard generators of U embedded in N. Write e′ = ae+bf+u, f ′ =

ce+df+w, where a,b,c,d ∈ Z and u,w ∈U(2)⊕E8(2). We have 2ab+(u2) = 2cd+(w2) = 0

and ad+bc+(u.w) = 1. Since (u2) and (w2) are divisible by 4, and (u.w) is even, we see that

ab is even, cd is even, and ad+bc is odd. It follows that either a,d are odd and b,c are even,

or a,d are even and b,c are odd. In both cases, e′+f ′ equals e+f modulo 2U⊕U(2)⊕E8(2),

hence the result.

Lemma 2.2. If x ∈N is such that (x2)≡ 2 mod 4, then ε(x) = 0.

Proof. Write x = ae+ bf +u, where a,b ∈ Z and u ∈ U(2)⊕E8(2). Then a and b are

both odd, hence ε(x)≡ a+ b≡ 0 mod 2.

Lemma 2.3. Let L be a sublattice of N. If the restriction of ε : N →Z/2 to L is nonzero,

then L⊥
N = L′(2) for some even lattice L′.

Proof. Suppose ε(x) �= 0 for some x ∈ L. Writing x = ae+ bf +u, where a,b ∈ Z and

u ∈U(2)⊕E8(2), we see that a and b have opposite pairity. If y = ce+df +w ∈ L⊥
N , where

c,d ∈ Z and w ∈U(2)⊕E8(2), then ad+bc is even, which implies that either c or d is even.

Then (y2) = 2cd+(w2) is divisible by 4, hence L⊥
N = L′(2) for some even lattice L′.

The importance of the character ε : N → Z/2 has been revealed by Beauville. Namely,

let πS : X → S = X/σ be an Enriques quotient of a K3 surface X. Let T (X) ⊂ Λ be the

transcendental lattice of X. Recall the canonical isomorphism

Br(X)∼=Hom(T (X),Q/Z)

(see [CS, (5.5) on p. 130, p. 142]). It is well known that the involution σ is not symplectic

[H2, Cor. 15.1.5 and (ii) on p. 356], so it acts on H0(X,Ω2
X) as −1. Therefore, σ∗ = ι acts

on T (X) as −1, so T (X)⊂N .

Theorem 2.4 (Beauville). Let πS : X → S be an Enriques quotient of a K3 surface X.

Then π∗
S(bS) ∈ Br(X)[2] is the restriction of ε : N → Z/2 to T (X).

Proof. See [B, Prop s. 3.4 and 5.3].

An embedding T (X)⊂N coming from an Enriques quotient of X is clearly primitive. The

orthogonal complement T (X)⊥N ⊂ N contains no (−2)-elements x, because by Riemann–

Roch either x or −x is effective, but σ∗ preserves effectivity. In fact, these are the only

conditions. Horikawa’s theorem on the surjectivity of the period map for Enriques surfaces

[H1] leads to the following result. See [K, Th. 1], which was extended in [O2, Prop. 2.1].

https://doi.org/10.1017/nmj.2022.43 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.43


610 A. N. SKOROBOGATOV AND D. VALLONI

Theorem 2.5 (Keum, Ohashi). Let X be a K3 surface. Associating to an Enriques

quotient of X a primitive embedding T (X)⊂N defines a bijection between Enr(X) and the

set of equivalence classes of primitive embeddings of T (X) into N without (−2)-elements

in the orthogonal complement. Here the embeddings i1 and i2 are equivalent if there is an

automorphism φ̃ of the lattice N and a φ ∈AutHdg(T (X)) such that i2 ◦φ= φ̃◦ i1.

If AutHdg(T (X)) = {±1} (which holds, e.g., when the Picard number of X is odd), the

set Enr(X) depends only on the lattice T (X).

Corollary 2.6. For any K3 surface X, the following statements hold.

(i) Im(ΦX) \ {0} is the set of nonzero α ∈ Br(X)[2] ∼= Hom(T (X),Z/2), for which there

exists a primitive embedding i : T (X) ↪→N such that α= i∗(ε).

(ii) 0 ∈ Im(ΦX) if and only if there exists a primitive embedding i : T (X) ↪→ N without

(−2)-elements in the orthogonal complement such that i∗(ε) = 0.

(iii) If x ∈ T (X) is such that (x2)≡ 2 mod 4, then α(x) = 0 for any α ∈ Im(ΦX).

Proof. Parts (i) and (ii) formally follow from Theorems 2.4 and 2.5 and Lemma 2.3.

In particular, Lemma 2.3 implies that i(T (X))⊥N does not contain (−2)-classes. Part (iii)

follows from Lemma 2.2.

Corollary 2.7. If X is a K3 surface such that the abelian group Br(X)[2] is generated

by the image of ΦX , then there is an even lattice T ′ such that T (X)∼= T ′(2).

