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Budgets of turbulent kinetic energy (TKE) and turbulent potential energy (TPE) at
different scales � in sheared, stably stratified turbulence are analysed using a filtering
approach. Competing effects in the flow are considered, along with the physical
mechanisms governing the energy fluxes between scales, and the budgets are used to
analyse data from direct numerical simulation at buoyancy Reynolds number Reb =
O(100). The mean TKE exceeds the TPE by an order of magnitude at the large scales,
with the difference reducing as � is decreased. At larger scales, buoyancy is never observed
to be positive, with buoyancy always converting TKE to TPE. As � is decreased, the
probability of locally convecting regions increases, though it remains small at scales down
to the Ozmidov scale. The TKE and TPE fluxes between scales are both downscale on
average, and their instantaneous values are correlated positively, but not strongly so, and
this occurs due to the different physical mechanisms that govern these fluxes. Moreover,
the contributions to these fluxes arising from the sub-grid fields are shown to be significant,
in addition to the filtered scale contributions associated with the processes of strain
self-amplification, vortex stretching and density gradient amplification. Probability density
functions (PDFs) of the Q, R invariants of the filtered velocity gradient are considered and
show that as � increases, the sheared-drop shape of the PDF becomes less pronounced and
the PDF becomes more symmetric about R = 0.
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1. Introduction

When turbulence occurs in environmental flows, it is often affected by both mean-shear
and stable stratification (Vallis 2006; Ferrari & Wunsch 2009; Wyngaard 2010; Zorzetto,
Bragg & Katul 2018; Ayet et al. 2020), leading to sheared, stably stratified turbulence
(SSST). Mean-shear (vertical gradient of horizontal flow) produces turbulence, with
hairpin vortices, streaks and strong fluctuations in all three directions (Lee, Kim &
Moin 1990; Pope 2000; Davidson 2004). Stable stratification suppresses fluctuations in
the vertical direction, and if sufficiently strong generates a quasi-two-dimensional flow
behaviour (Riley & Lelong 2000; Riley & Lindborg 2012). Stable stratification also
provides a restoring buoyancy force that enables the propagation of internal waves and the
formation of quasi-horizontal ‘pancake’ vortical structures in the flow (Davidson 2004).
Since mean-shear and stable stratification have competing effects, and produce different
flow structures, the dynamics of SSST are rich and complex. Moreover, the flow is often
‘patchy’, with turbulent and non-turbulent regions interspersed, depending on the local
competition between shear and buoyancy. Indeed, when the local shear in the flow is
strong enough for the local Richardson number to be sufficiently small, the local flow may
undergo Kelvin–Helmholtz instabilities that can evolve due to nonlinearity into turbulent
motion (Riley & de Bruyn Kops 2003).

Understanding and modelling SSST is an active area of research with many open
questions. One such issue concerns understanding the mixing efficiencies in SSST and
their parametric dependence (Peltier & Caulfield 2003; Portwood, de Bruyn Kops &
Caulfield 2019), which are vital for predicting mixing in oceans (Jayne 2009; Gregg et al.
2018). Another vital area is to understand the properties of SSST across its range of
dynamical scales, and the physical mechanisms that govern the fluxes of turbulent kinetic
and potential energy between scales. Not only is this important for a basic understanding
of the flow, it is also of crucial importance for developing large-eddy simulation (LES)
models for SSST. A number of studies have considered the effect of stable stratification
on the multiscale properties of turbulence using Fourier analysis and considering the
average behaviour of the flow in terms of the energy spectrum, the mean buoyancy and
mean interscale energy transfer terms (Riley & de Bruyn Kops 2003; Lindborg 2006;
Almalkie & de Bruyn Kops 2012). The study of Riley & de Bruyn Kops (2003) showed
that the horizonal energy spectrum exhibits a k−5/3

h scaling for wavenumbers smaller
than the Ozmidov wavenumber kO (corresponding to the wavenumber at which inertial
and buoyancy forces are of the same order), where kh is the horizontal wavenumber,
and the results indicated a downscale energy transfer of kinetic energy in the flow. This
motivated (Lindborg 2006), who confirmed that strongly stratified turbulent flows exhibit
a downscale cascade of turbulent kinetic and potential energy on average, and developed
phenomenological predictions similar in spirit to Kolmogorov’s 1941 theory (Kolmogorov
1941). The observation of a downscale energy cascade was contrary to predictions that
had been made by Gage (1979) and Lilly (1983) based on the assumption that in the limit
of strong stratification, the flow should behave as two-dimensional turbulence. The basic
reason why the predictions of Gage (1979) and Lilly (1983) failed is that, as shown in
Billant & Chomaz (2001), as the strength of the stratification increases and the vertical
velocity of the flow is suppressed, the vertical length scale of the flow also reduces in such
a way that the terms in the dynamical equations associated with vertical motion always
remain O(1), hence the flow never becomes two-dimensional.

Many questions remain, however, regarding the multiscale properties of SSST. For
example, how do fluctuations of the SSST flow about its mean-field state behave?
What are the mechanisms of the turbulent kinetic and potential energy transfers among
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scales, and to what extent are these transfers coupled to each other, and to fluctuations
in the local buoyancy? How do the sub-grid scale terms in SSST contribute to the
flow dynamics across scales? To address these and other questions, in this paper we
will use a filtering-based approach (Liu, Meneveau & Katz 1994; Eyink 1995a,b;
Meneveau & Katz 2000) wherein the velocity and density fields are considered for
different filtering lengths �. The filtering-based approach has been applied previously
to the study of energy and potential enstrophy cascades in the context of rotating,
stratified flows (Aluie & Kurien 2011). We apply the filtering approach to explore the
turbulent kinetic and potential energies at different scales of SSST, and the various
processes that determine their behaviour. Using a filtering approach allows us to consider
spatially local couplings between the processes that control the flow energetics at different
scales, and to consider fluctuations in the flow as well as the mean-field behaviour.
Moreover, such an analysis of the multiscale properties of SSST can provide insights for
developing LES models of SSST, since LES models are often developed in the physical
space, rather than Fourier space, context. LES modelling of stratified turbulence is an
underdeveloped area (Khani & Waite 2015), and new insights into the dynamics of
stratified turbulence across scales could aid in the development of appropriate sub-grid
models.

The outline of the paper is as follows. In § 2, we introduce the equations governing
the turbulent kinetic and potential energy at different scales, consider the behaviour of
the mean-field state of the flow at different scales, and discuss the physical mechanisms
governing the energy transfer among scales in SSST. In § 3, we describe the direct
numerical simulations (DNS) dataset used in this study, and in § 4, we present and discuss
results from the DNS for the quantities introduced in § 2 that govern the turbulent kinetic
and potential energy at different scales. Finally, in § 5, we draw conclusions from the study
and discuss areas for future investigation.

2. Theoretical considerations

2.1. Governing equations for scale-dependent energy fields
We consider the case where the mean velocity gradient γ and the mean density gradient
ζ (note that ζ < 0) are constant in space and time, such that the total fluid velocity vector
can be written as U = zγ ex + u, where u is the fluctuating component of the velocity,
and the total density can be written as ρ = ρr + zζ + ρ′, where ρr is a constant reference
density, and ρ′ is the fluctuating component of the density. While ex is the unit vector in the
direction of the mean velocity (〈U〉 = zγ ex), ez is the unit vector pointing in the direction
opposite to the gravitational acceleration g (i.e. the vertical direction), and ey ≡ ez × ex.

The filtering operator to be used is defined for an arbitrary field a(x, t) as
ã(x, t) ≡ ∫

R3 a(x − y, t)G�(y) dy, where G� is an isotropic filtering kernel with length
scale �. In order for the energy fields introduced below to be strictly non-negative,
which is a physical requirement, a necessary and sufficient condition is that the
filtering kernel G� be non-negative (Vreman, Geurts & Kuerten 1994). We will use
the isotropic Gaussian filter G�(y) ≡ (2π�2)−3/2 exp(−‖y‖2/2�2), which satisfies this
condition. Further considerations regarding the implications of using different filtering
kernels can be found in Sadek & Aluie (2018).

