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Abstract. Phenotypic variation in human population may contain contributions from 
a number of different sex-associated genetic influences. These influences include maternal 
effects, the effects of sex-linked loci, and the effects of sex-limited autosomally linked 
loci. The families produced by MZ and DZ twins provide statistics which permit the 
detection and estimation of these effects. In particular, they provide statistics derived 
from various types of age-matched half-sibs and cousins in addition to those derived from 
the more usually studied full-sib or parent-offspring relationships. Specific models for 
genetic maternal effects, sex-linkage and sex-limitation are used to explore the use of 
extended twin design for the detection of and the discrimination between various sex-
associated effects. The sample sizes required to detect maternal effects and sex-linkage 
were considered for some simple cases and it is concluded that comparison derived from 
the progeny of twins will often provide better tests for these effects than those derived 
from parent-offspring comparison. 

Key words: Extended twin design, Twin families, Maternal effects, Sex-linkage, Sex-
limitation 

INTRODUCTION 

This paper is concerned with the influences of various sex-associated effects on human 
phenotypic variation and how these influences may permit the detection of the effects. 
The effects under consideration are: 

1) Maternal effects: these occur when the mother makes a contribution to the 
phenotype of her progeny over and above that due to her direct genetic contribution to 
the nucleus of the zygote. 

2) Sex-linked genetic variation: where at least some of the variation in a trait is due 
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to loci carried on a sex-chromosome. We will only consider linkage to the X chromosome, 
as this occurs much more frequently than Y linkage. 

3) Sex-limited genetic variation: this is trait variation due to autosomally linked 
loci which are sex-limited in their expression, ie, genes may have different degrees of 
expression in the two sexes or the same trait may be influenced by different sets of genes 
in the two sexes. 

THE DATA 

The statistics considered here for the detection of sex-associated effects are those derived 
from monozygotic (MZ) and dizygotic (DZ) twins and their families, ie, male and female 
MZ twins and their spouses and offspring, and male, female and opposite-sexed DZ twins 
and their spouses and offspring. The idealized family structure of such data is shown in 
the Figure. Data derived from these families provides all the statistics usually utilised for 
the detection of maternal effects, sex-linkage and sex-limitation, plus some others. An 
important feature of such a research design is that it provides families of maternally or 
paternally related, age matched half-siblings (derived from the MZ families) and cousins 
(derived from the DZ families). 

The simplest method of data analysis is to use simple comparisons of statistics 
to detect individual sources of variation. This method may more readily detect some indivi­
dual sources of variation than some more versatile methods of analysis, but is too wasteful 
of information and unwieldy to be generally satisfactory. The simple comparisons used 
may be of different correlations between relatives, and correlations between relatives 
can also be used as a basis of a more general model-fitting approach. Alternatively, Nance 
and Corey [16] have shown how data from the progeny of twins may be subjected to a 
hierarchical analysis of variance yielding three mean squares from each type of twin 
family: 

MSW: between progeny within full-sib families; 
MSB : between the two families or full-sibs produced by pairs of twins; 
MSA : among the pedigrees. 

Comparison of the mean squares from analyses of families produced by different types 
of twins once again provide tests for individual sources of variation. These mean squares 
can also be used as a basis for model fitting via a weighted least squares method. However, 
the analyses of variance become difficult to apply when the family structures are un­
balanced and the problem is exacerbated when the presence of sex-linked or sex-limited 
effects make it necessary to keep the progeny sexes separate during analysis. With the 
increasing complexity of the data analysed and the models which are required to explain 
the data, it becomes increasingly desirable to analyse the data via some form of pedi­
gree analysis, such as that based upon maximum likelihood methods developed by Lange 
et al [10]. Note that sex-linked or sex-limited genetic variation can cause the total variances 
of males and females to differ; these differences may contribute to the detection of the 
effects and must not be obscured by the analytical techniques utilised. 
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THE MODELS 

In order to understand the influences of maternal effects, sex-linkage and sex-limitation 
on the statistics derived from twin families, and how the statistics may be utilised to 
detect these effect, it is necessary to build plausible causative model for these effects. 
To do this, the well tried and experimentally tested methods of biometrical genetics [13, 
14] have been utilised [7,8]. 