Proof. It is enough to show that for every x ∈ T (X) we have (x2) ≡ 0 mod 4. Suppose

that there is an element y ∈ T (X) such that (y2)≡ 2 mod 4. Then y is not divisible by 2 in

T (X). By Corollary 2.6(iii), the nonzero class of y in T (X)/2T (X) is in the kernel of every

α ∈ Im(ΦX). Thus Im(ΦX) is contained in a proper subgroup of Br(X)[2].

Corollary 2.8. Let X be a K3 surface such that T (X) has a basis e1, . . . , en with

(e2i )≡ 2 mod 4 for i= 1, . . . ,n. Then either Enr(X) = ∅ or Im(ΦX) = {0}.

Proof. Suppose that a nonzero α ∈Hom(T (X),Z/2) is in the image of ΦX . By Theorem

2.4, there is a primitive embedding i : T (X)→ N such that i∗(ε) = α. By Lemma 2.2, we

have α(ei) = 0 for i= 1, . . . ,n, hence α(T (X)) = 0 which is a contradiction.

This can be used to give examples of K3 surfaces X such that Im(ΦX)= {0}. For example,

one can take the K3 surface X of Picard rank 20 with transcendental lattice(
2 0

0 2c

)

with c= 3,5,7. Indeed, by [SV, Table 3.1] in these cases, we have |Enr(X)|= 1.

§3. Kummer surfaces

Proof of Theorem A

By Corollary 2.6(i), it is enough to construct, for any nonzero α ∈ Hom(T (X),Z/2),

a primitive embedding i : T (X) ↪→ N = U⊕U(2)⊕E8(2) such that ε(x) = α(x) for any

x ∈ T (X). We use Morrison’s classification of transcendental lattices of Kummer surfaces

(see [H2, Cor. 14.3.20]). For each of them, Keum [K, pp. 106–108] constructed a primitive

embedding into N ; we follow the same strategy to construct all 2n−1 embeddings, where
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n= rk(T (X)). We keep the notation of [K], in particular, e,f is a standard basis of U and

h,k is a standard basis of U(2). We denote by ρ the Picard rank of X.

In the proof below, we shall use the following particular case of a result of Nikulin.

Lemma 3.1. Any even negative-definite lattice of rank at most 4 has a primitive

embedding in E8.

Proof. This follows from [N, Th. 1.12.4] using the fact that E8 is a unique even

unimodular negative-definite lattice of rank 8.

ρ = 20

In this case, the lattice T = Zx⊕Zy is positive-definite with Gram matrix(
4a 2b

2b 4c

)
,

where a,b,c ∈ Z. The three primitive embeddings can be given by sending x,y to the

following two elements of N :

(e+2af,2bf +h+ ck), (2bf +h+ak,e+2cf), (e+2af,e+(2b−2a)f +h+(c− b+a)k).

ρ = 19

Now T has signature (2,1). We can choose an integral basis x,y, t of T so that the Gram

matrix is ⎛
⎝ 4a 2d 2l

2d 4b 2m

2l 2m 4c

⎞
⎠ ,

where a,b,c,d, l,m ∈ Z and a,b,c < 0. The embeddings we need to construct are numbered

by the nonzero vectors (v1,v2,v3) ∈ (F2)
3 given by evaluating ε on the images of x,y, t in

this order. By symmetry it is enough to construct embeddings labeled (1,0,0), (1,1,0), and

(1,1,1). The first two can be given by sending x,y, t to the following three elements of N,

where w is a primitive element of E8(2) such that (w2) = 4c:

(e+2af,2df +h+ bk,2lf +mk+w);

(e+2af,e+(2d−2a)f +h+(b−d+a)k,2lf +(m− l)k+w).

Next, we deal with (1,1,1). Without loss of generality, we can assume m> 0. Take

(e+k+ah,e+2mf +(d−m)h+w′, e+ lh+w),

where Zw′⊕Zw is a primitive sublattice of E8(2) such that (w′2) = 4b− 4m < 0, (w2) =

4c < 0, (w′.w) = 0.

ρ = 18

Here, the lattice T is the orthogonal direct sum of Zx⊕Zy with signature (1,1) and

Gram matrix (
4a 2b

2b 4c

)

and U(2) = Zr⊕Zs. Without loss of generality, we assume that a,c < 0 and b > 0. Let w

and u be primitive vectors of E8(2) such that (w2) = 4c < 0 and (u2) = 4(a− b+c)< 0. We
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label the embeddings in the same way as above. Up to exchanging the roles of x and y, and

of r and s, it is enough to construct embeddings with the following labels:

(1,0,0,0),(1,1,0,0),(1,0,1,0),(0,0,1,0),(0,0,1,1),(1,1,1,0),(1,0,1,1),(1,1,1,1).

Let us first construct primitive embeddings with labels (1,0,0,0) and (1,1,0,0) by taking

the direct sum of a primitive embedding Zx⊕Zy into U⊕E8(2) and the identity embedding

U(2)−̃→U(2). We send x,y to

(e+2af,2bf +w), (e+2af,e+(2b−2a)f +u).