Assuming that |ρ′|/ρ � 1, the governing equation for u is then the Boussinesq–Navier–
Stokes equation coupled with an advection–diffusion equation for ρ′ (Vallis 2006).
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The filtered versions of these equations are

Dtũ = −(1/ρr)∇p̃ − ∇ · τ + 2ν ∇ · s̃ − Nφ̃ez + F̃ , (2.1)

Dtφ̃ = −∇ · Σ + κ ∇2φ̃ + Nũz + f̃ , (2.2)

where Dt ≡ ∂t + ũ · ∇, φ̃ ≡ gρ̃′/Nρr is the scaled density field (with dimensions of
a velocity), g ≡ ‖g‖, ν and κ are the kinematic viscosity and thermal diffusivity,
respectively, N ≡ √−gζ/ρr is the buoyancy frequency, τ ≡ ũu − ũũ is the sub-grid stress
tensor, s̃ ≡ (∇ũ + [∇ũ]T)/2 is the filtered strain rate, and Σ ≡ ˜uφ − ũφ̃ is the sub-grid
vector for the scaled density field. The terms F and f , whose filtered forms appear in the
equations above, are the forcing terms associated with mean velocity gradient applied to
the flow, and for the SSST under consideration are given by

F = −γ (ez · x)(ex · ∇)u − γ ex(ez · u), (2.3)

f = −γ (ez · x)(ex · ∇)φ. (2.4)

Following Germano (1992), the turbulent kinetic energy (TKE) in a given region of size
� is ũ · u/2, and this may be split up into the TKE at scales ≥ � (‘large scales’) denoted
by EK ≡ ‖ũ‖2/2, and the TKE at scales < � (‘small scales’) denoted by eK ≡ (‖̃u‖2 −
‖ũ‖2)/2 = tr[τ ]/2. The equations governing EK and eK may be derived from (2.1) and are
given by

DtEK = −(1/ρr)∇ · (ũp̃)−∇ · (ũ · τ )− ΠK + 2ν ∇ · (ũ · s̃)− 2ν ‖s̃‖2 − Nũzφ̃ + F̃ · ũ,

(2.5)

DteK = ∇ · T K + B + ΠK − εK + FK . (2.6)

In these equations, the scale-to-scale TKE flux is defined as ΠK ≡ − τ : s̃, such that
ΠK > 0 corresponds to a transfer of TKE from the large to the small scales. The
small-scale buoyancy term is B ≡ −N(ũzφ − ũzφ̃), the small-scale TKE dissipation rate is
εK ≡ 2ν(‖̃s‖2 − ‖s̃‖2), the small-scale forcing is FK ≡ F̃ · u − F̃ · ũ, and the small-scale
TKE transport term involves

T K ≡ −(1/ρr)(ũp − ũp̃) − (1/2)(˜u‖u‖2 − ũ‖̃u‖2) + (ũ · τ ) + 2ν(ũ · s − ũ · s̃). (2.7)

The turbulent potential energy (TPE) in a given region of size � is φ̃φ/2, and this may
be split up into the amount contained in the large scales denoted by EP ≡ φ̃φ̃/2, and
the amount contained in the small scales denoted by eP ≡ (φ̃φ − φ̃φ̃)/2. The equations
governing EP and eP may be derived from (2.2) and are given by

DtEP = −∇ · (φ̃Σ) − ΠP + 1
2κ ∇2φ̃φ̃ − κ ‖∇φ̃‖2 + Nφ̃ũz + φ̃ f̃ , (2.8)

DteP = ∇ · T P − εP − B + ΠP + FP. (2.9)

In these equations, the scale-to-scale TPE flux is defined as ΠP ≡ −Σ · ∇φ̃, such that
ΠP > 0 corresponds to a transfer of TPE from the large to the small scales. The small-scale

TPE dissipation rate is εP ≡ κ( ˜‖∇φ‖2 − ‖∇φ̃‖2), the small-scale scalar forcing is FP ≡
φ̃f − φ̃ f̃ , and the small-scale scalar transport involves

T P ≡ (κ/2)∇(φ̃φ − φ̃φ̃) + φ̃Σ . (2.10)

The equations for EK and EP shown above ((2.5) and (2.8)) were also derived in the
previous study of Aluie & Kurien (2011).
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Figure 1. Schematic to illustrate the various energy pathways in the flow. The large-scale TKE field gains
energy from the forcing F̃ · ũ, and loses TKE irreversibly through the large-scale TKE dissipation-rate term
εKE. The large-scale TPE field gains energy from the forcing φ̃ f̃ , and loses TPE irreversibly through the
large-scale TPE dissipation-rate term εPE. The small-scale TKE field gains energy from the forcing term FK ,
can lose/gain energy reversibly to/from the large-scale TKE field EK through the interscale TKE flux term ΠK ,
can lose/gain energy reversibly to/from the small-scale TPE field eP through the buoyancy term B, and loses
TKE irreversibly through the TKE dissipation-rate term εK . The transport term ∇ · T K moves eK conservatively
around in space and so is neither a source nor a sink for eK . The small-scale TPE field gains energy from the
forcing term FP, can lose/gain energy reversibly to/from the large-scale TPE field EP through the interscale
TPE flux term ΠP, can lose/gain energy reversibly to/from the small-scale TKE field eK through the buoyancy
term B, and loses TPE irreversibly through the TPE dissipation-rate term εP. The transport term ∇ · T P moves
eP conservatively around in space and so is neither a source nor a sink for eP.

In the following, attention will be given to the behaviour of the terms that contribute
to DteK and DteP. Note that while eK and eP are referred to as the small-scale TKE and
TPE, respectively, they correspond to the TKE and TPE contained in all scales < �, so
that when � exceeds the integral length scale of the flow, eK and eP actually contain the
contributions from the largest dynamical scales in the flow. Furthermore, while we choose
to focus on the small-scale fields, the questions that we are interested in exploring can also
be addressed from a different vantage point by considering the dynamics of the large-scale
fields.

A schematic is shown in figure 1 to illustrate the various energy pathways in the flow
according to the equations presented above.

2.2. Length scales in SSST
As discussed in Portwood et al. (2019), for the velocity field there are four important
length scales for the SSST flow under consideration. The first is the large-eddy length
scale, which may be characterized by L = E3/2

K /〈εK〉, where the angle brackets 〈 〉 denote
an ensemble average and EK ≡ lim�→∞〈eK〉 is the total (i.e. involving contributions
from all scales) mean TKE in the flow, and 〈εK〉 ≡ lim�→∞〈εK〉 is the total mean TKE
dissipation rate (note that here we are assuming an unbounded flow that is suitable for
the SSST under consideration). The second length scale is the Kolmogorov length scale
η = (ν3/〈εK〉)1/4, which characterizes the scale at which viscous and inertial scales in
the flow are of the same order. The third is the Ozmidov length scale �O = (〈εK〉/N3)1/2,
which characterizes the scale at which buoyancy and inertial forces are of the same order.
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The fourth is the Corrsin length scale �C = (〈εK〉/γ 3)1/2, which characterizes the scale
at which mean-shear and inertial forces are of the same order. Different non-dimensional
flow parameters may be related to these length scales (assuming ν = κ):

Ri ≡ N2

γ 2 = (�C/�O)4/3, (2.11)

Fr ≡ 〈εK〉
NEK

= (�O/L)2/3, (2.12)

Reb ≡ 〈εK〉
νN2 = (�O/η)4/3, (2.13)

Res ≡ 〈εK〉
νγ 2 = (�C/η)4/3. (2.14)

In order for the flow to become turbulent, the Richardson number must satisfy Ri < O(1)

(and therefore �C < O(�O)), and in order for stratification to have an impact on the flow,
the Froude number must satisfy Fr < O(1). In order for there to exist a range of scales
� � �O that are not affected by buoyancy, the buoyancy Reynolds number must satisfy
Reb 
 1. Correspondingly, in order for there to exist a range of scales � � �C that are
not affected by the mean-shear, the shear Reynolds number must satisfy Res 
 1. These
Reynolds numbers are, however, related, since Res = Reb Ri.