MATERNAL EFFECTS 

There are a number of different factors which can lead to maternal effects, for example, 
cytoplasmic effects or the effects of the mother's genotype or phenotype on the develop­
ment of the offspring. The illustrative model developed is based upon the effects of the 
maternal genotype on the offspring. This model is applicable when the maternal genotype 
contributes to the maternal effect but is also likely to remove much of the variance 
attributable to other types of maternal effect. 

We can consider two basic forms of this model. In the one-character model, the loci 
producing the maternal effect due to the parent are also those producing the direct effect 
in the progeny. Thus, a mother not only contributes genes for a particular trait to the 
zygote, but also her own genotype for that trait has an effect on the phenotypic develop­
ment of her progeny. In the two-character model, different sets of loci produce the 
maternal effect and the direct effect in the progeny: Thus, a mother contributes genes 
for a trait to the zygote, but it is her genotype for a second trait which influences the 
phenotypic development of the first trait in her progeny. 

Assuming Hardy-Weinberg equilibrium, the one-character model for a single locus 
with two alleles, A and a with frequencies u and v, can be written as follows: 

Genotype 
Frequency 
Direct effect of genotype on progeny 
Effect of mother of that genotype on progeny 

AA 
u2 

d 
md 

Aa 
2uv 
h 
mh 

aa 
V2 

-d 
-md 

Summing over a number of such loci, independent in inheritance and action, the genetic 
contribution to second-degree statistics derived from human populations can be cast in 
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terms of six parameters: 

DR = 2 4uiVi (d; + (VJ - Ui) hj)2 

i 

HR = 2 16u2v2 h2 

which are the additive and dominance components of variance, respectively, due to the 
direct effects of the loci (1/2DR = VA and 1/4HR = VD); 

MDR = 2 4UiVj (md; + (Vj - u;) mhj)2 

i 

MHR = 2 16u2v? mh? 

which are the additive and dominance components of variance, respectively, due to the 
maternal effects of the loci; 

DMDR = 2 4UjVj (d} + (v{ - ut) hj) (md; + (v; - u;) mhj) 
i 

HMHR = 2 16ujV2 hj mh. 

which represent the covariance between the direct and maternal effects for the additive 
and dominance effects, respectively. The latter two components are covariances and may 
be negative. The contribution of these parameters to the statistics derived from MZ and 
DZ twin families is shown in Table 1. The two-character model of genetic maternal 
effects requires only four parameters: D R , HR, MDR, and MHR; the omission of 
DMDR and HMHR from the expectations given in Table 1 gives the genetic expectations 
of the two-character model. 

We should note that maternal effects will only contribute towards intergenerational 
statistics if the character studied is the same in both generations. This may not be the case, 
for example, if the character is age-limited in its expression in some way; the same meas­
ured trait in parents and offspring may be subject to different environmental and genetic 
control in the two generations. In the presence of age limitation, the contribution of 
direct genetic effects and maternal genetic effects to the covariances between generations 
will be reduced and may even be zero; nevertheless, the expectations of the statistics 
derived from the progeny remain unchanged. 

The families of twins provide several comparisons which may be diagnostic for the 
presence of maternal effects. The two most useful comparisons are those between the 
maternal and the paternal parent-offspring covariance, and between the half-sib covariance 
in the families of female MZ twins and that in the families of male MZ twins. The expected 
contributions of direct genetic and maternal effects to these statistics are. 