The embedding with label (1,0,1,0) can be obtained by sending x,y,r,s to

(e+2af −ak,2bf − bk+w,e+h,k).

For (0,0,1,0), we take (h+w1, bk+w2, e,2e+2f+w3), where Zw1⊕Zw2⊕Zw3 is a primitive

sublattice of E8(2) with diagonal Gram matrix such that (w2
1) = 4a < 0, (w2

2) = 4c < 0,

(w2
3) =−8.

For (0,0,1,1), we take (h+w1, bk +w2, e,e+ 2f +w3), where Zw1 ⊕ Zw2 ⊕ Zw3 is a

primitive sublattice of E8(2) with diagonal Gram matrix such that (w2
1) = 4a < 0, (w2

2) =

4c < 0, (w2
3) =−4.

For (1,1,1,0), we take (e+2af −ak,e+(2b−2a)f +(a− b)k+u,e+h,k).

For (1,0,1,1), we take (e+2af −ak,2bf − bk+w,e+h,e+k+h+w′), where Zw⊕Zw′

is a primitive sublattice of E8(2) such that (w2) = 4c < 0, (w′2) =−4, (w.w′) = 0.

For (1,1,1,1), we take (e+2af − ak,e+(2b− 2a)f +(a− b)k+u,e+h,e+ k+h+w′),

where Zu⊕Zw′ is a primitive sublattice of E8(2) such that (u2)= 4(a−b+c)< 0, (w′2)=−4,

(u.w′) = 0.

ρ = 17

Here, we have T =U(2)⊕U(2)⊕ (−4m), where m≥ 1. A standard basis is {x,y,x′,y′, t}.
Up to swapping the two copies of U(2) and swapping the elements of a standard basis of

each U(2) it is enough to construct embeddings with the following labels:

(1,0,0,0,0),(1,1,0,0,0),(1,0,0,0,1),(1,1,0,0,1),(0,0,0,0,1),

(1,1,1,1,0),(1,1,1,1,1),(1,0,1,0,0),(1,1,1,0,0),(1,1,1,0,1),(1,0,1,0,1).

The first five embeddings are obtained as direct sums of a primitive embedding of U(2)⊕
(−4m) into U⊕E8(2) and the identity embedding U(2)−̃→U(2). The respective primitive

embeddings of U(2)⊕ (−4m) into U⊕E8(2) are given by sending x,y, t to the following

triples:

(e,2e+2f +u1,v1),(e,e+2f +u2,v2),(e,2e+2f +u3, e+v3),(e,e+2f +u4, e+v4).

Here, Zui⊕Zvi is a primitive sublattice of E8(2) such that:

(u2
1) =−8, (v21) =−4m, (u1.v1) = 0;

(u2
2) =−4, (v22) =−4m, (u2.v2) = 0;

(u2
3) =−8, (v23) =−4m, (u3.v3) =−2;

(u2
4) =−4, (v24) =−4m, (u4.v4) =−2.
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The embedding labeled (0,0,0,0,1) can be obtained by sending x,y, t to

(2e+2f +w0,2e+2f +w1, e+w2),

where w0,w1,w2 generate a primitive sublattice of E8(2) with Gram matrix

⎛
⎝ −8 −6 −2

−6 −8 −2

−2 −2 −4m

⎞
⎠ .

Indeed, this matrix is negative-definite.

To construct the last six embeddings, we exhibit the images of x,y,x′,y′, t. In the case

of (1,1,1,1,0), we consider

(e,e+2f +k+w0, e−h,e−h−k+w1,w2),

where w0,w1,w2 generate a primitive sublattice of E8(2) with diagonal Gram matrix such

that (w2
0) = (w2

1) =−4 and (w2
2) =−4m.

In the case of (1,1,1,1,1), we take

(e,e+2f +k+w0, e−h,e−h−k+w1, e+w2),

where w0,w1,w2 generate a primitive sublattice of E8(2) with the negative-definite Gram

matrix

⎛
⎝ −4 0 −2

0 −4 0

−2 0 −4m

⎞
⎠ .

In the case of (1,0,1,0,0), we take (e,2f+k,e−h,−k,w), where w is a primitive element

of E8(2) with (w2) =−4m.

For (1,1,1,0,0), we take (e,e+2f +k+u2, e−h,−k,v2).

For (1,1,1,0,1), we take (e,e+2f +k+u4, e−h,−k,e+v4).

For (1,0,1,0,1), we take (e,2e+2f +k+u3, e−h,−k,e+v3).

Proof of Corollary B

(i) Let E1 and E2 be non-isogenous elliptic curves, and let X =Kum(E1×E2). By [O1,

§4], we have AutHdg(T (X)) = {±1} and |Enr(X)|=15. (The 15 Enriques involutions can be

described geometrically as the Lieberman involutions and the Kondo–Mukai involutions.)

