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EXTENSIONS OF HOMOMORPHISMS OF 
PARABOLIC SUBGROUPS 

EDWARD N. WILSON 

1. Introduction and definitions. If one wishes to construct a homomor-
phism of a group, an obvious approach is to begin with a homomorphism of a 
subgroup and attempt to extend it in some way. Any such extended homomor­
phism is determined by its action on elements of the group which, together 
with the subgroup, generate the whole group. The values assigned to such 
generators must then satisfy various functional equations. By a governing list 
for the extension problem, we shall mean a list of functional equations whose 
solutions describe all possible homomorphisms extending a given subgroup 
homomorphism. 

Let G be a group and B a subgroup with presentation (R; X), i.e., R is a 
set of generators for B and X is a set of relations on R which define B. Let S 
be a set of elements in G such that R KJ S is a set of generators for G. A govern­
ing list for the pair (G, B) corresponds to a set of relations Y on R \J S such 
that (R W S; X \J Y) is a presentation of G. Since the approach here is directed 
towards extending a homomorphism of B to a homomorphism of G, we shall 
usually take (R; X) to be the trivial group-table presentation of B. 

Our primary interest is in obtaining governing lists convenient from the 
point of view of representation theory. To illustrate our criteria of desirability, 
let G, B and S be as above, and suppose t h a t / : B —* H is a homomorphism. 
Select a set of elements Hs = {hs : s £ S}. Suppose there exists a homomor­
phism f:G-*H with f(b) = f(b) for all b £ B and f(s) = hs for all 5 £ S. 
For each s G S, define Ns = B C\ s~1Bs. Then for n G Ns, we have the 
functional relation 

f(sn) = hsf(n) = /(sns-^hs. 

In other words, hs intertwines the homomorphisms n —» f(n) and n —-» f(sns~l) 
of Ns. Conditions of this form in a governing list will be denoted by (I) and 
will be referred to as intertwining conditions. If st G S and bt G B (i = 1,2,3) 
with Sifris2 = b2s^bz, then we must also have hSlf(bi)hS2 = f(b2)hSsf(bz). 
Conditions of this form involving three letter words in the generators of G 
will be referred to as triple conditions and will be denoted by (T). In represen­
tation theory, triple conditions are often much more difficult to analyze than 
intertwining conditions. An attempt is made here to exhibit governing lists 
involving a minimal number of triple conditions. 
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A more obvious criterion of desirability is of course the size of the set S. 
If 5 is taken to be a set of (B, B) double coset representatives of G, it is straight­
forward to check that the extension process is governed by an intertwining 
condition for each s £ S and triple conditions involving a set of representatives 
of (N8, Ns>) double cosets of B for each pair (s, s') G S X S. In section 2 we 
investigate a case when 5 may be taken to be a singleton set. In sections 3 
and 4, we investigate a case when the double coset space W = B\G/B has 
a group structure. In particular, this situation arises when G is a semi-simple 
Lie group and B a parabolic subgroup. W is commonly called the Weyl group 
of the pair (G, B). In addition to intertwining and triple conditions, the 
associated governing lists contain equations arising from a presentation of W. 
Such conditions will be denoted by (W). 

2. Governing lists for subgroups with large double coset. Let G be 
a group and A a subset of G. Set A'1 = {g G G : g~l G A} and for x G G, Ax = 
{g G G : gx~l G A}. A is said to be large in G if A~l Pi Ax (~\ Ay C\Az ^ 0 
for all x, y, z in G. If G is a locally compact group and dx is a (right or left) 
Haar measure on G, then a subset is large in G if its complement has zero 
measure. 

Let A be large in G and let / be a mapping of A into a group if. Weil has 
shown [4] t h a t / extends to a homomorphism of G into i? if and only if f(a) = 
f(ai)f(a>z) whenever a, ai, and a2 are in 4̂ and a = &ia2. 

