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Multiplicative structure of shifted multi-
plicative subgroups and its applications to
Diophantine tuples
Seoyoung Kim, Chi Hoi Yip and Semin Yoo

Abstract. In this paper,we investigate themultiplicative structure of a shiftedmultiplicative subgroup
and its connections with additive combinatorics and the theory of Diophantine equations. Among
many new results, we highlight our main contributions as follows. First, we show that if a nontrivial
shift of a multiplicative subgroup 𝐺 contains a product set 𝐴𝐵, then |𝐴| |𝐵 | is essentially bounded
by |𝐺 | , refining a well-known consequence of a classical result by Vinogradov. Second, we provide a
sharper upper bound of𝑀𝑘 (𝑛) , the largest size of a set such that each pairwise product of its elements
is 𝑛 less than a 𝑘-th power, refining the recent result ofDixit, Kim, andMurty. Onemain ingredient in
our proof is the first non-trivial upper boundon themaximumsize of a generalizedDiophantine tuple
over a finite field. In addition, we determine the maximum size of an infinite family of generalized
Diophantine tuples over finite fields with square order, which is of independent interest. We also
make significant progress towards a conjecture of Sárközy on the multiplicative decompositions of
shiftedmultiplicative subgroups. In particular, we prove that for almost all primes 𝑝, the set {𝑥2 − 1 :
𝑥 ∈ F∗𝑝 } \ {0} cannot be decomposed as the product of two sets in F𝑝 non-trivially.

1 Introduction

Let 𝑞 be a prime power, and let F𝑞 be the finite field with 𝑞 elements. Let 𝐺 be a mul-
tiplicative subgroup of F𝑞 . While 𝐺 itself has a “perfect" multiplicative structure, it is
natural to ask if a (non-trivial additive) shift of 𝐺 still possesses some multiplicative
structure. Indeed, as a fundamental question in additive combinatorics, this question has
drawn the attention of many researchers and it is closely related to many questions in
number theory. For example, a classical result of Vinogradov [36] states that for a prime
𝑝 and an integer 𝑛 such that 𝑝 ∤ 𝑛, if 𝐴, 𝐵 ⊂ {1, 2, . . . , 𝑝 − 1}, then���� ∑︁

𝑎∈𝐴, 𝑏∈𝐵

(
𝑎𝑏 + 𝑛

𝑝

)���� ≤ √︁
𝑝 |𝐴| |𝐵 |. (1.1)

More generally, inequality (1.1) extends to all nontrivial multiplicative characters over
all finite fields; see Proposition 3.1. Inequality (1.1) leads an estimate on the size of a
product set contains in the set of shifted squares: if 𝐴, 𝐵 ⊂ F∗𝑝 , 𝜆 ∈ F∗𝑝 , and 𝐺 is the
subgroup of F∗𝑝 of index 2 such that 𝐴𝐵 ⊂ (𝐺 + 𝜆), then

|𝐴| |𝐵 | < (1 + 𝑜(1))𝑝. (1.2)
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For more recent works related to this question and its connection with other problems,
we refer to [17, 27, 31, 37] and references therein. An analogue of this question over inte-
gers is closely related to the well-studied Diophantine tuples and their generalizations;
see Subsection 1.1.

In this paper, we study the multiplicative structure of a shifted multiplicative sub-
group following the spirit of the aforementioned works and discuss a few new applica-
tions in additive combinatorics and Diophantine equations. More precisely, one of our
contributions is the following theorem.

Theorem 1.1 Let 𝑑 | (𝑞 − 1) with 𝑑 ≥ 2. Let 𝑆𝑑 = {𝑥𝑑 : 𝑥 ∈ F∗𝑞}. Let 𝐴, 𝐵 ⊂ F∗𝑞

and 𝜆 ∈ F∗𝑞 with |𝐴|, |𝐵 | ≥ 2. Assume further that
( |𝐴|−1+ 𝑞−1

𝑑

|𝐴|
)
. 0 (mod 𝑝) if 𝑞 ≠ 𝑝. If

𝐴𝐵 + 𝜆 ⊂ 𝑆𝑑 ∪ {0}, then

|𝐴| |𝐵| ≤ |𝑆𝑑 | + |𝐵 ∩ (−𝜆𝐴−1) | + |𝐴| − 1.

Moreover, when 𝜆 ∈ 𝑆𝑑 , we have a stronger upper bound:

|𝐴| |𝐵 | ≤ |𝑆𝑑 | + |𝐵 ∩ (−𝜆𝐴−1) | − 1.

Clearly, Theorem1.1 improves inequality (1.2) implied byVinogradov’s estimate (1.1)
when 𝑑 = 2, and the generalization of inequality (1.2) by Gyarmati [17, Theorem 8]
for general 𝑑, where the upper bound is given by (√𝑝 + 2)2 when 𝑞 = 𝑝 is a prime.
We remark that in general the condition on the binomial coefficient in the statement of
Theorem 1.1 cannot be dropped when 𝑞 is not a prime; see Theorem 1.6.

The proof of Theorem 1.1 is based on Stepanov’s method [35], and is motivated by
a recent breakthrough of Hanson and Petridis [21]. In fact, Theorem 1.1 can be viewed
as a multiplicative analog of their results. Going beyond the perspective of these multi-
plicative analogs,we provide new insights into the application of Stepanov’smethod. For
example, our technique applies to all finite fields while their technique only works over
prime fields. We also prove a similar result for restricted product sets (see Theorem 4.2),
whereas their technique appears to only lead to a weaker bound; see Remark 4.3.

Besides Theorem 1.1, we also provide three novel applications of Theorem 1.1 and
its variants. These applications significantly improve on many previous results in the
literature. Unsurprisingly, to achieve these applications, we need additional tools and
insights from Diophantine approximation, sieve methods, additive combinatorics, and
character sums. From here, we briefly mention what applications are about. In Subsec-
tion 1.1, we improve the upper bound of generalized Diophantine tuples over integers.
Interestingly, Theorem 1.1 is closely related to a bipartite version of Diophantine tuples
over finite fields. This new perspective yields a substantial improvement in the result of
generalizedDiophantine tuples over integers. In Subsection 1.2, we obtain the first non-
trivial upper bounds on generalized Diophantine tuples and strong Diophantine tuples
over finite fields. Moreover, some of our new bounds are sharp. Last but not least, in
Subsection 1.3, we make significant progress towards a conjecture of Sárközy [31] on
multiplicative decompositions of shifted multiplicative subgroups. We elaborate on the
context of these applications in the next subsections.
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Multiplicative structure of shifted multiplicative subgroups 3

1.1 Diophantine tuples over integers

A set {𝑎1, 𝑎2, . . . , 𝑎𝑚} of distinct positive integers is aDiophantine𝑚-tuple if the product
of any two distinct elements in the set is one less than a square. The first known example
of integral Diophantine 4-tuples is {1, 3, 8, 120}whichwas studied by Fermat. TheDio-
phantine 4-tuple was extended by Euler to the rational 5-tuple {1, 3, 8, 120, 777480

8288641 },
and it had been conjectured that there is no Diophantine 5-tuple. The difficulty of
extendingDiophantine tuples can be explained by its connection to the problem of find-
ing integral points on elliptic curves: if {𝑎, 𝑏, 𝑐} forms a Diophantine 3-tuple, in order
to find a positive integer 𝑑 such that {𝑎, 𝑏, 𝑐, 𝑑} is a Diophantine 4-tuple, we need to
solve the following simultaneous equation for 𝑑:

𝑎𝑑 + 1 = 𝑠2, 𝑏𝑑 + 1 = 𝑡2, 𝑐𝑑 + 1 = 𝑟2.

This is related to the problem of finding an integral point (𝑑, 𝑠𝑡𝑟) on the following
elliptic curve

𝑦2 = (𝑎𝑥 + 1) (𝑏𝑥 + 1) (𝑐𝑥 + 1).

From this, we can deduce that there are no infinite Diophantine 𝑚-tuples by Siegel’s
theorem on integral points. On the other hand, Siegel’s theorem is not sufficient to
give an upper bound on the size of Diophantine tuples due to its ineffectivity. In the
same vein, finding a Diophantine tuple of size greater than or equal to 5 is related to
the problem of finding integral points on hyperelliptic curves of genus 𝑔 ≥ 2. Despite
the aforementioned difficulties, the conjecture on the non-existence of Diophantine 5-
tuples was recently proved to be true in the sequel of important papers by Dujella [9],
and He, Togbé, and Ziegler [22].

The definition of Diophantine𝑚-tuples has been generalized and studied in various
contexts. We refer to the recent book of Dujella [10] for a thorough list of known results
on the topic and their reference. In this paper, we focus on the following generalization
of Diophantine tuples: for each 𝑛 ≥ 1 and 𝑘 ≥ 2, we call a set {𝑎1, 𝑎2, . . . , 𝑎𝑚} of
distinct positive integers aDiophantine𝑚-tuple with property 𝐷𝑘 (𝑛) if the product of any
two distinct elements is 𝑛 less than a 𝑘-th power. We write

𝑀𝑘 (𝑛) = sup{|𝐴| : 𝐴 ⊂ N satisfies the property 𝐷𝑘 (𝑛)}.

Similar to the classical case, the problem of finding𝑀𝑘 (𝑛) for 𝑘 ≥ 3 and 𝑛 ≥ 1 is related
to the problem of counting the number of integral points of the superelliptic curve

𝑦𝑘 = 𝑓 (𝑥) = (𝑎1𝑥 + 𝑛) (𝑎2𝑥 + 𝑛) (𝑎3𝑥 + 𝑛)

The theorem of Faltings [13] guarantees that the above curve has only finitely many
integral points, and this, in turn, implies that a set with property 𝐷𝑘 (𝑛) must be finite.
The known upper bounds for the number of integral points depend on the coefficients
of 𝑓 (𝑥). The Caporaso-Harris-Mazur conjecture [6] implies that 𝑀𝑘 (𝑛) is uniformly
bounded, independent of 𝑛. For other conditional bounds, we refer the readers to
Subsection 2.4.

Unconditionally, in [4], Bugeaud andDujella [4, Corollary 4] showed that𝑀3 (1) ≤ 7,
𝑀𝑘 (1) ≤ 5 for 𝑘 ∈ {4, 5}, 𝑀𝑘 (1) ≤ 4 for 6 ≤ 𝑘 ≤ 176, and the uniform bound
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𝑀𝑘 (1) ≤ 3 for any 𝑘 ≥ 177 1. On the other hand, the best-known upper bound on
𝑀2 (𝑛) is (2+𝑜(1)) log 𝑛, due to the second author [39]. Very recently, Dixit, Murty, and
the first author [7] studied the size of a generalized Diophantine𝑚-tuple with property
𝐷𝑘 (𝑛), improving the previously best-known upper bound 𝑀3 (𝑛) ≤ 2|𝑛|17 + 6 and
𝑀𝑘 (𝑛) ≤ 2|𝑛|5+3 for 𝑘 ≥ 5 given by Bérczes, Dujella, Hajdu and Luca [2] when 𝑛 → ∞.
They showed that if 𝑘 is fixed and 𝑛 → ∞, then𝑀𝑘 (𝑛) ≪𝑘 log 𝑛. Following their proof
in [7], the bound can be more explicitly expressed as 𝑀𝑘 (𝑛) ≤ (3𝜙(𝑘) + 𝑜(1)) log 𝑛
when 𝑘 ≥ 3 is fixed, 𝑛 → ∞, and 𝜙 is the Euler phi function. Note that their upper
bound on 𝑀𝑘 (𝑛) is perhaps not desirable. Indeed, it is natural to expect that 𝑀𝑘 (𝑛)
would decrease if 𝑛 is fixed, and 𝑘 increases, since 𝑘-th powers become sparser. Instead,
our new upper bounds on 𝑀𝑘 (𝑛) support this heuristic.

In this paper, we provide a significant improvement on the upper bound of𝑀𝑘 (𝑛) by
using a novel combination of Stepanov’s method and Gallagher’s larger sieve inequality.
In order to state our first result, we define the following constant

𝜂𝑘 = min
I

|I |
𝑇2
I

(1.3)

for each 𝑘 ≥ 2, where the minimum is taken over all nonempty subsets I of the set

{1 ≤ 𝑖 ≤ 𝑘 : gcd(𝑖, 𝑘) = 1, gcd(𝑖 − 1, 𝑘) > 1},

and 𝑇I =
∑

𝑖∈I
√︁
gcd(𝑖 − 1, 𝑘).

Theorem 1.2 There is a constant 𝑐′ > 0, such that as 𝑛 → ∞,

𝑀𝑘 (𝑛) ≤
(

2𝑘
𝑘 − 2

+ 𝑜(1)
)
𝜂𝑘𝜙(𝑘) log 𝑛, (1.4)

holds uniformly for positive integers 𝑘, 𝑛 ≥ 3 such that log 𝑘 ≤ 𝑐′
√︁
log log 𝑛.

The constant 𝜂𝑘 is essentially computed via the optimal collection of “admissible"
residue classes when applying Gallagher’s larger sieve (see Section 5). Note that when
I = {1}, we have 𝑇I =

√
𝑘 , and hence we have 𝜂𝑘 ≤ 1

𝑘
. In particular, if 𝑘 ≥ 3 is fixed

and 𝑛 → ∞, inequality (1.4) implies the upper bound

𝑀𝑘 (𝑛) ≤
(2 + 𝑜(1))𝜙(𝑘)

𝑘 − 2
log 𝑛, (1.5)

which already improves the best-known upper bound 𝑀𝑘 (𝑛) ≤ (3𝜙(𝑘) + 𝑜(1)) log 𝑛
of [7] that we mentioned earlier substantially. In Appendix A, we illustrate the bound in
inequality (1.4): for 2 ≤ 𝑘 ≤ 1001, we compute the suggested upper bound

𝜈𝑘 =
2𝑘
𝑘 − 2

𝜂𝑘𝜙(𝑘)

of 𝛾𝑘 = lim sup𝑛→∞
𝑀𝑘 (𝑛)
log 𝑛 . From Figure A.1, one can compare the bound of 𝑀𝑘 (𝑛)

in Theorem 1.2 with the bound in [7]. From inequality (1.5), we see 𝛾𝑘 is uniformly

1As pointed out by [2], there was a minor inaccuracy in the original proof of [4, Corollary 4], but it only
affected the upper bound on 𝑀5 (1) .
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Multiplicative structure of shifted multiplicative subgroups 5

bounded by 6. Table A.2 illustrates better upper bounds on 𝛾𝑘 for 2 ≤ 𝑘 ≤ 201. In par-
ticular, we use a simple greedy algorithm to determine 𝜂𝑘 for a fixed 𝑘 . We also refer to
Subsection 5.3 for a simple upper bound on 𝜂𝑘 , whichwell approximates 𝜂𝑘 empirically.

At first glance, Theorem 1.2 improves the bound in [7] of 𝑀𝑘 (𝑛) by only a constant
multiplicative factor when 𝑘 is fixed. Nevertheless, note that Theorem 1.2 holds uni-
formly for 𝑘 and 𝑛 as long as log 𝑘 ≤ 𝑐′

√︁
log log 𝑛. Thus, when 𝑘 is assumed to be a

function of 𝑛 which increases as 𝑛 increases, we can break the “log 𝑛 barrier" in [7], that
is, 𝑀𝑘 (𝑛) = 𝑂𝑘 (log 𝑛), and provide a dramatic improvement.

Theorem 1.3 There is 𝑘 = 𝑘 (𝑛) such that log 𝑘 ≍
√︁
log log 𝑛, and

𝑀𝑘 (𝑛) ≪ exp
(
−𝑐′′ (log log 𝑛)1/4

log log log 𝑛

)
log 𝑛,

where 𝑐′′ > 0 is an absolute constant.

The proofs of Theorem 1.2 and Theorem 1.3 require the study of (generalized)
Diophantine tuples over finite fields, which we discuss below.

1.2 Diophantine tuples over finite fields

A Diophantine 𝑚-tuple with property 𝐷𝑑 (𝜆, F𝑞) is a set {𝑎1, . . . , 𝑎𝑚} of 𝑚 distinct
elements in F∗𝑞 such that 𝑎𝑖𝑎 𝑗 + 𝜆 is a 𝑑-th power in F∗𝑞 or 0 whenever 𝑖 ≠ 𝑗 .
Moreover, we also define the strong Diophantine tuples in finite fields motivated by
Dujella and Petričević [11]: a strong Diophantine𝑚-tuple with property 𝑆𝐷𝑑 (𝜆, F𝑞) is a set
{𝑎1, . . . , 𝑎𝑚} of𝑚 distinct elements in F∗𝑞 such that 𝑎𝑖𝑎 𝑗 + 𝜆 is a 𝑑-th power in F∗𝑞 or 0
for any choice of 𝑖 and 𝑗 . Unlike the natural analog for the classical Diophantine tuples
(of property 𝐷2 (1)), it makes sense to talk about the strong Diophantine tuples in F𝑞 .
The strong generalized Diophantine tuples with property 𝐷𝑘 (𝑛) in for general 𝑘 and
𝑛 are also meaningful to study: the problem of counting the explicit size of the strong
generalized Diophantine tuples with property 𝐷𝑘 (𝑛) involves the problem of counting
solutions of the equations appearing in the statement of Pillai’s conjecture. Theorem 1.2
can be improved for strong generalized Diophantine tuples with property 𝐷𝑘 (𝑛); see
Theorem 5.2.

The generalizations of Diophantine tuples over finite fields are of independent inter-
est. Perhaps the most interesting question to explore is the exact analog of estimating
𝑀𝑘 (𝑛) as discussed in Subsection 1.1. Indeed, estimating the size of the largestDiophan-
tine tuplewith property 𝑆𝐷𝑑 (𝜆, F𝑞) orwith property𝐷𝑑 (𝜆, F𝑞) is of particular interest
for the application of Diophantine tuples (over integers) as discussed in [1, 7, 8, 16, 24].
Similarly, we denote

𝑀𝑆𝐷𝑑 (𝜆, F𝑞) = sup{|𝐴| : 𝐴 ⊂ F∗𝑞 satisfies property 𝑆𝐷𝑑 (𝜆, F𝑞)}, and

𝑀𝐷𝑑 (𝜆, F𝑞) = sup{|𝐴| : 𝐴 ⊂ F∗𝑞 satisfies property 𝐷𝑑 (𝜆, F𝑞)}.

Note that when 𝜆 = 0, it is trivial that 𝑀𝑆𝐷𝑑 (𝜆, F𝑞) = 𝑀𝐷𝑑 (𝜆, F𝑞) =
𝑞−1
𝑑

. Thus,
we always assume 𝜆 ≠ 0 throughout the paper. In Section 3, we give an upper bound
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√
𝑞 + 𝑂 (1) of 𝑀𝑆𝐷𝑑 (𝜆, F𝑞) and 𝑀𝐷𝑑 (𝜆, F𝑞). More precisely, we prove the follow-

ing proposition using a double character sum estimate. We refer to the bounds in the
following proposition as the “trivial" upper bound.

Proposition 1.4 (Trivial upper bound) Let 𝑑 ≥ 2 and let 𝑞 ≡ 1 (mod 𝑑) be a prime
power. Let 𝐴 ⊂ F∗𝑞 and 𝜆 ∈ F∗𝑞 . Then 𝑀𝑆𝐷𝑑 (𝜆, F𝑞) ≤

√
4𝑞−3+1

2 and 𝑀𝐷𝑑 (𝜆, F𝑞) ≤√︃
𝑞 − 11

4 + 5
2 .