For the scalar field, the large scale is LP ≡ E3/2
P 〈εK〉1/2/〈εP〉3/2, where EP ≡

lim�→∞〈eP〉 is the total mean TPE in the flow, and 〈εP〉 ≡ lim�→∞〈εP〉 is the total mean
TPE dissipation rate. The small scale is the Batchelor scale ηB ≡ (νκ2/〈εK〉)1/4. In this
paper, we focus on flows with ν = κ such that ηB = η.

2.3. Mean-field behaviour
We now turn to consider the contributions to the equations governing the mean energy
fields 〈eK〉 and 〈eP〉. For SSST, the mean transport equations for these quantities reduce to

0 = 〈B〉 − 〈εK〉 + 〈ΠK〉 + 〈FK〉, (2.15)

0 = −〈B〉 − 〈εP〉 + 〈ΠP〉. (2.16)

In the following discussion, we will first consider the case where the forcing is confined
to the large scales (such as in Lindborg 2006), a flow that we refer to here as forced stably
stratified turbulence (FSST), for which we introduce the scale �F as the scale below which
the forcing plays a sub-leading role in in the flow (note that �F ≤ O(L)). This behaviour
will then be compared to that of SSST to understand the differences.

Focusing first on the TKE, in the limit �/L → ∞ , 〈ΠK〉 → 0, 〈εK〉 → 〈εK〉, 〈FK〉 →
〈FK〉∞, 〈B〉 → 〈B〉∞ , so that we have

〈FK〉∞ ∼ −〈B〉∞ + 〈εK〉, (2.17)

reflecting a balance between the total injection of TKE by the forcing and the total energy
lost due to viscous dissipation and conversion to TPE. The behaviour of (2.15) and (2.16) as
the scale � decreases depends on the dynamical scales of the system that were introduced
in § 2.2.

For FSST, 〈ΠK〉 ∼ −〈B〉 + 〈εK〉 when �F 
 � 
 η, and for �O/�F → ∞ (neutrally
buoyant), this would correspond to a TKE cascade 〈ΠK〉 ∼ 〈εK〉. However, for a stably
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stratified flow where 〈B〉∞ < 0, since buoyancy effects reduce with decreasing scale,
〈ΠK〉 ∼ −〈B〉 + 〈εK〉 implies that the TKE flux 〈ΠK〉 will actually reduce as � decreases,
until it approaches a constant value in the regime �O > � 
 η, as discussed in Riley &
Lindborg (2012) and Kumar, Chatterjee & Verma (2014). As a result of this, at scales
where buoyancy is active (i.e. � ≥ �O), the TKE flux in stratified turbulence cannot be
in the form of a cascade (which would require a constant energy flux). This is simply a
reflection of the fact that at these scales, TKE is being lost as it is passed down to smaller
scales due to conversion of TKE to TPE.

For SSST, the behaviour of 〈ΠK〉 is quite different. In this case, 〈FK〉 operates down
to the scale �C, so because �C < �O, the behaviour 〈ΠK〉 ∼ −〈B〉 + 〈εK〉 never emerges,
and the regime that emerges instead for Ri � 1 is 〈ΠK〉 ∼ −〈FK〉 + 〈εK〉 for � 
 η. In
this regime, the TKE flux is again not in the form of a cascade since 〈FK〉 depends on �.
Indeed, based on the behaviour of the co-spectrum (Katul et al. 2013), we might expect
the following behaviour to emerge at high Re in SSST:

〈ΠK〉 ∼ −γ 2〈εK〉1/3�4/3 + 〈εK〉, for L 
 � 
 η. (2.18)

Therefore, in this range 〈ΠK〉 increases as � decreases, until it asymptotes to the constant
flux cascade regime 〈ΠK〉 ∼ 〈εK〉 for �C 
 � 
 η. This is the opposite behaviour to that
discussed in Kumar et al. (2014) for FSST, where the forcing is confined to scales 
 �O
and where 〈ΠK〉 reduces as � decreases towards �O.

In the above discussion, it has been assumed that 〈εK〉 ∼ 〈εK〉 for � 
 η. While this
is true for isotropic turbulence, it will not apply in general in strongly stratified flows
with Fr � 1. This is because when Fr � 1, the flow structures are highly anisotropic, so
while the horizontal length scale may be large enough for viscous effects to be negligible,
the vertical length scale of the structure may be small enough for viscous effects to be
important (Riley & Lindborg 2012). In such a situation, even if 〈ΠK〉 ∼ 〈εK〉 emerges in
some range of scales, this would not correspond to an inertial cascade since 〈εK〉 would
depend on �.

Concerning the TPE field, for flows with ν = κ , we have for � 
 η that

〈ΠP〉 ∼ 〈B〉 + 〈εP〉. (2.19)

Hence in the regime � > �O, as � decreases, 〈ΠP〉 increases, while for �O 
 � 
 η, the
constant flux cascade regime 〈ΠP〉 ∼ 〈εP〉 emerges. Therefore, there cannot be a TPE
cascade in the strict sense at scales where density is an active scalar, i.e. � > �O, since the
scale dependency of 〈B〉 at these scales leads to a non-constant flux of TPE at these scales.
This observation seems to be in conflict with the well-known Bolgiano–Obukhov (BO)
scaling (Bolgiano 1959; Obukhov 1959) that has been proposed for stratified turbulent
flows, in which 〈ΠK〉 is supposed to decay with reducing � due to buoyancy as 〈ΠK〉 ∝ �4/5

while 〈ΠP〉 is constant, 〈ΠP〉 ∼ 〈εP〉. This behaviour, however, seems problematic. For
example, in FSST, for �F 
 � 
 η,

〈ΠK〉 ∼ −〈B〉 + 〈εK〉, (2.20)

〈ΠP〉 ∼ 〈B〉 + 〈εP〉. (2.21)

It would seem that BO scaling could emerge only if 〈εP〉 
 〈εK〉 = O(|〈B〉|), as noted in
Alam, Guha & Verma (2019), so that we could have 〈ΠK〉 ∼ −〈B〉 + 〈εK〉 in which 〈ΠK〉
reduces as � reduces while 〈ΠP〉 ∼ 〈εP〉. However, DNS of FSST show 〈εP〉 � 〈εK〉 over
a range of Fr and Reb (Lindborg 2006; de Bruyn Kops 2015) that includes the ‘moderately
stratified’ regime Re 
 1 and Fr ≈ 1, for which it has been argued that BO should apply

946 A6-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

55
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.554


X. Zhang and others

(Alam et al. 2019). In SSST, BO scaling cannot emerge because there are by definition no
scales at which the dynamics are given by a balance between inertia and buoyancy forces,
since the mean-shear production is larger than the buoyancy at all scales at which it is
active, reflected in that SSST requires �C < �O.

2.4. Mechanisms governing the TKE and TPE fluxes
Since stable stratification acts to two-dimensionalize the flow, it had been conjectured that
such flows might feature an inverse energy cascade (Gage 1979; Lilly 1983). However, it
has now been demonstrated that this does not occur, but that there is a forward/downscale
cascade of both kinetic and potential energy (Riley & de Bruyn Kops 2003; Lindborg 2005,
2006; Waite & Bartello 2006; Brethouwer et al. 2007; Aluie & Kurien 2011). The TKE
cascade in homogeneous, isotropic turbulence (HIT) is also downscale on average in three
dimensions; however, the underlying mechanisms driving the energy transfers in HIT and
SSST might be quite different. In the context of HIT, it has long been thought that the key
mechanism driving the TKE cascade is that of vortex stretching (VS) (Taylor 1922, 1938;
Tennekes & Lumley 1972; Davidson 2004; Doan et al. 2018). However, recent studies have
demonstrated quantitatively that while VS plays an important role, the largest contribution
to the TKE cascade comes from the dynamical process of the self-amplification of the
strain-rate field (Carbone & Bragg 2020; Johnson 2020, 2021). An important question
is how this understanding applies to SSST, where effects such as internal waves and
mean-shear can play a role (whether directly or indirectly) in how TKE is transferred
between scales, as well as the question of the mechanism driving the TPE transfer.