Let G be a group, B a subgroup and suppose there exists p G G such that 
4 = 5 £ 5 is large in G. Let C = B C\ p~lBp, C = £G£~\ and B = 
Ujçj GÎ^-C a union of distinct double cosets. Let J' = {j G J : O j C C -4}. 
For each j G J r select elements v- and z>/' in B such that ^ ^ = v/pv/'. 

THEOREM 1. With the notations above, let f : B —> if fre a homomorphism. 
Then f extends to a homomorphism f : G —* H with f(p) = h if and only if h 
satisfies the following list of conditions : 

(I) hf(c) = f(c)h for c G C and c = pcp~l. 
(T) hf(Vj)h = f(v/)hf(v/')forj G J'. 

When h satisfies (I) and (T),f is uniquely determined byf(p) = h. 

Proof. Necessity of the conditions (I) and (T) is obvious. It is immediate 
from the definition of a large subset that A2 = G. Hence G is generated by B 
and p and the uniqueness statement is trivial. 

Suppose h satisfies (I) and (T). Check that bipb2 = bipb2
f implies that 

b2(b2')-
1 G C. From (I), it follows that for a = bxpb2 G A, a-+f(a) = 

f(bi)h f(b2) is a well defined mapping of A into H. It remains to check that 
/ is multiplicative. But if at = bipb/(i = 1, 2) and a = aia2 G A, then 
b\b2 G CvjC for some j G / ' . It is straightforward to check using (I) and (T) 
that under these conditions, f(a) = f(ai)f(a2). The theorem now follows 
from the result of Weil quoted above. 
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We now consider a family of examples for which the hypotheses of Theorem 1 
are satisfied. Let G b e a connected semi-simple Lie group and B = MAN, a 
minimal parabolic subgroup (see section 5 for definitions). If q Ç W is the 
element of the Weyl group mapping all positive roots to negative roots, then 
G — BqB is a finite union of manifolds of dimension less than the dimension of 
G. Hence L = BqB is large in G. It is easy to check that in this situation 
C = C = MA. However in general, the index set / ' of Theorem 1 will be 
infinite and hence the governing list which results will be quite complicated. 
If B is any parabolic subgroup, i.e., if B is a subgroup containing a conjugate 
of B, then for some p £ G, L = BpB will be large in G. We now describe 
several cases where the resulting triple conditions are finite in number. 

Let F = R or C. For n ^ 1, set 

Pi = 
0 In 

'In 0 
and p2 = 

[0 In] 
[in 0 j 

where In is the n X n identity matrix. For any matrix g, let lg (respectively, *g) 
denote the matrix transpose (respectively, matrix adjoint) of g. Now set 

and for n even, 

Sp(n, F) = {g e GL(2n, F) : l
gplg = p1}f 

U(n,n) = {ge G L ( 2 n , C ) : * g ^ = ^i}> 

SO(», n, F) = {g G SL(2n, F) : *gp2 g = p2} 

In the following discussion, G will denote one of the groups GL(2n, F) , 
SL(2n, F) , Sp(n, F) , U(»f n), SU(», n) = U(», n) H SL(2n, C), or SO(», 
n, F) . Then G is a connected reductive Lie group. Denote the elements of G 
in block form, e.g., 

x y 
z w 

for x, y, z, w in FnXn. 

Set 

Co = {c(x, w) = 

and 

Vo = {v(z) = 

c = Co n G, 

7 = Fo H G, 

5 = CF. 

x 0 
0 w 

0 

: x, w Ç GL(n, F)}, 

s G Fwxw) 