Parent-offspring covariances 

Maternal 1/4DR + 1/4MDR + 5/8DMDR + 1/4HMHR 

Paternal ! / 4 D R + 1/8DMDR 

Half-sib covariances 

Maternal 1/8DR + 1/2MDR + 1/4MHR + 1/2DMDR 

Paternal 1/8DR 
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A test for maternal effects can thus be produced from a comparison of the maternal 
and paternal correlations derived from these covariances. Alternatively, a test can be 
derived from the mean squares from the hierarchical analyses of variance of the progeny 
of the twins as long as the distribution of family sizes is similar in the maternal and 
paternal families. The most powerful direct comparison of mean squares is derived from 
MZ families and is that between MSBm and MSBp (the mean squares between the two 
families of full-sibs produced by MZ female twins and MZ male twins, respectively). 
The expectations of these mean squares depend upon the number of offspring per family, 
with two offspring in every family, and the only environmental variation being that 
between individuals within families, the expectations are: 

MSBm = Ew + l/2DR + 5/16HR 

MSBp = Ew + 1/2DR + 5/16HR + MDR + 1/2MHR + DMDR 

where Ew is the within-family environmental variance. Thus, with this model, the F ratio 
(MSBp)/(MSBm) provides a test for maternal effects. A final method for detecting 
maternal effects is to utilise model-fitting procedures to fit models which omit maternal 
effects to the complete data set, or a subset of it, and to determine whether the models 
are adequate. 

In order to assess the relatives merits of the methods for detecting maternal effects, 
a variety of different models were investigated with a view to discovering the sample 
sizes required for each method to reject the null hypothesis of no maternal effects. The 
models chosen for study only included variation due to the within-family environment, 
to additive genetic direct effects, and to additive genetic maternal effects. In different 
models, the proportional contribution of genetic effects, both direct and maternal, to 
the total variation was set at 0.2 or 0.5 or 0.8, and the proportion of this due to maternal 
effects was set at 0.2 or 0.5 or 0.8. Thus, the proportion of the variation due to maternal 
effects varies between 0.04 and 0.64. Two models for maternal effects were studied, the 
one-character model and the two-character model. In the one-character model, the 
variation was divided between MDR and DMDR assuming a correlation of one between 
the direct and maternal effects of a locus. In the two-character model, the variation is 
solely due to MDR. 

The power of three tests to detect maternal effect was considered. These tests were 
the comparison of maternal and paternal parent-offspring correlations, the comparison 
of maternal and paternal half-sib correlations, and the F ratio test (MSBp)/(MSBin). 
All of these were considered as single-tailed tests. The approximate sample sizes required 
to reject the null hypothesis at the 5% level of significance in 95% of cases, were derived 
for the correlations by finding the sample size such that the difference between the 
z-transformed correlations produced a t value of 3.2896 [18], and by the methodology 
described by Kearsey [9] for F ratios. Also considered were the sample sizes required 
to reject models which excluded maternal effects, fitted by the method of weighted least 
squares, to the mean squares derived from an analysis of MZ twin progeny. The sample 
sizes required for the chi-square testing the model which only included Ew and DR to 
be significant at the 5% level in 95% of cases, were derived using the method of Martin 
et al [11]. To simplify the analyses, equal numbers of maternal and paternal statistics 
were used, and for the F ratio test and the model fitting all families had two offspring 
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TABLE 2 - Sample Sizes Required to Detect Maternal Effects at the 5% Significance Level on 95% of 
Occasions 

Hi 

Model 

1/2 D R 1/2(MDR+DMDR) 1* 

One-character model 
Test 

2* 3+ 4+ 

Two-character 
model 

Test 1* 

0.8 
0.8 
0.8 
0.5 
0.5 
0.5 
0.2 
0.2 
0.2 

Tests: 