We have rk(T (X)) = 4, hence |Br(X)[2]\{0}|= 15.

(ii) Let C be a smooth projective curve of genus 2 such that NS(Jac(C))∼= Z. Let X =

Kum(Jac(C)). Condition AutHdg(T (X)) = {±1} is satisfied since the Picard rank of X is

odd. Ohashi [O2] shows that |Enr(X)|=31 and describes these 31 involutions geometrically.

In this case rk(T (X)) = 5, so |Br(X)[2]\{0}|= 31.

Taking into account (i) and (ii), Corollary B follows from Theorem A since a surjective

map of finite sets of the same cardinality is a bijection.
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§4. Singular K3 surfaces

K3 surfaces over Q

For a variety X over Q and an element g ∈Gal(Q/Q), we define Xg =X×Q,g Q. Then,

we have a morphism g : X →Xg making the following diagram commutative:

X
g ��

��

Xg

��
Spec(Q)

(g−1)∗�� Spec(Q)

.

Here, the vertical arrows are structure morphisms. A morphism of Q-varieties φ : X → Y

gives rise to a morphism of Q-varieties φg = gφg−1 : Xg → Y g.

Let K ⊂Q be a subfield, and let GK =Gal(Q/K).

Definition 4.1. Let X be a variety over Q.

(i) The field of moduli of X over K is the subfield K(X) ⊂ Q fixed by the group {g ∈
GK |X ∼=Xg}.

(ii) Let B ⊂ Br(X) be a finite subgroup. The field of moduli of the pair (X,B) over K is

the subfield K(X,B)⊂Q fixed by the group

{g ∈GK |∃an isomorphismf : Xg →X such that(g∗ ◦f∗)|B = idB}.

Let us fix an embedding Q ⊂ C. For a K3 surface X over Q we write T (X) for the

transcendental lattice of XC. One has natural isomorphisms ([CS, Prop. 5.2.3 and p. 142])

Br(X)∼= Br(XC)∼=Hom(T (X),Q/Z).

Remark 4.2. Let X be a K3 surface over Q of Picard rank at least 12. According to

[V, Rem. 6.1(2), p. 32] a Hodge isometry h : T (Xg)→̃T (X) exists if and only if X ∼=Xg. It

follows that in this case K(X,B) is the fixed field of the group

{g ∈GK |∃a Hodge isometryh : T (Xg)→ T (X)such that(g∗ ◦h∗)|B = idB}.

For a K3 surface over Q, we have Aut(X) = Aut(XC), since AutX/Q is a discrete group

scheme. Hence, the set of conjugacy classes of fixed point free involutions Enr(X)⊂Aut(X)

coincides with Enr(XC).

Proposition 4.3. Let X be a K3 surface over Q such that AutHdg(T (X)) = {±1}.
The Galois group GK(X) acts naturally on Enr(X) and on Br(X)[2] so that the map

ϕX : Enr(X)→ Br(X)[2] is GK(X)-equivariant.

Proof. Write K := K(X). We use σ and τ to denote arbitrary elements of GK . By

Definition 4.1(i), we can find an isomorphism fσ,τ : X
σ−̃→Xτ .

Let us denote the conjugacy class of ψ ∈Aut(X) by [ψ].

A fixed point free involution ι : X → X gives rise to a fixed point free involution ισ =

σισ−1 : Xσ →Xσ, and one has (ισ)τ = ιτσ. We define an action of GK on Enr(X) by making

σ send [ι] to [f−1
1,σι

σf1,σ]. This class depends neither on the choice of ι in its conjugacy class,

nor on the choice of f1,σ. We have

[f−1
1,τ (f

−1
1,σι

σf1,σ)
τf1,τ ] = [(fτ

1,σf1,τ )
−1ιτσ(fτ

1,σf1,τ )] = [f−1
1,τσι

τσf1,τσ],
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because f1,τσ and fτ
1,σf1,τ are both isomorphisms X−̃→Xτσ, so replacing one of them by

the other does not change the conjugacy class.

Let us now define an action of GK on Br(X)[2] by making σ ∈ GK act as f∗
1,σ(σ

−1)∗

which is induced by σ−1f1,σ : X →Xσ →X. This action on Br(X)[2] does not depend on

the choice of f1,σ. Indeed, f1,σ is well defined up to an automorphism of X, but the action

of Aut(X) on Br(X)[2] factors through the action of AutHdg(T (X)). The latter group is

{±1} by assumption, so Aut(X) acts on Br(X)[2] trivially. The map (f1,σ)
τ = τf1,στ

−1

is an isomorphism Xτ −̃→Xτσ, hence (f1,σ)
τf1,τ is an isomorphism X → Xτσ, so for the

purpose of calculating the induced action of Br(X)[2], we can replace it with f1,τσ. This

shows that sending σ ∈GK to the map induced on Br(X)[2] by σ−1f1,σ is indeed an action.