For the case 𝑞 = 𝑝, similar bounds of Proposition 1.4 are known previously
in [1, 7, 17]. On the other hand, Proposition 1.4 gives an almost optimal bound of
𝑀𝑆𝐷𝑑 (𝜆, F𝑞) and 𝑀𝐷𝑑 (𝜆, F𝑞) when 𝑞 is a square (Theorem 1.6). Our next theorem
improves the trivial upper bounds in Proposition 1.4 by a multiplicative constant factor√︁
1/𝑑 or

√︁
2/𝑑 when 𝑞 = 𝑝 is a prime.

Theorem 1.5 Let 𝑑 ≥ 2. Let 𝑝 ≡ 1 (mod 𝑑) be a prime and let 𝜆 ∈ F∗𝑝 . Then

(1) 𝑀𝑆𝐷𝑑 (𝜆, F𝑝) ≤
√︁
(𝑝 − 1)/𝑑 + 1. Moreover, if 𝜆 is a 𝑑-th power in F∗𝑝 , then we have

a stronger upper bound:

𝑀𝑆𝐷𝑑 (𝜆, F𝑝) ≤
√︂

𝑝 − 1
𝑑

− 3
4
+ 1
2
.

(2) 𝑀𝐷𝑑 (𝜆, F𝑝) ≤
√︁
2(𝑝 − 1)/𝑑 + 4.

We remark that our new bound on 𝑀𝑆𝐷𝑑 (𝜆, F𝑝) is sometimes sharp. For example,
we get a tight bound for a prime 𝑝 ∈ {5, 7, 11, 13, 17, 23, 31, 37, 41, 53, 59, 61, 113}
when 𝑑 = 2 and 𝜆 = 1. See also Theorem 4.7 and Remark 4.8 for a generaliza-
tion of Theorem 1.5 over general finite fields with non-square order under some extra
assumptions.

Nevertheless, in the case of finite fields of square order, we improve Proposition 1.4
by a little bit under some minor assumptions; see Theorem 4.5. Surprisingly, this tiny
improvement turns out to be sharp for many infinite families of (𝑞, 𝑑, 𝜆). Equivalently,
we determine𝑀𝐷𝑑 (𝜆, F𝑞) and𝑀𝑆𝐷𝑑 (𝜆, F𝑞) exactly in those families. In the following
theorem, we give a sufficient condition so that 𝑀𝐷𝑑 (𝜆, F𝑞) and 𝑀𝑆𝐷𝑑 (𝜆, F𝑞) can be
determined explicitly.

Theorem 1.6 Let 𝑞 be a prime power and a square, 𝑑 ≥ 2, and 𝑑 | (√𝑞+1). Let 𝑆𝑑 = {𝑥𝑑 :
𝑥 ∈ F∗𝑞}. Suppose that there is 𝛼 ∈ F𝑞 such that 𝛼2 ∈ 𝑆𝑑 and 𝜆 ∈ 𝛼2F∗√

𝑞
(for example, if

𝛼 = 1 and 𝜆 ∈ F∗√
𝑞
). Suppose further that 𝑟 ≤ (𝑝 − 1)√𝑞, where 𝑟 is the remainder of 𝑞−1

𝑑

divided by 𝑝
√
𝑞. Then 𝑀𝑆𝐷𝑑 (𝜆, F𝑞) =

√
𝑞 − 1. If 𝑞 ≥ 25 and 𝑑 ≥ 3, then we have the

stronger conclusion that 𝑀𝐷𝑑 (𝜆, F𝑞) =
√
𝑞 − 1.

Under the assumptions on Theorem 1.6, 𝛼F∗√
𝑞
satisfies the required property

𝑆𝐷𝑑 (𝜆, F𝑞) and𝐷𝑑 (𝜆, F𝑞). Compared to Theorem 1.5, it is tempting to conjecture that
such an algebraic construction (which is unique to finite fields with proper prime power
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Multiplicative structure of shifted multiplicative subgroups 7

order) is the optimal one with the required property. Given Proposition 1.4, to show
such construction is optimal, it suffices to rule out the possibility of a Diophantine tuple
with property 𝑆𝐷𝑑 (𝜆, F𝑞) and 𝐷𝑑 (𝜆, F𝑞) of size

√
𝑞. While this seems easy, it turned

out that this requires non-trivial efforts.
Next, we give concrete examples where Theorem 1.6 applies.

Example 1.7 Note that a Diophantine tuple with property 𝑆𝐷2 (1, F𝑞) corresponds to
a strong Diophantine tuple over F𝑞 . If 𝑞 is an odd square, Theorem 1.6 implies that the
largest size of a strong Diophantine tuple over F𝑞 is given by

√
𝑞 − 1, which is achieved

by F∗√
𝑞
. Note that in this case we have 𝑟 = 𝑝

√
𝑞−1
2 < (𝑝 − 1)√𝑞.

We also consider the case that 𝑑 = 3, 𝑑 | (√𝑞+1), and𝜆 = 1. In this case, Theorem1.6
also applies. Note that 3 | (√𝑞 +1) implies that 𝑝 ≡ 2 (mod 3), in which case the base-
𝑝 representation of 𝑞−1

3 only contains the digit 𝑝−2
3 and 2𝑝−1

3 , so that the condition
𝑟 ≤ (𝑝 − 1)√𝑞 holds.

One key ingredient of the proof of Theorem 1.5 and Theorem 1.6 is Theorem 1.1.
Indeed, Theorem 1.1 can also be viewed as on an upper bound of a bipartite version of
Diophantine tuples over finite fields. For the applications to strong Diophantine tuples,
Theorem 1.1 is sufficient. On the other hand, to obtain upper bounds on Diophantine
tuples (which are not necessarily strong Diophantine tuples), we also need a version of
Theorem 1.1 for restricted product sets, which can be found as Theorem 4.2. Indeed,
Theorem 1.1 alone only implies a weaker bound of the form 2

√︁
𝑝/𝑑 for𝑀𝑆𝐷𝑑 (𝜆, F𝑝);

see Remark 4.3.

1.3 Multiplicative decompositions of shifted multiplicative subgroups

A well-known conjecture of Sárközy [30] asserts that the set of nonzero squares 𝑆2 =

{𝑥2 : 𝑥 ∈ F∗𝑝} ⊂ F𝑝 cannot be written as 𝑆2 = 𝐴 + 𝐵, where 𝐴, 𝐵 ⊂ F𝑝 and
|𝐴|, |𝐵| ≥ 2, provided that 𝑝 is a sufficiently large prime. This conjecture essentially
predicts that the set of quadratic residues in a prime field cannot have a rich additive
structure. Similarly, one expects that any non-trivial shift of 𝑆2 cannot have a rich mul-
tiplicative structure. Indeed, this can be made precise via another interesting conjecture
of Sárközy [31], which we make progress in the current paper.

Conjecture 1.8 (Sárközy) If 𝑝 is a sufficiently large prime and 𝜆 ∈ F∗𝑝 , then the shifted
subgroup (𝑆2−𝜆)\{0} cannot be written as the product 𝐴𝐵, where 𝐴, 𝐵 ⊂ F∗𝑝 and |𝐴|, |𝐵 | ≥
2. In other words, (𝑆2 − 𝜆) \ {0} has no non-trivial multiplicative decomposition.

We note that it is necessary to take out the element 0 from the shifted subgroup, for
otherwise one can always decompose 𝑆2−𝜆 as {0, 1} · (𝑆2−𝜆). It appears that this prob-
lem concerningmultiplicative decompositions ismore difficult than the one concerning
additive decompositions stated previously, given that it might depend on the parameter
𝜆. Inspired by Conjecture 1.8, we formulate the following more general conjecture for
any propermultiplicative subgroup. For simplicity, we denote 𝑆𝑑 = 𝑆𝑑 (F𝑞) = {𝑥𝑑 : 𝑥 ∈
F∗𝑞} to be the set of 𝑑-th powers in F∗𝑞 , equivalently, the subgroup of F∗𝑞 with order

𝑞−1
𝑑

.
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Conjecture 1.9 Let 𝑑 ≥ 2. If 𝑞 ≡ 1 (mod 𝑑) is a sufficiently large prime power, then for
any 𝜆 ∈ F∗𝑞 , (𝑆𝑑 − 𝜆) \ {0} does not admit a non-trivial multiplicative decomposition, that
is, there do not exist two sets 𝐴, 𝐵 ⊂ F∗𝑞 with |𝐴|, |𝐵 | ≥ 2, such that (𝑆𝑑 − 𝜆) \ {0} = 𝐴𝐵.

Conjecture 1.9 predicts that a shifted multiplicative subgroup of a finite field admits
a non-trivial multiplicative decomposition only when it has a small size.We remark that
the integer version of Conjecture 1.9, namely, for each 𝑘 ≥ 2, a non-trivial shift of 𝑘-
th powers in integers has no non-trivial multiplicative decomposition, has been proved
and strengthened in a series of papers by Hajdu and Sárközy [18, 19, 20]. On the other
hand, to the best knowledge of the authors, Conjecture 1.9 appears to be much harder
and no partial progress has been made. For the analog of Conjecture 1.9 on the additive
decomposition of multiplicative subgroups, we refer to recent papers [21, 31, 33, 38] for
an extensive discussion on partial progress.

Our main contribution to Conjecture 1.9 is the following two results. The first one
is a corollary of Theorem 1.1.

Corollary 1.10 Let 𝑑 ≥ 2 and 𝑝 be a prime such that 𝑑 | (𝑝−1). Let 𝜆 ∈ 𝑆𝑑 . If (𝑆𝑑 −𝜆) \
{0} can be multiplicative decomposed as the product of two sets 𝐴, 𝐵 ⊂ F∗𝑝 with |𝐴|, |𝐵 | ≥ 2,
then we must have |𝐴| |𝐵| = |𝑆𝑑 | −1, that is, all products 𝑎𝑏 are distinct. In other words, 𝐴, 𝐵
are multiplicatively co-Sidon.

In particular, Corollary 1.10 confirms Conjecture 1.9 under the assumption that 𝑞 is
a prime, 𝜆 ∈ 𝑆𝑑 , and |𝑆𝑑 | − 1 is a prime. The second result provides a partial answer to
Conjecture 1.9 asymptotically.

Theorem 1.11 Let 𝑑 ≥ 2 be fixed and 𝑛 be a positive integer. As 𝑥 → ∞, the number
of primes 𝑝 ≤ 𝑥 such that 𝑝 ≡ 1 (mod 𝑑) and (𝑆𝑑 (F𝑝) − 𝑛) \ {0} has no non-trivial
multiplicative decomposition is at least

(
1

[Q(𝑒2𝜋𝑖/𝑑 , 𝑛1/𝑑) : Q]
− 𝑜(1)

)
𝜋(𝑥).

In particular, by setting 𝑛 = 1 and 𝑑 = 2, our result has the following significant
implication to Sárközy’s conjecture [31]: for almost all odd primes 𝑝, the shifted multi-
plicative subgroup (𝑆2 (F𝑝) − 1) \ {0} has no non-trivial multiplicative decomposition.
In other words, if 𝜆 = 1, then Sárközy’s conjecture holds for almost all primes 𝑝; see
Theorem 6.1 for a precise statement.

Some partial progress has been made for Conjecture 1.9 when the multiplicative
decomposition is assumed to have special forms [31, 33]. We also make progress in
this direction in Subsection 6.2. In particular, in Theorem 6.6, we confirm the ternary
version of Conjecture 1.9 in a strong sense, which generalizes [31, Theorem 2].

Notations. We follow standard notations from analytic number theory. We use 𝜋
and 𝜃 to denote the standard prime-counting functions. We adopt standard asymptotic
notations𝑂, 𝑜,≍. We also follow the Vinogradov notation≪: we write 𝑋 ≪ 𝑌 if there
is an absolute constant𝐶 > 0 so that |𝑋 | ≤ 𝐶𝑌 .
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Throughout the paper, let 𝑝 be a prime and 𝑞 a power of 𝑝. Let F𝑞 be the finite field
with 𝑞 elements and let F∗𝑞 = F𝑞 \ {0}. We always assume that 𝑑 | (𝑞 − 1) with 𝑑 ≥ 2,
and denote 𝑆𝑑 (F𝑞) = {𝑥𝑑 : 𝑥 ∈ F∗𝑞} to be the subgroup of F∗𝑞 with order 𝑞−1

𝑑
. If 𝑞 is

assumed to be fixed, for brevity, we simply write 𝑆𝑑 instead of 𝑆𝑑 (F𝑞).
We also need some notations for arithmetic operations among sets. Given two sets

𝐴 and 𝐵, we write the product set 𝐴𝐵 = {𝑎𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, and the sumset 𝐴 + 𝐵 =

{𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. Given the definition of Diophantine tuples, it is also useful to
define the restricted product set of 𝐴, that is, 𝐴×̂𝐴 = {𝑎𝑏 : 𝑎, 𝑏 ∈ 𝐴, 𝑎 ≠ 𝑏}.

Structure of the paper. In Section 2, we introduce more background. In Section 3,
using Gauss sums and Weil’s bound, we give an upper bound on the size of the set
which satisfies various multiplicative properties based on character sum estimates. In
particular, we prove Proposition 1.4. In Section 4, we first prove Theorem 1.1 using
Stepanov’s method. At the end of the section, we deduce applications of Theorem 1.1
to Diophantine tuples and prove Theorem 1.5 and Theorem 1.6. Via Gallagher’s larger
sieve inequality and other tools from analytic number theory, in Section 5, we prove
Theorem 1.2 and Theorem 1.3. In Section 6, we study multiplicative decompositions
and prove Theorem 1.11.

2 Background

2.1 Stepanov’s method

We first describe Stepanov’s method [35]. If we can construct a low degree non-zero aux-
iliary polynomial that vanishes on each element of a set 𝐴 with high multiplicity, then
we can give an upper bound on |𝐴| based on the degree of the polynomial. It turns out
that the most challenging part of our proofs is to show that the auxiliary polynomial
constructed is not identically zero.

To check that each root has a high multiplicity, standard derivatives might not work
since we are working in a field with characteristic 𝑝. To resolve this issue, we need the
following notation of derivatives, known as theHasse derivatives or hyper-derivatives; see
[26, Section 6.4].

Definition 2.1 Let 𝑐0, 𝑐1, . . . 𝑐𝑑 ∈ F𝑞 . If 𝑛 is a non-negative integer, then the 𝑛-th
hyper-derivative of 𝑓 (𝑥) = ∑𝑑

𝑗=0 𝑐 𝑗𝑥
𝑗 is

𝐸 (𝑛) ( 𝑓 ) =
𝑑∑︁
𝑗=0

(
𝑗

𝑛

)
𝑐 𝑗𝑥

𝑗−𝑛,

where we follow the standard convention that
( 𝑗
𝑛

)
= 0 for 𝑗 < 𝑛, so that the 𝑛-th hyper-

derivative is a polynomial.

Following the definition, we have 𝐸 (0) 𝑓 = 𝑓 . We also need the next three lemmas.
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Lemma 2.2 ([26, Lemma 6.47]) If 𝑓 , 𝑔 ∈ F𝑞 [𝑥] , then

𝐸 (𝑛) ( 𝑓 𝑔) =
𝑛∑︁

𝑘=0
𝐸 (𝑘 ) ( 𝑓 )𝐸 (𝑛−𝑘 ) (𝑔).

Lemma 2.3 ([26, Corollary 6.48]) Let 𝑛, 𝑑 be positive integers. If 𝑎 ∈ F∗𝑞 and 𝑐 ∈ F𝑞 , then
we have

𝐸 (𝑛) ((𝑎𝑥 + 𝑐)𝑑
)
= 𝑎𝑛

(
𝑑

𝑛

)
(𝑎𝑥 + 𝑐)𝑑−𝑛. (2.1)

Lemma 2.4 ([26, Lemma 6.51]) Let 𝑓 be a non-zero polynomial in F𝑞 [𝑥]. If 𝑐 is a root of
𝐸 (𝑘 ) ( 𝑓 ) for 𝑘 = 0, 1, . . . , 𝑚 − 1, then 𝑐 is a root of multiplicity at least 𝑚.

2.2 Gallagher’s larger sieve inequality

In this subsection, we introduce Gallagher’s larger sieve inequality and provide neces-
sary estimations from it. Gallagher’s larger sieve inequalitywill be one of themain ingre-
dients for the proof of Theorem 1.2. In 1971, Gallagher [15] discovered the following
sieve inequality.

Theorem 2.5 (Gallagher’s larger sieve inequality) Let 𝑁 be a natural number and 𝐴 ⊂
{1, 2, . . . , 𝑁}. Let P be a set of primes. For each prime 𝑝 ∈ P , let 𝐴𝑝 = 𝐴 (mod 𝑝). For
any 1 < 𝑄 ≤ 𝑁 , we have

|𝐴| ≤

∑
𝑝≤𝑄,𝑝∈P

log 𝑝 − log 𝑁∑
𝑝≤𝑄,𝑝∈P

log 𝑝
|𝐴𝑝 | − log 𝑁

, (2.2)

provided that the denominator is positive.

As a preparation to apply Gallagher’s larger sieve in our proof, we need to establish
a few estimates related to primes in arithmetic progressions. For (𝑎, 𝑘) = 1, we follow
the standard notation

𝜃 (𝑥; 𝑘, 𝑎) =
∑︁
𝑝≤𝑥

𝑝≡𝑎 mod 𝑘

log 𝑝.

For our purposes, log 𝑘 could be as large as
√︁
log log 𝑥 (for example, see Theorem 1.2),

and we need the Siegel-Walfisz theorem to estimate 𝜃 (𝑥; 𝑘, 𝑎).

Lemma 2.6 ([28, Corollary 11.21]) Let 𝐴 > 0 be a constant. There is a constant 𝑐1 > 0
such that

𝜃 (𝑄; 𝑘, 𝑎) = 𝑄

𝜙(𝑘) +𝑂𝐴

(
𝑄 exp(−𝑐1

√︁
log𝑄)

)
holds uniformly for 𝑘 ≤ (log𝑄)𝐴 and (𝑎, 𝑘) = 1.
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A standard application of partial summation with Lemma 2.6 leads to the following
corollary.

Corollary 2.7 There is a constant 𝑐 > 0, such that∑︁
𝑝≤𝑄

𝑝≡𝑎 mod 𝑘

log 𝑝
√
𝑝

=
2
√
𝑄

𝜙(𝑘) +𝑂

(√︁
𝑄 exp(−𝑐

√︁
log𝑄)

)
holds uniformly for 𝑘 ≤ log𝑄 and (𝑎, 𝑘) = 1.

We also need the following lemma.

Lemma 2.8 ([1, page 72]) Let 𝑛 be a positive integer. Then∑︁
𝑝 |𝑛

log 𝑝
√
𝑝

≪ (log 𝑛)1/2.

2.3 An effective estimate for 𝑀𝑘 (𝑛, 𝑘
𝑘−2 )

Following [7], for each real number 𝐿 > 0, we write

𝑀𝑘 (𝑛; 𝐿) := sup{|𝑆 ∩ [𝑛𝐿 ,∞)| : 𝑆 satisfies property 𝐷𝑘 (𝑛)}.

It is shown in [7] that𝑀𝑘 (𝑛, 3) ≪𝑘 1 as 𝑛 → ∞. For our application, we show a stronger
result that 𝑀𝑘 (𝑛, 𝑘

𝑘−2 ) ≪𝑘 1 and we will make this estimate explicit and effective. We
follow the proof in [7] closely and prove the following proposition, which will be used
later in the proof of Theorem 1.2.

Proposition 2.9 If 𝑘 ≥ 3 and 𝑛 > (2𝑘𝑒)𝑘2 , then 𝑀𝑘 (𝑛, 𝑘
𝑘−2 ) ≪ log 𝑘 log log 𝑘 , where

the implicit constant is absolute.

