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Reply: Birnbaum'’s (2012) statistical tests of independemave
unknown Type-I error rates and do not replicate within ggrant
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Abstract

Birnbaum (2011, 2012) questioned the iid (independent dadtically distributed) sampling assumptions used by
state-of-the-art statistical tests in Regenwetter, Dawh Ravis-Stober’s (2010, 2011) analysis of the “linear orde
model”. Birnbaum (2012) cited, but did not use, a test of §ddmith and Batchelder (2008) with analytically known
properties. Instead, he created two new test statistiéswmknown sampling distributions.

Our rebuttal has five components: 1) We demonstrate that égervetter et al. data pass Smith and Batchelder’s
test of iid with flying colors. 2) We provide evidence from MerCarlo simulations that Birnbaum’s (2012) proposed
tests have unknown Type-I error rates, which depend on thmlachoice probabilities and on how data are coded as
well as on the null hypothesis of iid sampling. 3) Birnbaunalgmed only a third of Regenwetter et al.’s data. We show
that his two new tests fail to replicate on the other twoekiof the data, within participants. 4) Birnbaum selectivel
picked data of one respondent to suggest that choice ptiteshinay have changed partway into the experiment. Such
nonstationarity could potentially cause a seemingly gadd fie a Type-Il error. We show that the linear order model fits
equally well if we allow for warm-up effects. 5) Using hypetital data, Birnbaum (2012) claimed to show that “true-

and-error” models for binary pattern probabilities oveneothe alleged short-comings of Regenwetter et al.’s approa

We disprove this claim on the same data.

Keywords: binary choice models, true-and-error modetss@impling, statistical testing.

1 Introduction.

money, will be spun. If the black part of the wheel is
oriented towards the Dollar amount when it stops (which

Imagine that you are offered the choice between twix the case in both wheels as displayed in Fidiire 1) then
wheels of chance, as displayed in Figlile 1. The chosgmu win the indicated amount, otherwise nothing. In the
wheel of chance, in such a gamble pair, if played for redéft gamble of Figur€ll you can win $25.2 (with 37.5%
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chance), whereas in the right gamble you can win $22.4
(with 48.8% chance). As the screenshot shows, the nu-
merical probabilities of winning are not provided. The
decision maker depends on the relative size of the black
shaded area to evaluate the chance of winning. When
offered such stimuli repeatedly, decision makers tend to
fluctuate in the choices they make. For over 50 years, it
has been a point of debate how one can model choice vari-
ability formally. A natural approach is to model choice
behavior probabilistically.

Regenwetter, Dana and Davis-Stober (2010, 2011)
[henceforth RDDS] investigated a mathematical model
of binary choice probabilities with a distinguished his-
tory in economics, operations research, and psychology,
whose mathematical structure has been studied intensely
over several decades (see, e.g., Becker, DeGroot, &
Marschak; 1963, Block & Marschak, 1960, Bolotashvili,
Kovalev, & Girlich, 1999; Cohen & Falmagne, 1978,
1990; Fiorini, 2001; Fishburn, 1992; Fishburn & Fal-
magne, 1989; Gilboa, 1990; Grotschel, Jinger & Reinelt,
1985; Heyer & Niederée, 1992; Koppen, 1991, 1995;
Marschak, 1960), but for which there did not previ-
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choice probabilities to remain constant over time or be
The same for different decision makers (i.e., they do not
require an identical distribution), nor do they require bi-
nary choices to be made stochastically independently of
each other (see Regenwetter, submitted, for a thorough
discussion). Birnbaum (2011, 2012) [henceforth MB] has
questioned the iid sampling assumption used by RDDS’s
statistical test and recommended his own models, the so
J called “true-and-error” models, as an alternative. Regen-
L wetter (submitted) shows that MB is mistaken to attribute
b Thomn the iid assumption to the linear order model itself, i.e., to
the triangle inequalitieg]1). Among the leading models
of probabilistic choice, the linear order model stands out

| . . istical Thi q ir being invariant under non-stationary choice probabili-
ously exist an appropriate statistical test. IS MOCles (i.e., invariant under certain violations of the “iden

has been studied under several labels, including “bina%ally distributed” part of “iid”). Regenwetter (submit-

choice model”,,' “I‘linear ordenpg polytop"e”, “fa‘?d‘?m pr_ef'ted) also shows that, in contrast, a number of published
erence model”, randqm ut|I.|ty mode! and “rationaliz- papers on “true-and-error’ models do, in fact, require bi-

able model of stochastic choice”, and it has been stated Hary choice to be iid in both the model formulation and

several different mathematical forms that make the same 1 . «itistical test.