We have a commutative diagram

X
f1,σ ��

��

Xσ σ−1
��

��

X

��
X/(f−1

1,σι
σf1,σ) �� Xσ/ισ �� X/ι

,

where the vertical maps are quotients by the respective fixed point free involutions. Thus

the image of the nonzero element of Br(X/ι) in Br(X)[2] followed by the action of σ on

Br(X)[2] is the same as the image of the nonzero element of Br(X/(f−1
1,σι

σf1,σ)) in Br(X)[2].

This proves that ϕX is GK-equivariant.

Moduli fields of singular K3 surfaces

Let X be a singular K3 surface, that is, a K3 surface of maximal Picard rank 20. It is

well known that every singular K3 surface is defined over Q and has complex multiplication

by the imaginary quadratic field E = EndHdg(T (X)Q). Assume that EndHdg(T (X)) is the

ring of integers OE ⊂E. In this situation, the results of [V] give explicit descriptions of the

moduli fields E(X) and E(X,Br(X)[n]) which we now recall.

The group Br(X)∼=Hom(T (X),Q/Z) is naturally an OE-module. Let Kn/E be the ray

class field of E with modulus nOE , and let Cln(E)∼=Gal(Kn/E). The complex conjugation

c acts on Cln(E). Let Cln(E)c be the c-invariant subgroup of Cln(E). Define K̃n ⊂Kn as the

fixed field of Cln(E)c, so that Gal(K̃n/E)∼= Cln(E)/Cln(E)c. Note that K1 is the Hilbert

class field of E and Cl1(E) = Cl(E) is the usual class group. The complex conjugation c

acts on Cl(E) as −1.

Theorem 4.4. Let X be a singular K3 surface. Then K̃n = E(X,Br(X)[n]).

Proof. See [V, Th. 11.2 and Rem. 9.2 on p. 41].

In particular, we have K̃1 = E(X). If n divides m, then K̃n ⊂ K̃m.

Proof of Theorem C

The assumptions of Theorem C imply that AutHdg(T (X)) = O×
E = {±1}, so we can

apply Proposition 4.3. Let ρ be the representation of G
˜K1

in Br(X)[2]∼= (Z/2)2 constructed

in the proof of Proposition 4.3. It is enough to show that under our assumptions one

has |ρ(G
˜K1
)| = 3. Then G

˜K1
acts transitively on Br(X)[2] \ {0}, so in view of the G

˜K1
-

equivariance established in Proposition 4.3 this will imply Theorem C. By Theorem 4.4, we

need to prove that [K̃2 : K̃1] = 3.
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The following exact sequence describes the ray class group Cl2(E):

0→ O×
E

{x ∈ O×
E |x≡ 1mod2}

→ (OE/2)
× → Cl2(E)→ Cl(E)→ 0.

Under our assumptions, we have O×
E = {x ∈O×

E |x≡ 1mod2}= {±1}. Since 2 is inert in E,

we have OE/2∼= F4, and thus the sequence above becomes

0→ F×
4 → Cl2(E)→ Cl(E)→ 0.

This is a sequence of G-modules, where G= {1, c}. We have (F×
4 )

c = {1} and H1(G,F×
4 ) = 0,

and hence Cl2(E)c =Cl(E)c. From this, we obtain the exact sequence

0→ F×
4 →Gal(K̃2/E)→Gal(K̃1/E)→ 0.

Thus, [K̃2 : K̃1] = 3, as required.

Remark 4.5. When 2 is split, a similar argument shows that the G
˜K1
-action on

Br(X)[2] is trivial.

§5. Constructing Enriques involutions

For a finite abelian group G, we write (G) for the minimal number of generators of

G. For a prime p we denote by Gp the p-primary subgroup of G. Recall that for a lattice

L we write AL = L∗/L for the discriminant group of L. When L is even, we denote by

qL : AL →Q/2Z the finite quadratic form of L.

We need to recall fundamental results of Nikulin about the existence of lattices and their

primitive embeddings.

Let q : A→Q/2Z be a finite quadratic form. The signature sign(q)∈Z/8Z of q is defined

as (t+− t−) mod 8, where (t+, t−) is the signature of any even lattice whose discriminant

form is isomorphic to (A,q) (such a lattice always exists and, moreover, this notion is

well-defined). One also has

sign(q⊕ q′) = sign(q)+sign(q′). (1)

Write A=
⊕

pAp, where p ranges over the prime numbers. Then one has quadratic forms

qp : Ap →Qp/Zp when p is odd and q2 : A2 →Q2/2Z2 when p= 2. It is clear that q is the

orthogonal direct sum of the forms qp.

For an odd prime p, a finite abelian p-group Ap, and a quadratic form qp : Ap →Qp/Zp,

Nikulin [N, Th. 1.9.1] showed that there is a unique Zp-lattice K(qp) of rank (Ap) whose

quadratic form is isomorphic to qp.