Let 𝑘 ≥ 3. Let 𝑚 = 𝑀𝑘 (𝑛, 𝑘
𝑘−2 ) and 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑚} be a generalized 𝑚-

tuple with property 𝐷𝑘 (𝑛) and 𝑛
𝑘

𝑘−2 < 𝑎1 < 𝑎2 < · · · < 𝑎𝑚. Consider the system of
equations {

𝑎1𝑥 + 𝑛 = 𝑢𝑘

𝑎2𝑥 + 𝑛 = 𝑣𝑘 .
(2.3)

Clearly, for each 𝑖 ≥ 3, 𝑥 = 𝑎𝑖 is a solution to this system, and we denote 𝑢𝑖 , 𝑣𝑖 so that
𝑎1𝑎𝑖 + 𝑛 = 𝑢𝑘

𝑖
and 𝑎2𝑎𝑖 + 𝑛 = 𝑣𝑘

𝑖
. Let 𝛼 := (𝑎1/𝑎2)1/𝑘 .

The following lemma is a generalization of [7, Lemma 3.1], showing that 𝑢𝑖/𝑣𝑖 pro-
vides a “good" rational approximation to 𝛼 if 𝑛 is large. Note that in [7, Lemma 3.1], it
was further assumed that 𝑘 is odd and 𝐿 = 3. Nevertheless, an almost identical proof
works, and we skip the proof.
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Lemma 2.10 Let

𝑐(𝑘) :=
⌊ (𝑘−1)/2⌋∏

𝑗=1

(
sin

2𝜋 𝑗
𝑘

)2
.

Assume that 𝑛 > (2/𝑐(𝑘)) (𝑘−2)/2. Then for each 3 ≤ 𝑖 ≤ 𝑚, we have����𝑢𝑖𝑣𝑖 − 𝛼

���� ≤ 𝑎2

2𝑣𝑘
𝑖

. (2.4)

Corollary 2.11 Assume that 𝑛 > (2/𝑐(𝑘)) (𝑘−2)/2. Then 𝑣𝑖 ≥ 𝑎42 for each 14 ≤ 𝑖 ≤ 𝑚

and ����𝑢𝑖𝑣𝑖 − 𝛼

���� < 1

𝑣
𝑘−1/2
𝑖

. (2.5)

Proof Let 2 ≤ 𝑖 ≤ 𝑚 − 3. Applying the gap principle from [7, Lemma 2.4] to
𝑎𝑖 , 𝑎𝑖+1, 𝑎𝑖+2, 𝑎𝑖+3, we have

𝑎𝑖+1𝑎𝑖+3 ≥ 𝑘 𝑘𝑛−𝑘 (𝑎𝑖𝑎𝑖+2)𝑘−1 ≥ 𝑘 𝑘𝑛−𝑘 (𝑎𝑖𝑎𝑖+1)𝑘−1.

It follows that

𝑎𝑖+3 ≥ 𝑎𝑘−1𝑖 𝑎𝑘−2𝑖+1 𝑛
−𝑘 ≥ 𝑎𝑘−1𝑖 .

In particular 𝑎14 ≥ 𝑎
(𝑘−1)4
2 ≥ 𝑎4𝑘2 . Thus, if 𝑖 ≥ 14, then 𝑣𝑖 ≥ 𝑎

1/𝑘
𝑖

≥ 𝑎
1/𝑘
14 ≥ 𝑎42 and

inequality (2.5) follows from Lemma 2.10. ■

Nowwe are ready to prove Proposition 2.9. Recall we have the inequality sin 𝑥 ≥ 2𝑥
𝜋

for 𝑥 ∈ [0, 𝜋
2 ] , and the inequality 𝑠! ≥ (𝑠/𝑒)𝑠 for all positive integers 𝑠. It follows that√︁

𝑐(𝑘) =
(𝑘−1)/2∏

𝑗=1
sin

2𝜋 𝑗
𝑘

=

(𝑘−1)/2∏
𝑗=1

sin
𝜋 𝑗

𝑘
≥

(𝑘−1)/2∏
𝑗=1

2 𝑗
𝑘

=
((𝑘 − 1)/2)!
(𝑘/2) (𝑘−1)/2

≥
(
𝑘 − 1
𝑘𝑒

) (𝑘−1)/2
when 𝑘 is odd, and

(𝑐(𝑘))1/4 =

√√√√(𝑘−2)/2∏
𝑗=1

sin
2𝜋 𝑗
𝑘

=

⌊𝑘/4⌋∏
𝑗=1

sin
𝜋 𝑗

𝑘/2 ≥
⌊𝑘/4⌋∏
𝑗=1

4 𝑗
𝑘

=
(⌊𝑘/4⌋)!
(𝑘/4) ⌊𝑘/4⌋

≥
(
4⌊𝑘/4⌋
𝑘𝑒

) ⌊𝑘/4⌋
when 𝑘 is even. Thus, when 𝑘 ≥ 3, we always have

2
𝑐(𝑘) ≤ 2

(
𝑘𝑒

𝑘 − 2

) 𝑘
≤ 2(𝑘𝑒)𝑘 .

Therefore, when 𝑛 > (2𝑘𝑒)𝑘2 , we can apply Lemma 2.10. Note that the absolute height
of 𝛼 is 𝐻 (𝛼) ≤ 𝑎

1/𝑘
2 . Since 𝑘 ≥ 3, for 14 ≤ 𝑖 ≤ 𝑚, Lemma 2.10 implies that����𝑢𝑖𝑣𝑖 − 𝛼

���� ≤ 1

𝑣
𝑘−1/2
𝑖

≤ 1
𝑣2.5
𝑖

;
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moreover, max(𝑢𝑖 , 𝑣𝑖) = 𝑣𝑖 > 𝑎
1/𝑘
2 ≥ max(𝐻 (𝛼), 2). Therefore, we can apply the

quantitative Roth’s theorem due to Evertse [12] (see also [7, Theorem 2.2]) to conclude
that

𝑚 ≤ 13 + 228 log(2𝑘) log(2 log 2𝑘) ≪ log 𝑘 log log 𝑘,
where the implicit constant is absolute.

2.4 Implications of the Paley graph conjecture

ThePaley graph conjecture ondouble character sums impliesmany results of the present
paper related to the estimation of character sums. We record the statement of the
conjecture (see for example [7, 16]).

Conjecture 2.12 (Paley graph conjecture) Let 𝜖 > 0 be a real number. Then there is 𝑝0 =

𝑝0 (𝜖) and 𝛿 = 𝛿(𝜖) > 0 such that for any prime 𝑝 > 𝑝0, any 𝐴, 𝐵 ⊆ F𝑝 with |𝐴|, |𝐵 | >
𝑝 𝜖 , and any non-trivial multiplicative character 𝜒 of F𝑝 , the following inequality holds:���� ∑︁

𝑎∈𝐴, 𝑏∈𝐵
𝜒(𝑎 + 𝑏)

���� ≤ 𝑝−𝛿 |𝐴| |𝐵 |.

The connection between the Paley graph conjecture and the problem of bounding
the size of Diophantine tuples was first observed by Güloğlu and Murty in [16]. Let
𝑑 ≥ 2 be fixed, 𝜆 ∈ F∗𝑝 , where 𝑝 ≡ 1 (mod 𝑑) is a prime. The Paley graph conjec-
ture trivially implies 𝑀𝐷𝑑 (𝜆, F𝑝) = 𝑝𝑜 (1) and 𝑀𝑆𝐷𝑑 (𝜆, F𝑝) = 𝑝𝑜 (1) as 𝑝 → ∞.
Also, the bound on 𝑀𝑘 (𝑛) in Theorem 1.2 can be improved to (log 𝑛)𝑜 (1) (see [7], [16])
when 𝑘 is fixed and 𝑛 → ∞. Furthermore, the Paley graph conjecture also immediately
implies Sárközy’s conjecture (Conjecture 1.8) in view of Proposition 3.4. However, the
Paley graph conjecture itself remainswidely open, and our results are unconditional.We
refer to [32] and the references therein for recent progress on the Paley graph conjecture
assuming 𝐴, 𝐵 have small doubling.

3 Preliminary estimations for product sets in shifted
multiplicative subgroups

3.1 Character sum estimate and the square root upper bound

The purpose of this subsection is to prove Proposition 1.4 by establishing an upper
bound on the double character sum in Proposition 3.1 using basic properties of charac-
ters and Gauss sums. For any prime 𝑝, and any 𝑥 ∈ F𝑝 , we follow the standard notation
that 𝑒𝑝 (𝑥) = exp(2𝜋𝑖𝑥/𝑝), where we embed F𝑝 into Z. We refer the reader to [26,
Chapter 5] for more results related to Gauss sums and character sums.

We refer to [1, Section 2] for a historical discussion of Vinogradov’s inequality (1.1).
Gyarmati [17, Theorem 7] and Becker and Murty [1, Proposition 2.7] independently
showed that the Legendre symbol in inequality (1.1) can be replacedwith any non-trivial
Dirichlet charactermodulo 𝑝. For our purposes, we extendVinogradov’s inequality (1.1)
to all finite fields F𝑞 and all nontrivial multiplicative characters 𝜒 of F𝑞 , with a slightly
improved upper bound.
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Proposition 3.1 Let 𝜒 be a non-trivial multiplicative character of F𝑞 and 𝜆 ∈ F∗𝑞 . For any
𝐴, 𝐵 ⊂ F∗𝑞 , we have���� ∑︁

𝑎∈𝐴, 𝑏∈𝐵
𝜒(𝑎𝑏 + 𝜆)

���� ≤ √︁
𝑞 |𝐴| |𝐵 |

(
1 − max{|𝐴|, |𝐵 |}

𝑞

)1/2
.

Before proving Proposition 3.1, we need some preliminary estimates. Let 𝜒 be a
multiplicative character of F𝑞 ; then the Gauss sum associated to 𝜒 is defined to be

𝐺 (𝜒) =
∑︁
𝑐∈F𝑞

𝜒(𝑐)𝑒𝑝
(
TrF𝑞 (𝑐)

)
,

where TrF𝑞 : F𝑞 → F𝑝 is the absolute trace map.

Lemma 3.2 ([26, Theorem 5.12]) Let 𝜒 be a multiplicative character of F𝑞 . Then for any
𝑎 ∈ F𝑞 ,

𝜒(𝑎) = 1
𝐺 (𝜒)

∑︁
𝑐∈F𝑞

𝜒(𝑐)𝑒𝑝
(
TrF𝑞 (𝑎𝑐)

)
.

Now we are ready to prove Proposition 3.1.

Proof By Lemma 3.2, we can write

∑︁
𝑎∈𝐴, 𝑏∈𝐵

𝜒(𝑎𝑏 + 𝜆) =
∑︁

𝑎∈𝐴, 𝑏∈𝐵
𝜒(𝑏)𝜒(𝑎 + 𝜆𝑏−1)

=
1

𝐺 (𝜒)
∑︁
𝑐∈F𝑞

𝜒(𝑐)
∑︁

𝑎∈𝐴, 𝑏∈𝐵
𝜒(𝑏)𝑒𝑝

(
Tr((𝑎 + 𝜆𝑏−1)𝑐)

)
.

It is well-known that |𝐺 (𝜒) | =
√
𝑞 (see for example [26, Theorem 5.11]). Since

|𝜒(𝑐) | = 1 for each 𝑐 ∈ F∗𝑞 , we can apply the triangle inequality and Cauchy-Schwarz
inequality to obtain���� ∑︁
𝑎∈𝐴, 𝑏∈𝐵

𝜒(𝑎𝑏 + 𝜆)
���� ≤ 1

√
𝑞

∑︁
𝑐∈F∗𝑞

���� ∑︁
𝑎∈𝐴, 𝑏∈𝐵

𝜒(𝑏)𝑒𝑝
(
Tr((𝑎 + 𝜆𝑏−1)𝑐)

) ����
≤ 1

√
𝑞

( ∑︁
𝑐∈F∗𝑞

���� ∑︁
𝑎∈𝐴

𝑒𝑝
(
Tr(𝑎𝑐)

) ����2)1/2 ( ∑︁
𝑐∈F∗𝑞

���� ∑︁
𝑏∈𝐵

𝜒(𝑏)𝑒𝑝
(
Tr(𝑏−1𝑐)

) ����2)1/2.
By orthogonality relations, we have∑︁

𝑐∈F∗𝑞

���� ∑︁
𝑎∈𝐴

𝑒𝑝
(
Tr(𝑎𝑐)

) ����2 = 𝑞 |𝐴| − |𝐴|2,
∑︁
𝑐∈F∗𝑞

���� ∑︁
𝑏∈𝐵

𝜒(𝑏)𝑒𝑝
(
Tr(𝑏−1𝑐)

) ����2 ≤ 𝑞 |𝐵 |.
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Thus, we have ���� ∑︁
𝑎∈𝐴, 𝑏∈𝐵

𝜒(𝑎𝑏 + 𝜆)
���� ≤ √︁

𝑞 |𝐴| |𝐵 |
(
1 − |𝐴|

𝑞

)1/2
.

By switching the roles of 𝐴 and 𝐵, we obtain the required character sum estimate. ■

Let 𝑑 | (𝑞−1) such that 𝑑 ≥ 2 and denote 𝑆𝑑 = {𝑥𝑑 : 𝑥 ∈ F∗𝑞}with order
𝑞−1
𝑑

. Then
we prove Proposition 1.4.

Proof Let 𝜒 be a multiplicative character of order 𝑑.
Let 𝐴 ⊂ F∗𝑞 with property 𝑆𝐷𝑑 (𝜆, F𝑞), that is, 𝐴𝐴 + 𝜆 ⊂ 𝑆𝑑 ∪ {0}. Note that

𝜒(𝑎𝑏 + 𝜆) = 1 for each 𝑎, 𝑏 ∈ 𝐴, unless 𝑎𝑏 + 𝜆 = 0. Note that given 𝑎 ∈ 𝐴, there is at
most one 𝑏 ∈ 𝐴 such that 𝑎𝑏 + 𝜆 = 0. Therefore, by Proposition 3.1, we have

|𝐴|2 − |𝐴| ≤
���� ∑︁
𝑎,𝑏∈𝐴

𝜒(𝑎𝑏 + 𝜆)
���� ≤ √

𝑞 |𝐴|
(
1 − |𝐴|

𝑞

)1/2
.

It follows that

( |𝐴| − 1)2 ≤ 𝑞 − |𝐴| =⇒ |𝐴| ≤
√
4𝑞 − 3 + 1

2
.

Next we work under the weaker assumption 𝐴×̂𝐴 + 𝜆 ⊂ 𝑆𝑑 ∪ {0}. In this case, note
that 𝜒(𝑎𝑏+𝜆) = 1 for each 𝑎, 𝑏 ∈ 𝐴 such that 𝑎 ≠ 𝑏, unless 𝑎𝑏+𝜆 = 0. Proposition 3.1
then implies that

|𝐴|2 − 3|𝐴| ≤
���� ∑︁
𝑎,𝑏∈𝐴

𝜒(𝑎𝑏 + 𝜆)
���� ≤ √

𝑞 |𝐴|
(
1 − |𝐴|

𝑞

)1/2
and it follows that |𝐴| ≤

√︃
𝑞 − 11

4 + 5
2 . ■

3.2 Estimates on |𝐴| and |𝐵 | if 𝐴𝐵 = (𝑆𝑑 − 𝜆) \ {0}

Let 𝐴, 𝐵 ⊂ F∗𝑞 and 𝜆 ∈ F∗𝑞 . In this subsection, we provide several useful estimates on
|𝐴| and |𝐵 | when 𝐴𝐵 = (𝑆𝑑 − 𝜆) \ {0}, which will be used in Section 6.

We need to use the following lemma, due to Karatsuba [23].

Lemma 3.3 Let 𝐴, 𝐵 ⊂ F∗𝑞 and 𝜆 ∈ F∗𝑞 . Then for any non-trivial multiplicative character
𝜒 of F𝑞 and any positive integer 𝜈, we have∑︁

𝑎∈𝐴
𝑏∈𝐵

𝜒(𝑎𝑏 + 𝜆) ≪𝜈 |𝐴| (2𝜈−1)/2𝜈 ( |𝐵 |1/2𝑞1/2𝜈 + |𝐵 |𝑞1/4𝜈).

The following proposition improves and generalizes [31, Theorem 1]. It also
improves [33, Lemma 17] (see Remark 3.7).
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Proposition 3.4 Let 𝜖 > 0. Let 𝑑 | (𝑞 − 1) such that 2 ≤ 𝑑 ≤ 𝑞1/2−𝜖 and 𝜆 ∈ F∗𝑞 . If
𝐴𝐵 = (𝑆𝑑 − 𝜆) \ {0} for some 𝐴, 𝐵 ⊂ F∗𝑞 with |𝐴|, |𝐵 | ≥ 2, then

√
𝑞

𝑑
≪ min{|𝐴|, |𝐵 |} ≤ max{|𝐴|, |𝐵 |} ≪ 𝑞1/2.

Proof Let 𝐴, 𝐵 ⊂ F∗𝑞 and 𝜆 ∈ F∗𝑞 such that 𝐴𝐵 = (𝑆𝑑 − 𝜆) \ {0} with |𝐴|, |𝐵 | ≥ 2.
Without loss of generality, we assume that |𝐴| ≥ |𝐵 |. We first establish a weaker lower
bound that |𝐵 | ≫ 𝑞 𝜖 /2.

When 𝑑 = 2, Sárközy [31] has shown that |𝐵 | ≫
√
𝑞

3 log 𝑞 . While he only proved this
estimate when 𝑞 = 𝑝 is a prime [31, Theorem 1], it is clear that the same proof extends
to all finite fields F𝑞 .

Next, assume that 𝑑 ≥ 3. Let 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑘} and |𝐵 | = 𝑘 . Since 𝐴𝐵 ⊂ 𝑆𝑑 −𝜆,
we have 𝐴𝐵 + 𝜆 ⊂ 𝑆𝑑 . Let 𝜒 be a multiplicative character of F𝑞 with order 𝑑. Then it
follows that for each 𝑎 ∈ 𝐴, we have 𝜒(𝑎 + 𝜆𝑏−1

𝑖
) = 1/𝜒(𝑏𝑖) for each 1 ≤ 𝑖 ≤ 𝑘 .

Therefore, by a well-known consequence of Weil’s bound (see for example [26, Exercise
5.66]),

|𝐴| ≤ 𝑞

𝑑𝑘
+

(
𝑘 − 1 − 𝑘

𝑑
+ 1
𝑑𝑘

)
√
𝑞 + 𝑘

𝑑
<

𝑞

𝑑𝑘
+ 𝑘

√
𝑞.

On the other hand, since 𝐴𝐵 = (𝑆𝑑 − 𝜆) \ {0}, we have

|𝐴| |𝐵 | ≥ |𝐴𝐵| ≥ |𝑆𝑑 | − 1 =
𝑞 − 1
𝑑

− 1.

Combining the above two inequalities, we obtain that

2𝑞
𝑑2

+ 𝑘2
√
𝑞 ≥ 𝑘𝑞

𝑑𝑘
+ 𝑘2

√
𝑞 > |𝐴| |𝐵 | ≥ 𝑞 − 1

𝑑
− 1.

Since 𝑑 ≥ 3, it follows that 𝑘2√𝑞 ≫ 𝑞

𝑑
and thus

|𝐵 | = 𝑘 ≫ 𝑞1/4
√
𝑑

≫ 𝑞 𝜖 /2.