empirical predictions (see, e.g., Fishburn, 2001; Regen-The main concern in this paper, however, is with Birn-

wetter & Marley, 20.01)‘ We. will refer to it as thenear baum'’s (2012) claim that the iid assumption, used by the
order model According to this model, preferences form a , L .

o . . state-of-the-art test in RDDS, is violated in the RDDS
probapll|tyd|§trlbut|on over "”?‘f”“ orders, i.e., ovenka data. We will first provide a brief introduction to the
ings without ties. The prqbabmty that a person ChooseIiDDS experiment, then show that the RDDS data pass a
one gamble over another is the probability that s/he ranksell-known test of iid sampling without a hitch. We then
the chosen gamble higher than the non-chosen gamb :

Denote the probability that a person choosgsay, the dGcument that Birnbaum’s (2012) proposed tests of iid

- . - sampling have unknown Type-I error rates that even ap-
Ie_ft gamble in F|gurE]:I:) ovey (say, the right gamble n pear to change with the way in which binary choices are
Figurell) asP,,. The linear order model makes restric- - .
. Ly . : . -~~~ coded, and do not actually appear to test iid sampling per
tive predictions: It requires that thteiangle inequalities . . . . :

) : . : .~ se. We add to this conclusion the finding that Birnbaum'’s
hold, according to which, for all distinct choice options

b (2012) tests fail to replicate within participant. We pro-
%9, 6 vide evidence against MB’s suggestion that the excellent
@ model performance in RDDS might be a Type-Il error

in which warm-up effects could have made binary choice

This model has a particular mathematical form that longroPabilities shift early in the experiment and then choice
eluded statistical testing: For inequality constrainke i Probabilities violating the model could have accidentally
these, standard likelihood ratio tests are not applicabl@Veraged to satisfy the triangle inequalities. Last but not
goodness-of-fit statistics need not satisfy the familialéast, we use Birnbaum's own (2012) hypothetical data to
asymptoticy? (Chi-squared) distributions, and it is not disprove MB’s _Clz_;um. that “true-gnd-error” models over-
even meaningful to count parameters (e.g., binary choi&@me alleged limitations of the linear order model.
probabilities) to obtain degrees of freedom of a test. For-
mally adequate statistical tests for such models have been ]
discovered only recently (Davis-Stober, 2009). Regen? The experiment of RDDS.
wetter, Dana and Davis-Stober (2010, 2011) were the first
to carry out such a state-of-the-art “order-constrainedh a seminal paper, Tversky (1969) used a collection of 5
test of the linear order model. Even breakthrough redistinct wheels of chance and formed all 10 possible pairs
sults come at a price: To our knowledge, there does cuof these gambles. Faced with variability in behavior, he
rently not exist a statistical test for the triangle inedual presented each decision maker 20 times with each gamble
ties that does not assume iidlependent and identically pair in an effort to assess their preferences among the five
distributed sampling of empirical observations. gambles from the observed choice proportions. Tversky
Notice that the triangle inequalitielsl (1) make no menaugmented the set by 10 “irrelevant” distractor pairs, also
tion of time, of the individual making these choices, ompresented 20 times. In other words, he presented his par-
of repeated observations. They do not require binatjcipants with a sequence of 400 binary choices like the

Figure 1: Screen shot of a Cash | paired-comparison sti
ulus (see also RDDS, Figure 2)

Pab"'Pbc_PacSl-
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Table 1: First 36 out of 800 pairwise choices of Participah®8 in RDDS.