0.16 
0.1 
0.04 
0.4 
0.25 
0.1 
0.64 
0.4 
0.16 

0.04 
0.1 
0.16 
0.1 
0.25 
0.4 
0.16 
0.4 
0.64 

15835 
3230 
1720 
2235 

455 
250 
675 
135 
80 

13425 
2140 

830 
2065 

320 
120 
750 
110 

35 

6755 
1075 
415 

1075 
165 
60 

415 
60 
20 

7030 
1170 
475 

1340 
225 

90 
575 

96 
40 

53235 
8560 
3555 
7800 
1290 
515 

2560 
445 
185 

1) Comparison of parent-offspring correlations. 
2) Comparison of half-sib correlations. 
3) F ratio (MSg )/(MSBtT.) from analysis of variance of progeny of MZ twins. 
4) Least squares model fitting to progeny of MZ twins. 
* Number of independent pairs of observations required. 

Number of MZ twin pedigrees of each type (male or female) each with two offspring per family. 

per family. The required sample sizes are given in Table 2. These sample sizes represent 
the number of independent pairs of observations for the comparisons of correlations and 
the number of families of each type (male or female MZ) for the F ratio test and the 
model fitting. For all tests, except the comparison of parent-offspring correlations, the 
one-and two-character models give the same results, thus the results for the two-character 
model are only given for this latter test. 

Inspection of Table 2 reveals that, over the range of models investigated, the half-sib 
correlations provide a more powerful test for maternal effects than do the parent-off­
spring correlations; this is particularly the case with the two-character model of maternal 
effects. Comparison of the results for the F ratio test and the model-fitting reveal that 
the F ratio is slightly more powerful. The test involving correlations are not directly 
comparable with the F ratio test or the model fitting. Although each MZ family would 
contribute four pairs of observations to each correlation (if each twin has two offspring), 
as individuals are contributing to more than one pair each and individuals within families 
are correlated, the effective degrees of freedom contributed by each family are less than 
four [6,17]. Thus, there may not be a great deal to choose between a comparison of half-
sib correlations and the F ratio test for the detection of maternal effects. 

We can use the expectations given in Table 1 to develop a test which examines 
the nature of maternal effects for characters which are not age-limited. The genetic 
contributions to the avuncular covariances from DZ twin families are: 

Aunt-Niece/Nephew Covariance 1/8DR + 1/4MDR 4- 3/8DMDR + 1/16HMHR 

Uncle-Niece/Nephew Covariance 1/8DR + 1/8DMDR 
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If the two-character model of maternal effects is applicable (ie, DMDR = HMHR = 0), 
the difference between these covariances should be 1/4 MDR, which is the same as 
the difference between the parental covariances. Thus, a comparison of the difference 
between the parent-offspring covariances and the DZ twin avuncular covariances provides 
information on the precise nature of uny maternal effects. In a similar manner, the 
genetic contributions to the MZ twin avuncular covariances are the same as to the parent-
offspring covariances (ie, MZ aunt-niece/nephew covariance = mother-offspring covarian-
ce and MZ uncle-niece/nephew covariance = father-offspring covariance). The parent-
offspring covariances may in practice be greater than the avuncular covariances due to 
an environmental covariance between members of the same family. However, the 
maternal effect as detected by a comparison of the parent-offspring covariances will 
only be greater than that detected by a comparison of the MZ twin avuncular covariances 
if there is an environmental contribution to the maternal effect. Thus, a comparison of 
the difference between the parent-offspring and MZ twin avuncular covariances may 
reveal if the genetic maternal effects model is adequate. 

In practice, the detection of maternal effects is further complicated as families will 
be variable in size and, as shown later, sex-linkage may simulate maternal effects. These 
problems will tend to favour the use of model-fitting techniques for the analysis as 
indeed does the requirement for parameter estimation. We have shown that model-fitting 
techniques may be only slightly less powerful than individual tests for the detection of 
maternal effects. Their power may be increased if it is possible to fit the same model to 
both parents and offspring. Preliminary investigations indicate that the inclusion of data 
from MZ twins, their progeny and the covariances between them can provide a test for 
maternal effects which is very economical in terms of the numbers of families required. 