Let 𝜈 = ⌈2/𝜖⌉. By Lemma 3.3, and as |𝐵 | ≫ 𝑞1/𝜈 , we have

|𝐴| |𝐵 | =
∑︁
𝑎∈𝐴
𝑏∈𝐵

𝜒(𝑎𝑏+𝜆) ≪ |𝐴| (2𝜈−1)/2𝜈 ( |𝐵 |1/2𝑞1/2𝜈+|𝐵 |𝑞1/4𝜈) ≪ |𝐴| (2𝜈−1)/2𝜈 |𝐵 |𝑞1/4𝜈 .

It follows that |𝐴| ≪ 𝑞1/2. Thus, |𝐵 | ≫ |𝑆𝑑 |/|𝐴| ≫ 𝑞1/2/𝑑. ■

Remark 3.5 We remark that the same method could be used to refine a similar result
for the additive decomposition of multiplicative subgroups, which improves a result of
Shparlinski [34, Theorem 6.1] (moreover, our proof appears to bemuch simpler than his
proof). More precisely, we can prove the following:

Let 𝜖 > 0. Let 𝑑 | (𝑞 − 1) such that 2 ≤ 𝑑 ≤ 𝑞1/2−𝜖 . If 𝐴 + 𝐵 = 𝑆𝑑 for some
𝐴, 𝐵 ⊂ F𝑞 with |𝐴|, |𝐵 | ≥ 2, then

√
𝑞

𝑑
≪ min{|𝐴|, |𝐵 |} ≤ max{|𝐴|, |𝐵 |} ≪ 𝑞1/2.
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Note that Proposition 3.4 only applies to multiplicative subgroups 𝐺 = 𝑆𝑑 with
|𝐺 | > √

𝑞. When 𝑞 = 𝑝 is a prime, and𝐺 is a non-trivial multiplicative subgroup of F𝑝

(in particular, |𝐺 | < √
𝑝 is allowed), we have the following estimate, due to Shkredov

[33].

Lemma 3.6 If 𝐺 is a proper multiplicative subgroup of F𝑝 such that 𝐴𝐵 = (𝐺 − 𝜆) \ {0}
for some 𝐴, 𝐵 ⊂ F∗𝑝 with |𝐴|, |𝐵 | ≥ 2 and some 𝜆 ∈ F∗𝑝 , then

|𝐺 |1/2+𝑜 (1) = min{|𝐴|, |𝐵 |} ≤ max{|𝐴|, |𝐵 |} = |𝐺 |1/2+𝑜 (1)

as |𝐺 | → ∞.

Proof If 0 ∈ 𝐺−𝜆, let 𝐴′ = 𝐴∪{0}; otherwise, let 𝐴′ = 𝐴. Thenwe have 𝐴′𝐵 = 𝐺−𝜆,
or equivalently, 𝐴′/(𝐵−1) = 𝐺−𝜆. Note that |𝐴′ \ {0}| = |𝐴| ≥ 2 and |𝐵−1 | = |𝐵| ≥ 2,
thus, the lemma then follows immediately from [33, Lemma 17]. ■

Remark 3.7 Let 𝐴𝐵 = (𝑆𝑑 −𝜆) \ {0}, where 𝐴, 𝐵 ⊂ F∗𝑝 with |𝐴|, |𝐵 | ≥ 2 and 𝜆 ∈ F∗𝑝 .
When 𝑑 is a constant, and 𝑝 → ∞, Proposition 3.4 is better than Lemma 3.6. Indeed,
in [33, Lemma 17], Shkredov showed that max{|𝐴|, |𝐵 |} ≪ √

𝑝 log 𝑝, while Proposi-
tion 3.4 showed the stronger result thatmax{|𝐴|, |𝐵 |} ≪ √

𝑝, removing the log 𝑝 factor.
This stronger boundwould be crucial in proving results related tomultiplicative decom-
positions (for example, Theorem 6.1). Instead, Lemma 3.6 will be useful for applications
in ternary decompositions (Theorem 6.6).

Remark 3.8 Lemma 3.6 fails to extend to F𝑞 , where 𝑞 is a proper prime power. Let
𝑞 = 𝑟2 be a square, 𝐺 = F∗𝑟 , and 𝜆 = −1. Let 𝐴 be a subset of F∗𝑟 with size ⌊(𝑟 − 1)/2⌋.
Let 𝐵 = F∗𝑟 \ 𝐴−1. Then we have 𝐴𝐵 = F∗𝑟 \ {1} = (𝐺 + 1) \ {0} while |𝐴|, |𝐵 | ≫ |𝐺 |.

Remark 3.9 Let 𝑑 ≥ 2 be fixed. Let 𝑞 ≡ 1 (mod 𝑑) be a prime power and let 𝜆 ∈ F∗𝑞 ,
we define 𝑁 (𝑞, 𝜆) be the total number of pairs (𝐴, 𝐵) of sets 𝐴, 𝐵 ⊆ F𝑞 with |𝐴|, |𝐵 | ≥
2 such that 𝐴𝐵 = (𝑆𝑑 − 𝜆) \ {0}. Note that Conjecture 1.9 implies 𝑁 (𝑞, 𝜆) = 0 when
𝑞 is sufficiently large, but it seems out of reach in general. Instead, one can find a non-
trivial upper bound of 𝑁 (𝑞, 𝜆). Using Proposition 3.4 and following the same strategy
of the proof in [3, Theorem 1], we have a non-trivial upper bound of 𝑁 (𝑞, 𝜆) as follows:

𝑁 (𝑞, 𝜆) ≤ exp
(
𝑂 (𝑞1/2)

)
.

We also note that by using Corollary 1.10, we confirmed 𝑁 (𝑞, 𝜆) = 0 if 𝑞 is a
prime, 𝜆 ∈ 𝑆𝑑 , and |𝑆𝑑 | − 1 is a prime. In addition, Theorem 1.11 gives the same
result for 𝑁 (𝑝, 𝑛) asymptotically for a subset of primes 𝑝 with lower density at least

1
[Q(𝑒2𝜋𝑖/𝑑 ,𝑛1/𝑑 ) :Q] .

4 Products and restricted products in shifted multiplicative
subgroups

In this section, we use Stepanov’s method to study product sets and restricted product
sets that are contained in shifted multiplicative subgroups. Our proofs are inspired by
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Stepanov’s original paper [35], and the recent breakthrough of Hanson and Pertidis [21],
together with its extensions and applications developed by the second author [38, 40].

Throughout the section, we assume 𝑑 ≥ 2 and 𝑞 ≡ 1 (mod 𝑑) is a prime power.
Recall that 𝑆𝑑 = 𝑆𝑑 (F𝑞) = {𝑥𝑑 : 𝑥 ∈ F∗𝑞}.

4.1 Product set in a shifted multiplicative subgroup

In this subsection, we prove Theorem 1.1, which can be viewed as the bipartite version
of Diophantine tuples over finite fields. As a corollary of Theorem 1.1, we prove Corol-
lary 1.10. Besides it, Theorem 1.1 will be also repeatedly used to prove several of our
main results in the present paper.

Proof Let 𝑟 = |𝐵 ∩ (−𝜆𝐴−1) |. Let 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑚}
such that 𝑏𝑟+1, . . . , 𝑏𝑚 ∉ (−𝜆𝐴−1). Since 𝐴𝐵 + 𝜆 ⊂ 𝑆𝑑 ∪ {0}, we have

(𝑎𝑖𝑏 𝑗 + 𝜆)
𝑞−1
𝑑

+1 = 𝑎𝑖𝑏 𝑗 + 𝜆

for each 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚. This simple observation will be used repeatedly in
the following computation.

Let 𝑐1, 𝑐2, ..., 𝑐𝑛 ∈ F𝑞 be the unique solution of the following system of equations: ∑𝑛
𝑖=1 𝑐𝑖𝑎

𝑗

𝑖
= 0, 1 ≤ 𝑗 ≤ 𝑛 − 1

∑𝑛
𝑖=1 𝑐𝑖 = 1

. (4.1)

This is justified by the invertibility of the coefficient matrix of the system (a Vander-
monde matrix). We claim that

∑𝑛
𝑖=1 𝑐𝑖𝑎

𝑛
𝑖

≠ 0. Suppose otherwise that
∑𝑛

𝑖=1 𝑐𝑖𝑎
𝑛
𝑖

=

0, then 𝑐𝑖 = 0 for all 𝑖, violating the assumption
∑𝑛

𝑖=1 𝑐𝑖 = 1 in equation (4.1).
Indeed, the generalized Vandermonde matrix (𝑎 𝑗

𝑖
)1≤𝑖≤𝑛,1≤ 𝑗≤𝑛 is non-singular since it

has determinant

𝑎1𝑎2 . . . 𝑎𝑛
∏
𝑖< 𝑗

(𝑎 𝑗 − 𝑎𝑖) ≠ 0.

Consider the following auxiliary polynomial

𝑓 (𝑥) = −𝜆𝑛−1 +
𝑛∑︁
𝑖=1

𝑐𝑖 (𝑎𝑖𝑥 + 𝜆)𝑛−1+
𝑞−1
𝑑 ∈ F𝑞 [𝑥] . (4.2)

Note that 𝑛 = |𝐴| ≤ |𝑆𝑑 ∪ {0}| ≤ 𝑞−1
𝑑

+ 1. Thus, if 𝑞 = 𝑝 is a prime, then 𝑛 − 1 +
𝑝−1
𝑑

≤ 2(𝑝−1)
𝑑

≤ 𝑝−1 and thus the condition
(𝑛−1+ 𝑞−1

𝑑
𝑛

)
. 0 (mod 𝑝) is automatically

satisfied. Then 𝑓 is a non-zero polynomial since the coefficient of 𝑥𝑛 in 𝑓 is(
𝑛 − 1 + 𝑞−1

𝑑

𝑛

)
· 𝜆

𝑞−1
𝑑

−1 ·
𝑛∑︁
𝑖=1

𝑐𝑖𝑎
𝑛
𝑖 ≠ 0

by the assumption on the binomial coefficient. Also, it is clear that the degree of 𝑓 is at
most 𝑛 − 1 + 𝑞−1

𝑑
.

2025/02/14 00:29

https://doi.org/10.4153/S0008414X25000136 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000136


Multiplicative structure of shifted multiplicative subgroups 19

Next, we compute the derivatives of 𝑓 on 𝐵. For each 1 ≤ 𝑗 ≤ 𝑚, system (4.1) implies
that

𝐸 (0) 𝑓 (𝑏 𝑗 ) = −𝜆𝑛−1 +
𝑛∑︁
𝑖=1

𝑐𝑖 (𝑎𝑖𝑏 𝑗 + 𝜆)𝑛−1 = −𝜆𝑛−1 +
𝑛−1∑︁
ℓ=0

(
𝑛 − 1
ℓ

)
𝜆𝑛−1−ℓ

( 𝑛∑︁
𝑖=1

𝑐𝑖𝑎
ℓ
𝑖

)
𝑏ℓ𝑗 = 0.

For each 1 ≤ 𝑗 ≤ 𝑚 and 1 ≤ 𝑘 ≤ 𝑛 − 2, we have that

𝐸 (𝑘 ) 𝑓 (𝑏 𝑗 ) =
(
𝑛 − 1 + 𝑞−1

𝑑

𝑘

) 𝑛∑︁
𝑖=1

𝑐𝑖𝑎
𝑘
𝑖 (𝑎𝑖𝑏 𝑗 + 𝜆)𝑛−1+

𝑞−1
𝑑

−𝑘

=

(
𝑛 − 1 + 𝑞−1

𝑑

𝑘

) 𝑛∑︁
𝑖=1

𝑐𝑖𝑎
𝑘
𝑖 (𝑎𝑖𝑏 𝑗 + 𝜆)𝑛−1−𝑘

=

(
𝑛 − 1 + 𝑞−1

𝑑

𝑘

) 𝑛−1−𝑘∑︁
ℓ=0

(
𝑛 − 1 − 𝑘

ℓ

)
𝜆𝑛−1−𝑘−ℓ

( 𝑛∑︁
𝑖=1

𝑐𝑖𝑎
𝑘+ℓ
𝑖

)
𝑏ℓ𝑗 = 0,

where we use Lemma 2.3 and the assumptions in system (4.1).
For each 𝑟 + 1 ≤ 𝑗 ≤ 𝑚, by the assumption, 𝑏 𝑗 ∉ (−𝜆𝐴−1), that is, 𝑎𝑖𝑏 𝑗 + 𝜆 ≠ 0 for

each 1 ≤ 𝑖 ≤ 𝑛. Thus, for each 𝑟 + 1 ≤ 𝑗 ≤ 𝑚, we additionally have

𝐸 (𝑛−1) 𝑓 (𝑏 𝑗 ) =
(
𝑛 − 1 + 𝑞−1

𝑑

𝑛 − 1

) 𝑛∑︁
𝑖=1

𝑐𝑖𝑎
𝑛−1
𝑖 (𝑎𝑖𝑏 𝑗 + 𝜆)

𝑞−1
𝑑 =

(
𝑛 − 1 + 𝑞−1

𝑑

𝑛 − 1

) 𝑛∑︁
𝑖=1

𝑐𝑖𝑎
𝑛−1
𝑖 = 0.

Therefore, Lemma 2.4 allows us to conclude that each of 𝑏1, 𝑏2, . . . 𝑏𝑟 is a root of
𝑓 with multiplicity at least 𝑛 − 1, and each of 𝑏𝑟+1, 𝑏𝑟+2, . . . 𝑏𝑚 is a root of 𝑓 with
multiplicity at least 𝑛. It follows that

𝑟 (𝑛 − 1) + (𝑚 − 𝑟)𝑛 = 𝑚𝑛 − 𝑟 ≤ deg 𝑓 ≤ 𝑞 − 1
𝑑

+ 𝑛 − 1.

Finally, assuming that 𝜆 ∈ 𝑆𝑑 . In this case,

𝑓 (0) = −𝜆𝑛−1 + 𝜆𝑛−1+
𝑞−1
𝑑

𝑛∑︁
𝑖=1

𝑐𝑖 = −𝜆𝑛−1 + 𝜆𝑛−1 = 0.

And the coefficient of 𝑥 𝑗 of 𝑓 is 0 for each 1 ≤ 𝑗 ≤ 𝑛 − 1 by the assumptions on 𝑐𝑖 ’s. It
follows that 0 is also a root of 𝑓 with multiplicity 𝑛. Since 0 ∉ 𝐵, we have the stronger
estimate that 𝑚𝑛 − 𝑟 + 𝑛 ≤ 𝑞−1

𝑑
+ 𝑛 − 1. ■

Remark 4.1 More generally, one can study the same question if 𝐴𝐵 +𝜆 is instead con-
tained in a coset of 𝑆𝑑 . However, note that this more general case can be always reduced
to the special case studied in Theorem 1.1. Indeed, if 𝐴𝐵 + 𝜆 ⊂ 𝜉𝑆𝑑 ∪ {0} with 𝜉 ∈ F∗𝑞 ,
then 𝐴′𝐵 + 𝜆/𝜉 ⊂ 𝑆𝑑 ∪ {0}, where 𝐴′ = 𝐴/𝜉 .

Next, we prove Corollary 1.10, an important corollary of Theorem 1.1. It would be
crucial for proving results in Section 6.

2025/02/14 00:29

https://doi.org/10.4153/S0008414X25000136 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000136


20 S. Kim, C. H. Yip, and S. Yoo

Proof Since 0 ∉ 𝐴𝐵 + 𝜆, we have 𝐵 ∩ (−𝜆𝐴−1) = ∅, thus Theorem 1.1 implies that
|𝐴| |𝐵 | ≤ |𝑆𝑑 |−1. On the other hand, since (𝑆𝑑−𝜆) \{0} = 𝐴𝐵, it follows that |𝐴| |𝐵 | ≥
|𝐴𝐵| = | (𝑆𝑑 − 𝜆) \ {0}| = |𝑆𝑑 | − 1. Therefore, we have |𝐴| |𝐵 | = |𝐴𝐵| = |𝑆𝑑 | − 1. ■

4.2 Restricted product set in a shifted multiplicative subgroup

Recall that 𝐴′ ⊂ F∗𝑞 has property 𝐷𝑑 (𝜆, F𝑞) if and only if 𝑎𝑏 + 𝜆 ∈ 𝑆𝑑 ∪ {0} for
each 𝑎, 𝑏 ∈ 𝐴′ such that 𝑎 ≠ 𝑏. In other words, 𝐴′×̂𝐴′ + 𝜆 ⊂ 𝑆𝑑 ∪ {0}. Thus, in
this subsection, we are led to study restricted product sets and we establish the follow-
ing restricted product analog of Theorem 1.1. In the next subsection, Theorem 1.1 and
Theorem 4.2 will be applied together to prove Theorem 1.5 in the case that 𝑞 is a prime
and Theorem 1.6 in the case that 𝑞 is a square.

Theorem 4.2 Let 𝑑 ≥ 2 and let 𝑞 ≡ 1 (mod 𝑑) be a prime power. Let 𝐴′ ⊂ F∗𝑞 and
𝜆 ∈ F∗𝑞 . If 𝐴′×̂𝐴′+𝜆 ⊂ 𝑆𝑑∪{0} while 𝐴′𝐴′+𝜆 ⊄ 𝑆𝑑∪{0}, then |𝐴′ | ≤

√︁
2(𝑞 − 1)/𝑑+4.

The proof of Theorem 4.2 is similar to Theorem 1.1, but it is more delicate. In par-
ticular, the choice of the auxiliary polynomial (4.4) needs to be modified from that of
the proof (4.2) of Theorem 1.1. In view of Theorem 1.1, we can further assume that
𝐴′𝐴′ + 𝜆 ⊄ 𝑆𝑑 ∪ {0}, for otherwise we already have a good bound on |𝐴′ |; we refer
to Subsection 4.3 for details. It turns out that this additional assumption (which we get
for free) is crucial in our proof since it guarantees that the auxiliary polynomial we
constructed is not identically zero.

Proof Since 𝐴′𝐴′ + 𝜆 ⊄ 𝑆𝑑 ∪ {0}, there is 𝑏 ∈ 𝐴′ such that 𝑏2 + 𝜆 ⊄ 𝑆𝑑 ∪ {0}.
Let 𝐴′′ = 𝐴′ \ {−𝜆/𝑏}. If |𝐴′′ | = 1, then we are done. Otherwise, if |𝐴′′ | is even, let
𝐴 = 𝐴′′; if |𝐴′′ | is odd, let 𝐴 = 𝐴′′ \ {𝑏′}, where 𝑏′ ∈ 𝐴′′ is an arbitrary element such
that 𝑏′ ≠ 𝑏. Then we have 𝑏 ∈ 𝐴 and |𝐴| is even. Note that |𝐴| ≥ |𝐴′ | − 2, thus it
suffices to show |𝐴| ≤

√︁
2(𝑞 − 1)/𝑑 + 2.

Let |𝐴| = 𝑛, where 𝑛 is even. Write 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}. Without loss of generality,
we may assume that 𝑎1 = 𝑏. Let 𝑚 = 𝑛/2 − 1. Let 𝑐1, 𝑐2, ..., 𝑐𝑛 ∈ F𝑞 be the unique
solution of the following system of equations: ∑𝑛

𝑖=1 𝑐𝑖𝑎
𝑚+1
𝑖

= 1.

∑𝑛
𝑖=1 𝑐𝑖𝑎

𝑗

𝑖
= 0, −𝑚 ≤ 𝑗 ≤ 𝑚

(4.3)

Indeed, that coefficient matrix of the system is the generalized Vandermonde
matrix (𝑎 𝑗

𝑖
)1≤𝑖≤𝑛,−𝑚≤ 𝑗≤𝑚+1, which is non-singular since it has nonzero determinant

(𝑎1𝑎2 . . . 𝑎𝑛)−𝑚
∏

𝑖< 𝑗 (𝑎 𝑗 − 𝑎𝑖) ≠ 0. Note that 𝑐1 ≠ 0; for otherwise 𝑐1 = 0 and we
must have 𝑐1 = 𝑐2 = . . . = 𝑐𝑛 = 0 in view of the first 𝑛 − 1 equations in system (4.3),
which contradicts the last equation in system (4.3).