Then B is a semi-direct product of C and F. For p = p2 in the case G = 
SO(w, w, F) and ^ = >̂i in the other cases, L = 5 ^ = BpV is large in G. 
Indeed, it is routine to check that dimRL = dimRG. If B0 is a minimal parabolic 
subgroup of G contained in B and L0 = B0qB0 is the large set described 
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above, it follows that L D L0 and hence that L is large in G. Trivially, 
C = B C\ p~lBp = pCp~l. The decomposition of B into (C, C) double cosets 
is described by the orbits of the action c(x, w) • v(z) = v(w~lzx) of C on V. 
By an easy matrix calculation, if pv(z)p G L, then det z ^ 0. A double coset 
Cv(z)C will be called non-singular if det z 9^ 0. From linear algebra, there are 
only finitely many non-singular double cosets. Indeed, for G = GL(2n, F) 
or SL(2?z, F) this is trivial. For G = Sp(w, R), v(z) G V if and only if z = 
lz G Knxn and c(x, w) G C if and only if x G GL(w, R) and w = *x-1. The 
action of C on F corresponds to the change of basis of a symmetric bilinear 
form on Kn. Set 

" -I, 0 
0 In-

forj = 0 , 1 , . 

Then the double cosets Cv{Zj)C (j = 0, 1, . . . , n) exhaust the non-singular 
double cosets of B. The other groups may be treated similarly. 

From Theorem 1 it follows that a homomorphism / of B into H extends to 
a homomorphism / of G into H with f(p) = h if and only if h satisfies the 
intertwining condition (I) on C and triple conditions (T) for the representa­
tives of the non-singular double cosets of B. 

3. Structure of Tits systems with finite Weyl group. A quadruplet 
(G, B, M', S) is said to be a Tits system if G is a group, B and M' are sub­
groups of G, 5 is a subset of M'IB C\ M', and the following axioms are satis­
fied: 

(Tl) G is generated by B \J M' and M = B C\ M' is a normal subgroup 
of Mf-

(T2) 5 is a set of involutive generators of W = M'/M; 
(T3) sBs j* B for all s £ S; 
(T4) s££ C 5*5 U 5 ^ 5 for all ( s , f ) ^ X l f . 

If Xi, X2j . . . , Xk are subsets of W and -Si, -£2, • . . , Bk+i are subsets of B, 
expressions of the form ^ 1 X ^ 2 ^ 2 . • . BkXkBk+i are understood to mean the set 
of all quantities bimib2ni2 . . . bkmkbk+i where bj G Bj (j = 1, 2, . . . , k + 1), 
m/ G M ; and m / M G X,- ( 7 = 1 , 2 , . . . , jfe). 

We now summarize some of the consequences of these axioms. For proofs of 
the results quoted, see Bourbaki [1, pp. 9-36]. For 5 and s' in S, let n(s, s') 
denote the order of ssf in W (in general, n(s, s') may be infinite). Then 5 
and the set of relations (ss,)n{s,s') = 1 for n(s, sf) < 00 form a presentation 
of the group W. For p G W, let l(p) denote the length of p, i.e., the smallest 
integer k for which p may be written as a product of k elements of 5. Then 
(T3) is equivalent to 

(TV) BsBbB - iBspB if l{sp) > 1{P) 

{16) BsBpa - ^BpB w BspB .f l{sp) < l{p) 

for all (s, p) <E S XW. 
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For p and r distinct elements of W, BpB and BrB are disjoint. Moreover, 
G = Upew BpB. Hence the Weyl group W may be identified with B\G/B. 

We shall henceforth assume that (G, B, M',S) is a Tits system and that 
W is finite. It then follows from an exercise in Bourbaki [1, p. 43] that there is 
a unique element q £ W with maximal length. Indeed, q may be characterized 
as the unique element in W for which l(qs) < l(q) for all s Ç S. It is easy 
to see that q2 = 1 and l(pq) = l(qp) = l(q) — l(p) ior all p £ W. In particular 
this implies that qSq = S. Set B = qBq. 

LEMMA 1. (G, B, M', S) is a Tits system. 

Proof. Since B C\ M' = B C\ M'', axioms (Tl) and (T2) are satisfied. 
Axioms (T3) and (T4) are consequences of the fact that p —» qpq is an auto­
morphism of W which leaves 5 invariant. 

