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Abstract
A fleet of aircraft can be seen as a set of degrading systems that undergo variable loads as they fly missions and
require maintenance throughout their lifetime. Optimal fleet management aims to maximise fleet availability while
minimising overall maintenance costs. To achieve this goal, individual aircraft, with variable age and degradation
paths, need to operate cooperatively to maintain high fleet availability while avoiding mechanical failure by schedul-
ing preventive maintenance actions. In recent years, reinforcement learning (RL) has emerged as an effective method
to optimise complex sequential decision-making problems. In this paper, an RL framework to optimise the operation
and maintenance of a fleet of aircraft is developed. Three cases studies, with varying number of aircraft in the fleet,
are used to demonstrate the ability of the RL policies to outperform traditional operation/maintenance strategies. As
more aircraft are added to the fleet, the combinatorial explosion of the number of possible actions is identified as a
main computational limitation. We conclude that the RL policy has potential to support fleet management operators
and call for greater research on the application of multi-agent RL for fleet availability optimisation.

Nomenclature
at,i action assigned to tail number i at timestep t
⇀

At action vector
b body width in metres
C Paris coefficient
dt,i damage level at time t for tail number i
f0 cyclic stress frequency in Hz
m Paris exponent
Mi mission type
MADDPG multi-agent deep deterministic policy gradient
MDP Markov decision process
MT (preventative) maintenance
O&M operations and maintenance
Psa state transition probabilities
Q(

⇀

St,
⇀

At) value of action
⇀

At in state
⇀

St

R(
⇀

St,
⇀

At) reward obtained for taking action
⇀

At in state
⇀

St

RL reinforcement learning
SB standby
⇀

St state vector
x(t) crack length in metres at timestep t
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Greek symbols
α learning rate
γ discount factor
�σ stress range in MPa
�t interval between of time between t and t+ 1
�x change in crack length
ε exploration rate
εmax, εmin maximum and minimum exploration rate
εdecay decay of exploration rate
μi manoeuvre type

1.0 Introduction
A fleet of aircraft can be seen as a set of degrading systems that undergo variable loads as they fly
missions and require maintenance throughout their lifetime. Aircraft fleet management aims to maximise
fleet availability while minimising maintenance costs. To achieve this goal, individual aircraft, with
variable age and degradation paths, need to operate cooperatively to maintain high fleet availability
while avoiding mechanical failure by scheduling preventive maintenance actions. Therefore, decision
planning for an efficient fleet management is crucial to ensure fleet availability, reliability and reduce
maintenance costs [1, 2]. Yet, aircraft fleet management is a very complex decision-making problem with
a large number of degrees of freedom, as operators need to decide for each tail number whether to fly a
mission, stand-by or go under maintenance. Finding an optimal solution to this problem is non-trivial.

In recent years, reinforcement learning (RL) has emerged as an effective optimisation method for
complex decision-making problems. RL is a machine learning technique suitable to solve sequential
decision-making problems and it has had success in many applications including autonomous driving
[3], inventory management [4] and game artificial intelligence [5]. It distinguishes itself from super-
vised learning in many ways. While in supervised learning we provide examples to our models from
which they can learn how to match the inputs to exact outputs (labels or numeric values), when dealing
with a sequential decision-making problem it becomes very challenging to provide explicit supervision.
Instead, in RL we provide the algorithms with a reward function and let the agent explore the different
state-action pairs and learn from experience, in a process that is referred to as ‘self-play’ [6]. During
self-play the agent randomly explores the actions in a simulated environment, formulated as a Markov
decision process (MDP), and iteratively learns the sequence of actions that lead to maximum rewards.