Consider the following auxiliary polynomial

𝑓 (𝑥) =
𝑛∑︁
𝑖=1

𝑐𝑖 (𝑎𝑖𝑥 + 𝜆)𝑚+ 𝑞−1
𝑑 (𝑎−1𝑖 𝑥 − 1)𝑚 ∈ F𝑞 [𝑥] . (4.4)

2025/02/14 00:29

https://doi.org/10.4153/S0008414X25000136 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000136


Multiplicative structure of shifted multiplicative subgroups 21

It is clear that the degree of 𝑓 is at most 2𝑚 + 𝑞−1
𝑑

. Since 𝐴×̂𝐴 + 𝜆 ⊂ 𝑆𝑑 ∪ {0}, we have

(𝑎𝑖𝑎 𝑗 + 𝜆)
𝑞−1
𝑑

+1 (𝑎−1𝑖 𝑎 𝑗 − 1) = (𝑎𝑖𝑎 𝑗 + 𝜆) (𝑎−1𝑖 𝑎 𝑗 − 1)

for each 1 ≤ 𝑖, 𝑗 ≤ 𝑛. This simple observation will be used repeatedly in the following
computation.

First, we claim that for each 0 ≤ 𝑘1 < 𝑚, 0 ≤ 𝑘2 < 𝑚, and 1 ≤ 𝑗 ≤ 𝑛, we have

𝑛∑︁
𝑖=1

𝑐𝑖𝐸
(𝑘1 ) [(𝑎𝑖𝑥 + 𝜆)𝑚+ 𝑞−1

𝑑 ] (𝑎 𝑗 ) · 𝐸 (𝑘2 ) [(𝑎−1𝑖 𝑥 − 1)𝑚] (𝑎 𝑗 ) = 0. (4.5)

Indeed, by Lemma 2.3, we have

𝑛∑︁
𝑖=1

𝑐𝑖𝐸
(𝑘1 ) [(𝑎𝑖𝑥 + 𝜆)𝑚+ 𝑞−1

𝑑 ] (𝑎 𝑗 ) · 𝐸 (𝑘2 ) [(𝑎−1𝑖 𝑥 − 1)𝑚] (𝑎 𝑗 )

=

(
𝑚 + 𝑞−1

𝑑

𝑘1

) (
𝑚

𝑘2

) ( 𝑛∑︁
𝑖=1

𝑐𝑖𝑎
𝑘1−𝑘2
𝑖

(𝑎 𝑗𝑎𝑖 + 𝜆)𝑚−𝑘1 (𝑎−1𝑖 𝑎 𝑗 − 1)𝑚−𝑘2
)

=

(
𝑚 + 𝑞−1

𝑑

𝑘1

) (
𝑚

𝑘2

) 𝑚−𝑘1∑︁
ℓ1=0

𝑚−𝑘2∑︁
ℓ2=0

(
𝑚 − 𝑘1

ℓ1

) (
𝑚 − 𝑘2

ℓ2

) ( 𝑛∑︁
𝑖=1

𝑐𝑖𝑎
𝑘1−𝑘2
𝑖

(𝑎 𝑗𝑎𝑖)ℓ1𝜆𝑚−𝑘1−ℓ1 (𝑎−1𝑖 𝑎 𝑗 )ℓ2 (−1)𝑚−𝑘2−ℓ2
)

=

(
𝑚 + 𝑞−1

𝑑

𝑘1

) (
𝑚

𝑘2

) 𝑚−𝑘1∑︁
ℓ1=0

𝑚−𝑘2∑︁
ℓ2=0

(
𝑚 − 𝑘1

ℓ1

) (
𝑚 − 𝑘2

ℓ2

)
𝑎
ℓ1+ℓ2
𝑗

𝜆𝑚−𝑘1−ℓ1 (−1)𝑚−𝑘2−ℓ2
( 𝑛∑︁
𝑖=1

𝑐𝑖𝑎
(𝑘1+ℓ1 )−(𝑘2+ℓ2 )
𝑖

)
.

Note that in the exponent of the last summand, we always have 0 ≤ 𝑘1 + ℓ1 ≤ 𝑚 and
0 ≤ 𝑘2 + ℓ2 ≤ 𝑚 so that −𝑚 ≤ (𝑘1 + ℓ1) − (𝑘2 + ℓ2) ≤ 𝑚, and thus

𝑛∑︁
𝑖=1

𝑐𝑖𝑎
(𝑘1+ℓ1 )−(𝑘2+ℓ2 )
𝑖

= 0

by the assumptions in system (4.3). This proves the claim.
Then, for each 1 ≤ 𝑗 ≤ 𝑛 and 0 ≤ 𝑟 ≤ 𝑚 − 1, we apply Lemma 2.2 and equation

(4.5) in the above claim to obtain that

𝐸 (𝑟 ) 𝑓 (𝑎 𝑗 ) =
𝑛∑︁
𝑖=1

𝑐𝑖

( 𝑟∑︁
𝑘=0

𝐸 (𝑘 ) [(𝑎𝑖𝑥 + 𝜆)𝑚+ 𝑞−1
𝑑 ] (𝑎 𝑗 ) · 𝐸 (𝑟−𝑘 ) [(𝑎−1𝑖 𝑥 − 1)𝑚] (𝑎 𝑗 )

)
= 0.
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Similarly, using Lemma 2.2, Lemma 2.3, system (4.3), and equation (4.5), we can
compute

𝐸 (𝑚) 𝑓 (𝑎1) =
𝑛∑︁
𝑖=1

𝑐𝑖

( 𝑚∑︁
𝑘=0

𝐸 (𝑘 ) [(𝑎𝑖𝑥 + 𝜆)𝑚+ 𝑞−1
𝑑 ] (𝑎1) · 𝐸 (𝑚−𝑘 ) [(𝑎−1𝑖 𝑥 − 1)𝑚] (𝑎1)

)
=

𝑛∑︁
𝑖=1

𝑐𝑖

(
𝐸 (0) [(𝑎𝑖𝑥 + 𝜆)𝑚+ 𝑞−1

𝑑 ] (𝑎1) · 𝐸 (𝑚) [(𝑎−1𝑖 𝑥 − 1)𝑚] (𝑎1)
)

+
𝑛∑︁
𝑖=1

𝑐𝑖

(
𝐸 (𝑚) [(𝑎𝑖𝑥 + 𝜆)𝑚+ 𝑞−1

𝑑 ] (𝑎1) · 𝐸 (0) [(𝑎−1𝑖 𝑥 − 1)𝑚] (𝑎1)
)

=

𝑛∑︁
𝑖=1

𝑐𝑖 (𝑎1𝑎𝑖 + 𝜆)𝑚+ 𝑞−1
𝑑 𝑎−𝑚𝑖 +

(
𝑚 + 𝑞−1

𝑑

𝑚

) ( 𝑛∑︁
𝑖=1

𝑐𝑖𝑎
𝑚
𝑖 (𝑎1𝑎𝑖 + 𝜆)

𝑞−1
𝑑 (𝑎−1𝑖 𝑎1 − 1)𝑚

)
.

Since 𝑎1𝑎𝑖 + 𝜆 ≠ 0 for each 1 ≤ 𝑖 ≤ 𝑛, we have (𝑎1𝑎𝑖 + 𝜆)
𝑞−1
𝑑 = 1 for 𝑖 > 1, and thus

(𝑎1𝑎𝑖 + 𝜆)
𝑞−1
𝑑 (𝑎−1𝑖 𝑎1 − 1) = 𝑎−1𝑖 𝑎1 − 1

for all 𝑖. Since 𝑎21 + 𝜆 ∉ 𝑆𝑑 ∪ {0}, we have

(𝑎21 + 𝜆)𝑚
(
(𝑎21 + 𝜆)

𝑞−1
𝑑 − 1

)
≠ 0.

Putting these altogether into the computation of 𝐸 (𝑚) 𝑓 (𝑎1), we have

𝐸 (𝑚) 𝑓 (𝑎1) =
𝑛∑︁
𝑖=1

𝑐𝑖 (𝑎1𝑎𝑖 + 𝜆)𝑚+ 𝑞−1
𝑑 𝑎−𝑚𝑖 +

(
𝑚 + 𝑞−1

𝑑

𝑚

) 𝑛∑︁
𝑖=1

𝑐𝑖𝑎
𝑚
𝑖 (𝑎−1𝑖 𝑎1 − 1)𝑚

= 𝑐1𝑎
−𝑚
1

(
(𝑎21 + 𝜆)𝑚+ 𝑞−1

𝑑 − (𝑎21 + 𝜆)𝑚
)
+

𝑛∑︁
𝑖=1

𝑐𝑖 (𝑎1𝑎𝑖 + 𝜆)𝑚𝑎−𝑚𝑖

+
(
𝑚 + 𝑞−1

𝑑

𝑚

) 𝑚∑︁
𝑘=0

(
𝑚

𝑘

)
𝑎𝑚−𝑘
1 (−1)𝑘

( 𝑛∑︁
𝑖=1

𝑐𝑖𝑎
𝑘
𝑖

)
= 𝑐1𝑎

−𝑚
1 (𝑎21 + 𝜆)𝑚

(
(𝑎21 + 𝜆)

𝑞−1
𝑑 − 1

)
+

𝑚∑︁
𝑘=0

(
𝑚

𝑘

)
𝑎𝑘1𝜆

𝑚−𝑘
( 𝑛∑︁
𝑖=1

𝑐𝑖𝑎
𝑘−𝑚
𝑖

)
= 𝑐1𝑎

−𝑚
1 (𝑎21 + 𝜆)𝑚

(
(𝑎21 + 𝜆)

𝑞−1
𝑑 − 1

)
≠ 0,

where we used the fact 𝑐1 ≠ 0. In particular, 𝑓 is not identically zero.
In conclusion, 𝑓 is a non-zero polynomial with degree at most 𝑞−1

𝑑
+ 2𝑚, and

Lemma 2.4 implies that each of 𝑎1, 𝑎2, . . . 𝑎𝑛 is a root of 𝑓 with multiplicity at least 𝑚.
Recall that 𝑚 = 𝑛/2 − 1. It follows that

𝑛(𝑛 − 2)
2

= 𝑚𝑛 ≤ deg 𝑓 ≤ 𝑞 − 1
𝑑

+ 2𝑚 =
𝑞 − 1
𝑑

+ 𝑛 − 2,

that is, we have (𝑛 − 2)2 ≤ 2(𝑞−1)
𝑑

. Therefore, 𝑛 ≤
√︁
2(𝑞 − 1)/𝑑 + 2. This finishes the

proof. ■
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4.3 Applications to generalized Diophantine tuples over finite fields

In this subsection, we illustrate how to apply Theorem 1.1 and Theorem 4.2 for obtain-
ing improved upper bounds on the size of a generalized Diophantine tuple or a strong
generalized Diophantine tuple over F𝑞 , when 𝑞 = 𝑝 is a prime and 𝑞 is a square.

Proof (1) Let 𝐴 ⊂ F∗𝑝 with property 𝑆𝐷𝑑 (𝜆, F𝑝), that is, 𝐴𝐴 + 𝜆 ⊂ 𝑆𝑑 ∪ {0}.
Theorem 1.1 implies that

|𝐴|2 ≤ |𝑆𝑑 | + |𝐴 ∩ (−𝜆𝐴−1) | + |𝐴| − 1 ≤ |𝑆𝑑 | + 2|𝐴| − 1.

It follows that ( |𝐴| − 1)2 ≤ |𝑆𝑑 |. If 𝜆 ∈ 𝑆𝑑 , we have a stronger upper bound:

|𝐴|2 ≤ |𝑆𝑑 | + |𝐴 ∩ (−𝜆𝐴−1) | − 1 ≤ |𝑆𝑑 | + |𝐴| − 1.

It follows that ( |𝐴| − 1
2 )

2 ≤ |𝑆𝑑 | − 3
4 .

(2) Let 𝐴 ⊂ F∗𝑝 with property 𝐷𝑑 (𝜆, F𝑝), that is, 𝐴×̂𝐴 + 𝜆 ⊂ 𝑆𝑑 ∪ {0}. If 𝐴𝐴 + 𝜆 ⊂
𝑆𝑑 ∪ {0}, then (1) implies that |𝐴| ≤

√︁
𝑝/𝑑 + 1 and we are done. If 𝐴𝐴 + 𝜆 ⊄ 𝑆𝑑 ∪ {0},

then Theorem 4.2 implies the required upper bound. ■

Remark 4.3 Theorem 1.1 can be used to deduce a weaker upper bound of the form
2
√︁
𝑝/𝑑 + 𝑂 (1) for Theorem 1.5 (2). Let 𝐴 ⊂ F∗𝑝 such that 𝐴×̂𝐴 + 𝜆 ⊂ 𝑆𝑑 ∪ {0}. We

can write 𝐴 = 𝐵 ⊔ 𝐶 such that |𝐵 | and |𝐶 | differ by at most 1. Note that since 𝐵 and𝐶
are disjoint, we have 𝐵𝐶 +𝜆 ⊂ 𝐴×̂𝐴 +𝜆 ⊂ 𝑆𝑑 ∪ {0} and thus Theorem 1.1 implies that
|𝐵 | |𝐶 | ≤ 𝑝/𝑑 + |𝐵 | + |𝐶 |, which further implies that |𝐴| ≤ 2

√︁
𝑝/𝑑 + 𝑂 (1). Note that

such a weaker upper bound is worse than the trivial upper bound from character sums
(Proposition 1.4) when 𝑑 = 2, 3, and this is one of our mainmotivations for establishing
the bound

√︁
2𝑝/𝑑 +𝑂 (1) in Theorem 1.5 (2).

Next, we consider the case 𝑞 is a square. First we establish a non-trivial upper bound
on 𝑀𝑆𝐷𝑑 (𝜆, F𝑞) and 𝑀𝐷𝑑 (𝜆, F𝑞) under some minor assumption. While these new
bounds only improve the trivial upper bound from character sums (Proposition 1.4)
slightly, we will see these new bounds are sometimes sharp in the proof of Theorem 1.6.
To achieve our goal, we need the following special case of Kummer’s theorem [25].

Lemma 4.4 Let 𝑝 be a prime and 𝑚, 𝑛 be positive integers. If there is no carry between the
addition of 𝑚 and 𝑛 in base-𝑝, then

(𝑚+𝑛
𝑛

)
is not divisible by 𝑝.

Theorem 4.5 Let 𝑞 be a prime power and a square, and let 𝜆 ∈ F∗𝑞 .

(1) Let 𝑑 ≥ 2 be a divisor of (𝑞 − 1). Let 𝑟 be the remainder of 𝑞−1
𝑑

divided by 𝑝
√
𝑞. If

𝑟 ≤ (𝑝 − 1)√𝑞, then 𝑀𝑆𝐷𝑑 (𝜆, F𝑞) ≤
√
𝑞 − 1.

(2) Let 𝑞 ≥ 25 and let 𝑑 ≥ 3 be a divisor of (𝑞 − 1). Let 𝑟 be the remainder of 𝑞−1
𝑑

divided
by 𝑝

√
𝑞. If 𝑟 ≤ (𝑝 − 1)√𝑞, then 𝑀𝐷𝑑 (𝜆, F𝑞) ≤

√
𝑞 − 1.

Proof (1) Since 𝑟 ≤ (𝑝−1)√𝑞, there is no carry between the addition of 𝑟 −1 and√𝑞
in base-𝑝. Thus, there is no carry between the addition of 𝑞−1

𝑑
− 1 and √𝑞 in base-𝑝. It
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follows from Lemma 4.4 that(√
𝑞 − 1 + 𝑞−1

𝑑√
𝑞

)
. 0 (mod 𝑝).

Let 𝐴 ⊂ F∗𝑞 with property 𝑆𝐷𝑑 (𝜆, F𝑞) such that |𝐴| = 𝑀𝑆𝐷𝑑 (𝜆, F𝑞). Note that
Proposition 1.4 implies that |𝐴| ≤ √

𝑞. For the sake of contradiction, assume that |𝐴| =√
𝑞. Note that 𝐴𝐴 + 𝜆 ⊂ 𝑆𝑑 ∪ {0} and( |𝐴| − 1 + 𝑞−1

𝑑

|𝐴|

)
=

(√
𝑞 − 1 + 𝑞−1

𝑑√
𝑞

)
. 0 (mod 𝑝),

it follows from Theorem 1.1 that

|𝐴|2 ≤ |𝑆𝑑 | + |𝐴 ∩ (−𝜆𝐴−1) | + |𝐴| − 1 ≤ |𝑆𝑑 | + 2|𝐴| − 1,

that is, |𝐴| ≤
√︁
|𝑆𝑑 | + 1 <

√
𝑞, a contradiction. This completes the proof.

(2) Let 𝐴 ⊂ F∗𝑞 with property 𝐷𝑑 (𝜆, F𝑞) such that |𝐴| = 𝑀𝐷𝑑 (𝜆, F𝑞). Then 𝐴×̂𝐴+
𝜆 ⊂ 𝑆𝑑∪{0}. If 𝐴𝐴+𝜆 ⊂ 𝑆𝑑∪{0}, we just apply (1).Next assume that 𝐴𝐴+𝜆 ⊄ 𝑆𝑑∪{0},
then Theorem 4.2 implies that

|𝐴| ≤
√︂

2(𝑞 − 1)
𝑑

+ 4 ≤
√︂

2(𝑞 − 1)
3

+ 4 ≤ √
𝑞 − 1,

provided that 𝑞 ≥ 738. When 25 ≤ 𝑞 ≤ 737, we have used SageMath to verify the
theorem. ■

Nowwe are ready to prove Theorem 1.6, which determines the maximum size of an
infinitely family of generalized Diophantine tuples and strong generalized Diophantine
tuples over finite fields.

Proof In both cases, the upper bound√𝑞− 1 follows from Theorem 4.5. To show that√
𝑞 − 1 is a lower bound, we observe that 𝐴 = 𝛼F∗√

𝑞
has property 𝑆𝐷𝑑 (𝜆, F𝑞) (and

therefore 𝐷𝑑 (𝜆, F𝑞)). Indeed, 𝐴𝐴+𝜆 = 𝛼2F∗√
𝑞
+𝜆 ⊂ 𝛼2F√𝑞 ⊂ 𝑆𝑑 ∪{0} since 𝛼2 ∈ 𝑆𝑑

and F∗√
𝑞
⊂ 𝑆𝑑 (from the assumption 𝑑 | (√𝑞 + 1)). ■

Remark 4.6 Our SageMath code indicates that the last statement of Theorem 1.6 does
not hold when 𝑑 = 2 and 𝑞 = 9, 25, 49, when 𝑑 = 3 and 𝑞 = 4, 16, and when 𝑑 = 4 and
𝑞 = 9. We conjecture the same statement holds for 𝑑 = 2, provided that 𝑞 is sufficiently
large.