We shall often refer to (G, B, M', S) as the dual system. 

LEMMA 2. If (s,p) £ S X W with l(sp) < l(p), then sBs C\ sp B (sp)~l C B. 

Proof. Suppose l(sp) < l(p). Then l(ssp) > l(sp) and from (T3') 

(sp)B(sp)-ir\BsB = (spB r\BsBsp)(sp)~1 

C (BspB r\BpB)(sp)~1 

= 0 

The lemma now follows from the fact that sBs C B \J BsB. 

Let C = B C\ B. Lemma 3 shows that C is the subgroup of B normalized 
by AT. 

LEMMA 3. C = r\Pew pBp~l. 

Proof. Let s £ S. Then sCs C B U BsB. But BsB H sCs C BsB C\sqBqs = 0 
by Lemma 2. Hence sCs C B. By applying the same argument to the dual 
system, it follows that sCs C B and hence that sCs C C. But then sCs = C 
and since W is generated by 5, C = pCp~l C pBp~l for all £ Ç W. Let C7 = 
P \ p ^ pBp~l. It has just been shown that C C C. Since the converse statement 
is trivial, the lemma is proved. 

Now for any p £ W, set Np = B H p-*Bp and Uv = B (~\ p^Bp. 

LEMMA 4. r&e following equations hold for all p and r in W. 
(1) pNpp-^ = # , -1 . 
(2) JV„ = UP. 
(3) p-HMp-i n ivr)£ = ivp n 7vrp = Npr\ p~iNrp. 
(4) NVCMJP= C. 
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Proof. Statements ( l )-(3) follow immediately from the definitions. To 
prove (4), use Lemma 3 to get 

NVC\UV = BC\ p~l(B r\B)p = BC\ p~lCp = BC\C = C. 

LEMMA 5. Let (s, p) G S X W with l(sp) > l(p). Then 
(1) Ni8pri C Ns. 
(2) Nsp C Np. 
(3) Us C Np-u 
(4) Up C Us,. 

Proof. Let l(sp) > l(p). From (T3')t it follows as in Lemma 2 that 
BsB r\ pBp-1 = 0 and hence that sBs H pBp'1 C B. But then 

N(sp)-i = BC\ (sp)B(sp)-1 CsBsC\B = Ns 

so (1) is proved. From Lemma 4, we get 

N* = (^ ) -W ( s p ) - i sp = (sp)-1 (N(sp)-i H Ns)sp = iVS2, H 7VP 

which proves (2). 
To prove (3), it suffices to show that p~l Us p C B whenever l(sp) > l{p). 

We do this by induction on the length of p. The case p = 1 (i.e., l(p) = 0) 
is trivial. Suppose (3) holds for p G W and let p' = psf with l(spf) > l(pf) > 
l(p). Then l(sp) > l(p) and by hypothesis p~llJ8pCB. Hence (p'Y1 

Us P' C s'Bs'. But by Lemma 2 

fr')-1 # .£ ' = *'£*' r\ (P'Y1 Usp' C s'Ss' n (qsp')-iBqsp' C B 

so (3) holds for £' as well. By induction (3) holds in general. 
(4) follows from (2) by Lemma 4. Indeed, if s = qsq, then l(qp) = l(sqsp) > 

l(qsp) and hence 

v-^p -LV qp -̂ * Sffsp v J-* qsp U sp' 

THEOREM 2. (1) J5 = NpUpfor all p G W. 
(2) 7/ l(sp) > lip) then Nsp = Np H p~lNsp and Usp = 

(p-'UsP)' Up. 

Proof. The proof will again use induction on the length of p. First consider 
the case p = s £ S. From (T3f) it follows that sBsq C -BgiS and hence that 
B C (SJBS) (SBS). Thus for each element b £ B there exist elements w G sI3s 
and w G sBs such that b = nu. We claim that n £ B. Indeed, if n $ 12, then 
w G 7>s.£>. But then we would have b G (BsB sqB)qs C (BqB)qs which is 
impossible since BsqB C\ BsB = 0. Hence n ^ B C\ sBs = Ns and w = 
£w-1 G -£> Pi sBs = Us. Thus we have the decomposition B = NSUS for all 
5 G s. 