SEX-LINKAGE 

To build a model for sex-linked effects we follow the example of Mather and Jinks [12, 
13] and allow for the sex-linked effects to be sex-limited and for the existence of do­
minance of sex-linked effects in the female. So, for a single locus with two alleles in 
Hardy-Weinberg equilibrium we can write: 

Females Males 

Genotype AA Aa aa A a 

Frequency u2 2uv v2 u v 

Effect dx hx -dx dx' -dx' 

Summing over all such loci, the contribution of sex-linked genetic variation to second 
degree statistics derived from human populations can be written in terms of four para­
meters: 

Ds = Z 4uiVi (dx; + (Vi - Ui) hXj)2 

i 

H x = 2 16u2v? hx? 
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which represent the additive and dominance components of variance, respectively, due 
to sex-linked variation in females; 

D„ = S4u.v. dx!2 
B . 1 1 1 

which represents the additive component of variance due to sex-linked variation in 
males; 

DU = ? 4 u i v i d x i (dxi + (vi - Ui)hXi) 
which represents the covariance between males and female of the additive effects of sex-
linked loci. The contributions of these four parameters to the relationships derivable 
from MZ and DZ twins and their families are shown in Table 1. 

The relative magnitudes of Ds , DB and D y will depend upon the exact form of the 
sex-linked effects. In the simplest and most usually considered case, when there is no 
sex-limitation of the effects and no dominance in females, Ds = DB = Dv and Hx = 0 
thus Ds , Dg and Dv can be replaced in the expectations by a single parameter D x . In 
more complex situations, when there is sex-limitation of the sex-linked effects or do­
minance in the females, Ds , DB and DJJ may take virtually any values relative to one 
another subject to the limitations that Ds and DB must be positive and the absolute value 
of the correlation between additive effects in males and females (ie, (DTJ) /V[(DS)(D B )] ) 
cannot be greater than one. Thus Dv may be zero or even negative whilst at the same 
time Ds and DB take appreciable values. The range of possible values of Ds, DB and Dv 

must be borne in mind when considering the use of population derived data for the 
detection of sex-linked effects. 

The presence of sex-linked effects may result in a difference between the means of 
males and females. This in itself is not a particularly useful diagnostic as a mean differ­
ence could result from a number of causes some of which do not have consequences 
for the covariances between relatives. However, if a mean difference between sexes 
exists it should be removed prior to the use of analysis of variance techniques. 

Sex-linkage produces a complex pattern of covariances between relatives and may 
result in a difference between the variances within males and females. The contributions 
of sex-linked variation to the most useful statistics for developing tests to detect sex-
linkage are: 

Female Male 

Total variance 1/2 Dg + 1/4 H x Dj 

Parent-offspring 
covariances 

Full-sib 

Mother-Daughter Mother-Son Father-Daughter Father-Son 

covariances 

1/4 Ds 1/2 Dy 1/2 Du 0 

Sister-Sister Sister-Brother Brother-Brother 

3/8 Ds + 1/8 H x 1/4 Du 1/2 DB 
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Half-sib 
covariances Female-Female Female-Male Male-Male 

Female MZ 
progeny 

Male MZ 
progeny 

1/8 Ds 1/4 Du 1/2 DE 

1/4 Ds 0 0 

One important point arises from a consideration of the parent-offspring and half-sib 
covariances. That is, that most patterns of sex-linked inheritance will result in the average 
covariance between mothers and their offspring being greater than that between fathers 
and their offspring, and the average covariance between maternally related half-sibs 
being greater than that between paternally related half-sibs. These relationships are those 
expected in the presence of maternal effects and may occur even when sex-linkage does 
not produce differences between the means or total variances of the sexes. There will, 
however, be differences between the covariances dependent upon the progeny sex, and 
thus it is essential to ensure that covariances are homogeneous over progeny sexes before 
proceeding with individual tests for maternal effects. 