So far we have only considered special cases of applying Theorem 1.1. In general,
to apply Theorem 1.1, the assumption on the binomial coefficient in the statement of
Theorem 1.1 might be tricky to analyze. However, if the base-𝑝 representation of 𝑞−1

𝑑

behaves “nicely" (for example, if the order of 𝑝modulo 𝑑 is small, then the base-𝑝 repre-
sentation is periodicwith a small period), then it is still convenient to apply Theorem1.1.
As a further illustration, we prove the following theorem. Note that the new bound is
of the same shape as that in Theorem 1.5 (2), so it can be viewed as a generalization

2025/02/14 00:29

https://doi.org/10.4153/S0008414X25000136 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000136


Multiplicative structure of shifted multiplicative subgroups 25

of Theorem 1.5 (2) as changing a prime 𝑝 to an arbitrary power of 𝑝, provided that
𝑑 | (𝑝 − 1).

Theorem 4.7 Let 𝑑 ≥ 2, and let 𝑞 be a power of 𝑝 such that 𝑑 | (𝑝 − 1). Then
𝑀𝐷𝑑 (𝜆, F𝑞) ≤

√︁
2(𝑞 − 1)/𝑑 + 4 for any 𝜆 ∈ F∗𝑞 .

Proof Let 𝐵 ⊂ F∗𝑞 with property 𝐷𝑑 (𝜆, F𝑞), that is, 𝐵×̂𝐵+𝜆 ⊂ 𝑆𝑑 ∪{0}. If 𝐵𝐵+𝜆 ⊈
𝑆𝑑 ∪ {0}, we are done by Theorem 4.2. Thus, we may assume that 𝐵𝐵 + 𝜆 ⊂ 𝑆𝑑 ∪ {0}.
It suffices to show |𝐵 | ≤

√︁
2(𝑞 − 1)/𝑑 + 4. To achieve that, we try to find an arbitrary

subset 𝐴 of 𝐵 such that
( |𝐴|−1+ 𝑞−1

𝑑

|𝐴|
)
. 0 (mod 𝑝) and |𝐴| is as large as possible. With

such a subset 𝐴, we have 𝐴𝐵 + 𝜆 ⊂ 𝑆𝑑 ∪ {0} so that we can apply Theorem 1.1. In the
rest of the proof, we aim to find such an 𝐴 with |𝐴| ≥ |𝐵 |/2 so that, from Theorem 1.1,
we can deduce

|𝐵 |2
2

≤ 𝑞 − 1
𝑑

+ 2|𝐵 | − 1 =⇒ |𝐵 | ≤
√︂

2(𝑞 − 1)
𝑑

+ 2 + 2 <

√︂
2(𝑞 − 1)

𝑑
+ 4.

Write |𝐵 | − 1 = (𝑐𝑘 , 𝑐𝑘−1, . . . , 𝑐1, 𝑐0)𝑝 in base-𝑝, that is, |𝐵 | − 1 =
∑𝑘

𝑖=0 𝑐𝑖 𝑝
𝑖 with

0 ≤ 𝑐𝑖 ≤ 𝑝 − 1 for each 0 ≤ 𝑖 ≤ 𝑘 and 𝑐𝑘 ≥ 1. Next, we construct 𝐴 according to the
size of 𝑐𝑘 .

Case 1. 𝑐𝑘 ≤ 𝑝−1− 𝑝−1
𝑑

. In this case, let 𝐴 be an arbitrary subset of 𝐵with |𝐴| −1 =

(𝑐𝑘 , 0, . . . , 0)𝑝 , that is, |𝐴| = 𝑐𝑘 𝑝
𝑘+1. It is easy to verify that

( |𝐴|−1+ 𝑞−1
𝑑

|𝐴|
)
. 0 (mod 𝑝)

using Lemma 4.4. Since |𝐵 | ≤ (𝑐𝑘 + 1)𝑝𝑘 , it also follows readily that |𝐴| ≥ |𝐵 |/2.
Case 2. 𝑐𝑘 > 𝑝 − 1 − 𝑝−1

𝑑
. In this case, let 𝐴 be an arbitrary subset of 𝐵 with

|𝐴| − 1 =

(
(𝑑 − 1) (𝑝 − 1)

𝑑
,
(𝑑 − 1) (𝑝 − 1)

𝑑
, . . . ,

(𝑑 − 1) (𝑝 − 1)
𝑑

)
𝑝

,

that is, |𝐴| = (𝑑−1) (𝑝−1)
𝑑

· ∑𝑘
𝑖=0 𝑝

𝑖 + 1. Again, it is easy to verify that
( |𝐴|−1+ 𝑞−1

𝑑

|𝐴|
)
. 0

(mod 𝑝) using Lemma 4.4. Since 𝑑 ≥ 2, it follows that 2|𝐴| ≥ (𝑝 − 1)∑𝑘
𝑖=0 𝑝

𝑖 + 2 =

𝑝𝑘+1 + 1 > |𝐵 |. ■

Remark 4.8 Under the same assumption, the proof of Theorem 4.7 can be refined to
obtain improved upper bounds on 𝑀𝑆𝐷𝑑 (𝜆, F𝑞). In particular, if 𝑑, 𝑟 ≥ 2 are fixed,
and 𝑝 ≡ 1 (mod 𝑑) is a prime, then as 𝑝 → ∞, we can show that 𝑀𝑆𝐷𝑑 (𝜆, F𝑝2𝑟−1 ) ≤
(1 + 𝑜(1))

√︁
𝑝2𝑟−1/𝑑 uniformly among 𝜆 ∈ F∗

𝑝2𝑟−1 . Indeed, if 𝐵 ⊂ F∗𝑞 with property
𝐷𝑑 (𝜆, F𝑞) with 𝑞 = 𝑝2𝑟−1 and 𝜆 ∈ F∗𝑞 , then we can assume without loss of generality
that

√︁
𝑞/𝑑 < |𝐵 |. Otherwise,we are done.Note that |𝐵 | < √

𝑞+𝑂 (1) byProposition 1.4.
Following the notations used in the proof of Theorem4.7,we have

√︁
𝑝/𝑑−1 ≤ 𝑐𝑘 ≤ √

𝑝

and thus we are always in Case 1, and the same construction of 𝐴 gives |𝐴| = (1 −
𝑜(1)) |𝐵 | as 𝑝 → ∞. Thus, Theorem 1.1 gives |𝐵 | ≤ (1 + 𝑜(1))

√︁
𝑞/𝑑.
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5 Improved upper bounds on the largest size of generalized
Diophantine tuples over integers

5.1 Proof of Theorem 1.2

In this subsection, we improve the upper bounds on the largest size of generalized
Diophantine tuples with property 𝐷𝑘 (𝑛). We first recall that for each 𝑛 ≥ 1 and 𝑘 ≥ 2,

𝑀𝑘 (𝑛) = sup{|𝐴| : 𝐴 satisfies property 𝐷𝑘 (𝑛)}.

For 𝑘 ≥ 2, we defined the constant in the introduction

𝜂𝑘 = min
I

|I |
𝑇2
I
, (5.1)

where the minimum is taken over all nonempty subset I of

{1 ≤ 𝑖 ≤ 𝑘 : gcd(𝑖, 𝑘) = 1, gcd(𝑖 − 1, 𝑘) > 1},

and

𝑇I =
∑︁
𝑖∈I

√︁
gcd(𝑖 − 1, 𝑘). (5.2)

Here is the proof of our main theorem, Theorem 1.2.

Proof Let 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑚} be a generalized Diophantine𝑚-tuple with property
𝐷𝑘 (𝑛) and 𝑘 ≥ 3. Given the assumption that log 𝑘 = 𝑂 (

√︁
log log 𝑛), Proposi-

tion 2.9 implies that the contribution of 𝑎𝑖 with 𝑎𝑖 > 𝑛
𝑘

𝑘−2 is |𝐴 ∩ (𝑛 𝑘
𝑘−2 ,∞)| =

𝑂 (log 𝑘 log log 𝑘) is negligible. Thus, we can assume that 𝐴 ⊂ [1, 𝑛 𝑘
𝑘−2 ]. Let I be a

nonempty subset of {1 ≤ 𝑖 ≤ 𝑘 : gcd(𝑖, 𝑘) = 1, gcd(𝑖 − 1, 𝑘) > 1}, such that the ratio
|I |/𝑇2

I in equation (5.1) isminimized byI. In otherwords, we have 𝜂𝑘 = |I |/𝑇2
I , where

𝑇 = 𝑇I =
∑︁
𝑖∈I

√︁
gcd(𝑖 − 1, 𝑘).

To apply the Gallagher sieve inequality (Theorem 2.5), we set 𝑁 = 𝑛
𝑘

𝑘−2 and define the
set of primes

P = {𝑝 : 𝑝 ≡ 𝑖 (mod 𝑘) for some 𝑖 ∈ I} \ {𝑝 : 𝑝 | 𝑛}.

For each prime 𝑝 ∈ P , denote by 𝐴𝑝 the image of 𝐴 (mod 𝑝) and let 𝐴∗
𝑝 = 𝐴𝑝 \ {0}.

Let 𝑝 ∈ P . We can naturally view 𝐴∗
𝑝 as a subset of F∗𝑝 . Since 𝐴 has property 𝐷𝑘 (𝑛),

it follows that 𝐴∗
𝑝×̂𝐴∗

𝑝 + 𝑛 ⊂ {𝑥𝑘 : 𝑥 ∈ F∗𝑝} ∪ {0}. Note that {𝑥𝑘 : 𝑥 ∈ F∗𝑝} is the
multiplicative subgroup of F∗𝑝 with order

𝑝−1
gcd(𝑝−1,𝑘 ) . Since gcd(𝑝−1, 𝑘) > 1 and 𝑝 ∤ 𝑛,

Theorem 1.5 (2) implies that

|𝐴𝑝 | ≤ |𝐴∗
𝑝 | + 1 ≤

√︄
2(𝑝 − 1)

gcd(𝑝 − 1, 𝑘) + 5.
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Set𝑄 = 2( 𝜙 (𝑘 ) log 𝑁
𝑇

)2. Applying Gallagher’s larger sieve, we obtain that

|𝐴| ≤
∑

𝑝∈P, 𝑝≤𝑄 log 𝑝 − log 𝑁∑
𝑝∈P, 𝑝≤𝑄

log 𝑝
|𝐴𝑝 | − log 𝑁

. (5.3)

Let 𝑐 be the constant from Corollary 2.7. For the numerator on the right-hand side of
inequality (5.3), we have∑︁

𝑝∈P, 𝑝≤𝑄
log 𝑝 − log 𝑁 ≤

∑︁
𝑖∈I

( ∑︁
𝑝≡𝑖 mod 𝑘,

𝑝≤𝑄

log 𝑝
)
− log 𝑁

=
|I |𝑄
𝜙(𝑘) +𝑂

(
|I |𝑄 exp(−𝑐

√︁
log𝑄)

)
− log 𝑁.

Next, we estimate the denominator on the right-hand side of inequality (5.3). Note that
|I | ≤ 𝑇 =

∑
𝑖∈I

√︁
gcd(𝑖 − 1, 𝑘). Then we have 𝑇 ≤ |I|

√
𝑘 ≤ 𝜙(𝑘)

√
𝑘 , and so

𝜙(𝑘)/𝑇 ≥ 1/
√
𝑘 . Since 𝑘 = (log 𝑁)𝑜 (1) , we deduce 𝑄 > 2(log 𝑁)2−𝑜 (1) . Thus we

have 𝑘 = 𝑄𝑜 (1) . This, together with Corollary 2.7 and Lemma 2.8, deduces that for each
𝑖 ∈ I,∑︁

𝑝∈P, 𝑝≤𝑄
𝑝≡𝑖 mod 𝑘

log 𝑝
|𝐴𝑝 |

≥
∑︁

𝑝∈P, 𝑝≤𝑄
𝑝≡𝑖 mod 𝑘

log 𝑝√︃
2(𝑝−1)

gcd(𝑖−1,𝑘 ) + 5

=
∑︁
𝑝≤𝑄

𝑝≡𝑖 mod 𝑘

log 𝑝√︃
2𝑝

gcd(𝑖−1,𝑘 )

+𝑂

( ∑︁
𝑝≤𝑄

𝑘 log 𝑝
𝑝

)
+𝑂

(∑︁
𝑝 |𝑛

√
𝑘 log 𝑝
√
𝑝

)

=

√︂
gcd(𝑖 − 1, 𝑘)

2

∑︁
𝑝≤𝑄

𝑝≡𝑖 mod 𝑘

log 𝑝
√
𝑝

+𝑂 (𝑘 log𝑄) +𝑂 (𝑘 (log 𝑛)1/2)

=

√︁
2𝑄 gcd(𝑖 − 1, 𝑘)

𝜙(𝑘) +𝑂

(√︁
𝑄

√︁
gcd(𝑖 − 1, 𝑘) exp(−𝑐

√︁
log𝑄)

)
.

Thus we have

|𝐴| ≤
∑

𝑝∈P, 𝑝≤𝑄 log 𝑝 − log 𝑁∑
𝑝∈P, 𝑝≤𝑄

log 𝑝
|𝐴𝑝 | − log 𝑁

≤
| I |𝑄
𝜙 (𝑘 ) +𝑂 ( |I|𝑄 exp(−𝑐

√︁
log𝑄)) − log 𝑁∑

𝑖∈I

( ∑
𝑝∈P, 𝑝≤𝑄
𝑝≡𝑖 mod 𝑘

log 𝑝
|𝐴𝑝 |

)
− log 𝑁

≤
| I |𝑄
𝜙 (𝑘 ) +𝑂 ( |I|𝑄 exp(−𝑐

√︁
log𝑄)) − log 𝑁

𝑇
√
2𝑄

𝜙 (𝑘 ) +𝑂

(
𝑇
√
𝑄 exp(−𝑐

√︁
log𝑄)

)
− log 𝑁

.
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Finally, recall that𝑄 = 2( 𝜙 (𝑘 ) log 𝑁
𝑇

)2. It follows that

|𝐴| ≤
2|I |𝜙(𝑘) ( log 𝑁

𝑇
)2 +𝑂

(
|I |( 𝜙 (𝑘 ) log 𝑁

𝑇
)2 exp

(
− 𝑐

√︃
log( 𝜙 (𝑘 ) log 𝑁

𝑇
)
))

2 log 𝑁 +𝑂

(
𝜙(𝑘) log 𝑁 exp

(
− 𝑐

√︃
log( 𝜙 (𝑘 ) log 𝑁

𝑇
)
))

− log 𝑁

=

2 | I |𝜙 (𝑘 )
𝑇2 log 𝑁 +𝑂

(
| I |𝜙 (𝑘 )2 log 𝑁

𝑇2 exp
(
− 𝑐

√︃
log( 𝜙 (𝑘 ) log 𝑁

𝑇
)
))

1 +𝑂

(
𝜙(𝑘) exp

(
− 𝑐

√︃
log( 𝜙 (𝑘 ) log 𝑁

𝑇
)
)) .

Recall that 𝑁 = 𝑛
𝑘

𝑘−2 . Thus, to obtain our desired result, we need to show

|𝐴| ≤
(1 + 𝑜(1)) 2 | I |𝜙 (𝑘 )

𝑇2 log 𝑁
1 − 𝑜(1) ,

and it suffices to show that

𝜙(𝑘) exp
(
− 𝑐

√︂
log( 𝜙(𝑘) log 𝑁

𝑇
)
)
= 𝑜(1),

as 𝑁 → ∞, or equivalently,

log 𝑘 − 𝑐

√︂
log

𝜙(𝑘)
𝑇

+ log log 𝑁 → −∞,

as 𝑁 → ∞. We notice that 𝜙(𝑘)/𝑇 ≥ 1/
√
𝑘 . Let 𝑐′ = 𝑐/2. Then the assumption log 𝑘 ≤

𝑐′
√︁
log log 𝑛 < 𝑐′

√︁
log log 𝑁 implies

log log 𝑁 + log
𝜙(𝑘)
𝑇

≥ log log 𝑁 − 1
2
log 𝑘 = (1 − 𝑜(1)) log log 𝑁,

and

log 𝑘 − 𝑐

√︂
log

𝜙(𝑘)
𝑇

+ log log 𝑁 ≤ −(𝑐′ − 𝑜(1)) log log 𝑁 → −∞,

as required. ■

Remark 5.1 Note that when I = {1}, that is to say, when we only consider primes 𝑝
such that 𝑝 ≡ 1 (mod 𝑘) for applying the Gallagher inequality, the condition 𝑝 ≡ 1
(mod 𝑘) guarantees that the 𝑘-th powers are indeed 𝑘-th powers modulo 𝑝. We have
𝑇 = 𝑇I =

√
𝑘 , thus we trivially have 𝜂𝑘 ≤ 1

𝑘
in view of equation (5.1). In particular, if 𝑘

is fixed and 𝑛 → ∞, Theorem 1.2 implies that

𝑀𝑘 (𝑛) ≤
(2 + 𝑜(1))𝜙(𝑘)

𝑘 − 2
log 𝑛, (5.4)

which already provides a substantial improvement on the best-known upper bound
𝑀𝑘 (𝑛) ≤ (3𝜙(𝑘) + 𝑜(1)) log 𝑛 whenever 𝑘 ≥ 3 given in [7]. Moreover, note that 𝜙 (𝑘 )

𝑘

can be as small as𝑂 ( 1
log log 𝑘 ) when 𝑘 is the product of distinct primes [28, Theorem 2.9].

2025/02/14 00:29

https://doi.org/10.4153/S0008414X25000136 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000136


Multiplicative structure of shifted multiplicative subgroups 29

Thus, in view of Theorem 1.2, the inequality (5.4) already shows there is 𝑘 = 𝑘 (𝑛) such
that log 𝑘 ≍

√︁
log log 𝑛 and

𝑀𝑘 (𝑛) ≪
log 𝑛

log log 𝑘
≪ log 𝑛

log log log 𝑛
. (5.5)

Note that (5.5) already breaks the log 𝑛 barrier. On the other hand, we can still use other
primes 𝑝 such that gcd(𝑝−1, 𝑘) > 1 for which 𝑘-th powers are in fact gcd(𝑘, 𝑝−1)-th
powers modulo 𝑝 when we apply the Gallagher sieve inequality. We can take advan-
tage of the improvement on the upper bound of𝑀𝑘 (𝑛). In the next two subsections, we
further provide a significant improvement on inequality (5.5).

Next, we define a strong Diophantine 𝑚-tuple with property 𝑆𝐷𝑘 (𝑛) to be a set
{𝑎1, . . . , 𝑎𝑚} of 𝑚 distinct positive integers such that 𝑎𝑖𝑎 𝑗 + 𝑛 is a 𝑘-th power for any
choice of 𝑖 and 𝑗 . We have a stronger upper bound for the size of a strong Diophantine
tuple with property 𝑆𝐷𝑘 (𝑛). We define

𝑀𝑆𝑘 (𝑛) = sup{|𝐴| : 𝐴 ⊂ N satisfies the property 𝑆𝐷𝑘 (𝑛)}.

Theorem 5.2 There is a constant 𝑐′ > 0, such that as 𝑛 → ∞,

𝑀𝑆𝑘 (𝑛) ≤
(

𝑘

𝑘 − 2
+ 𝑜(1)

)
𝜂𝑘𝜙(𝑘) log 𝑛,

holds uniformly for positive integers 𝑘, 𝑛 ≥ 3 such that log 𝑘 ≤ 𝑐′
√︁
log log 𝑛. Moreover, if 𝑘

is even, under the same assumption (including the case 𝑘 = 2), we have the stronger bound

𝑀𝑆𝑘 (𝑛) ≤ min{
(
1 + 𝑜(1)

)
𝜂𝑘𝜙(𝑘) log 𝑛, 𝜏(𝑛)},

where 𝜏(𝑛) is the number of divisors of 𝑛.

Proof The proof is very similar to the proof of Theorem 1.2 and we follow all the
notations and steps as in the proof of Theorem 1.2, apart from the minor modifications
stated below.

