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Abstract. Working in the signature (+ + + —) and units such that G=1=c, it was
found a solution of Einstein-Maxwell equations with A (without current and pseudo-
current). In real coordinates x* =(p, g, ¢, ) the solutions is:
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[f»= :(i/2\/—_g) g"e’f . is pure imaginary; in (1) ‘d’ denotes the external differential].
Not all constants my, ny, eq, go, b, &, A are physically significant: by re-scaling coor-
dinates ¢ can be made equal to + 1,0, or — 1. The solution is of the type D: the double
Debever-Penrose vectors
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have the common complex expansion Z=(g+ip)~!. Among C®’s only C® given by:
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is in general #0. The invariants of the electromagnetic field are:
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The constants contained in (1)H6) have the interpretation of: (1) ¢, and g, are
the electric and magnetic monopoles charges respectively, (2) m, and n, are the
mass and NUT parameters (3) b is related to the Kerr constant (4) A is cosmologic
constant (5) the sign ¢ in the sub-family of solutions which contains Kerr metric

C. DeWitt-Morette (ed.), Gravitational Radiation and Gravitational Collapse, 188-190. All Rights Reserved.
Copyright i, 1974 by the IAU.

https://doi.org/10.1017/50074180900236309 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900236309

A CLASS OF SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS 189

is equal to + 1. [With ¢=1, =0 the result described above amounts to the charged
Kerr-Newman-NUT metric generalized by the presence of the magnetic monopole;
here b=g3 —n? + a} where aj, is the Kerr constant.]

For a test particle of mass Am which carries electric and magnetic charges 4e, Ag
the Hamilton-Jacobi equation is separable: The solution of this equation is:
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where

and C,, C,, C, are the separation constants.
Working together with M. Demianski we generalized these results as follows:
we have a solution of Maxwell-Einstein equations with A described by:
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endowed in continuous constants m, n, e, g, ¢, y, 4. This is also a solution of the type
D with twisting double Debever-Penrose directions.
We have here:
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The transformation g— — 1/g, then (p, g)—(1/e) (p, q), t—e1,6—>€30; P—e*P, Q—e*Q,
e+ig—e % (eg+igo), m+in—e”*(mg+ing), e—e 2, y>e”*b+(A/6), A—A yields in
the limit e—oo the solution previously described by (1){6). Another contraction:
(, 4. 0, 1) =€ (p, g, 0, T), n—ne, e>ee?, momed, e+ig—(eo+igo) €2, y—y+e*g?,
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A—A, and then e— o0 brings the solution to the Kinerseley-Walker family of solu-

tions.

The solution described by (9)13) in general is not separable. Constants e, g, m, n
are related to electric and magnetic charges, mass and NUT parametgrs; A is the
cosmological constant; it is conjected that ‘kinematical constants’ y and ¢ are related
to uniform acceleration and rotation parameters (y in contractions corresponds

to the Kerr constant).
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