Given the importance of maintenance management in many industrial applications, a growing body of
literature has focused on developing optimisation frameworks, RL and non-RL (e.g., Monte Carlo simu-
lations, linear programming etc.), for the operation and maintenance (O&M) of mechanical components.
While a significant body of work has focused on simulation/optimisation frameworks to solve the mainte-
nance task scheduling problem of a fleet of aircraft [7–10], in this work we will mainly focus on previous
RL applications. Several recent studies [11, 12] proposed novel RL frameworks to optimise the O&M of
a single mechanical component (e.g., pump/turbine/turbofan engine) and demonstrated that it can find
optimal policies when compared to traditional maintenance strategies. However, when considering an
entire fleet of aircraft, there is not a single component to optimise but multiple components must be oper-
ated simultaneously and cooperatively to reach a common goal, maximising the overall availability of
the fleet and minimising the cost of maintaining the fleet. This multi-component optimisation drastically
increases the difficulty (i.e., degrees of freedom) of the decision-making problem. For instance, [13] used
RL to optimise the maintenance scheduling of a system with three individually repairable components,
but extending this framework to more components rapidly becomes computationally intractable. To
overcome this combinatorial explosion, where the computational space exponentially increases with the
number of components, different approaches have been employed in the literature. For a manufacturing
process with multiple repairable machines, Ref. [14] suggested to break down the system by assigning
one RL agent per machine. Another way of restricting the computational space is observed in Ref. [15],
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the only other study to our knowledge that attempts to use RL to optimise the maintenance scheduling of
a fleet of aircraft. In Ref. [15], however, only the most damaged tail number in the fleet is considered by
the RL agent at each timestep, instead of making decisions for each aircraft in the fleet, which drastically
reduces the complexity of the problem. Although both methods manage to considerably decrease the
computational space of the problem, they come at a price of losing information related to the state of
the fleet and potentially not capturing the optimal collaborative behaviour of each component in order
to achieve overall fleet availability.

This article aims to develop a comprehensive RL framework for aircraft fleet availability optimisation
that considers both mission assignment and maintenance scheduling. A degradation model is combined
with flight missions and maintenance actions to design an environment (i.e. MDP) that simulates the
operation of a fleet of aircraft, with variable age and degradation paths, over their lifetime. The goal of the
RL algorithm is to find a sequence of actions (policy) that maximises the number of missions completed
by the fleet while minimising the maintenance costs, and doing so, outperforms a set of baseline policies
derived from traditional O&M strategies.

The manuscript is organised as follows. Section 2.0 presents the simulated environment that describes
the logic of the fleet O&M, including a degradation model based on the Virkler fatigue crack propaga-
tion experimental dataset [16] (Section 2.1), a set of flight manoeuvres and missions (Section 2.2) and
preventive and corrective maintenance actions (Section 2.3). Section 3.0 describes the RL framework,
which uses an MDP and a Q-learning algorithm. Section 4.0 presents three case studies with fleets that
have an increasing number of aircraft (2, 3 and 4, respectively) and compares the resulting RL policies
against baseline strategies. Section 5.0 discusses the results and potential applications of this work and
highlights the limitations and areas of improvement for future work.

2.0 Simulated enviroment
This section describes the mathematical formulation that was designed to simulate the O&M of a fleet
of aircraft, including mission assignment and maintenance scheduling.

2.1 Degradation model
The maintenance of aircraft can be driven by multiple factors, such as corrosion damage, fatigue crack
damage and aircraft usage [17]. Assuming the driving factor for aircraft maintenance is the cracking
damage at the critical locations of the airframe structure (e.g., the wing root), a model describing the
propagate of a crack was used to simulate aircraft damage. The degradation was designed to follow a
Paris’ law [18] and replicate the degradation paths observed in the Virkler experiment [16]. The crack
length propagation is described by the following equation:

x(t+ �t)=C f0 �t

(
�σ

√
π x(t)

cos π x(t)
2b

)m

(1)

where x(t+ �t) is the new crack length after a period �t, f0 the cyclic stress frequency (in Hz), C the
Paris coefficient, m the Paris exponent, �σ the stress range (in MPa), b the body width (in metres) and
x(t) the initial crack length (in metres).

Each tail number in the fleet is assigned a different C coefficient drawn from a normal distribution
(with mean 8.586e–11 and standard deviation 0.619e–11). The Paris exponent m is set to 2.9. These
parameters of the degradation model were calibrated to reproduce the degradation paths observed during
the Virkler experiment [16], based on 68 replicate crack propagation tests of aluminium alloy panels
under constant load and environmental conditions run to failure during a large number of cycles (N). In
the Virkler experiment, the initial crack length was 9 mm and the body width (b) 76.2 mm, the tests were
stopped when the crack length reached 50 mm. Figure 1 shows the similarity between the experimental
degradation paths in the Virkler dataset (Fig. 1a) and degradation model described above (Fig. 1b).
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Figure 1. (a) Degradation paths for the 68 replicates in the Virkler fatigue crack propagation exper-
iment [16]. (b) Degradation model as described in Equation 1) using a stress range �σ = 48.26
MPa and Paris exponent m = 2.9. The degradation paths are plotted for 68 Paris coefficients (C in
Equation 1) drawn from a normal distribution with mean 8.586e–11 and standard deviation 0.619e–11.
N is the number of cycles with constant load over which the crack propagates.