In situations in which the pattern of covariances between relatives is suggestive of 
sex-linkage, the relationships shown above can be utilised to build tests for sex-linkage. 
The use of analysis of variance techniques to analyse the progeny of MZ or DZ twins is 
complicated by the presence of offspring of both sexes within families. Thus, we shall 
only consider individual tests which utilise the correlations derived from the covariances 
between relatives. Of the intergenerational statistics, a comparison of the father-daughter 
and father-son correlations provides a test for sex-linkage which is free from maternal 
effects. However, Dyj may be near zero or even possibly negative, although this latter 
alternative is unlikely, and in these cases the mother-daughter correlation will be greater 
than the mother-son correlation. A comparison of the male half-sib correlation from 
female MZ families with that from male MZ families also provides a test for sex-linkage 
as in its presence the former will always be greater than, or equal to, the latter. This test 
is however confounded with maternal effects and so may only be performed if the female 
half-sib correlation from female MZ families is not greater than that from male MZ 
families. 

In order to obtain an idea of the sample sizes required to detect sex-linkage using the 
tests discussed above, a number of different sex-linkage models were examined. In all the 
models there was no sex-limitation or dominance of the sex-linked effects, thus Ds = DB 

= DJJ = D x . In different models the proportion of variation in females which was genetic 
in origin was set to 0.2 or 0.5 or 0.8, and the proportion of this due to maternal effects 
was set at 0.2 or 0.5 or 0.8. The approximate sample size required to reject the null 
hypothesis of no sex-linkage at the 5% level in 95% of cases was calculated as previously 
for the comparison of father-daughter and father-son correlations and the comparison 
of maternal and paternal male half-sib correlations. The required sample sizes are shown 
in Table3. All tests were performed as single tailed tests. 

Inspection of Table 3 reveals that, over the range of models examined, a comparison 
of father-offspring correlations provides a more powerful test, in terms of the number of 
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TABLE 3 - Sample Sizes Required to Detect Sex-Linked Effects at the 5% Significance Level on 9 5 % 
of Occasions 

Ew 
Model 

1/2 D R 1/2 D x
+ 1* 

Test 

2* 

0.8 0.16 0.04 12755 14531 
0.8 0.1 0.1 2230 2600 
0.8 0.04 0.16 945 1120 
0.5 0.4 0.1 1780 2520 
0.5 0.25 0.25 355 515 
0.5 0.1 0.4 165 250 
0.2 0.64 0.16 565 1040 
0.2 0.4 0.4 130 240 
0.2 0.16 0.64 65 125 

Tests: 
1) Comparison of father-daughter and father-son correlations. 
2) Comparison of maternal and paternal male half-sib correlations. 

* Number of independent pairs of observations required. 

independent pairs of observations required for sex-linkage, than does the comparison of 
male half-sib correlations. Furthermore, father-offspring pairs are obtainable in larger 
numbers than are pairs of male half-sibs, even from studies including only MZ twins and 
their families. However, if the sex-linked loci are age-limited (the sets of loci influencing 
the trait in parents and offspring being not 100% concordant) or sex-limited (particularly 
if the correlation between their effects in males and females is not unity) then a com­
parison of father-offspring correlations may be less powerful than a comparison of male 
half-sib correlations. 

Sex-linked inheritance leads to particular patterns of relationships within families 
which will vary dependent upon the precise model. As has been already noted, neither 
of the tests considered above can be used to detect sex-linkage in all situations. Thus, 
we might suspect that model-fitting approaches are a more useful general method for the 
detection of sex-linkage as in its presence diagnostic information is found in many of the 
relationships from MZ and DZ families. However, as is shown below, sex-limited auto­
somal genetic variation may mimic sex-linkage in parent-offspring and full-sib statistics 
and so model-fitting approaches will often have difficulty in distinguishing between these 
two effects. Thus, simple comparisons of half-sib correlations will often be the best way 
of separating sex-linked and sex-limited autosomal effects. 