We prove the first part. For each 𝑝 ∈ P , we have the stronger upper bound that
|𝐴𝑝 | ≤

√︃
(𝑝−1)

gcd(𝑝−1,𝑘 ) + 2 by Theorem 1.5 (2). To optimize the upper bound obtained

from Gallagher’s larger sieve, we instead set𝑄 = ( 𝜙 (𝑘 ) log 𝑁
𝑇

)2.
Next, we assume that 𝑘 is even and prove the second part. Notice that for each 𝑥 ∈ 𝐴,

there is a positive integer 𝑦, such that 𝑥2 + 𝑛 = 𝑦2. Thus, |𝐴| is bounded by the number
of positive integral solutions to the equation 𝑥2 + 𝑛 = 𝑦2, which is at most 𝜏(𝑛). On the
other hand, this also implies that all the elements in 𝐴 are at most 𝑛. Thus, we can set
𝑁 = 𝑛 instead and obtain the stronger upper bound. ■

5.2 Proof of Theorem 1.3

In this subsection, by finding a more refined upper bound on 𝜂𝑘 in equation (5.1),
we show that the same approach significantly improves the upper bound of 𝑀𝑘 (𝑛) in
inequality (5.5) when 𝑘 is the product of the first few distinct primes.
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We label all the primes in increasing order so that 2 = 𝑝1 < 𝑝2 < · · · < 𝑝ℓ < · · · .
Let 𝑃ℓ =

∏ℓ
𝑖=1 𝑝𝑖 be the product of first ℓ primes. Let I1 = {1}. For ℓ ≥ 1, we define

Iℓ+1 inductively:

Iℓ+1 = {𝑖 + 𝑗𝑃ℓ : 𝑖 ∈ Iℓ , 0 ≤ 𝑗 < 𝑝ℓ+1, 𝑝ℓ+1 ∤ (𝑖 + 𝑗𝑃ℓ)}. (5.6)

We note that Iℓ ⊂ Iℓ+1 for any ℓ ≥ 1. Also, it is clear that

|Iℓ+1 | = |Iℓ | (𝑝ℓ+1 − 1). (5.7)

Lemma 5.3 Following the above definitions, we have

Iℓ ⊂ {1 ≤ 𝑥 ≤ 𝑃ℓ : gcd(𝑥, 𝑃ℓ) = 1, gcd(𝑥 − 1, 𝑃ℓ) > 1}. (5.8)

Proof We give an inductive proof. When ℓ = 1, the inclusion (5.8) holds. We assume
that (5.8) holds for some ℓ ≥ 1. Let 𝑥 = 𝑖 + 𝑗𝑃ℓ ∈ Iℓ+1. By the assumption, we
have gcd(𝑖, 𝑃ℓ) = 1, and it follows that gcd(𝑥, 𝑃ℓ+1) = gcd(𝑥, 𝑃ℓ) gcd(𝑥, 𝑝ℓ+1) =

gcd(𝑖, 𝑃ℓ) gcd(𝑥, 𝑝ℓ+1) = 1. This proves the claim. ■

Furthermore, we introduce the following notation which is similar to the previously
introduced on equation (5.2). For each ℓ ≥ 1, we let

𝑇ℓ =
∑︁
𝑦∈Iℓ

√︁
gcd(𝑦 − 1, 𝑃ℓ).

Note that 𝑇1 =
√
2. We also establish a recurrence relation on the sequence.

Lemma 5.4 The sequence (𝑇ℓ)ℓ≥1 satisfies the recurrence relation

𝑇ℓ+1 = 𝑇ℓ (𝑝ℓ+1 − 2 + √
𝑝ℓ+1). (5.9)

Proof We have

𝑇ℓ+1 =
∑︁
𝑖∈Iℓ

∑︁
0≤ 𝑗<𝑝ℓ+1

𝑝ℓ+1∤(𝑖+ 𝑗𝑃ℓ )

√︁
gcd(𝑖 + 𝑗𝑃ℓ − 1, 𝑃ℓ+1)

=
∑︁
𝑖∈Iℓ

∑︁
0≤ 𝑗<𝑝ℓ+1

𝑝ℓ+1∤(𝑖+ 𝑗𝑃ℓ )

√︁
gcd(𝑖 + 𝑗𝑃ℓ − 1, 𝑃ℓ)

√︁
gcd(𝑖 + 𝑗𝑃ℓ − 1, 𝑝ℓ+1)

=
∑︁
𝑖∈Iℓ

√︁
gcd(𝑖 − 1, 𝑃ℓ)

( ∑︁
0≤ 𝑗<𝑝ℓ+1

𝑝ℓ+1∤(𝑖+ 𝑗𝑃ℓ )

√︁
gcd(𝑖 + 𝑗𝑃ℓ − 1, 𝑝ℓ+1)

)
.

It is easy to show that the inner sum consists of (𝑝ℓ+1 − 2) many 1 and a single √𝑝ℓ+1.
It follows that

𝑇ℓ+1 = (𝑝ℓ+1 − 2 + √
𝑝ℓ+1)

∑︁
𝑖∈Iℓ

√︁
gcd(𝑖 − 1, 𝑃ℓ) = 𝑇ℓ (𝑝ℓ+1 − 2 + √

𝑝ℓ+1),

proving the lemma. ■
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We are now ready to prove Theorem 1.3.

Proof For each 𝑛, we choose 𝑘 = 𝑘 (𝑛) = 𝑃ℓ , where ℓ = ℓ(𝑛) is the largest integer
such that log 𝑃ℓ < 𝑐′

√︁
log log 𝑛. It follows that log 𝑘 = log 𝑃ℓ ≍

√︁
log log 𝑛. Thus, using

equations (5.7) and (5.9), we have

𝜂𝑘𝜙(𝑘) ≤
|Iℓ |𝜙(𝑃ℓ)

𝑇2
ℓ

=
∏
𝑝≤𝑝ℓ

(𝑝 − 1)2
(𝑝 − 2 + √

𝑝)2 .

Note that for each prime 𝑝, it is easy to verify that 𝑝−1
𝑝−2+√𝑝

≤ 1 − 1√
𝑝
. Recall that the

inequality 𝑒𝑥 ≥ 1+𝑥 holds for all real 𝑥, and a standard application of partial summation
gives ∑︁

𝑝≤𝑥

1
√
𝑝
=

2
√
𝑥

log 𝑥
+𝑂

( √
𝑥

log2 𝑥

)
.

Also, the prime number theorem implies that

log 𝑃ℓ =
∑︁
𝑝≤𝑝ℓ

log 𝑝 = 𝜃 (𝑝ℓ) = (1 + 𝑜(1))𝑝ℓ

and thus 𝑝ℓ = (1 + 𝑜(1)) log 𝑃ℓ . Putting the above estimates altogether, we have

𝜂𝑘𝜙(𝑘) ≤
∏
𝑝≤𝑝ℓ

(
1 − 1

√
𝑝

)2
≤ exp

(
− 2

∑︁
𝑝≤𝑝ℓ

1
√
𝑝

)
= exp

(
−

(4 + 𝑜(1))√𝑝ℓ

log 𝑝ℓ

)
= exp

(
−

(4 + 𝑜(1))
√︁
log 𝑃ℓ

log log 𝑃ℓ

)
≤ exp

(
− 𝑐′′ (log log 𝑛)1/4

log log log 𝑛

)
.

for some absolute constant 𝑐′′ > 0. It follows from Theorem 1.2 that

𝑀𝑘 (𝑛) ≪ 𝜂𝑘𝜙(𝑘) log 𝑛 ≪ exp
(
− 𝑐′′ (log log 𝑛)1/4

log log log 𝑛

)
log 𝑛.

■

5.3 An upper bound on 𝜂𝑘

In this subsection, we deduce a simple upper bound of 𝜂𝑘 . It turns out that this upper
bound well approximates 𝜂𝑘 empirically.

Theorem 5.5 For any 𝑘 ≥ 2, we have

𝜂𝑘 ≤ 𝜇𝑘 ,

where 𝜇𝑘 = 𝑅𝑘 · min{𝛽(𝑝𝛼) : 𝑝𝛼 | |𝑘} with

𝑅𝑘 =
∏
𝑝𝛼 | |𝑘

(𝑝 − 1)𝑝𝛼−1(
𝑝𝛼 − 𝑝𝛼−1 − 𝑝 (𝛼−1)/2 + 𝑝𝛼−1/2)2 ,
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and

𝛽(𝑝𝛼) =
(
𝑝𝛼 − 𝑝𝛼−1 − 𝑝 (𝛼−1)/2 + 𝑝𝛼−1/2)2

(𝑝 − 1)
(
− 𝑝 (𝛼−1)/2 + 𝑝𝛼−1 + 𝑝𝛼−1/2)2 .

Proof We denote 𝑘 =
∏ℓ

𝑗=1 𝑝
𝛼𝑗

𝑗
, where 𝑝1, 𝑝2, . . . , 𝑝ℓ are distinct primes factors of

𝑘 such that

𝛽(𝑝𝛼ℓ

ℓ
) = min{𝛽(𝑝𝛼) : 𝑝𝛼 | | 𝑘}.

Define

I = {1 ≤ 𝑖 ≤ 𝑘 : gcd(𝑘, 𝑖) = 1, 𝑖 ≡ 1 (mod 𝑝ℓ)}, 𝑇I =
∑︁
𝑖∈I

√︁
gcd(𝑖 − 1, 𝑘).

Then I is obviously a subset of the set {1 ≤ 𝑖 ≤ 𝑘 : gcd(𝑖, 𝑘) = 1, gcd(𝑖 − 1, 𝑘) > 1}
consisting of residue classes that can be used in Gallagher’s larger sieve in the proof of
Theorem 1.2. (In particular, when 𝑝ℓ = 2, I consists of all the available residue classes
with |I | = 𝜙(𝑘).) In view of the definition of 𝜂𝑘 , it suffices to show that

|I |
𝑇2
I

= 𝜇𝑘 = 𝑅𝑘 · 𝛽(𝑝𝛼ℓ

ℓ
).

We first compute the size of I. Equivalently, we can write

I = {1 ≤ 𝑖 ≤ 𝑘 : 𝑖 . 0 (mod 𝑝 𝑗 ) for each 1 ≤ 𝑗 < ℓ, and 𝑖 ≡ 1 (mod 𝑝ℓ)},

and hence, we deduce |I | = ∏ℓ−1
𝑗=1 (𝑝 𝑗 − 1)𝑝𝛼𝑗−1

𝑗
· 𝑝𝛼ℓ−1

ℓ
. In order to compute 𝑇I , we

first count the number of solutions to 𝑣𝑝 𝑗
(𝑖 − 1) = 𝑠 over 1 ≤ 𝑖 ≤ 𝑝

𝛼𝑗

𝑗
such that 𝑝 𝑗 ∤ 𝑖

for 0 ≤ 𝑠 ≤ 𝛼 𝑗 separately, and then use the Chinese remainder theorem. Set

𝐶 𝑗 ,𝑠 = {1 ≤ 𝑖 ≤ 𝑝
𝛼𝑗

𝑗
: 𝑖 . 0 (mod 𝑝 𝑗 ), 𝑣𝑝 𝑗

(𝑖 − 1) = 𝑠}, for 0 ≤ 𝑠 ≤ 𝛼 𝑗 , 𝑗 < ℓ;

𝐶ℓ,𝑠 = {1 ≤ 𝑖 ≤ 𝑝
𝛼ℓ

ℓ
: 𝑖 ≡ 1 (mod 𝑝ℓ), 𝑣𝑝ℓ (𝑖 − 1) = 𝑠}, for 0 ≤ 𝑠 ≤ 𝛼ℓ .

Note that

|𝐶 𝑗 ,𝑠 | = 𝜙(𝑝𝛼𝑗−𝑠
𝑗

), for 0 < 𝑠 ≤ 𝛼 𝑗 , 𝑗 < ℓ;

|𝐶 𝑗 ,0 | = 𝜙(𝑝𝛼𝑗

𝑗
) − 𝑝

𝛼𝑗−1
𝑗

, for 𝑗 < ℓ;

|𝐶ℓ,𝑠 | = 𝜙(𝑝𝛼ℓ−𝑠
ℓ

), for 0 < 𝑠 ≤ 𝛼ℓ ,

and |𝐶ℓ,0 | = 0. It follows that

𝑇I =
∑︁
𝑖∈I

√︁
gcd(𝑖 − 1, 𝑘) =

∑︁
𝑑 |𝑘

√
𝑑

∑︁
𝑖∈I,

gcd(𝑖−1,𝑘 )=𝑑

1 =

ℓ∏
𝑗=1

(
𝛼𝑗∑︁
𝑠=0

√︃
𝑝𝑠
𝑗
|𝐶 𝑗 ,𝑠 |

)
.

For each 1 ≤ 𝑗 ≤ ℓ − 1, we calculate
𝛼𝑗∑︁
𝑠=0

√︃
𝑝𝑠
𝑗
|𝐶 𝑗 ,𝑠 | = 𝜙(𝑝𝛼𝑗

𝑗
) − 𝑝

𝛼𝑗−1
𝑗

+
𝛼𝑗∑︁
𝑠=1

√︃
𝑝𝑠
𝑗
𝜙(𝑝𝛼𝑗−𝑠

𝑗
) = 𝑝

𝛼𝑗

𝑗
− 𝑝

𝛼𝑗−1
𝑗

− 𝑝
(𝛼𝑗−1)/2
𝑗

+ 𝑝
𝛼𝑗−1/2
𝑗

.
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Similarly, we have
𝛼ℓ∑︁
𝑠=0

√︃
𝑝𝑠
ℓ
|𝐶ℓ,𝑠 | =

𝛼ℓ∑︁
𝑠=1

√︃
𝑝𝑠
ℓ
𝜙(𝑝𝛼ℓ−𝑠

ℓ
) = −𝑝 (𝛼ℓ−1)/2

ℓ
+ 𝑝

𝛼ℓ−1
ℓ

+ 𝑝
𝛼ℓ−1/2
ℓ

.

Putting these all together, we compute

𝑇I =

ℓ−1∏
𝑗=1

[
𝑝
𝛼𝑗

𝑗
− 𝑝

𝛼𝑗−1
𝑗

− 𝑝
(𝛼𝑗−1)/2
𝑗

+ 𝑝
𝛼𝑗−1/2
𝑗

]
·
(
− 𝑝

(𝛼ℓ−1)/2
ℓ

+ 𝑝
𝛼ℓ−1
ℓ

+ 𝑝
𝛼ℓ−1/2
ℓ

)
.

Hence,

|I |
𝑇2
I

=

ℓ−1∏
𝑗=1

(𝑝 𝑗 − 1)𝑝𝛼𝑗−1
𝑗(

𝑝
𝛼𝑗

𝑗
− 𝑝

𝛼𝑗−1
𝑗

− 𝑝
(𝛼𝑗−1)/2
𝑗

+ 𝑝
𝛼𝑗−1/2
𝑗

)2 ·
𝑝
𝛼ℓ−1
ℓ(

− 𝑝
(𝛼ℓ−1)/2
ℓ

+ 𝑝
𝛼ℓ−1
ℓ

+ 𝑝
𝛼ℓ−1/2
ℓ

)2 .
■

Therefore, Theorem 1.2 implies

Corollary 5.6 There is a constant 𝑐′ > 0, such that as 𝑛 → ∞,

𝑀𝑘 (𝑛) ≤
(

2𝑘
𝑘 − 2

+ 𝑜(1)
)
𝜇𝑘𝜙(𝑘) log 𝑛,

holds uniformly for positive integers 𝑘, 𝑛 ≥ 3 such that log 𝑘 ≤ 𝑐′
√︁
log log 𝑛.

Remark 5.7 Our computations indicate that when 2 ≤ 𝑘 ≤ 100,000, the inequal-
ity 𝜇𝑘 ≤ 2𝜂𝑘 holds for all but 501 of them. This numerical evidence suggests that 𝜇𝑘

provides a good approximation for 𝜂𝑘 for a generic 𝑘 . Note that the computational
complexity for computing 𝜇𝑘 is the same as that of the prime factorization of 𝑘 : a
naive algorithm takes 𝑂 (

√
𝑘) time. The best theoretical algorithm has running time

𝑂
(
exp((log 𝑘)1/3+𝑜 (1) )

)
using the general number field sieve [5]. On the other hand,

computing 𝜂𝑘 requires 𝑂 (𝑘 log 𝑘) time; we refer to Appendix A for an algorithm and
some computational results.

6 Multiplicative decompositions of shifted multiplicative
subgroups

In this section, we present our contributions to Conjecture 1.9. In particular, we make
significant progress towards Sárközy’s conjecture (Conjecture 1.8). We recall 𝑆𝑑 =

𝑆𝑑 (F𝑞) = {𝑥𝑑 : 𝑥 ∈ F∗𝑞}.

6.1 Applications to Sárközy’s conjecture

In this subsection, we show that for almost all primes 𝑝 ≡ 1 (mod 𝑑), the set (𝑆𝑑 (F𝑝)−
1) \ {0} cannot be decomposed as the product of two sets non-trivially. This confirms
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the truth of Sárközy’s conjecture (Conjecture 1.8) aswell as the truth of its generalization
in the generic case (Conjecture 1.9) when the shift of the subgroup is given by 𝜆 = 1.

Theorem 6.1 Let 𝑑 ≥ 2 be fixed. As 𝑥 → ∞, the number of primes 𝑝 ≤ 𝑥 such that 𝑝 ≡ 1
(mod 𝑑) and (𝑆𝑑 (F𝑝) − 1) \ {0} can be decomposed as the product of two sets non-trivially
(that is, it can be written as the product of two subsets of F∗𝑝 with size at least 2) is 𝑜(𝜋(𝑥)).

Proof LetP𝑑 be the set of primes 𝑝 such that 𝑝 ≡ 1 (mod 𝑑) and (𝑆𝑑 (F𝑝) −1) \ {0}
admits a non-trivial multiplicative decomposition. By the prime number theorem for
arithmetic progressions, it suffices to show that |P𝑑 ∩ [0, 𝑥] | = 𝑜(𝑥/log 𝑥).

Let 𝑝 ∈ P𝑑 . Then we can write (𝑆𝑑 − 1) \ {0} as the product of two sets 𝐴, 𝐵 ⊂ F∗𝑝
such that |𝐴|, |𝐵 | ≥ 2. Then Corollary 1.10 implies that |𝐴| |𝐵 | = 𝑝−1

𝑑
− 1, that is,

𝑑 |𝐴| |𝐵 | = 𝑝 − (𝑑 + 1). (6.1)

On the other hand, Proposition 3.4 implies that we can find an absolute constant 𝐶𝑑 ∈
(0, 1) such that

𝐶𝑑

√
𝑝 < min{|𝐴|, |𝐵|} < √

𝑝.