The crack length was discretised into 10 equally spaced bins between the initial crack length (9 mm)
and half the body width of the aluminium alloy panels (38.1 mm), hereafter referred to as ‘damage
levels’ and shown in Fig. 1b. The failure threshold was set to 50% of the body width to ensure an ample
margin of safety. When the crack length surpasses the failure threshold, the aircraft must undergo repairs
before it can resume operation.

2.2 Aircraft manoeuvres and missions
While the Paris coefficients (C values) are drawn randomly for each aircraft in the fleet and then used
throughout their lifetime, the stress range ( �σ ) varies depending on the manoeuvre that the aircraft
performs. Five manoeuvres that an aircraft can perform were designed based on expert input and are
described in Table 1, note that these numbers are indicative and only useful for the purpose of this
synthetic environment (not to be referenced as ground truth). Subsequently, mission types were designed
by combining each manoeuvre over a varying length of time. While a wide range of mission types may
be completed by the aircraft in real-word scenarios, here it was simplified by designing two mission
types with varying degree of difficulty. The manoeuvre composition of the two missions, M1 and M2, is
reported in Table 2. Mission 1 consists of 2,600 seconds of level fly (μ1), 60 seconds for take-off and
landing (μ2), 30 seconds of barrel rotate (μ3) and 10 seconds of vertical up/down (μ5). On the other
hand, Mission 2 consists of 4,500 seconds of level fly (μ1), 60 seconds for take-off and landing (μ2), 60
seconds of pull up/down (μ4) and 80 seconds of vertical up/down (μ5). A cyclic stress frequency f0 of
5 Hz is used to propagate the crack length for the duration of each manoeuvre. We need to emphasise
that this synthetic environment for aircraft operation is not necessarily representational in the real world
but the principle of applying the RL to an environment of aircraft operation is the same.

Equation (1) can now be reformulated to calculate the crack propagation resulting from a tail number
flying one of the two missions:

�xi

(
t, Mj

)=Ci f0

∑k=5

k=1
�t(μk)

[
�σ(μk)

√
π xi(t)

cos π xi(t)
2b

]m

(2)
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Table 1. Manoeuvres and missions

Manoeuvre Name Short name Stress range �σ

Level fly μ1 30 MPa
Take-off/landing μ2 50 MPa
Barrel rotate μ3 70 MPa
Pull up/pull down μ4 90 MPa
Vertical up/down μ5 110 MPa

Table 2. Mission types

Mission design
Name (manoeuvre stress range �σ × manoeuvre duration �t)
M1 �σ(μ1) × 2600s +�σ(μ2) × 60s +�σ(μ3) × 30s +�σ(μ4) × 00s +�σ(μ5) × 10s
M2 �σ(μ1) × 4500s +�σ(μ2) × 60s +�σ(μ3) × 00s +�σ(μ4) × 60s +�σ(μ5) × 80s

where �xi

(
t, Mj

)
is the crack length propagation for tail number i at timestep t after completing mis-

sion Mj. �t(μk) and �σ (μk) are taken from Table 2 based on the selected mission (M1 or M2). A set
of missions is prescribed daily to the fleet, and each tail number can either fly one of the prescribed
missions.

2.3 Preventive and corrective maintenance
As the tail numbers fly the prescribed missions, they accumulate damage, and to continue operating,
maintenance is required. Each tail number can be sent to preventive maintenance at any time during
its lifetime. When the tail number is under maintenance it becomes unavailable for a period of time
and its damage level is restored to the initial crack length (9 mm). However, if the tail number is not
sent to preventive maintenance in time and its damage level goes above the failure threshold (38.1 mm,
as the specimen width b= 76.2 mm in the Virkler experiment), the tail number automatically goes to
corrective maintenance, which has a much higher cost than preventive maintenance. Arbitrarily, the
costs of preventive and corrective maintenance are set to 10 and 100 respectively, and in both cases the
tail number becomes unavailable for a week, after which it can resume operation.

3.0 Reinforcement learning framework
3.1 Markov decision processes
An MDP is the formalism to describe sequential decision making and is adopted in RL problems. As
defined in Ref. [6], an MDP is a tuple with five variables (

⇀

S ,
⇀

A , Psa , R, γ ) where:

•
⇀

S is a set of states that the agent observes (e.g., damage level of each aircraft in the fleet).