In Johnson (2020, 2021), a powerful, exact relationship was derived for ΠK that assumes
only that the filtering kernel G� used in constructing ũ is Gaussian. The result is

ΠK = Π
F,SSA
K + Π

F,VS
K + Π

SG,SSA
K + Π

SG,VS
K + Π

SG,C
K , (2.22)

Π
F,SSA
K = −�2s̃ : (s̃ · s̃), (2.23)

Π
F,VS
K = (1/4)�2s̃ : (ω̃ω̃), (2.24)

where superscript F denotes that the quantity depends on only the filtered fields, while
superscript SG denotes that the quantity depends on the sub-grid fields as well as the
filtered fields. Explicit integral formulae for the SG terms can be found in Johnson
(2020, 2021); we do not quote them here as they will not be considered in detail in
the present paper. Note that in Johnson (2020, 2021), the F contributions are referred
to as the ‘local’ contributions, while the SG contributions are referred to as ‘non-local’
contributions. While the use of this terminology is appropriate in studies of turbulence
(L’vov & Falkovich 1992; Eyink 2005; Aluie & Eyink 2009), we prefer to avoid it, because
typically in turbulence, a local energy flux is taken to imply an energy flux dominated by
the interaction between scales of similar size, which is not necessarily a property possessed
by Π

F,SSA
K and Π

F,VS
K , which in principle may involve the interaction of any scales in the

flow of size ≥ � (Aluie & Eyink 2010).
The term Π

F,SSA
K describes the contribution to the TKE flux arising from the process of

strain self-amplification (SSA) whereby the filtered strain-rate field s̃ interacts with itself
due to nonlinearity to either amplify (if s̃ : (s̃ · s̃) < 0) or else suppress (if s̃ : (s̃ · s̃) > 0)
the strain-rate magnitude ‖s̃‖. The term Π

F,VS
K describes the contribution to the TKE flux

arising from the process of VS whereby the filtered strain-rate field s̃ either amplifies
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(if s̃ : (ω̃ω̃) > 0) or else suppresses (if s̃ : (ω̃ω̃) < 0) the enstrophy ‖ω̃‖2 through the
process of vortex stretching (or compression).

The average of the contribution from the filtered field ΠF
K = Π

F,SSA
K + Π

F,VS
K in (2.22)

is similar to the expression for the TKE flux in a two-point Kármán–Howarth equation
derived using filtering and an asymptotic expansion (Carbone & Bragg 2020). Moreover,
due to the relation of Betchov (Betchov 1956; Eyink 2006), 〈ΠF,SSA

K 〉 = 3〈ΠF,VS
K 〉 for

incompressible homogeneous turbulence, so that the contribution of SSA to 〈ΠF
K 〉 is three

times larger than that from VS. The sub-grid contributions Π
SG,SSA
K and Π

SG,VS
K are similar

to Π
F,SSA
K and Π

F,VS
K except that in the SG contributions, the filtered strain rate s̃ acts to

amply the strain rate at sub-grid scales (for Π
SG,SSA
K ) and vorticity at sub-grid scales (for

Π
SG,VS
K ). DNS data in Johnson (2020, 2021) showed that 〈ΠSG,SSA

K 〉 ≈ 〈ΠSG,VS
K 〉 in the

inertial range of isotropic turbulence, so that overall, the SSA mechanism contributes more
to the average energy cascade 〈ΠK〉 than VS does, contrary to the traditional explanation
according to which VS is seen as the key mechanism driving the energy cascade (Taylor
1938; Tennekes & Lumley 1972; Davidson 2004; Doan et al. 2018).

The result in (2.22) also applies to SSST because it makes no assumption about the
flow dynamics. As such, in SSST, SSA and VS will still be the key dynamical processes
governing the TKE flux. Moreover, the relation of Betchov (1956) still applies (since it
assumes only incompressibility and homogeneity; it does not assume isotropy). Therefore,
at least with respect to the filtered field contribution 〈ΠF

K 〉, SSA still contributes three times
as much as VS to the total TKE flux. The relative contribution of 〈ΠSG,SSA

K 〉 and 〈ΠSG,VS
K 〉

to 〈ΠSG
K 〉, however, may differ from that in HIT. Moreover, the actual behaviour of the

SSA and VS processes in SSST may differ appreciably from that in isotropic turbulence,
since, for example, in SSST, internal waves can contribute to the behaviour of s̃ and ω̃,
and anisotropy in the flow can modify the alignments between s̃ and ω̃ (see Sujovolsky
& Mininni 2020) which affects the VS process. Some of these more involved questions
will be the subject of a forthcoming work. A key point to be explored here is the relative
contributions of ΠF

K and ΠSG
K to ΠK , and the correlations between these terms, which is

important to understand for LES modelling of SSST.
Following the procedure outlined in Johnson (2020, 2021), a result analogous to (2.22)

can be derived for ΠP:

ΠP = ΠF
P + Π

SG,S
P + Π

SG,V
P , (2.25)

ΠF
P = −�2s̃ : (∇φ̃ ∇φ̃), (2.26)

Π
SG,S
P = −∇φ̃ ·

∫ �2

0
τβ(∇φ̃

√
α, s̃

√
α) dα, (2.27)

Π
SG,V
P = −∇φ̃ ·

∫ �2

0
τβ(∇φ̃

√
α, r̃

√
α) dα, (2.28)

where (̃·)
√

α denotes filtering at scale
√

α (rather than scale �), and for arbitrary first-order
p and second-order q tensor fields, τβ is defined as τβ(p, q) ≡ p̃ · qβ − p̃β · q̃β , with β ≡√

�2 − α, and r ≡ (∇u − [∇u]T)/2 is the rotation-rate tensor. The rotational motion in
the flow makes no explicit contribution to the filtered flux ΠF

P because r̃ : (∇φ̃ ∇φ̃) = 0,
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although it does affect ΠF
P implicitly since rotation in the fluid affects the alignment

between s̃ and ∇φ̃.
The contribution from the filtered field ΠF

P describes the flux of TPE associated
with the amplification (if s̃ : (∇φ̃ ∇φ̃) < 0) or suppression (if s̃ : (∇φ̃ ∇φ̃) > 0) of
‖∇φ̃‖ due to the filtered strain rate s̃. The contribution ΠF

P is similar in form to
Π

F,VS
K , in that both depend upon the strain-rate field s̃ acting to amplify or suppress

another dynamical field, rather than SSA in which the strain-rate field amplifies or
suppresses itself. However, the negative sign appearing in ΠF

P but not in Π
F,VS
K

leads to a significant difference in how the strain rate contributes to these energy
fluxes. In particular, if we define λ̃i and ṽi as the ith ordered eigenvalues and
eigenvectors of s̃, then we may write the expressions as (see Carbone & Bragg 2020;
Johnson 2021; Ballouz & Ouellette 2018) 〈ΠF,VS

K 〉 = (1/4)�2 ∑3
i=1〈λ̃i ‖ω̃‖2 cos2 θω,i〉 and

〈ΠF
P 〉 = −�2 ∑3

i=1〈λ̃i ‖∇φ̃‖2 cos2 θ∇φ,i〉, where θω,i denotes the angle between ω̃ and
vi, and similarly for θ∇φ,i. In view of this, if 〈ΠF,VS

K 〉 > 0 so that VS contributes to the
average downscale TKE flux, then 〈λ̃i ‖ω̃‖2 cos2 θω,i〉 must be dominated by contributions
from the extensional eigendirections of s̃. In isotropic turbulence and for �/η → 0, ω̃

aligns preferentially with v2, but the contribution to
∑3

i=1〈λ̃i ‖ω̃‖2 cos2 θω,i〉 from λ̃1

is larger than that from λ̃2 since λ̃1 tends to be much larger than the positive values
of λ̃2 (Tsinober 2001; Buaria, Bodenschatz & Pumir 2020). This is all the more true
for �/η in the inertial range, where the contribution from λ̃1 to

∑3
i=1〈λ̃i ‖ω̃‖2 cos2 θω,i〉

is much larger than that from λ̃2 (Carbone & Bragg 2020). In an analogous way, if
〈ΠF

P 〉 = −�2 ∑3
i=1〈λ̃i‖∇φ̃‖2 cos2 θ∇φ,i〉 > 0, then

∑3
i=1〈λ̃i ‖∇φ̃‖2 cos2 θ∇φ,i〉 must be

dominated by contributions from the compressive eigendirections of s̃. Hence, while the
VS contribution to the downscale TKE flux is generated by the amplification of ω̃ due to
the extensional straining motions in the flow, the downscale TPE flux is generated by the
amplification of ∇φ̃ due to compressional straining motions in the flow. Similar behaviour
was also suggested previously based on an LES model for scalar gradients in turbulence
(Leonard 1997; Higgins, Parlange & Meneveau 2004).