Now suppose the decomposition B = NPUV holds for some p £ W. Let 
s £ S with Z(s£) > l(p). Since 7> = NSUS1 then in particular for n G A^-i, 
there exists n± G iVs and Wi G £/s such that w = n\U\. From Lemma 5, Us C iVp-i 
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so fi! Ç Ns Pi Np-i. Thus Np-i = (Np-\ C\ Ns) • Us- From Lemma 4 it follows 
that 

B = NPUP 

= p-lNv-ipUv 

= (p-1(Np-inNs)p) (p-'Usp)Up 

= (Npnp~'Nsp) {p-iU9p)Up. 

But by Lemmas 4 and 5, Nsp C Np and Np Pi p~lNsp = Nv C\ Nsp = Nsp. 
Also from Lemma 5, Up C Usp and Us C iVp-i so 

p-'Usp = p-'iUs r\ NP-I)P = uSP n NP. 

From the argument given above, it follows that 

usp = (uspr\ NV) (usp r\ up) = iP~lusp) • up. 
By induction on the length of p, the decomposition (1) holds for all p Ç W 
and the formulae in (2) have been proved as well. 

Statements analogous to those in Lemma 5 and part (2) of Theorem 2 
hold for the cases l(ps) < l(p),l(sp) > I(p) and I(sp) < l(p). Such statements 
are easily proved from Lemmas 4 and 5 by substitution of p for p~l and the 
use of Lemma 5 in the dual system. 

Borrowing terminology from the Lie group context, the subgroups p~1Usp 
may be called positive (respectively, negative) root subgroups for (s, p) Ç S X P 
and l(sp) > l{p) (respectively, /^) < lip)). It follows easily from Theorem 2 
that B is generated by the positive root subgroups. Since the conjugate of a 
positive root subgroup under g is a negative root subgroup, it follows that G 
is generated by the positive root subgroups and any element q Ç G with q Ç q. 
These statements are of course well known in the context of semi-simple Lie 
groups. The standard proofs exploit the differentiable structure of such groups. 
Once the decomposition theorem B = NPUP has been proven, the key axiom 
(T3) for Tits system is an immediate consequence. 

4. Governing lists for Tits systems. Let (G, B, M\ S) be a Tits system 
with finite Weyl group. For each s £ S pick once and for all an element s G M* 
such that s = sM. Let S = {s : s Ç S}. Recall that nis, s') denotes the order 
of ss' in W. Hence for all (5, s') (z S X 5, there exists an element mis,s') G M 
such that is sf)n{-s's,) = mis, sf). Let (L; Y) be any presentation of M. For S 
and sf in S and m G W, mis, sr) and sms~l may be regarded as words in the 
elements of the generating set W. Let X\ be the set of relations of the form 
is sf)n(s's,) = m is, s') and X2 the set of relations of the form sms~x isms~x)~l = 1. 
Set Z = F U I i U X2. Then Z is a set of relations on the generating set 
L VJ S of M'. 

LEMMA 7. iL VJ S ; Z) is a presentation of M'. 

Proof. The lemma follows easily from the fact that (5; X) is a presentation 
of W where X is the set of relations of the form iss')ni8,s,) — 1. 
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Now lor s ^ S and Us as in section 3, consider the double coset space 
C\US/C. Le t Ds be a set of representat ives for the non-trivial double cosets. 
A typical element of Ds will be denoted by û. F rom Lemma 3, sDss C BsB. 
Hence for each ù G Ds, we m a y select elements V\(u) G B and v2(û) G Us 

such t h a t sus = Vi(û) s v2(û). Le t (B\Z^) be the group-table presentat ion 
of B. Le t Z 2 be the set of relations of the form sns-1 n = 1 for s G S, u G iVs 

and w = ( s n s - 1 ) - 1 m ^ - Let Z 3 be the set of relations of the form 

sûs(vi(û)sv2(û))~1 = 1 

for s G S and ^ G Ds. For Z as above, set Z = Z U Zi U Z2\JZ^. Then Z may 
be regarded as a set of relations on the generating set B \J S of G. 