•
⇀

A is a set of actions (e.g., fly a mission, stand-by or apply preventive maintenance).
• Psa are the state transition probabilities, which give the probability of transitioning to each other

state when taking action a in state s.
• R is the reward function which maps each state-action pair to a reward value.
• γ is the discount factor, a value between 0 and 1 used to discount future rewards.

In the dynamics of an MDP, we start in a certain state s0, choose action a0, randomly transition to
the next state s1 and receive reward R(s0, a0), then choose another action a1 and transition to state s2 and
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receive reward R(s1, a1), and so on and so forth:

s0

a0

−−−−− →
R(s0, a0)

s1

a1

−−−−− → s2

R(s1, a1)

a2

−−−−− →
R(s2, a2)

. . . (3)

The goal of RL algorithms is to choose the sequence of actions that maximise the expected value of
the total payoff, which is the immediate reward plus the sum of future discounted rewards:

E
[
R(s0, a0)+ γ R(s1, a1)+ γ 2R(s2, a2)+ . . .

]
(4)

The function that maps the states to the actions π :
⇀

S→ ⇀

A is referred to as a policy. While there are
no universal methods for searching the optimal policy, popular approaches include dynamic program-
ming (value iteration and policy iteration), Monte-Carlo methods and time-difference methods (e.g.,
Q-learning) [6]. While some methods like dynamic programming require a model of the environment
(i.e. known state transition probabilities Psa), other methods are model-free and do not require prior
knowledge of the state transition probabilities. In this case, the state transition probabilities Psa are not
known so it was decided to use Q-learning [19], a model-free RL algorithm.

3.2 States and actions
The State vector (

⇀

St) contains the observed variables, which track the damage level (discrete values) of
each tail number in the fleet at each point in time. The Action vector (

⇀

St) contains the decision chosen
by the RL agent at each timestep, which includes one action for each tail number in the fleet. For a fleet
of n aircraft, they are defined as follows:

⇀

St =
[
dt,1 dt,2 . . . dt,n

]
,

⇀

St ∈Nn (5)

where dt,i ∈ {1, . . . , 9} is the damage level of tail number i at timestep t and n is the number of aircraft
in the fleet.

⇀

At =
[
at,1 at,2 . . . at,n

]
,

⇀

At ∈Nn (6)

where at,i is the action assigned to tail number i at timestep t. The action at,i can take one of four possible
values depending on whether the tail number is assigned one of the two missions, put in standby or sent
to preventive maintenance:

at,i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 fly M1

1 fly M2

2 standby (SB)

3 preventive maint. (MT)

(7)

Hence, at each timestep the RL agent must choose one out of 4n possible decisions.
The following logic is used when an action is chosen in each state:

i. if a tail number is assigned a mission (M1 or M2), its damage level is updated using Equation (2)

a. if the new damage level after flying a mission is above the failure threshold, the tail number
is automatically sent to corrective maintenance: the tail number is unavailable for one week
and its damage level is restored to the initial damage (9 mm crack length).

ii. if a tail number is under preventive maintenance, the tail number becomes unavailable to fly
missions for one week after which its damage level is restored to the initial damage.

iii. if standby is chosen, the damage level remains unchanged.

https://doi.org/10.1017/aer.2023.104 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.104


2210 Vos et al.

3.3 Rewards
The Reward function R(

⇀

St,
⇀

At) is designed to help the agent achieve its goal by incentivising certain
actions. It is defined as follows:

R(
⇀

St,
⇀

At )=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

+1 for completing M1

+2 for completing M2

−1 for standby

−10 preventive maint.

−100 corrective maint.

(8)

This reward scheme encourages the agent to fly missions and send aircraft to preventive mainte-
nance before they reach the failure threshold, as corrective maintenance costs 10 times more than acting
preventively.