The sub-grid TPE fluxes associated with the strain-rate field Π
SG,S
P and rotation-rate

field Π
SG,V
P do not have simple interpretations (unlike Π

SG,SSA
K and Π

SG,VS
K ), but are

related to the amplification of the scalar gradients at multiple scales. It is interesting,
however, that the rotation-rate (and therefore vorticity) field makes an explicit contribution
to the TPE flux through the sub-grid term Π

SG,V
P , even though it makes no explicit

contribution to the filtered flux ΠF
P .

The discussion above highlights that the physical mechanisms governing the TKE and
TPE fluxes in stratified turbulence are quite different, so that while both are positive on
average (e.g. Lindborg 2006), it may not be reasonable to model them in similar ways.
We will explore this further by considering the statistical correlation between ΠK and ΠP,
which will provide insights into the extent to which they might be modelled using similar
sub-grid closures in the context of LES.

3. Direct numerical simulations

In the next section, data from DNS will be analysed by computing various terms in
(2.6) and (2.9) to understand the processes and mechanisms controlling the behaviour
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Reb Ri Res Fr L/η �O/η �C/η LP/η

160 0.157 25.12 0.48 126.35 43.90 10.36 155.62

Table 1. Table of parameters in DNS.

of the TKE and TPE across scales in SSST. The DNS data used are from the data set
presented in Portwood et al. (2019) and Portwood, de Bruyn Kops & Caulfield (2022),
which we summarize here. In the DNS, the unfiltered versions of (2.1) and (2.2) are solved
with constant mean velocity gradient γ and mean density gradient ζ using the Fourier
pseudospectral scheme described in de Bruyn Kops (2015) and Almalkie & de Bruyn
Kops (2012), but with the mean-shear term handled using an integrating factor (Brucker
et al. 2007; Chung & Matheou 2012; Sekimoto, Dong & Jiménez 2016).

In order to generate a statistically stationary flow, a method similar to that of Taylor
et al. (2016) is adopted wherein the Richardson number of the flow is adjusted via g using
a mass–spring damper control system with a target value for the total TKE (1/2)‖u‖2.
With this method, the Richardson and Froude numbers are emergent in the flow, rather
than imposed. In the absence of stratification, the TKE in a homogeneous turbulent
shear flow grows with time (while the flow scales remain smaller than the domain size).
With stratification, mechanisms such as spontaneous shear instabilities that form in the
flow due to the layering provide for a downscale TKE flux. A statistically stationary,
homogeneous, sheared, stably stratified flow therefore exists at a special equilibrium point
where mechanisms generating a downscale TKE flux prevent the growth of TKE that
would occur in the flow in the absence of stratification. Put another way, coupling of
the fluctuating momentum to the density fields provides for additional energy dissipation
mechanisms, which allows the sheared flow to attain a steady state.

The flow is well-resolved, with isotropic grid spacing and maximum wavenumber kmax
satisfying kmaxη ≈ 2. In order to allow for the development of large anisotropic flow scales,
a large domain of size Lx/Ly = 2, Lx/Lz = 4, Lx/L = 40 was used, where Lx,Ly,Lz are
the dimensions of the domain in the x, y, z directions. In the x direction, 3072 grid points
were used. Table 1 summarizes the parameters in the DNS.

Figure 2 shows snapshots of the spanwise, streamwise and vertical velocity components
normalized by

√
2EK/3, as well as the fluctuating density field ρ′ normalized by

√〈ρ′ρ′〉,
for a two-dimensional plane in the streamwise and vertical directions. The snapshots
illustrate clearly both the strong anisotropy in the flow and the inclination of the
flow structures relative to the horizontal due to the mean velocity shear in the flow.
That preferential orientation is, however, absent apparently for the vertical component
corresponding to the direction in which the buoyancy force acts. Figure 3 shows the
same quantities but for the filtered velocity and density fields, which also reveal strong
anisotropy and preferential orientation of the flow structures. The difference between the
fields visualized in figures 2 and 3 corresponds to the contribution from the small-scale
fields.

4. Results and discussion

4.1. Mean-field behaviour
We begin by considering the behaviour of 〈eK〉, 〈eP〉 and the diagonal components of
〈τ 〉/2 (which correspond to the TKE associated with different components of u) as a
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(b)

(a)

(c)

(d )

Figure 2. Snapshots of velocity and density fields from the DNS showing a plane in the streamwise and
vertical directions. Normalized quantities are: (a) spanwise component uy/

√
2EK/3, (b) streamwise component

ux/
√

2EK/3, (c) vertical component uz/
√

2EK/3, (d) fluctuating density ρ′/
√〈ρ′ρ′〉. Values go from (red,

blue), which correspond to (−3, 3) for the normalized quantities, centred at white = 0. Velocities are
normalized using the same scale

√
2EK/3 to highlight the anisotropic partitioning of kinetic energy in the

flow.

function of filter length � in order to understand how energy is partitioned in the flow
at different scales. The results in figure 4(a) show that at all scales, 〈eK〉 > 〈eP〉, with
〈eK〉/〈eP〉 = O(10) at the large scales of the flow. The flow is therefore far from a state of
equipartition of large-scale energy among the TKE and TPE fields, unlike the behaviour
that is thought to emerge for strongly stratified flows with Fr � 1 (Billant & Chomaz
2001). Below the Corrsin scale �C = (〈εK〉/γ 3)1/2, the difference between 〈eK〉 and 〈eP〉
reduces, but remains significant even for �/η � 1. When considering the components
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(b)

(a)

(c)

(d )

Figure 3. Snapshots of the filtered (with � = 60η) velocity and density fields from the DNS showing a
plane in the streamwise and vertical directions. Normalized quantities are filtered: (a) spanwise component
ũy/

√
2EK/3, (b) streamwise component ũx/

√
2EK/3, (c) vertical component ũz/

√
2EK/3, (d) fluctuating

density ρ̃′/
√

〈ρ̃′ρ̃′〉. Values go from (red, blue), which correspond to (−3, 3) for the normalized quantities,
centred at white = 0. Velocities are normalized using the same scale

√
2EK/3 to highlight the anisotropic

partitioning of kinetic energy in the flow.