Trial Stimulus Left gamble Right gamble Observed
Set L R Choice
1 Cash | 41.7% chance 0f23.8 33.3% chance 0f$26.6 R
2 Distractor 18% chance 0%627.5 12% chance 0%631.43 L
3 Noncash 24% chance of~ 4 music CDs  20% chance of- 7 paperbacks R
4 Cash Il 36% chance of$24.44 28% chance of$31.43 R
5 Cash | 37.5% chance 0f25.2 45.8% chance of$22.4 R
6 Distractor 24% chance o022 16% chance of$22 L
7 Noncash 22% chance ot 40 movie rentals 26% chance of- 40 coffees L
8 Cash I 40% chance of$22 32% chance of$27.5 R
9 Cash | 41.7% chance 0%23.8 29.2% chance of$28 L
10 Distractor 4% chance of~ 40 coffees 20% chance of- 4 music CDs R
11 Noncash 18% chance of- 15 sandwiches 24% chance of~ 4 music CDs L
12 Cash Il 36% chance of§24.44 44% chance of20 R
13 Cash | 37.5% chance of25.2 33.3% chance 0f$26.6 L
14 Distractor 6% chance of- 40 coffees 16% chance of- 7 paperbacks R
15 Noncash 20% chance of- 7 paperbacks 22% chance ot 40 movie rentals L
16 Cash Il 28% chance 0%31.43 40% chance of$22 L
17 Cash | 45.8% chance of22.4 29.2% chance of$28 L
18 Distractor 8% chance of~ 7 paperbacks 16% chance of- 40 coffees L
19 Noncash  26% chance of~ 40 coffees 18% chance of~ 15 sandwiches R
20 Cash Il 36% chance of$24.44 32% chance of$27.5 R
21 Cash | 37.5% chance 0f25.2 41.7% chance 0$23.8 R
22  Distractor 14% chance o022 26% chance of$22 R
23  Noncash 22% chance of~ 40 movie rentals 24% chance of~ 4 music CDs L
24 Cash Il 44% chance of20 28% chance of$31.43 L
25 Cash | 45.8% chance 0f22.4 33.3% chance 0826.6 L
26  Distractor 8.3% chance of28 25% chance 0%25.2 R
27  Noncash 20% chance of~ 7 paperbacks  26% chance of- 40 coffees L
28 Cash Il 40% chance of$22 36% chance of$24.44 R
29 Cash | 37.5% chance of25.2 29.2% chance of$28 R
30 Distractor 28% chance o020 12% chance 0%27.5 L
31 Noncash 22% chance of- 40 movie rentals 18% chance o~ 15 sandwiches R
32 Cash Il 32% chance o$27.5 44% chance 020 R
33 Cash | 45.8% chance of22.4 41.7% chance 0f$23.8 L
34 Distractor 10% chance of- 40 coffees 12% chance of- 15 sandwiches R
35 Noncash  26% chance of~ 40 coffees 24% chance of- 4 music CDs R
36 Cash I 36% chance of$24.44 28% chance of$31.43 R

Note: The symbok stands for “approximately”.

one in Figurddl. The 400 pairwise choices were spredulilt on this design by asking altogether twice as many
over five weekly test sessions of 80 choices each. RDD&irwise choices, but in a single session and using a com-
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puter. They considered three distinct sets of 5 lotteriges, ar another (Becker et al., 1963; Birnbaum, 2004; Block
well as some Distractor items. Their Cash | set was th& Marschak, 1960; Carbone & Hey, 2000; Harless &
contemporary dollar equivalent of Tversky’s (1969) stim-Camerer, 1994, 1995; Hey, 1995, 2005; Hey & Car-
uli, whereas their Cash Il and Noncash stimulus sets webmne, 1995; Loomes, 2005; Loomes, Moffatt & Sug-
new. Like Tversky (1969) they presented each lottery paiten, 2002; Loomes, Starmer & Sugden, 1991; Loomes &
20 times (except for the Distractors, which varied). Sugden, 1995, 1998; Luce, 1959; Luce & Suppes, 1965;
Table[l gives an example summary of the first 36 triMarschak, 1960; Tversky, 1969). The linear order model
als of the RDDS experimehfor Participant#100. On tested in RDDS models preferences themselves as proba-
Trial 1, the decision maker faced the choice between lalistic. For example, a decision maker could be uncertain
“41.7% chance of winning23.8” (presented as a wheel about what he or she prefers on a given trial.
of chance on the left side of the screen) and3a.3% The statistical test currently available for such mod-
chance of winnind$26.6” (presented on the right side). els requires that one can combine multiple observations
This was a stimulus from the Cash | set. The decisiotogether to estimate choice probabilities from choice pro-
maker chose the gamble presented on the right. On Tripbrtions:
2, the decision maker was presented with the first of 200 N )
Distractor items, which were intended to interfere with 1 Writing = for the lottery with a 36% chance of
the memory of earlier choices, thus making it difficult o~ Winning $24.44” and y for the lottery with a 28%
recognize repeated items. Trial 3 involved gambles for ~ ¢hance of$31.43" the statistical test in RDDS
non-cash prizes, namely 84% chance of winning a gift treated Trials 4 and 36 as two independent draws
certificate worth approximately 4 music CDs” or 20% from a single underlying Bernoulli process with
chance of winning a gift certificate for approximately 7~ Probability P, of choosingr overy.
paperback books”.
In Table[, Trials 4, 12, 20, 28, and 36 are set apart
by horizontal lines. The lottery with a36% chance of