SEX-LIMITED GENETIC VARIATION 

Following the example of Eaves [3], we can write a model for sex-limited genetic varia­
tion which is autosomally linked. Thus, we can replace the two paramters DR and HR of 
the non-sex-linked model with DRf and HRf in the variance and covariances of females, 
with D R m and HR m in the variance and covariances of males and with DR m f and HRmf 

in the covariances between opposite-sexed relatives. The contributions of these six 
parameters to the relationships derivable for MZ and DZ twins and their families are 
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shown in Table 1. It should be noted that in order to develop a fully sex-limited model it 
is possible to write the environmental contributions to the variances and covariances 
within sexes and the covariances between sexes separately. 

As was the case with sex-linked effects, the range of possible values of the addi­
tive components DR f , D R m and D R m f are limited only by the constraints that the com­
ponents of variance DR f and D R m must not be negative and that the absolute value of 

(DRmf)/\/[(DRf)(DRm)] must not be greater than one. The effects of sex-limited auto­
somal genetic effects mimic sex-linked effects in that they may produce differences in the 
means of the sexes which should be removed prior to analysis of variance. Looking at the 
contribution of additive sex-limited effects to the statistics considered in the case of sex-
linkage, we find: 

Total variance 

Female 

1/2 DRf 

Male 

1/2 D R m 

Mother-Daughter Mother-Son Father-Daughter Father-Son 

Parent-offspring 
covariances 1/4 D Rf 1/4 D Rmf 1/4 D: Rmf 1/4 D Rm 

Sister-Sister Sister-Brother Brother-Brother 

Full-sib 
covariances 1/4 D Rf 1/4 D Rmf 1/4 D Rm 

Half-sib 
covariances Female-Female Female-Male Male-Male 

Female Mz 
progeny 

Male MZ 
progeny 

1/8 D Rf 

1/8 D Rf 

1/8 D Rmf 

1/8 D Rmf 

1/8 D Rm 

1/8 D Rm 

These relationships demonstrate that sex-limited variation may result in differences 
beween the variances of the two sexes and a pattern of full-sib covariances which could 
be mistaken for sex-linkage (when DRf > D R m f < DR m). A comparison of parent-off­
spring covariances could also be mistaken for some models of sex-linkage in which Dy is 
small or negative. However, if the three possible half-sib covariances (between females, 
between males and between opposite-sexed individuals) are the same in both male and 
female MZ families but different from one another, this is good evidence for sex-limited 
autosomal genetic effects. 
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DISCUSSION 

We have considered how our models of maternal effects, sex-linkage and sex-limited 
autosomal effects contribute to statistics which can be utilised for their detection. It has 
been suggested that in some cases model-fitting approaches may provide an economical 
method for the detection of certain effects. This is because these methods may incor­
porate data from data from several diagnostic relationships and are thus effectively joint 
tests. Model-fitting approaches also permit simultaneous estimation of a number of 
parameters. If model fitting approaches are to be used, it is instructive to see how far the 
components of our genetic models may be separated by different data structures. 

The progeny of MZ twins, are sufficient, on their own, to avoid any confusion bet­
ween maternal effects, sex-linked effects and sex-limited autosomal effects. However, 
with these data, it is not possible to separate the direct and covariance components of 
maternal effects and thus to distinguish between the one-and two-character models of 
maternal effects. It is possible to discriminate between the one- and two-character models 
if the trait under study is not age-limited, because it is then possible to include data 
on the MZ twin parents and their relationship with their progeny. Alternatively, if data 
from the progeny of both MZ and DZ twins are analysed, it is not necessary to incorporate 
parental data in order to distinguish the two maternal effects models, as long as data 
from the progeny of DZ opposite-sexed twins is included in the analysis. 