When p= 2, the same result of Nikulin says the following. Let q
(2)
θ (2) be the discriminant

quadratic form of the rank one Z2-lattice (2θ), where θ ∈ Z×
2 . For a finite abelian 2-group

A2 and a quadratic form q2 : A2 → Q2/2Z2 we have the following alternative. If q2 splits

as an orthogonal direct sum q2 = q
(2)
θ (2)⊕ q′2, then there are precisely two even Z2-lattices

of rank (A2) whose quadratic form is isomorphic to q2. If such a splitting of q2 does not

exist, there is a unique Z2-lattice K(q2) of rank (A2) whose quadratic form is isomorphic

to q2. The following result is [N, Th. 1.10.1].

Theorem 5.1 (Nikulin). An even lattice with signature (t+, t−) and quadratic form

q : A→Q/2Z exists if and only if the following conditions are satisfied:
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(1) t+− t− ≡ sign(q)mod 8;

(2) t+, t− ≥ 0 and t++ t− ≥ (A);

(3) (−1)t− |Ap| ≡ discrK(qp) mod Z×2
p for the odd primes p such that t++ t− = (Ap);

(4) |A2| ≡ ±discrK(q2) mod Z×2
2 if t++ t− = (A2) and q2 �= q

(2)
θ (2)⊕q′2 for any θ and q′2.

The following result is a consequence of [N, Prop. 1.15.1] where we took into account

that N is the unique lattice of signature (2,10) whose quadratic form is isomorphic to qN
(see [N, Cor. 1.13.4].

Theorem 5.2 (Nikulin). Let L be an even lattice with signature (2+,k−) and quadratic

form qL : AL → Q/2Z. The existence of a primitive embedding L ↪→N is equivalent to the

existence of the following data:

• subgroups HL ⊂AL and HN ⊂AN ;

• an isomorphism of finite quadratic forms γ : (HL, qL|HL
)

∼−→ (HN , qN |HN
);

• an even negative-definite lattice K of rank 10−k;

• an isomorphism of finite quadratic forms δ from (AK ,−qK) to the restriction of qL⊕−qN
to Γ⊥

γ /Γγ, where the isotropic subgroup Γγ ⊂ AL⊕AN is the graph of γ in HL⊕HN ⊂
AL⊕AN .

Moreover, if i : L ↪→N is a primitive embedding associated to (HL,HN ,γ,K,δ), then K ∼=
i(L)⊥.

Remark 5.3.

(1) If f : K̃ → K is an isomorphism of lattices and f̄ : A
˜K → AK is the induced

isomorphism, then the primitive embeddings L ↪→ N associated to (HL,HN ,γ,K,δ)

and to (HL,HN ,γ,K̃,δ ◦ f̄) are isomorphic.

(2) An analog of Theorem 5.2 gives the conditions for the existence of a primitive

embedding of L⊗Zp into N ⊗Zp, for any prime p. The analog of (1) also holds in

this context.

Definition 5.4. Let L be a lattice such that 0< rk(L)≤ 10. We say that a sublattice

L′ ⊂ L of finite index satisfies condition (∗) if

gcd(2discr(L), [L : L′]) = 1,

and for each prime p not dividing 2discr(L), we have (AL′,p)< 12− rk(L′).

Proposition 5.5. Any lattice L such that 0 < rk(L) ≤ 10 contains infinitely many

distinct sublattices L′ ⊂ L satisfying condition (∗).
Proof. Let p be any odd prime not dividing discr(L). As is well known (see, e.g., [N,

Cor. 1.9.3]), the unimodular p-adic lattice L⊗Zp has an orthogonal Zp-basis v1, . . . ,vn such

that (v2i ) ∈ Z×
p for i = 1, . . . ,n. The images of v1, . . . ,vn in (L⊗Zp)/p ∼= L/p form a basis

of this Fp-vector space. Let L
′ ⊂ L be the inverse image of the hyperplane spanned by the

images of v2, . . . ,vn. Thus [L :L′] = p, so that discr(L′) = p2discr(L). Since p does not divide

discr(L), we have a canonical isomorphism AL′ ∼= AL⊕AL′,p. It is enough to check that

(AL′,p) = 1, which says that AL′,p is cyclic. It is clear that AL′,p
∼=AL′⊗Zp , so it is enough to

prove that HomZp(L
′⊗Zp,Zp)/(L

′⊗Zp)∼=Z/p2. The Zp-module L′⊗Zp is freely generated

by pv1,v2, . . . ,vn, hence the Zp-module HomZp(L
′⊗Zp,Zp)⊂ L′⊗Qp is freely generated by

p−1v1,v2, . . . ,vn, which implies the result.
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Condition (∗) implies that [L : L′] is odd, and hence the inclusion L′ ⊂L induces a natural

isomorphism

Hom(L′,Z/2Z)∼=Hom(L,Z/2Z). (2)

Recall that for a primitive embedding i : L ↪→N we denote by i∗(ε) the precomposition

of the character ε : N → Z/2 with i.