3.4 Q-learning
Q-learning is a model-free algorithm that has been widely used to find the optimal policy in finite discrete
MDPs [20]. The ‘Q’ in Q-learning stands for ‘quality’, which represents the value of taking a particular
action in a particular state. Specifically, the Q-value of a state-action pair, Q(

−→
St ,
−→
At ), is the expected total

reward that an agent will receive starting from that state, taking that action and following the optimal
policy thereafter. Q-learning works by iteratively updating the Q-values based on the rewards received by
the agent from the environment. Thereby it belongs to the category of temporal difference (TD) methods
in which the difference in prediction over successive timesteps is used to drive the learning process. The
agent explores the state-action pairs in the environment and calculates the expected rewards for an action
taken in a given state using Bellman’s update [6]:

Q(
−→
St ,
−→
At )← Q(

−→
St ,
−→
At )+ α[Rt+1 + γ max

a
Q(
−→
St+1, a)−Q(

−→
St ,
−→
At )] (9)

where Q(
−→
St ,
−→
At ) represents the expected sum of future rewards for taking action

−→
At in state

−→
St (known

as the Q-value or quality of the state action pair), α is the learning rate and γ the discount fac-
tor. The Q-values for each state-action pair encountered are stored in a look-up table and updated
throughout the search. The search is conducted by running ‘episodes’, which consist of operating the
fleet for N decisions (e.g. five-year period) and iteratively updating the Q-values after each decision
using Equation 9. To ensure that the state and action spaces are thoroughly explored, although not
exhaustively, an epsilon-greedy search strategy is implemented, in which the agent initially explores
the environment (by choosing random actions) and as it gains experience in the environment it grad-
ually reduces the exploration rate and begins to exploit its knowledge (by choosing the action with
highest Q-value). The exploration rate ε is set to decay during the search according to the following
equation:

ε(k)= εmin + (εmax − εmin) e(−εdecayk) (10)

where k is the number of episodes in the search, εmin and εmax respectively the minimum and maximum
rates of exploration and εdecay the rate of decay. The learning rate, α in Equation 9, dictates by how much
existing Q-values are updated with new observations. This parameter is also set to decay during the
search according to Equation 10, to gradually decrease the magnitude of new updates and help with the
convergence of the policy.

A pseudocode describing how the policy search was implemented is included in Table 3.
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Table 3. Algorithm pseudocode for RL policy optimisation.

Hyper-parameters: epsilon, alpha, number of episodes and gamma
Ini�alise the Q-table with random values
Loop for each episode:

Start in a random ini�al state S(t)
Loop for each �mestep in episode:

Draw a random number r
if r < epsilon: choose a random ac�on A(t)
else: choose A(t) = argmax Q(S(t))
Take ac�on A(t) in state S(t) and observe S(t+1) and R(S(t),A(t))
Apply Bellman’s update: 

Q(S(t),A(t)) += alpha*(R + gamma*max(Q(S(t+1))-Q(S(t))

Figure 2. Illustration of the fleet environment for the three different case studies. Subplots (a), (b) and
(c) show the degradation paths based on constant cycles for each aircraft in the fleet and (d), (e), and
(f) display the missions prescribed to the fleet each given day.

4.0 Case studies
TheRL framework for aircraft fleet management described above was tested on three case studies by
applying it to optimise the operation of a fleet of respectively two, three and four aircrafts. Figure 2
depicts the fleet environment that was created for each case. At every timestep (�t= 1 day), a set of
missions that matches the number of aircraft was prescribed to the fleet. The composition of the pre-
scribed mission is kept constant throughout the lifetime of the fleet and is reported in Table 4. The
epsilon and alpha decay curves and rewards obtained during the policy search as displayed in Fig. 3 for
each case.

To evaluate the performance of the resulting RL policies, two baseline strategies were designed based
on established fleet management principles:
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Table 4. Environment and search parameters for the three case studies

Fleet Prescribed Size of Q-table Number of Length of
size missions (states × actions) episodes episode (εmax, εmin, εdecay)
Two aircraft 2 (1 M1 & 1 M2) 81 × 16 2,000 5 years (1, 0.01, 5e-3)
Three aircraft 3 (1 M1 & 2 M2) 729 × 64 100,000 1 year (1, 0.01, 1e-4)
Four aircraft 4 (2 M1 & 2 M2) 6,561 × 256 1,000,000 1 year (1, 0.01, 1e-5)

Figure 3. RL policy search for the three case studies and corresponding search parameters (exploration
and learning rates). Subplots (a), (b) and (c) show the reward per episode achieve by the Q-table during
the policy search and (d), (e), and (f) depict the decay curves for the exploration and learning rates.
Note that the exploration rate has a minimum of 1% while the learning rate reaches a minimum of 10%.

a) On-condition maintenance: in this policy preventive maintenance is assigned whenever an
aircraft’s damage level goes above a fixed threshold. This threshold was optimised by trial-and-
error, and it was found to provide the highest reward when set at a damage level of 8/10 (10 being
the failure state). Outside of the maintenance zone, this policy assigns the prescribed missions
randomly to the available aircraft.

b) Force-life management: in this policy, mission assignments are optimised to ensure smarter dis-
tribution of tasks. The missions are assigned in a manner that maintains the cumulated damage
(i.e., crack length growth) equal across the fleet. This approach helps to maintain equal wear
and tear on each aircraft, leading to improved efficiency and longevity of the fleet. Preventive
maintenance is applied according to the on-condition maintenance strategy, when damage level
goes above a damage level of 8.

