Bull. Aust. Math. Soc. 109 (2024), 174–176 doi[:10.1017/S000497272300076X](http://dx.doi.org/10.1017/S000497272300076X)

CORRECTION TO

'EXISTENCE AND BOX DIMENSION OF GENERAL RECURRENT FRACTAL INTERPOLATION FUNCTIONS['](#page-0-0)

 H UO-JU[N](https://orcid.org/0000-0003-3483-2932) RUAN \mathbb{D}^{\boxtimes} and JIAN-CI XIA[O](https://orcid.org/0000-0002-1014-8725)

(Received 25 June 2023; first published online 7 August 2023)

DOI: [https://doi.org/10.1017/S0004972720001045,](https://doi.org/10.1017/S0004972720001045) Published online by Cambridge University Press: 5 October 2020

2020 *Mathematics subject classification*: primary 28A80; secondary 41A30.

Keywords and phrases: box dimension, recurrent fractal interpolation functions, degenerate vertex, strongly connected component.

This correction to the paper [\[1\]](#page-2-0) adjusts the definition of degenerate vertices to avoid some degenerate exceptions to the main theorem. Under the original definition of degenerate vertices [\[1,](#page-2-0) Definition 1.4], there could be exceptions to the third sentence in the proof of Proposition 3.8: 'Since *V* is a nondegenerate strongly connected component, $\Gamma(f|_{I_j})$ is not a line segment for each $j \in V'$. We fix this problem by revising the definition of degenerate vertices and show that the modification does not affect the validity of other statements in the paper involving degenerate vertices.

For $1 \le i \le N$, write $P(i) = \{1 \le j \le N : \text{there exists a path from } j \text{ to } i\}$. We modify Definition 1.4 as follows.

DEFINITION 1. A vertex $i \in \{1, ..., N\}$ is called *degenerate* if for all $j \in \{i\} \cup \mathcal{P}(i)$, we have either $d_j = 0$ or points in $\{(x_k, y_k) : \ell(j) \le k \le r(j)\}\$ are collinear.

Note that the only difference between the new definition and the original one is the addition of an allowance for $d_i = 0$. For a motivation, please see the later remark. In this new setting, we can prove the following lemma.

LEMMA 2. Let f be the self-affine RFIF determined by $\{\omega_i\}_{i=1}^N$, where $\omega_i(x, y) = (a_i x + e_i, c_i x + d_i y + f_i), \quad (x, y) \in D_i \times \mathbb{R}.$

Then for $1 \le i_0 \le N$, *i₀ is degenerate if and only if* $\Gamma(f|_{I_{i_0}})$ *is a line segment.*

In particular, [\[1,](#page-2-0) third sentence in the proof of Proposition 3.8 and Proposition 3.1] remain valid (in our new setting). Other parts of the paper, including the main theorem, are unaffected by this modification.

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

PROOF. First we prove the 'if' part. Equivalently, we prove that if i_0 is not degenerate, then $\Gamma(f|_{I_{i_0}})$ is not a line segment. By our new definition, there exists $j \in \{i_0\} \cup$ $\mathcal{P}(i_0)$ such that $d_j \neq 0$ and points in $\{(x_k, y_k) : \ell(j) \leq k \leq r(j)\}$ are not collinear. Since $D_i = [x_{\ell(i)} \text{ and } y_k] = f(x_k)$ it follows that $\Gamma(f|_{D_i})$ is not a segment. Combining this $D_j = [x_{\ell(j)}, x_{r(j)}]$ and $y_k = f(x_k)$, it follows that $\Gamma(f|_{D_j})$ is not a segment. Combining this with $d_i \neq 0$ shows that $\Gamma(f|_{D_j}) = \omega(\Gamma(f|_{D_j}))$ is not a segment. with $d_j \neq 0$ shows that $\Gamma(f|_{I_j}) = \omega_j(\Gamma(f|_{D_j}))$ is not a segment.
If $i = i_0$ then we are done. Suppose $i \neq i_0$. Then $i \in I_j$

If $j = i_0$, then we are done. Suppose $j \neq i_0$. Then $j \in \mathcal{P}(i_0)$ and we can find *k*₀, *k*₁, ..., *k_n* ∈ {1, ..., *N*} with *k*₀ = *j* and *k_n* = *i*₀ such that *I<sub>k_{t−1}* ⊂ *D_{k_t*} and *d_{k_t}* ≠ 0 for all 1 < *t* < *n*. Recalling that $\Gamma(f|x)$ is not a sequent, we see that $\Gamma(f|x)$ ⊃ $$ all $1 \le t \le n$. Recalling that $\Gamma(f|_{I_j})$ is not a segment, we see that $\Gamma(f|_{D_{k_1}}) \supset \Gamma(f|_{I_{k_0}}) =$ $\Gamma(f|_{I_j})$ is also not a segment. Combining this with $d_{k_1} \neq 0$,

$$
\Gamma(f|_{I_{k_1}})=\omega_{k_1}(\Gamma(f|_{D_{k_1}}))
$$

is not a segment. Repeating this argument, $\Gamma(f|_{I_{k}}) = \omega_{k}(\Gamma(f|_{D_{k}}))$ is not a segment for $1 \leq k \leq n$. Since $i_0 = k_n \Gamma(f|_{U_{k}})$ is not a segment $1 \leq k \leq n$. Since $i_0 = k_n$, $\Gamma(f|_{I_{i_0}})$ is not a segment.