Theorem 5.6. Let L′ ⊂ L be an inclusion of even lattices of signature (2+,k−), where

0≤ k ≤ 8. Then we have the following statements.

(a) If L′ ⊂ L satisfies condition (∗), then for any primitive embedding i : L ↪→ N with

i∗(ε) �= 0 there exists a primitive embedding i′ : L′ ↪→N such that i′∗(ε) = i∗(ε) under

the identification (2).

(b) If [L : L′] is odd, then for any primitive embedding i′ : L′ ↪→N with i′∗(ε) �=0 there exists

a primitive embedding i : L ↪→N such that i′∗(ε) = i∗(ε) under the identification (2).

Proof. (a) Let i : L ↪→ N be a primitive embedding such that i∗(ε) �= 0. Then K :=

i(L)⊥N is an even negative-definite lattice of rank 10−k. By Theorem 5.2, the embedding i

corresponds to some datum (HL,HN ,γ,K,δ).

Since L′ ⊂ L satisfies condition (∗), the index [L : L′] is coprime to |AL|, hence AL′

canonically isomorphic to AL⊕Anew, where |Anew| = [L : L′]2. Then qL′ is an orthogonal

direct sum qL′ ∼= qL⊕ qnew, where qnew is a quadratic form on Anew.

We claim that there is a negative-definite lattice K ′ of rank 10−k such that AK′ ∼=AK⊕
Anew and qK′ ∼= qK ⊕−qnew. Since L

′ is a sublattice of L of finite index and rk(K) = 10−k,

we have

sign(qL)≡ sign(qL′) mod 8, k−10≡ sign(qK) mod 8.

Since qL′ ∼= qL ⊕ qnew, we have that sign(qL′) = sign(qL) + sign(qnew) by (1). Thus

sign(qnew)≡ 0 mod 8, which implies property (1) of Theorem 5.1.

By condition (∗), we know that |Anew| is odd and coprime to |AL|. For any odd prime

p, the Zp-lattices L⊗Zp and K ⊗Zp are orthogonal complements of each other in the

unimodular Zp-lattice N ⊗Zp, hence |AL,p| = |AK,p|. Thus, |AK | and |Anew| are coprime.

This implies

(AK ⊕Anew) = max{(AK), (Anew)} ≤ 10−k,

since (AK) ≤ rk(K) = 10− k and (Anew) ≤ (AL′) < 12− rk(L) by condition (∗). Thus,
property (2) of Theorem 5.1 also holds.

We now check properties (3) and (4) taking into account the coprimality of |AK | and
|Anew|. If p divides |AK |, then (3) and (4) hold because they hold for AK . If p divides

|Anew|, then (Anew)< rk(K ′) by condition (∗), so there is nothing to check.

Theorem 5.1 now implies the existence of K ′ with required properties.

Let us construct a datum defining the desired primitive embedding L′ ↪→ N . Since

2AN = 0, we have 2HN = 0 and thus 2HL = 0, so that HL ⊂AL,2. In view of the canonical

isomorphism AL,2
∼= AL′,2, we can keep the same HL′ = HL, HN and γ′ = γ as the first

three entries of our datum.

Recall that AL′ ∼=AL⊕Anew. We have

Γγ′ = Γγ ⊕0⊂ Γ⊥
γ′ = Γ⊥

γ ⊕Anew ⊂ (AL⊕AN )⊕Anew,
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hence Γ⊥
γ′/Γγ′ = Γ⊥

γ /Γγ ⊕Anew
∼=AK ⊕Anew. The restriction of

qL′ ⊕−qN ∼= (qL⊕−qN )⊕ qnew

to Γ⊥
γ′/Γγ′ is isomorphic to −qK ⊕ qnew via the isomorphism δ′ := (δ, id).

Take a negative-definite lattice K ′ of rank 10− k as above, that is, such that AK′ ∼=
AK ⊕Anew and qK′ ∼= qK ⊕−qnew. Let i

′ : L′ ↪→N be a primitive embedding associated to

the datum (HL′ ,HN ,γ′,K ′, δ′).

To prove that i′∗(ε) = i(ε) under the natural identification (2), it is enough to show that

the induced embeddings of Z2-lattices i2 : L⊗Z2 ↪→N ⊗Z2 and i′2 : L
′⊗Z2 ↪→N ⊗Z2 are

isomorphic.

First, we claim that K ⊗Z2 and K ′ ⊗Z2 are isomorphic Z2-lattices. Since K and K ′

are negative-definite of the same rank, and |AK′ | = |AK | · |Anew|, we have discr(K ′) =

discr(K) · |Anew|. Since |Anew| is a square of an odd integer, the even 2-adic lattices K⊗Z2

and K ′⊗Z2 have the same rank, the same discriminant form, and the same discriminant

modulo Z×2
2 . This implies that the Z2-lattices K ⊗Z2 and K ′ ⊗Z2 are isomorphic (see

[Nik79, Cor. 1.9.3]).