With sufficient data, the effects due to the models we have examined are not likely to 
be confused with one another, but it is instructive to examine briefly the problems that 
might have been caused by the adoption of other plausible models. Of the models we 
have explored, that for maternal effects is least likely to be universally applicable, for 
some traits models other than a purely genotypic model may be more realistic. Thus, we 
might develop phenotypic equilibrium models, such as that for a single character system 
developed by Falconer [5], or models of vertical cultural transmission with asymmetry 
between the effects of parents [eg, 1]. If these models contained a genetic contribution, 
their effects would still be detected as maternal effects by the tests we have described, 
and would be unlikely to cause the failure of models which assumed only genetic mater­
nal effects. We have described one test for the presence of an environmental contribution 
to maternal effects, but in most cases fostered individuals would be necessary for the 
discrimination between genotypic and phenotypic maternal effects. Maternal effects may 
also be cytoplasmic in origin as mothers provide the majority of their offsprings' cyto­
plasm. In this case the maternal effects will still contribute to the maternal half-sib 
covariance and in some cases to the mother-offspring covariance. Corey et al [2] have 
shown how the grandchildren of MZ twins may be used to distinguish cytoplasmic 
effects from other types of maternal effect. In general, practically any type of maternal 
effect will contribute to the similarity of maternally related half-sibs. Fewer types of 
maternal effects contribute towards the similarity of mothers and their offspring, as in 
most cases this is only possible when there is some overlap in the characters measured 
in parents and offspring (ie, the trait expression is not completely age dependent). 

Two effects we have not as yet examined may mirror maternal effects. Firstly, 
assortative mating of an asymmetric type, as investigated by Eaves and Heath [4], could 
cause an increased half-sib correlation in maternally related families [15,4] and thus 
be naively detected as maternal effects (it could equally cause an increased half-sib 
correlation in paternally related families). This form of asymmetry should result in 
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patterns of correlations between twins and their spouses which differ between male 
and female pairs of twins and are thus detectable in principle. Secondly, if some of the 
legal fathers are not the genetic fathers of the progeny, then, as the fathers are on average 
less closely related to their progeny th.nn the mothers, this could produce a pattern of 
statistics resembling that due to maternal effects. This would include the father-offspring 
correlation being less than the mother-offspring correlation and the paternal half-sib 
correlation being less than the maternal half-sib correlation. This problem can only be 
reduced by screening the families under study to exclude as many cases of non-paternity 
as possible. Nevertheless, in the absence of screening, the problem is probably not a 
serious one. For example, with a narrow heritability of 0.8 and a frequency of random 
non-paternity as high as 10%, the mother-offspring correlation would be 0.4 and the 
father-offspring correlation would be 0.36 and the maternal half-sib correlation would 
be 0.2 whereas the paternal half-sib correlation would be 0.162. That only these small 
differences occur even when the heritability and the frequency of undetected non­
paternity are high suggests that apparent large maternal effects are unlikely to be due to 
undetected non-paternity. 

In conclusion, although it will always be the case that any set of data is amenable 
to more than a single explanation, data from MZ and DZ twins and their, spouses and 
offspring provide a useful method for detecting and estimating variation due to maternal 
effects, sex-linked loci and sex-limited autosomal loci. Where model-fitting approaches 
to data analysis are utilised, data from DZ twins and their spouses and offspring, in 
addition to that from MZ twin families, is invaluable, allowing the formulation of more 
complex models of environmental and genetic causation than are possible withMZ twin 
families alone. Where, as is the case here, sex-associated traits are under investigation, 
the data from DZ opposite-sexed twins and their spouses and offspring is particularly 
useful and should not be neglected. The illustrative models we have explored here may 
well be applicable in a wide range of circumstances, but, as with any models, any defi­
ciencies they have may only become fully apparent when they are applied to real data. 
Thus, the immediate need is for the collection of sufficient data from MZ and DZ twins 
and their families and offspring to allow these models to be tested in practice. 
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