The RL policy was evaluated against the baseline strategies by running 10,000 episodes of five-
year with each policy, with each episode starting with random initial conditions. Figure 4 shows the
distribution of the rewards obtained by each policy, as well as the distribution of the runs that are located
below the fifth percentile, which correspond to the worst-case scenarios out of the 10,000 cases. The
results are also reported in Table 5.

For the two-aircraft environment, the average reward obtained with the RL policy is 10% higher than
the on-condition policy (fixed maintenance and random mission assignment), and about 3% higher than

https://doi.org/10.1017/aer.2023.104 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.104


The Aeronautical Journal 2213

Table 5. Evaluation of the performance of the RL policy by comparing the average reward and fifth
percentile from 10,000 episodes with random initial conditions; the highest reward displayed in bold

Average reward 5th percentile

Fleet On- Force- Performance∗ On- Force- Performance∗
size condition life RL (%) condition life RL (%)
Two aircraft 1,783 1906 1971 10.5 1,758 1875 1951 10.7
Three aircraft 2,668 2,851 2,995 12.3 2,639 2,819 2,943 11.5
Four aircraft 3,406 3,499 3,546 4.1 3,270 3,470 3,348 2.4
∗% difference compared to on-condition maintenance.

Figure 4. Evaluation of the reinforcement learning policy against baseline strategies (on-condition
maintenance and force-life management). Subplots (a), (b) and (c) show the distribution of the rewards
over 10,000 episodes the two-, three- and four-aircraft environments respectively, with subplots (d), (e)
and (f) indicating the rewards below the fifth percentile of the distributions, which indicate the worst-case
scenarios. The percentage difference between RL policy and on-condition maintenance is indicated by
an arrow.

force-life management (Fig. 4a), which demonstrates that the RL framework was capable of successfully
optimising this problem. For the three-aircraft problem, the RL policy outperformed both on-condition
maintenance and force-life management strategies by an even higher margin, showing improvements of
12% and 5% (Fig. 4b), respectively. Yet, this performance could not be recreated for the four-aircraft
fleet, where the RL policy slightly outperforms the baseline policies by 4.1% (Fig. 4c). While the average
reward from the distribution provides an indication of the performance of each policy, from a decision-
making perspective, considering the worst-case scenario rather than the average case is more meaningful.
Thus, Fig. 4 also shows the location of the fifth percentile of each distribution and the part that is located
below it, which indicates the worst-case scenarios out of the 10,000 simulations. For the 2two- and
three-aircraft fleets, the distributions have a small spread, therefore the performance evaluated with the
fifth percentile matches with the average reward. However, in the four-aircraft fleet, the on-condition
maintenance strategy and RL policy have a longer tail, which indicates that there are certain initial
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Figure 5. Policy map for the two-aircraft fleet showing the preferred action in each possible state. The
bottom triangle shows the action assigned to tail #1 while the top one is for tail #2.

conditions for which they do not perform well. The reward distribution of the RL policy is skewed
and thus the fifth percentile only outperforms on-condition maintenance by 2.4% and underperforms
force-life management by 3.5%.

5.0 Discussion
5.1 Interpretability of RL policy
The policy obtained with the RL framework presented here was able to outperform the baseline strate-
gies for the two- and three-aircraft cases. However, while the baseline strategies have a clear logic and
can be easily interpreted by the operators, understanding the decision-making of the RL policy is more
challenging. Indeed, the map of states to actions is highly multi-dimensional. In the simplest two-aircraft
case, a graphical visualisation of the RL policy could be displayed on a two-dimensional plane. Figure 5
displays the preferred action (i.e. action with the highest Q-value) for each possible state of the fleet.
From this policy map, we can gather insights on how the policy handles the different cases and what
strategy it uses to optimise the problem. At low damage levels (<6), the RL policy sends both tail num-
bers to fly missions. At high damage levels (>7) the agent starts using the preventive maintenance and
stand-by actions to prevent failure during operation. Additionally, the policy always tries to fly missions
with the least-damaged tail number, while sending the most damaged one under maintenance. Both tail
numbers are sent under maintenance simultaneously only in one case, when both are at damage level
9. Overall, this seems like a reasonable strategy to optimise the mission completion while minimising
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Figure 6. Total proportion of state-action pairs explored in the Q-table for the two-, three- and
four-aircraft environments.

maintenance costs. It also demonstrates that the RL policy can still be interpreted by humans and its
mechanisms can be explored to build confidence in the strategy.