T H E O R E M 3. Le£ f:B—>H be a homomorphism. Select a set of elements 
H^ = {h^ : s £ S}. Then f extends to a homomorphism f: G —» H with f (s) = fc 
if an J 0^/3/ if /fee following conditions are satisfied : 

(W) (A ïftï')w(M ') = w(5, 5') for (5, 5) G 5 X 5 . 

(I) A?/(w) = f(s n sri)hs for (5, n) £ S X Ns. 
(T) h-sf(u)h-8 = f{v1{û))h-sf{v2{u)) for (5, w) G 5 X Ds. 

Proof. T h e s t a tement of the theorem is equivalent to the s t a t ement t h a t 
(5 VJ B] Z ) is a presentat ion of G. Le t & be the free group on the generating 
set S\J B. T h e set of relations Z may be identified with a set of words in & 
which describe the ident i ty element in G. By an e lementary word operat ion 
we shall mean insertion or deletion of any element from Z. By a word operat ion 
on &, we shall mean a composite of e lementary word operations. In order to 
show t h a t ( 5 U 5 ; Z ) i s a presentat ion of G, it suffices to show t h a t whenever 
w is a word in S? which represents the ident i ty element in G, then w may be 
mapped to the ident i ty word by a word operation. 

By Lemma 7, two words in the elements of S {J M which represent the 
same group element in M' may be mapped into one another by a word opera­
tion. Hence every element in & may be regarded as a word of the form 
bimib2m2 . . . bnmn where bû G B and m$ G M' for j = 1,2, . . . ,k. T o prove 
the theorem it suffices to show t h a t every word of the form mj?m2 may be 
mapped to a word of the form bim%b2 by a word operation. Le t p = m%M and 
p' = m2M. By induction on the length of p, it suffices to consider the case 
Wi = s G S. Since sBp' = NssUsp

f, we may assume b = u G Us — C. There 
are now two cases. Firs t assume l{spf) > l(p') = k. Wr i t e pr in the form 
P' = sis2 . . . sk. Le t po = 1 and pj = Sis2 . . . Sj for j = 1,2, . . . ,k. Then for 
all j , l(spj) > l(pj) and by Lemma 5, Us C Npj-i. I t follows t h a t pj-î~l 

Uspj-\ C Nsj for j = 1,2, . . . ,k. Set m2 = SiS2 . . . skmo for some m0 G il̂ T, 
^o = u, Uj = (sis2 . . . Sj)-1 u{s\S2 . . . Sj)~l for j = 1,2, . . . ,k, and b2 = ukm^. 
Then sz/ra2 m a y be mapped to sra2&2 by successively replacing UjSj+i by 
$ j + i% + i for j = 0, 1, 2, . . . , k — 1. Clearly such replacements may be described 
by elementary word operations. Now consider the case l(spf) < l{pf). Then 
su m a y be mapped by a word operat ion to a word of the form Visv2(s)~1 for 
V\ G -S and fl2 G Z7S. Since l{sspr) > l{spr), the a rgument jus t given implies 
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t h a t v2(s) lm2 may be mapped by a word operation to a word of the form 
s~lm2b2. This completes the proof of the theorem. 