〈τ 〉/2, it is seen that although the total TKE is much larger than the TPE, the TKE
associated with particular components of the velocity field is comparable to the TPE.
In particular, 〈τzz〉/2 ≈ 0.8〈eP〉 and 〈τyy〉/2 ≈ 1.3〈eP〉 at the large scales. As such, even
though the energy contained in the TPE field is small compared to that in the total TKE
field, it is of the same order as that contained in the spanwise (y) and vertical (z) directions
of the flow, and therefore plays an important energetic role in the system. In terms of
scaling, 〈eK〉 and 〈eP〉 both show the expected behaviour 〈eK〉 ∝ �2 and 〈eP〉 ∝ �2 at
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100 101

〈eK〉/〈ET〉

〈εK〉/〈εT〉
〈εP〉/〈εT〉

〈τxx〉/[2〈ET〉]
〈τyy〉/[2〈ET〉]
〈τzz〉/[2〈ET〉]

〈eP〉/〈ET〉

102

10–3

10–2

10–1

100

〉
]

]

]

〉

ττ

yτyτττ

xxτxτττ

�/η
100 101 102

10–2

10–1

100

�/η

〉
〉

(b)(a)

Figure 4. (a) Plot of mean small-scale TKE 〈eK〉, TPE 〈eP〉, and diagonal components of 〈τ 〉/2, normalized
by total energy 〈ET 〉 ≡ lim�/η→∞[〈eK〉 + 〈eP〉], as a function of filter scale �. The thick dotted line indicates
scaling ∝ �2. (b) Plot of mean small-scale TKE 〈εK〉 and TPE 〈εP〉 dissipation rates, normalized by the total
turbulent energy dissipation rate 〈εT 〉 ≡ lim�/η→∞[〈εK〉 + 〈εP〉]. The thin vertical dotted lines from right to
left are L/η, �O/η, �C/η = 126.3, 43.9, 10.4, respectively.

�/η ≤ O(1), where viscous effects lead to smooth velocity and density fields. Outside of
this, a well-defined scaling regime does not emerge, due to the limited Reynolds number
of the flow (as well as the fact that �C/η is too small for an inertially dominated regime to
emerge).

In figure 4(b) we consider the mean small-scale turbulent kinetic 〈εK〉 and potential
〈εP〉 energy dissipation rates. For �/η → ∞, these satisfy 〈εK〉 → 〈εK〉 and 〈εP〉 → 〈εP〉,
and the results show that these are in the ratio 〈εK〉/〈εP〉 ≈ 5. Both 〈εK〉 and 〈εP〉 are
approximately independent of � only down to �/η = O(10), consistent with the usual
observation that the Kolmogorov scale underestimates the scale at which viscous forces
become important (Pope 2000).

We now turn to consider the contributions to the equations governing 〈eK〉 and 〈eP〉.
The results in figure 5 show that the flow exhibits the �/L → ∞ asymptotic behaviour
〈FK〉∞ ∼ −〈B〉∞ + 〈εK〉 for �/η � O(100), which corresponds to �/L � O(1). As �/η

is decreased below O(100), 〈ΠK〉 begins to increase and becomes positive, indicating
a downscale flux of TKE, as has been observed previously for stratified turbulent flows
(Riley & de Bruyn Kops 2003; Lindborg 2005, 2006; Waite & Bartello 2006; Brethouwer
et al. 2007). However, it does not become significant until �/η � O(10). Moreover, when
it reaches its peak value, it does not exhibit the behaviour 〈ΠK〉/〈εK〉 ∼ 1 (the maximum
value obtained is 〈ΠK〉/〈εK〉 ≈ 0.46) that would be expected for non-stratified isotropic
turbulence. This is because 〈ΠK〉 cannot grow significantly until � is small enough such
that 〈FK〉 � 〈FK〉∞, which occurs only for � ≤ O(�C). Once this regime is obtained,
since �C < �O, the TKE balance becomes 〈ΠK〉 ∼ 〈εK〉, a behaviour that can be observed
in figure 5 to be approached at small scales. However, in the present flow, this behaviour
does not give rise to an inertial TKE cascade since at the scales where 〈ΠK〉 ∼ 〈εK〉, 〈εK〉
is a decreasing function of �. To observe an inertial TKE cascade with 〈ΠK〉 ∼ 〈εK〉 would
require considering a flow possessing a range of scales �O > �C 
 � 
 η. The results in
figure 5 show that the contribution to the TKE flux coming from the filtered field dynamics,
i.e. 〈ΠF

K 〉, makes a significant contribution to 〈ΠK〉 at scales where 〈ΠK〉 plays a significant
role in the small-scale TKE budget equation, and also that the contribution involving the
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10–3

10–2

102

10–1

101

100

100

�/η

–〈B〉/〈εK〉
〈ΠK〉/〈εK〉
〈ΠK

F 〉/(εK〉
–〈εK〉/〈εK〉
〈FK〉/〈εK〉

Figure 5. Plot of terms in the average small-scale TKE budget equation (2.15). Thin dotted lines from right to
left are L/η, �O/η, �C/η = 126.3, 43.9, 10.4, respectively.

sub-grid fields 〈ΠSG
K 〉 is also significant, just as for isotropic turbulence (Johnson 2020,

2021). At sufficiently small �, 〈ΠK〉 ≈ 〈ΠF
K 〉, consistent with the exact limiting behaviour

lim�/η→0 ΠF
K → ΠK .

The mean buoyancy term 〈B〉 is negative at all scales, indicating a mean transfer of TKE
to TPE, though the magnitude of 〈B〉 is sub-leading compared to the other terms shown
in figure 5. Nevertheless, buoyancy plays a key role in the flow because its magnitude
is significant compared to the processes governing the vertical motion of the flow. As
expected, the magnitude of 〈B〉 begins to reduce significantly below the Ozmidov scale
�O.

Concerning the TPE behaviour, the results in figure 6 exhibit the �/L → ∞ asymptotic
behaviour 〈B〉∞ ∼ −〈εP〉 for �/η � O(100), which corresponds to �/L � O(1). The
behaviour of 〈ΠP〉 is very similar to that of 〈ΠK〉 in that 〈ΠP〉 does not become significant
until �/η � O(10), and does not exhibit the behaviour 〈ΠP〉/〈εP〉 ∼ 1 (the maximum value
obtained is 〈ΠP〉/〈εP〉 ≈ 0.61) that would be expected for a passive scalar advected in
isotropic turbulence. Whereas the growth of 〈ΠK〉 is constrained in SSST to scales � ≤
O(�C), as discussed previously, the growth of 〈ΠP〉 is constrained in SSST to scales � ≤
O(�O). In our DNS, these two ranges are similar, so the ranges of scales over which 〈ΠK〉
and 〈ΠP〉 are active are similar. However, in an SSST flow with Ri ≪ 1 and Re ≫ 1,
this could lead to an interesting scenario where 〈ΠP〉/〈εP〉 ∼ 1 while 〈ΠK〉/〈εK〉 ≈ 0 for
�O 
 � 
 �C. The results in figure 6 also show that like the TKE results, the contribution
to the TPE flux coming from the filtered field dynamics, i.e. 〈ΠF

P 〉, makes a significant
contribution to 〈ΠP〉 at scales where 〈ΠP〉 plays a significant role in the small-scale
TPE budget equation, but that the contribution involving the sub-grid fields 〈ΠSG

P 〉 is
also significant. At sufficiently small �, 〈ΠP〉 ≈ 〈ΠF

P 〉, consistent with the exact limiting
behaviour lim�/η→0 ΠF

P → ΠP.

4.2. Fluctuations about the mean-field
In order to understand the energetics of the flow beyond its mean-field behaviour, we will
now consider the probability density functions (PDFs) of various quantities. We begin in
figures 7(a,b) with the PDFs of the normalized small-scale energies eK/〈eK〉 and eP/〈eP〉
for different filtering lengths �/η, with the largest filter scale considered around half of
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Figure 6. Plot of terms in the average small-scale TPE budget equation (2.16). Thin dotted lines from right to
left are L/η, �O/η, �C/η = 126.3, 43.9, 10.4, respectively.

the integral length scale L. At the small scales, the PDFs are highly non-Gaussian, such
that the TKE and TPE fields exhibit frequent large fluctuations about their mean-field
behaviour. As the filter length increases, the heavy tails reduce, which is associated with
the dominance of the linear mean-shear and buoyancy forces at the large scales of the
flow, and the decreasing strength of the nonlinear term. The results also show that the
TPE field exhibits stronger fluctuations from the mean-field behaviour than the TKE field
(although the difference is not that large), with the difference most notable at intermediate
scales. This is consistent with the fact that scalar fields are known to be more intermittent
in turbulent flows because they lack the pressure gradient in their dynamics that regulates
large fluctuations in the velocity gradient field.