5.2 Scalability of the RL framework
The RL framework for fleet management optimisation presented here produced policies that improved
the performance of the fleet by approximately 10% compared to the baseline (representing on-condition
maintenance strategy) for a fleet of two and three aircraft. When the size of the fleet was increased to
four aircraft, however, the performance of the RL policy dropped substantially. This behaviour can be
attributed to the size of the respective state and action spaces. As the aircraft can have nine possible
damage levels (failure is not considered a state as corrective maintenance is always applied), the size
of the state space is 9n with n being the number of aircraft. Similarly, the number of possible actions
at each timestep is given by 4n (two flight missions, stand-by and preventive maintenance). Therefore,
with the present formulation, both the state and action spaces increase exponentially with the number
of aircraft in the fleet. This makes the policy search more difficult as the number of state-action pairs
dictates the size of the Q-table and search space. For example, in the three case studies presented above,
the size of the state and action spaces are respectively 81 × 16, 729 ×64 and 6,561 × 256 for the two-,
three- and four-aircraft environments (see Table 4). To account for the larger search spaces, the number
of episodes was increased accordingly, 2,000 episodes, 100,000 episodes and 1e6 episodes for the two-
aircraft, three-aircraft and four-aircraft environments respectively. It was also noted that while the two-
and three-aircraft environments always converged to the same policy, in the four-aircraft environment
the learning process was more noisy and separate runs of the policy search (pseudocode in Table 3)
with the same parameters would lead to slightly different policies. The limit of the search was set to 1016

episodes to keep the computation time within 10 days on a high-performance desktop (3.9 GHz CPU
128GB RAM). The sequential nature of Q-learning, in which the agent constantly gets feedback from
the environment, means that the search needs to be run on CPU as it cannot be efficiently parallelised to
be run on GPUs. Given these computational limitations, we evaluated for each Q-table the proportion of
state-action pairs that were explored, as depicted in Fig. 6 as a function of the damage level considered.
Overall, the search covered 78% of state-action pairs for the two-aircraft, 60.7% for the three-aircraft
and only 30.5% for the four-aircraft environment. Figure 6 also indicates that the percentage of actions
explored is lower when the aircraft are at high damage levels, as the aircraft spend most of the time at low
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damage levels (given the trajectory of the crack propagation model shown in Fig. 1). The low percentage
of explored state-action pairs observed in the 4-aircraft fleet Q-table, limited by the computational cost,
may contribute to the lower performance of the policy in the four-aircraft environment. Thus, one of the
main limitations of this RL framework is its difficulty to scale to larger and more realistic fleet sizes (6
to 36 aircraft) due to computational limitations. With the present formulation, as the number of aircraft
in the fleet increase there is a combinatorial explosion of the action space and the problem becomes
harder to optimise, computationally more expensive and more memory intensive. In the next section,
alternatives to using a Q-table are discussed.

5.3 Alternative RL algorithms and future work
Another limitation that was briefly mentioned above, is the memory requirements for the Q-table, which
is of the same size as the state and actions spaces. With larger fleet sizes, the exponential increase in
the size of the Q-table can cause memory issues. For instance, if there are six-aircraft in the fleet, using
32-bit float for the Q-values, the size of the Q-table would be 8 GB (96 × 46 × 4 bytes), and for a fleet
of seven aircraft that number would jump to 313 GB (97 × 47 × 4 bytes). In these cases, the use of a Q-
table is no longer possible. To overcome this limitation, Deep Q-learning (DQN) has been proposed [6],
a deep-learning alternative in which the Q-table is replaced with a neural network that acts as a function
approximator. The neural network learns the Q-values of the state-action pairs instead of storing them
in the look-up table, which drastically reduces the memory requirements. The network is initialised
with random weights and updated with batches of new observations through a single backpropagation
step following Bellman’s equation (Equation 9). The input layer of the neural network contains the
state vector, while the output layer predicts the Q-value for each possible action. Deep Q-learning is
particularly useful when dealing with large MDPs, especially continuous MDPs where the state vector
contains a continuous variable making the state space infinite. For instance, Ref. [21] extended the
maintenance scheduling of a system with three individually repairable components, originally designed
by Ref. [13], and made the damage level a continuous variable instead of a discrete one. The continuous
MDP was then solved with DQN and showed encouraging results. Yet, while DQN is a more powerful
algorithm to tackle large state-action spaces, it is more challenging to train the neural network than
updating the look-up table, and convergence on the optimal policy is not guaranteed unless additional
hyper-parameters are fine-tuned (e.g., neural network architecture, loss metric, optimiser, learning rate,
batch size).