Now we prove the 'only if' part. This direction is an updated version of Proposition 3.1 under the new definition of degenerate vertices, and the proof is very similar. Let $C_*(I) = \{g \in C(I) : g(x_i) = y_i, 0 \le i \le N\}$ and let *T* be a map on *C*∗(*I*) given by

$$
Tg(x) = F_i(L_i^{-1}(x), g(L_i^{-1}(x)))
$$
 for all $x \in I_i$ and $1 \le i \le N$.

Denote by $C^*(I)$ the collection of $g \in C_*(I)$ such that $g|_{I_i}$ is linear for all $j \in \{i_0\} \cup P(i_0)$. Recalling the proof of [\[1,](#page-2-0) Theorem 1.3], it suffices to show that T maps $C^*(I)$ into itself.

To this end, fix any *g* ∈ $C^*(I)$. Let *j* ∈ {*i*₀} ∪ *P*(*i*₀). If *d_j* = 0, then

$$
Tg(x) = c_j L_j^{-1}(x) + f_j = a_j^{-1} c_j (x - e_j) + f_j, \quad x \in I_j,
$$

so *Tg* is linear on *I_j*. If $d_j \neq 0$, by definition, points in $\{(x_k, y_k) : \ell(j) \leq k \leq r(j)\}$ are collinear. Since $g \in C^*(I)$ this implies that $g|_D$ is linear. Notice that collinear. Since *g* ∈ $C^*(I)$, this implies that *g*|_{*D_i*} is linear. Notice that

$$
Tg(x) = F_j(L_j^{-1}(x), g(L_j^{-1})(x)) = c_j L_j^{-1}(x) + d_j g(L_j^{-1}(x)) + f_j, \quad x \in I_j.
$$

Since L_j^{-1} is linear on I_j and g is linear on D_j , it follows that T_g is linear on I_j . In conclusion, $Tg \in C^*(I)$.

REMARK 3. It is not hard to construct a system satisfying the following two conditions:

- (1) there is some *j*₀ such that $d_{j_0} = 0$ and points in $\{(x_k, y_k) : \ell(j_0) \le k \le r(j_0)\}\)$ are not collinear: collinear;
- (2) there is some $i_0 \neq j_0$ such that $D_{i_0} = I_{i_0} \cup I_{j_0}$, $d_{i_0} \neq 0$ and points in $\{(x_k, y_k) : \ell(i_0) \leq k \leq r(i_0)\}$ are collinear $k \leq r(i_0)$ } are collinear.

Under these conditions and the original definition of degenerate vertices, $\{i_0\}$ is a (1) there is some j_0 such that $d_{j_0} = 0$ and points in $\{(x_k, y_k) : \ell(j_0) \le k \le r(j_0)\}$
collinear;
(2) there is some $i_0 \ne j_0$ such that $D_{i_0} = I_{i_0} \cup I_{j_0}, d_{i_0} \ne 0$ and points in $\{(x_k, y_k) : k \le r(i_0)\}$ are collinear nondegenerate strongly connected component. However, if we denote by $C(I)$ the collection of $g \in C_*(I)$ such that $g|_{D_{i_0}}$ is linear, it is straightforward to check that *Tg* $k \le r(i_0)$ are collinear
 Tg $k \le r(i_0)$ are collinear
 Tg e *C*_{*}*Ci* collection of $g \in C_*(I)$ surface $Tg \in \widetilde{C}(I)$ whenever $g \in \widetilde{C}$ $Tg \in \widetilde{C}(I)$ whenever $g \in \widetilde{C}(I)$. Thus, the corresponding FIF *f* is linear on D_{i_0} so that $\Gamma(f|_{I_{i_0}})$ is a line segment. This is why we modify the original definition.

Reference

[1] H.-J. Ruan, J.-C. Xiao and B. Yang, 'Existence and box dimension of general recurrent fractal interpolation functions', *Bull. Aust. Math. Soc.* 103 (2021), 278–290.

HUO-JUN RUAN, School of Mathematical Sciences, Zhejiang University, Hangzhou 310058, PR China e-mail: ruanhj@zju.edu.cn

JIAN-CI XIAO, School of Mathematical Sciences, Zhejiang University, Hangzhou 310058, PR China e-mail: jcxshaw24@zju.edu.cn