It remains to show that after tensoring with Z2 the data (HL,HN ,γ,K,δ) and

(HL′ ,HN ,γ′,K ′, δ′) give rise to isomorphic embeddings of L′ ⊗Z2
∼= L⊗Z2 into N ⊗Z2.

The first three entries of each datum are the same. By Remark 5.3, it is enough to find an

isomorphism of Z2-lattices f : K
′⊗Z2 →K⊗Z2 such that δ′2 = δ2 ◦ f̄ . The existence of such

an f follows from [N, Th. 1.9.5]. This concludes the proof of (a).

(b) Write A := AL = A2 ⊕Aodd, where A2 is the 2-primary subgroup of A. Similarly,

write A′ :=AL′ =A′
2⊕A′

odd. It is clear that A2
∼=A′

2. Then qL′ is an orthogonal direct sum

of quadratic forms qL,2 on A2 and qodd on A′
odd.

The overlattice L of L′ defines an isotropic subgroup I ⊂A′, where |I|= [L : L′], so that

qL is the quadratic form induced by qL′ on A= I⊥/I. Since [L : L′] is odd by assumption,

we have I ⊂ A′
odd. Thus I⊥ = A2 ⊕ I⊥odd, where I⊥odd = I⊥ ∩A′

odd. This shows that A =

A2⊕ (I⊥odd/I).

Let i′ : L′ ↪→N be a primitive embedding such that i′∗(ε) �= 0. Then K ′ := i(L′)⊥N is an

even negative-definite lattice of rank 10−k. Let (HL′ ,HN ,γ′,K ′, δ′) be a datum associated

to i′ : L′ ↪→ N as in Theorem 5.2. In particular, δ′ is an isomorphism of −qK′ with the

restriction of qL′⊕−qN to Γ⊥
γ′/Γγ′ . Since 2AN =0, we have 2HL′ =0, so thatHL′ ⊂A′

2 =A2.

Hence Γγ′ ⊂ A2⊕AN ⊂ A′⊕AN and thus Γ⊥
γ′ = (Γ⊥

γ′)2⊕A′
odd, where (Γ⊥

γ′)2 = Γ⊥
γ′ ∩ (A2⊕

AN ). This shows that δ′ identifies the finite quadratic form −qK′ on AK′ with the restriction

of (qL,2⊕−qN )⊕ qodd to
(
(Γ⊥

γ′
)
2
/Γγ′)⊕A′

odd.

The isotropic subgroup I ⊂ A′
odd gives rise, via δ′, to an isotropic subgroup in AK′ .

The latter defines an overlattice K ′ ⊂ K with [K : K ′] = [L : L′], so that δ′ induces an

isomorphism δ of the quadratic form −qK on AK with the restriction of (qL,2⊕−qN )⊕qodd
to

(
(Γ⊥

γ′)2/Γγ′
)
⊕(I⊥odd/I). Let i : L ↪→N be a primitive embedding associated to the datum

(HL,HN ,γ,K,δ), where HL =HL′ and γ = γ′.

To complete the proof of (b), it remains to show that i and i′ induce isomorphic

embeddings of Z2-lattices. This is proved by the same arguments as in (a).

Corollary 5.7. Let L be an even lattice of signature (2+,k−), where 0 ≤ k ≤ 8.

Write S(L) for the set of nonzero homomorphisms α : L → Z/2 such that there is a

https://doi.org/10.1017/nmj.2022.43 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.43


620 A. N. SKOROBOGATOV AND D. VALLONI

primitive embedding i : L ↪→ N with α = i∗(ε). Let L′ be a sublattice of L that satisfies

condition (∗). Then, under the natural identification Hom(L,Z/2)∼=Hom(L′,Z/2), we have

S(L) = S(L′).

Proof. Part (a) of Theorem 5.6 implies S(L)⊂ S(L′), whereas part (b) implies S(L′)⊂
S(L) since [L : L′] is odd.

Proof of Theorem D

By Proposition 5.5, there are infinitely many sublattices T ⊂ T (X) with pairwise different

discriminants that satisfy condition (∗). Endow T with the Hodge structure coming from

T (X). Since rk(T ) ≤ 10, by [N, Th. 1.14.4], there exists a unique primitive embedding of

the lattice T into the K3 lattice Λ. We equip Λ with the Hodge structure induced by the

Hodge structure on T so that T⊥
Λ ⊂Λ(1,1). By the surjectivity of the period map, there is a

K3 surface Y together with a Hodge isometry between Λ and H2(Y,Z). The transcendental

lattice T (Y ) is the orthogonal complement to H2(Y,Z)(1,1), hence T (Y )∼= T .

Applying Corollary 5.7 with L = T (X), we obtain S(T (X)) = S(T (Y )). Now Corollary

2.6(i) (whose proof uses Lemma 2.3) gives Im(ΦX)\{0}= Im(ΦY )\{0}.
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