5. Examples. 

Example 1. Let G = GL(n, k) for n ^ 2 and k any field. Let B be the upper 
tr iangular subgroup of G and M ' the set of elements in G having precisely 
one non-zero en t ry in each row and column. Then M = B C\ M' is the set of 
diagonal elements in G and W = Mf/M may be identified with the permuta­
tion group on n letters. For i = 1, 2, . . . , n — 1 let st be the element of W 
identified with the transposition (i, i + 1). Then (G, B, M', S) is a T i t s 
system [1, p . 24]. T h e element q £ W of maximal length is the coset determined 
by any matr ix in M' with non-zero elements along the secondary diagonal. 
For l ^ i ^ j ^ n — 1, SiSj is of order 2 if \i — j \ > 1 and of order 3 if 
\i — j \ = 1. B = qBq is the lower tr iangular subgroup and B Pi B = M. For 

; = l , 2 , . . . , w - i , 

Nsi = {b e B: bUi+l = 0} 

and 

Usi = {b e B: bkl = 0 whenever k j * I and (ife, /) ^ ( Î , i + 1)}. 

Usi contains precisely one non-trivial (M, M) double coset. Hence in the 
governing list for this system given by Theorem 3, there are n — 1 triple 
conditions. 

Now let Go = S L O , k) B0 = GQHB and M0' = M' C\ G0. Then (G0> B0, 
Mof, S) is again a Ti t s system. For n ^ 3, the resulting governing list again 
contains n — 1 triple conditions. For n = 2, however, there are [&*: (&*)2] 
such conditions. Here k* = {x ^ k: x 9e 0}, (k*)2 = {x2: x G &*} and 
[jfe*: ( F ) 2 ] is the cardinali ty of k*/(k*)\ 

Example 2. Let G be a connected semi-simple Lie group with Lie algebra 
g and Car tan decomposition g = ! + p. T h e notat ion follows t ha t of Kunze 
and Stein [2, pp. 385-392]. Let a be a maximal abelian subalgebra of p and A 
the set of roots of g with respect to a. Then g = g0 + SaçAg« where ga = 
\X e g : [H, X] = a(H)X for all ^ a | . Fix H0 G a with a(H0) j * 0 for 
all a G A and let A+ (respectively, A~) be the set of a G A for which a (Ho) > 0 
(respectively, a(H0) < 0 ) . Set n = Sa£A+g« and b = l]a€A-g«. Le t K, A, N, 
and V denote the Lie sugbroups of G with Lie algebras Ï, a, n, and b. Let M 
be the centralizer of A in K, M' the normalizer of A in K and W = M'/M. 
Via the contragredient of the adjoint representation, W may be regarded as a 
transformation group on A. Select a set II = {a±, a2, . . . , an] of simple roots 
in A+. For at G II let st denote the reflection of A in at. Then 5 = {si, s2, . . . , 
sn] is a set of involutive generators for W. Set B = MAN. Then (G, B, M', S) 
is a T i t s system. T h e element q G W having maximal length in the elements 
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of S is the unique element in W mapping A+ onto A . It follows that B = 
qBq = MA V and B C\ B = MA. Also 

U8i = MA exp(gai + fl2«t.) and Nsi = MA exp( Y, 8«Y 
\ a£A+— fa;,2a;} / 

For i 7e j , the order n(su Sj) of StSj is either 2, 3, 4, or 6. 
Suppose, in particular, that G has a complex structure. Then Usi/MA is a 

one parameter subgroup for i = 1, 2, . . . , n. Thus the governing list of 
Theorem 3 contains precisely one triple condition for each simple root. 

Now return to the general situation. Let T be a strongly continuous repre­
sentation of B on a Banach space S3. Suppose that T' is an extension of T to 
an algebraic homomorphism of G into GL(J5). It is easy to see that T' is 
strongly continuous. If S3 is a Hilbert space, then T' is uniformly bounded if 
and only if T is uniformly bounded. In the complex case, B is solvable and it 
follows that any uniformly bounded representation of B on an infinite dimen­
sional Hilbert space is similar to a unitary representation. Thus, up to similar­
ity, all infinite dimensional uniformly bounded representations of G arise from 
unitary representations of B via the governing lists of Theorem 3. 
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