In figure 7(c), we show the PDFs of ΠK/〈ΠK〉 and ΠP/〈ΠP〉 for different filtering
lengths �/η. At larger scales, the PDFs have a large variance, showing that at these scales,
the fluxes of TKE and TPE can exceed their mean values significantly. The PDFs are also
close to being symmetric, so that the probabilities of upscale and downscale fluxes of TKE
are similar, and the same for TPE. As one moves to smaller scales where 〈ΠK〉 and 〈ΠP〉
both increase, the probability of large fluctuations about the mean-field behaviour reduces.
However, there is still a significant probability of observing regions of the flow where the
local values of ΠK and ΠP exceed significantly their mean values in magnitude. As � is
reduced, the mode of the PDF remains close to zero, while the mean and skewness both
become positive, with the probability of downscale fluxes significantly exceeding that of
upscale fluxes. The PDFs for TKE and TPE are similar in shape, and at scales where 〈ΠK〉
and 〈ΠP〉 play an important role in the TKE and TPE scalewise budgets, the fluctuations
of ΠK about 〈ΠK〉 are larger than those of ΠP about 〈ΠP〉.

In figure 7(d), we show the PDFs of B/〈B〉 for different filtering lengths �/η. At larger
scales where −〈B〉 is the dominant source term in the mean TPE budget, the fluctuations
about 〈B〉 are not that strong, and remarkably, the probability of observing B/〈B〉 < 0,
which would correspond to conversion of TPE to TKE, is zero. For smaller scales, the
probability of observing B/〈B〉 < 0 becomes finite, and increases with decreasing �. The
significant fluctuations of B about its mean value indicate that the effects of buoyancy
could be felt at scales considerably smaller than the mean-field description suggests.

The significant increase in the width of the PDFs observed in figures 7(c,d) for
ΠK/〈ΠK〉 and ΠP/〈ΠP〉 as �/η increases, and for B/〈B〉 as �/η decreases, is due mainly
to the fact that the standard deviations of the variables are much larger than their mean
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Figure 7. Plots of PDFs of (a) eK/〈eK〉, (b) eP/〈eP〉 and (d) B/〈B〉 for different filter lengths �. In (c), the
solid lines correspond to the PDFs of ΠK/〈ΠK〉, and the dashed lines correspond to the PDFs of ΠP/〈ΠP〉.
Different colours/symbols correspond to different �/η as indicated by the legend in (a).

values in these ranges of �/η. This is illustrated in figure 8 where we show the standard
deviations of the variables ΠK, ΠP, −B normalized by their means, as functions of scale
�/η.

In figure 9, we show the joint PDFs of ΠP/〈ΠP〉 and ΠK/〈ΠK〉 for different filtering
lengths �/η. The results reveal that there is a very weak positive correlation between
ΠP and ΠK across all scales, and the correlation is largest at �/η = 16. Indeed, the
probability of observing a downscale TKE flux with an upscale TPE flux, and vice versa,
is quite significant. This relatively weak correlation can be understood in view of the
discussion in § 2.4 regarding the mechanisms governing the TKE and TPE fluxes. It is
common to model TKE and TPE fluxes using similar closures but with a coefficient
that accounts for their differences only through the Prandtl number effects. However, the
weak correlation between ΠK and ΠP revealed in figure 9 shows that such an approach
is not suitable, and that the closures need to reflect to some extent the different physical
processes dominating these fluxes, which leads to the relatively weak correlation between
ΠK and ΠP. In the context of LES, the contributions to ΠK and ΠP from the filtered
field dynamics, namely ΠF

K ≡ Π
F,SSA
K + Π

F,VS
K and ΠF

P (see § 2.4), are closed since they
depend on only the filtered field quantities, not the sub-grid fields. It is therefore of
particular interest to understand how these terms contribute to the total TKE and TPE
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Figure 8. Plots of
√

〈ξ − 〈ξ〉〉2/〈ξ〉 for ξ = ΠK , ξ = ΠP and ξ = −B as functions of filter scale �/η to
illustrate how the standard deviation of a variable compares to its mean value at different scales.
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Figure 9. Contour plot of the logarithm of the joint PDF of ΠP/〈ΠP〉 and ΠK/〈ΠK〉 for (a) �/η = 0.25,
(b) �/η = 6, (c) �/η = 16, (d) �/η = 60. Colours correspond to the logarithm of the PDF, and the correlation
coefficient is shown at the top of each plot.

fluxes in the flow. To explore this, in figure 10 we consider the joint PDF of ΠK and ΠF
K

for different filtering lengths �/η. The filtered fluxes satisfy lim�/η→0 ΠF
K → ΠK , and the

results for �/η = 0.25 are approaching this regime, showing a very small probability of
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Figure 10. Contour plot of the logarithm of the joint PDF of ΠK/〈ΠK〉 and ΠF

K /〈ΠF
K 〉 for (a) �/η = 0.25,

(b) �/η = 6, (c) �/η = 16, (d) �/η = 60. Colours correspond to the logarithm of the PDF, and the correlation
coefficient is shown at the top of each plot.

events deviating from the state ΠK = ΠF
K . As �/η is increased, there remains a significant

positive correlation between the variables ΠK and ΠF
K , indicating that ΠF

K makes an
important contribution to the total flux ΠK , consistent with the mean-field results in
figure 5. However, there is a significant probability of events where either ΠF

K and ΠK
have significantly different magnitudes, or else even have opposite signs. In terms of the
physical mechanisms discussed in § 2.4, this means that at a given scale �, if the strain and
vorticity fields are being amplified at that scale by nonlinearity such that ΠF

K > 0, this may
nevertheless not lead to a downscale flux of TKE associated with ΠK > 0 since at scales
smaller than �, the strain and vorticity fields may be experiencing suppression (rather than
amplification) due to nonlinearity yielding ΠSG

K < 0, and if this is strong enough, then
ΠK = ΠF

K + ΠSG
K < 0. The spread of the PDF about the line ΠK = ΠF

K also implies that
the relative contribution of ΠF

K to ΠK is similar both during events where ΠK ∼ 〈ΠK〉
and in large fluctuations where |ΠK | � 〈ΠK〉 or |ΠK | 
 〈ΠK〉. For �/η = 60, the results
show that ΠK and ΠF

K are almost uncorrelated, and at this scale, 〈ΠK〉/〈ΠF
K 〉 ≈ 43, so that

the filtered field makes a small, uncorrelated contribution to ΠK , which is itself very small
at �/η = 60. The results for the joint PDF of ΠP and ΠF

P are shown in figure 11. These are
very similar to the TKE flux results, with ΠF

P ∼ ΠP observed at the smallest scales, and
a significant correlation between the two at intermediate scales. The correlation between
ΠF

P and ΠP is, however, slightly stronger than that between ΠK and ΠF
K .

In figure 12, we consider the joint PDF of B and ΠK for different filter lengths �. The
results show that as � is decreased, the PDF reorients from being extended along the ΠK
axis, to being extended along the B axis. Furthermore, the peak of the PDF (indicating the
mode) is along ΠK/〈ΠK〉 ≈ 0 for small scales and B/〈B〉 > 0 for larger scales, which
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Figure 11. Contour plot of the logarithm of the joint PDF of ΠP/〈ΠP〉 and ΠF
P /〈ΠF

P 〉 for (a) �/η = 0.25,
(b) �/η = 6, (c) �/η = 16, (d) �/η = 60. Colours correspond to the logarithm of the PDF, and the correlation
coefficient is shown at the top of each plot.

is associated with the different levels of skewness of these random variables at these
scales. This corresponds to the transition from larger scales where buoyancy plays a more
dominant role in the TKE energetics, to smaller scales where the nonlinear energy flux
plays a dominant role. As also observed in figure 7(d), at larger scales the probability
of observing B/〈B〉 < 0 is very low, suggesting that convective motion is very rare
at these scales. As � decreases, however, the probability of observing B/〈B〉 < 0
increases significantly. At �/η = 16, −〈B〉 ≈ 〈ΠK〉, and the results in figure 12 show that
at this scale, convective motion B/〈B〉 < 0 can occur, but the PDF is strongly skewed
towards stably stratified regions that have B/〈B〉 > 0. Moreover, for this scale the PDF is
stretched significantly along the ΠK axis, showing that fluctuations of ΠK are considerably
stronger than those of B about their respective mean values, which are approximately equal
in magnitude at this scale. The results for the joint PDF of B and ΠP are similar to those
for the joint PDF of B and ΠK , therefore for brevity we do not show them.