It follows that 𝑝 − (𝑑 + 1) has a divisor in the interval (𝐶𝑑
√
𝑝,
√
𝑝). To summarize, if

𝑝 ∈ P𝑑 , then we have 𝜏(𝑝 − (𝑑 + 1);𝐶𝑑
√
𝑝,
√
𝑝) ≥ 1, where 𝜏(𝑛; 𝑦, 𝑧) denotes the

number of divisors of 𝑛 in the interval (𝑦, 𝑧]. Now, we use results by Ford [14, Theorem
6] on the distribution of shift primes with a divisor in a given interval. Denote

𝐻 (𝑥, 𝑦, 𝑧) = #{1 ≤ 𝑛 ≤ 𝑥 : 𝜏(𝑛; 𝑦, 𝑧) ≥ 1}; (6.2)
𝑃𝑑 (𝑥, 𝑦, 𝑧) = #{𝑝 ≤ 𝑥 : 𝜏(𝑝 − (𝑑 + 1); 𝑦, 𝑧) ≥ 1}. (6.3)

Setting 𝑦 = 𝐶𝑑

√
𝑥/2 and 𝑧 =

√
𝑥, [14, Theorem 6] and [14, Theorem 1, third case of (v)]

imply that

𝑃𝑑 (𝑥, 𝑦, 𝑧) ≪
𝐻 (𝑥, 𝑦, 𝑧)

log 𝑥
≪ 𝑥

log 𝑥
𝑢𝛿

(
log

2
𝑢

)−3/2
where 𝛿 = 1 − 1+log log 2

log 2 and 𝑢 = log(𝐶𝑑/2)/log 𝑦. It follows that as 𝑥 → ∞, we have
𝑃𝑑 (𝑥, 𝑦, 𝑧) = 𝑜(𝑥/log 𝑥). Therefore, we have

#{𝑝 ∈ P𝑑 : 𝑥/2 ≤ 𝑝 ≤ 𝑥} ≤ #{𝑥/2 ≤ 𝑝 ≤ 𝑥 : 𝜏(𝑝−(𝑑+1);𝐶𝑑

√
𝑥/2,

√
𝑥) ≥ 1} = 𝑜(𝑥/log 𝑥).

We conclude that as 𝑥 → ∞,

|P𝑑 ∩ [0, 𝑥] | = 𝑂 (
√
𝑥) + #{𝑝 ∈ P𝑑 :

√
𝑥 ≤ 𝑝 ≤ 𝑥}

= 𝑂 (
√
𝑥) +

∑︁
0≤ 𝑗≤(log2 𝑥 )/2

𝑜

(
𝑥/2 𝑗

log(𝑥/2 𝑗 )

)
= 𝑂 (

√
𝑥) +

( ∑︁
0≤ 𝑗≤(log2 𝑥 )/2

1
2 𝑗

)
𝑜

(
𝑥

log 𝑥

)
= 𝑜

(
𝑥

log 𝑥

)
.

■

Using a similar argument, we can prove Theorem 1.11:

2025/02/14 00:29

https://doi.org/10.4153/S0008414X25000136 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000136


Multiplicative structure of shifted multiplicative subgroups 35

Proof Consider the family of primes 𝑝 such that 𝑝 ≡ 1 (mod 𝑑) and 𝑛 is a 𝑑-th power
modulo 𝑝. By a standard application of the Chebotarev density theorem, the density of
such primes is given by 1

[Q(𝑒2𝜋𝑖/𝑑 ,𝑛1/𝑑 ) :Q] . Among the family of such primes 𝑝, we can
repeat the same argument as in the proof of Theorem 6.1 to show that if (𝑆𝑑 (F𝑝) − 𝑛) \
{0} admits a non-trivial multiplicative decomposition, then 𝑝 − (𝑑 + 1) necessarily has
a divisor which is “close to” √𝑝. We remark that it is important to assume that 𝑛 is a
𝑑-th power modulo 𝑝, so that we can take advantage of Corollary 1.10. Similar to the
proof of Theorem 6.1, we can show that among the family of primes 𝑝 ≡ 1 (mod 𝑑),
the property that 𝑝 − (𝑑 + 1) has a divisor with the desired magnitude fails to hold for
almost all 𝑝. This finishes the proof of the theorem. ■

Remark 6.2 When 𝑛 is a fixed negative integer, one can obtain a similar result to
Theorem 1.11 following the idea of the above proof.

Remark 6.3 Theorem 1.11 essentially states if 𝑑 is fixed, 𝑝 ≡ 1 (mod 𝑑) is a prime,
and 𝜆 ∈ 𝑆𝑑 (F𝑝), then it is very unlikely that we can decompose (𝑆𝑑 (F𝑝) − 𝜆) \ {0} as
the product of two subsets of F∗𝑝 non-trivially. On the other hand, when 𝜆 ∉ 𝑆𝑑 (F𝑝),
the above technique does not apply. Nevertheless, when 𝜆 ∉ 𝑆𝑑 and we have two sets
𝐴, 𝐵 ⊂ F∗𝑝 such that 𝐴𝐵 = (𝑆𝑑 − 𝜆) \ {0} = 𝑆𝑑 − 𝜆, Theorem 1.1 implies that

|𝑆𝑑 | ≤ |𝐴| |𝐵 | ≤ |𝑆𝑑 | +min{|𝐴|, |𝐵 |} − 1.

In particular, we get the following non-trivial fact: if |𝐴| is fixed, then |𝐵 | is also uniquely
fixed.

6.2 Applications to special multiplicative decompositions

In this subsection, we verify the ternary version of Conjecture 1.9 in a strong sense,
which generalizes [31, Theorem 2].

Shkredov [33, Theorem 3] showed if𝐺 is a multiplicative subgroup of F𝑝 with 1 ≪𝜖

|𝐺 | ≤ 𝑝6/7−𝜖 , then there is no 𝐴 ⊂ F𝑝 and 𝜉 ∈ F∗𝑝 such that 𝐴/𝐴 = 𝜉𝐺 +1. In fact, due
to the analytic nature of the proof, he pointed out that his proof can be slightly modified
to show something stronger, namely 𝐴/𝐴 ≠ (𝜉𝐺 + 1) ∪𝐶 , as long as𝐶 is small(see also
[33, Remark 15]). The following corollary of Theorem 1.1 is of a similar flavor.

Corollary 6.4 Let 𝑝 be a prime. If𝐺 is a proper multiplicative subgroup of F𝑝 with |𝐺 | ≥ 8,
and 𝜆, 𝜉 ∈ F∗𝑝 , then there is no 𝐴 ⊂ F∗𝑝 such that 𝐴𝐴 = (𝜉𝐺 − 𝜆) \ {0}.

Proof We assume, otherwise, that 𝐴𝐴 = (𝜉𝐺 − 𝜆) \ {0} for some 𝐴 ⊂ F∗𝑝 . Then we
observe that 𝑎𝑎′ = 𝑎′𝑎 for each 𝑎, 𝑎′ ∈ 𝐴, it follows that

|𝐺 | − 1 ≤ |𝐴𝐴| ≤ |𝐴|2 + |𝐴|
2

.

Since |𝐺 | ≥ 8, it follows that |𝐴| ≥ 4. Let 𝐵 = 𝐴/𝜉 , and 𝜆′ = 𝜆/𝜉 . Then we have
𝐴𝐵 = (𝐺 − 𝜆′) \ {0} and thus Theorem 1.1 implies that |𝐴|2 = |𝐴| |𝐵 | ≤ |𝐺 | + |𝐴| − 1.
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Comparing the above two inequalities, we obtain that

|𝐴|2 − |𝐴| ≤ |𝐺 | − 1 ≤ |𝐴|2 + |𝐴|
2

,

which implies that |𝐴| ≤ 3, contradicting the assumption that |𝐴| ≥ 4. ■

Lemma 6.5 Let 𝐴, 𝐵, 𝐶 be nonempty subsets of F𝑞 and let 𝜆 ∈ F∗𝑞 . Then |𝐴𝐵𝐶 + 𝜆 |2 ≤
|𝐴𝐵 + 𝜆 | |𝐵𝐶 + 𝜆 | |𝐶𝐴 + 𝜆 |.

Proof It suffices to show |𝐴𝐵𝐶 |2 ≤ |𝐴𝐵| |𝐵𝐶 | |𝐶𝐴|, which is a special case of [29,
Theorem 5.1] due to Ruzsa. ■

The following two theorems generalize Sárközy [31, Theorem 2] and confirm the
ternary version of Conjecture 1.9 in a strong form.

Theorem 6.6 There exists an absolute constant 𝑀 > 0, such that whenever 𝑝 is a prime,
𝐺 is a proper multiplicative subgroup of F𝑝 with |𝐺 | > 𝑀 , and 𝜆 ∈ F∗𝑝 , there is no ternary
multiplicative decomposition 𝐴𝐵𝐶 = (𝐺 −𝜆) \ {0} with 𝐴, 𝐵, 𝐶 ⊂ F∗𝑝 and |𝐴|, |𝐵|, |𝐶 | ≥
2.

Proof Assume that there are sets 𝐴, 𝐵, 𝐶 ⊂ F∗𝑝 with |𝐴|, |𝐵 |, |𝐶 | ≥ 2, such that
𝐴𝐵𝐶 = (𝐺 − 𝜆) \ {0} for some proper multiplicative subgroup 𝐺 of F𝑝 and some
𝜆 ∈ F∗𝑝 .

Then we can write (𝐺−𝜆) \ {0} in three different ways: 𝐴(𝐵𝐶), 𝐵(𝐶𝐴), 𝐶 (𝐴𝐵), so
that we can apply the results in previous sections to each of them. Note that Lemma 3.6
implies that

|𝐴|, |𝐵 |, |𝐶 | ≥ |𝐺 |1/2+𝑜 (1) .
On the other hand, Theorem 1.1 implies that

|𝐴𝐵| |𝐶 |, |𝐵𝐶 | |𝐴|, |𝐶𝐴| |𝐵 | ≪ |𝐺 |.

Therefore, from Lemma 6.5 and the fact |𝐴𝐵𝐶 | ∈ {|𝐺 |, |𝐺 | − 1}, we have

|𝐺 |2 |𝐴| |𝐵 | |𝐶 | ≪ |𝐴𝐵𝐶 |2 |𝐴| |𝐵 | |𝐶 | ≪ (|𝐴𝐵| |𝐶 |) ( |𝐵𝐶 | |𝐴|) ( |𝐶𝐴| |𝐵 |) ≪ |𝐺 |3.

It follows that
|𝐺 |3/2+𝑜 (1) ≪ |𝐴| |𝐵| |𝐶 | ≪ |𝐺 |,

that is, |𝐺 | ≪ 1, where the implicit constant is absolute. This completes the proof of the
theorem. ■

Theorem 6.7 Let 𝜖 > 0. There is a constant 𝑄 = 𝑄(𝜖), such that for each prime power
𝑞 > 𝑄 and a divisor 𝑑 of 𝑞 − 1 with 2 ≤ 𝑑 ≤ 𝑞1/10−𝜖 , there is no ternary multiplicative
decomposition 𝐴𝐵𝐶 = (𝑆𝑑 (F𝑞) − 𝜆) \ {0} with 𝐴, 𝐵, 𝐶 ⊂ F∗𝑞 , |𝐴|, |𝐵 |, |𝐶 | ≥ 2, and
𝜆 ∈ F∗𝑞 .

Proof The proof is similar to the proof of Theorem 6.6. While Lemma 3.6 does not
hold in the new setting (see Remark 3.8), we can instead use Proposition 3.4. If 𝐴𝐵𝐶 =
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(𝑆𝑑 (F𝑞) − 𝜆) \ {0}, then Proposition 3.4 implies that

|𝐴|, |𝐵 |, |𝐶 | ≫
√
𝑞

𝑑
, |𝐴| |𝐵𝐶 |, |𝐵𝐶 | |𝐴|, |𝐶𝐴| |𝐵 | ≪ 𝑞.

A similar computation leads to 𝑑 ≫ 𝑞1/10, which implies that 𝑞 ≪𝜖 1 since we assume
that 𝑑 ≤ 𝑞1/10−𝜖 . ■
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A Algorithm and Computations
We continue our discussion from the introduction on the following constant

𝛾𝑘 = lim sup
𝑛→∞

𝑀𝑘 (𝑛)
log 𝑛

.

It is implicit in [7] that 𝛾𝑘 ≤ 3𝜙 (𝑘 ) . We also write 𝜈𝑘 = 2𝑘
𝑘−2 𝜂𝑘𝜙 (𝑘 ) .

Our main result, Theorem 1.2, implies that 𝛾𝑘 ≤ 𝜈𝑘 . In particular, in view of Remark 5.1, it follows that
𝛾𝑘 ≤ 6 for all 𝑘 ≥ 2 and 𝛾𝑘 ≤ 2+𝑜 (1) when 𝑘 → ∞. In Figure A.1, we pictorially compare our new bound
𝜈𝑘 with the bound 3𝜙 (𝑘 ) when 2 ≤ 𝑘 ≤ 1000.

Figure A.1: Comparison between the new bound 𝜈𝑘 and the bound 3𝜙(𝑘) in [7] when
2 ≤ 𝑘 ≤ 1000. The black dots denote 3𝜙(𝑘), and the blue dots denote 𝜈𝑘 .

Recall that for 𝑘 ≥ 2, we defined the constant 𝜂𝑘 = min
I

| I |/𝑇2
I , where the minimum is taken over all

nonempty subsets I of {1 ≤ 𝑖 ≤ 𝑘 : gcd(𝑖, 𝑘 ) = 1, gcd(𝑖 − 1, 𝑘 ) > 1}, and 𝑇I =
∑

𝑖∈I
√︁
gcd(𝑖 − 1, 𝑘 ) .

To compute 𝜂𝑘 , we use the following simple greedy algorithmwith running time𝑂 (𝑘 log 𝑘 ) . The obser-
vation is as follows. If | I | is fixed, our goal is to minimize | I |/𝑇2

I . Thus, we should choose those residue
classes 𝑖 (mod 𝑘 ) with gcd(𝑖 − 1, 𝑘 ) as large as possible to maximize 𝑇I . Then, we can sort these gcds in
decreasing order, and when | I | is fixed, we pick those residue classes corresponding to the largest | I | gcds.
The following is a precise description of the algorithm:

Algorithm A.1 Let 𝑘 ≥ 2. We follow the notations defined in Subsection 5.2.

Step 1. Let A = {1 ≤ 𝑖 ≤ 𝑘 : gcd(𝑖, 𝑘 ) = 1, gcd(𝑖 − 1, 𝑘 ) > 1}. We list the elements of A by {𝑎1, 𝑎2, . . .}
such that gcd(𝑎 𝑗 − 1, 𝑘 ) is decreasing by using a sorting algorithm.

Step 2. Set 𝐼𝑟 = {𝑎1, . . . , 𝑎𝑟 } , 𝑇𝐼𝑟 =
∑

𝑖∈𝐼𝑟
√︁
gcd(𝑖 − 1, 𝑘 ) , and 𝜉𝐼𝑟 = |𝐼𝑟 |/𝑇2

𝐼𝑟
.

Step 3. Return 𝜂𝑘 = min𝑟 𝜉𝐼𝑟 and terminate the algorithm.

Note that the running time of the above algorithm is 𝑂 (𝑘 log 𝑘 ) : sorting takes 𝑂 (𝑘 log 𝑘 ) time, while
other steps take linear time.

Next, we also consider the minimum value 𝑚𝑘 of the upper bounds {𝜈𝑖 : 2 ≤ 𝑖 ≤ 𝑘} for each 𝑘 ≥ 2.
Table A.1 shows the values of𝑚𝑘 for 2 ≤ 𝑘 ≤ 1,000,000 when they are changed.
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𝑘 𝑚𝑘

2 2.00000
4 1.37258
6 0.80385
8 0.72776
12 0.44134
24 0.31910
36 0.29027
48 0.25836
60 0.21636
120 0.16570
180 0.15191
240 0.13876
360 0.11708

𝑘 𝑚𝑘

720 0.09693
840 0.09266
1260 0.08465
1440 0.08445
1680 0.07624
2520 0.06465
5040 0.05317
7560 0.05171
10080 0.04592
15120 0.04252
20160 0.04111
25200 0.03887
27720 0.03665

𝑘 𝑚𝑘

30240 0.03647
50400 0.03343
55440 0.02997
83160 0.02877
110880 0.02574
166320 0.02343
221760 0.02280
277200 0.02138
332640 0.02008
498960 0.01985
554400 0.01827
665280 0.01774
720720 0.01654

Table A.1: The minimum 𝑚𝑘 of the upper bounds {𝜈𝑖 : 1 ≤ 𝑖 ≤ 𝑘} for 2 ≤ 𝑘 ≤
1,000,000.

We also report our computations on 𝜈𝑘 for 2 ≤ 𝑘 ≤ 201 in the following table.
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𝑘 𝜈𝑘
2 2.0000
3 4.0000
4 1.3726
5 2.6667
6 0.8038
7 2.4000
8 0.7278
9 1.1077
10 0.7295
11 2.2222
12 0.4413
13 2.1818
14 0.7185
15 0.7222
16 0.5383
17 2.1333
18 0.4522
19 2.1176
20 0.4450
21 0.7355
22 0.7251
23 2.0952
24 0.3191
25 1.1180
26 0.7313
27 0.7508
28 0.4552
29 2.0741
30 0.3351
31 2.0690
32 0.4555
33 0.7709
34 0.7438
35 0.7311
36 0.2903
37 2.0571
38 0.7497
39 0.7873
40 0.3353
41 2.0513
42 0.3465
43 2.0488
44 0.4739
45 0.4581
46 0.7604
47 2.0444
48 0.2584
49 1.1716
50 0.4974
51 0.8163

𝑘 𝜈𝑘
52 0.4818
53 2.0392
54 0.3596
55 0.7678
56 0.3486
57 0.8290
58 0.7742
59 2.0351
60 0.2164
61 2.0339
62 0.7783
63 0.4746
64 0.4124
65 0.7860
66 0.3643
67 2.0308
68 0.4950
69 0.8515
70 0.3548
71 2.0290
72 0.2171
73 2.0282
74 0.7892
75 0.5005
76 0.5006
77 0.7644
78 0.3713
79 2.0260
80 0.2730
81 0.6359
82 0.7956
83 2.0247
84 0.2263
85 0.8195
86 0.7985
87 0.8796
88 0.3682
89 2.0230
90 0.2239
91 0.7794
92 0.5103
93 0.8877
94 0.8040
95 0.8346
96 0.2261
97 2.0211
98 0.5376
99 0.5038
100 0.3344
101 2.0202

𝑘 𝜈𝑘
102 0.3827
103 2.0198
104 0.3757
105 0.3626
106 0.8114
107 2.0190
108 0.2355
109 2.0187
110 0.3768
111 0.9094
112 0.2864
113 2.0180
114 0.3874
115 0.8621
116 0.5220
117 0.5160
118 0.8179
119 0.8087
120 0.1657
121 1.2615
122 0.8200
123 0.9220
124 0.5254
125 0.8820
126 0.2335
127 2.0160
128 0.3877
129 0.9278
130 0.3869
131 2.0155
132 0.2413
133 0.8226
134 0.8256
135 0.3709
136 0.3878
137 2.0148
138 0.3955
139 2.0146
140 0.2400
141 0.9387
142 0.8291
143 0.7812
144 0.1809
145 0.8976
146 0.8307
147 0.5506
148 0.5342
149 2.0136
150 0.2468
151 2.0134

𝑘 𝜈𝑘
152 0.3928
153 0.5366
154 0.3772
155 0.9081
156 0.2471
157 2.0129
158 0.8353
159 0.9532
160 0.2385
161 0.8485
162 0.3140
163 2.0124
164 0.5392
165 0.3857
166 0.8382
167 2.0121
168 0.1737
169 1.2965
170 0.4049
171 0.5453
172 0.5416
173 2.0117
174 0.4053
175 0.5104
176 0.3077
177 0.9660
178 0.8422
179 2.0113
180 0.1519
181 2.0112
182 0.3854
183 0.9700
184 0.4014
185 0.9365
186 0.4080
187 0.8001
188 0.5459
189 0.3843
190 0.4129
191 2.0106
192 0.2075
193 2.0105
194 0.8471
195 0.3948
196 0.3652
197 2.0103
198 0.2493
199 2.0102
200 0.2517
201 0.9811

Table A.2: The upper bound 𝜈𝑘 of 𝛾𝑘 when 2 ≤ 𝑘 ≤ 201
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