In our fleet availability optimisation problem however, replacing the Q-table with a neural network
may help reduce the memory requirements but does not provide a solution to the combinatorial explosion
of the action space. In fact, the formulation used here is not suitable for training a neural network as the
output layer is several orders of magnitude larger than the input layer. For example, in the four-aircraft
environment, the input layer has four elements (i.e., damage level of each aircraft), while the output layer
has 256 elements (44 possible actions). In such circumstances, it is extremely hard to train the neural
network and get it to learn the Q-values for each action.

Therefore, in the context of this work on the optimisation of fleet management strategies, future efforts
should focus on exploring alternative state-action representations that can overcome the combinatorial
explosion with the increasing size of the fleet. One such alternative, is to use multi-agent reinforcement
learning [22], where one agent is trained on each aircraft and the agents interact in a cooperative manner
to optimise the overall fleet availability. With multi-agent RL, using algorithms such as MADDPG [23],
it is possible to de-couple the action space from the number of aircraft in the fleet and develop a more
scalable framework for optimising aircraft fleet availability.

Another important aspect is to bring the simulated environment closer to the real-world. This involves
enhancing the aircraft degradation model and incorporating additional mechanical failure modes to
enhance the applicability of the simulated environment for current fleets. While in this proof of con-
cept the aircraft damage model was limited to a single component subject to fatigue crack damage
(described as a Paris’ law), on real aircraft there are various sub-components to consider such as parts
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of the airframe or the engine, and additional modes of failure such as corrosion, abrasion and wear [17].
These additions would contribute to make the simulated fleet environment more realistic in future work.

6.0 Conclusion
This work has presented a proof of concept on the applicability of RL to support fleet management
operations. Firstly, an MDP was designed to simulate the operation and maintenance of a fleet of aircraft.
This includes a degradation model to simulate the damage to the aircraft during operation, a set of
flight missions with varying degree of difficulty and a preventive/corrective maintenance mechanism
to repair the aircraft. This MDP was then used to explore optimal strategies on how to manage a fleet
of aircraft throughout their lifetime. At each timestep, a set of missions are prescribed to the fleet and
the operator decides for each aircraft whether to fly a mission (positive reward), stand-by or send the
aircraft to preventive maintenance (negative reward). The goal is to find the policy that enables the fleet
to complete the highest number of missions while minimising overall maintenance costs.

Q-learning, a model-free RL algorithm, was employed to find optimal solutions for the MDP for
three different cases, a two-aircraft, three-aircraft and four-aircraft fleet. The resulting RL policies were
then compared to baseline strategies, inspired by traditional fleet management strategies — i.e., on-
condition maintenance and force-life management. The RL policy was found to outperform the baseline
strategies by 5 to 10% for the two- and three-aircraft fleet environments, however the RL policy for
the four-aircraft fleet performed similarly to the baselines. Next, we delved into the interpretability of
the RL policy and demonstrated that the agent followed a sensible strategy to accomplish its objective.
Crucially, the combinatorial explosion resulting from increasing the number of aircraft in the fleet was
identified as a main obstacle in applying this RL framework to more realistic cases. Potential solutions
to overcome this problem include a cooperative multi-agent RL framework where each tail number is
assigned a separate agent, and the agents work cooperatively towards the goal of optimising the overall
fleet availability. The potential of RL to aid fleet management operators in their decision-making could
be significant, provided that these roadblocks are surmounted.

All the Python codes underlying this framework were made publicly available at https://github.
com/UNSW-MCM/RLfleet to encourage research collaboration and further developments as well as
ensuring reproducibility.
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