Finally, given the importance of the velocity gradient dynamics for the TKE flux, in
figure 13 we plot the results for the joint PDF of the filtered velocity gradient invariants
Q ≡ −∇ũ : ∇ũ/2 and R ≡ −(∇ũ · ∇ũ) : ∇ũ/3 at different filter scales �/η. In Danish
& Meneveau (2018), this joint PDF was considered for isotropic turbulence, and they
found that the classic sheared-drop shape of the isoprobability lines is preserved as �/η

is varied over the range considered, while other statistical characterizations of the velocity
gradients also reveal behaviour that is qualitatively similar as the filter scale is increased
(Tom, Carbone & Bragg 2020). For �/η = 0.25, the shape of the PDF in figure 13 is
identical to that observed in isotropic turbulence (Meneveau 2011), with the contours
extending down the right Viellefosse tail, and a strong preference for quadrants Q > 0,
R < 0 and Q < 0, R > 0. However, the results in figure 13 show that at sufficiently

946 A6-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

55
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.554


Analysis of scale-dependent kinetic and potential energy

–3 –1 1 3 5–5

–3

–1

1

3

5

–3 –1 1 3 5–5

–3

–1

1

3

5

–14

–12

–10

–8

–6

–4

0

–2

–4

–6

–8

–10

Corr = 0.023105

–3 –1 1

ΠK/〈ΠK〉 ΠK/〈ΠK〉
3 5–5

–3

–1

1

3

5 0

–5

–15

–10

Corr = 0.13456 Corr = 0.38996

–3 –1 1 3 5–5

–3

–1

1

3

5
0

–2

–4

–6

–8

–10

Corr = 0.043009
B/

〈B
〉

B/
〈B

〉
(a) (b)

(c) (d )

Figure 12. Contour plot of the logarithm of the joint PDF of B/〈B〉 and ΠK/〈ΠK〉 for (a) �/η = 0.25,
(b) �/η = 6, (c) �/η = 16, (d) �/η = 60. Colours correspond to the logarithm of the PDF, and the correlation
coefficient is shown at the top of each plot.

large scales, the shape of the PDF changes from the sheared-drop shape and becomes
more symmetric. Such behaviour has also been observed for sufficiently large scales in
homogeneous isotropic turbulence (Chertkov, Pumir & Shraiman 1999; Naso & Pumir
2005) and rotating turbulence (Naso & Godeferd 2012), as well as compressible turbulence
(Wang et al. 2020). Consequently, the change in the shape of the PDF contours shown in
figure 13 as �/η is increased could be caused by the fact that the largest filter lengths
considered are approaching large/integral scales where nonlinearity weakens, or could
perhaps be due to the dominance of linear forces (e.g. buoyancy and mean-shear) at these
scales.

5. Conclusions

In this paper, we have analysed the scale-dependent TKE and TPE in sheared, stably
stratified turbulence (SSST) using a filtering approach, where the flow has constant mean
velocity gradient and mean density gradient. Equations for the scale-dependent TKE and
TPE are to explore the competing effects in the flow as well as the physical mechanisms
governing the TKE and TPE fluxes between scales. Various quantities in these equations
were then evaluated using data from DNS of SSST, with attention given to both the
mean-field behaviour of the flow, as well as fluctuations about this mean-field state.

In terms of the mean-field properties, while the mean TKE 〈eK〉 is larger than the
mean TPE 〈eP〉 by an order of magnitude at the large scales, the difference between
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Figure 13. Contour plot of the logarithm of the joint PDF of Q and R for (a) �/η = 0.25, (b) �/η = 6,
(c) �/η = 16, (d) �/η = 60. Colours correspond to the logarithm of the PDF.

them reduces with reducing scale �. Nevertheless, the TPE plays an important energetic
role in the system, and is larger than the vertical component of TKE at all scales in the
flow. The mean small-scale TKE dissipation rate 〈εK〉 is also significantly larger than
the potential dissipation rate 〈εP〉. The mean TKE and TPE fluxes between scales, 〈ΠK〉
and 〈ΠP〉, respectively, do not reveal a cascade regime in the flow due to the impact of
the mean-shear down to relatively small scales in the flow. The contributions to these
fluxes from the filtered fields are also shown to be significant at scales where the energy
fluxes play significant roles in the energy budget equations; however, the contributions
from the sub-grid fields are also important, just as has been observed for isotropic
turbulence.

To understand the flow energetics beyond the mean-fields, PDFs of various quantities
(normalized by their mean values) have been studied and discussed. The PDFs of
small-scale TKE and TPE are highly non-Gaussian at the smallest scales, indicating large
fluctuations of the TKE and TPE about their mean-field values. The TPE shows stronger
fluctuations from its mean-field value than the TKE, which is consistent with the known
result that scalar fields are more intermittent than velocity fields in turbulence, since
scalar fields lack a pressure gradient term in their equation that can act to suppress large
fluctuations. As the filter scale is increased, these PDFs approach a Gaussian distribution
at scales where the linear forces in the flow (mean-shear and buoyancy) dominate the
dynamics. At larger scales in the flow, buoyancy seems to convert TKE to TPE always, with
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the PDF of the buoyancy term B showing almost zero probability of locally convective
events where B > 0. The probability of locally convective regions increases as the
filter scale is decreased, however, the probability remains small at scales downward of
the Ozmidov scale. The TKE and TPE fluxes between scales are on average positive
(downscale flux), with their instantaneous values correlated positively, and increasingly so
with decreasing filter scale. However, the correlation is quite weak, and this is because the
physical mechanisms governing the TKE and TPE fluxes are quite different, as discussed
in our theoretical analysis in § 2.4. Indeed, the joint PDFs of the TKE and TPE fluxes
reveal a significant probability of events where the TKE and TPE fluxes may have very
different magnitudes, and even opposite signs. Finally, the PDF of the principal invariants
of the filtered velocity gradients (the so-called Q, R invariants; Tsinober 2001) reveals
the classical sheared-drop shape for the smallest filter scales. However, the PDF becomes
increasingly symmetric about R = 0 as the filter scale increases. This change in shape may
be caused by the fact that the largest filter lengths considered are approaching large/integral
scales where nonlinearity weakens, or perhaps also due to the dominance of the linear
forces associated with buoyancy and mean-shear at these scales.

This contrasts with the behaviour observed in isotropic turbulence (Danish & Meneveau
2018) and is due to the increasingly dominant effects of the linear mean-shear and
buoyancy effects over the nonlinear inertial effects at these scales. This symmetry that
emerges means that vortex stretching and compression become equally probable, as well
as strain self-amplification and self-suppression.

One important direction for future work is to compute and explore the sub-grid scale
contributions to the TKE and TPE interscale fluxes. Exploring these terms, probing in
more detail the physical processes that govern them, and analysing their relation to the
filtered scale flow would provide the insights required for building LES models of SSST.
Work on this area will be the subject of a forthcoming article. It would also be desirable to
consider a DNS of SSST flow with sufficiently large Reb to observe a constant flux energy
cascade at scales smaller than the Ozmidov and Corrsin scales, something that could not
be observed in our DNS. This would enable a better assessment of the extent to which the
flow at these scales is similar to the idealized case of isotropic turbulence, and the extent
to which large deviations about the mean-field behaviour allow the effects of stratification
to be felt even in this range. A flow with a large scale separation between the integral
length and the Ozmidov scale would also allow for a better understanding of the way TKE
and TPE are exchanged in this regime, and the mechanisms governing the TKE and TPE
interscale fluxes in this regime, where buoyancy plays a key role. Exploring such flows is,
however, very challenging computationally, and it may be some time before a flow in such
a regime can be simulated with DNS.
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