winning $24.44" was presented in each of these five tri- those two binary choices were independent draws
als. The side of the screen on which each lottery appeared from two Bernoulli processes with probabilitiés
was randomized. The lottery presentation, unbeknownst andP,, Y

b

to the participant, cycled through the four stimulus sets in
the order Cash |, Distractor, Noncash, Cash Il. The paBecause each stimulus set was analyzed separately,
of lotteries presented in a given trial was picked randomlghere was no assumption about the relationship between
from its stimulus set with the constraint that it had not apehoices from different stimulus sets, say, the choices
peared in the previous five trials from that set; and eaalade on Trials 1 and 2, for instance. The iid assumptions
individual lottery was chosen with the constraint that itapplied only to choices within stimulus set. These two
had not appeared in the previous trial from that set. Thisssumptions allow a researcher to use choice proportions
is why the trials involving a 36% chance of winning as estimators of choice probabilities and this is precisely
$24.44" are separated by at least eight pairwise choicegow they are routinely used in quantitative analyses of
and why the repetition of the lottery pair in Trial 4 did probabilistic choice models in psychology, econometrics,
not occur until at least 24 trials later; in this case, it waaind related disciplines. Itis the firstiid sampling assump-
in Trial 36. tion above that MB has questioned. Birnbaum (2012)
Many prominent probabilistic models of choice in theclaims that this iid assumption is violated in the RDDS
behavioral and economic sciences, including the modedata. We will now consider the legitimacy of that infer-
that Tversky (1969) considerédassume that the deci- ence.
sion maker has a single fixed deterministic preference

state throughout the experiment and that variability in . . .
observed choices is due to noise or error in one forrd A test of iid sampling suggested in

1These followed an initial set of 18 trials, not shown in thbl¢a Smith and Batchelder (2008)
designed to familiarize the participant with the task.
2Tversky attempted to reject weak stochastic transitivitfaivor of Smith and Batchelder (2008 p 727) provided a statisti-

a modal choice model of a lexicographic semiorder. See Regfter . . . . : .
(submitted) for an explanation and mathematical proofsialdat is cal test of iid sampllng n blnary choice data. Birnbaum

allowed to vary and what is required to be fixed, in such modmss (2012) cited Smith and Batchelder but left out any ap-
well as the role of independence assumptions in these medelsn  plication of their test. We fill this gap by implementing
statistical tests of these models. See lverson and Falm@agsé) and Smith and Batchelder's (2008) test on the RDDS data
RDDS for an explanation why Tversky's (1969) attempt did sot- . . . ’
ceed, despite hundreds of citations of Tversky's paperrtiegothat it 1 IS test uses the analytically derived expected value and

succeeded. standard error of a particular test statistic.

2. Similarly, for two lottery pairs, say; versusy anda
versus, from the same stimulus set (thus separated
by at least 4 trials), the statistical test assumed that
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Let (i,4") denote some gamble pair. Throughout thisising a margin of error &f SE(A4;), or1.96 SE(A4;) (re-
section, we will enumerate only the 20 trials that the ganported in parentheses, when different).
ble pair(i,4") was presented in RDDS (not the 800 tri- Since we are looking for evidence of mistaken accep-
als of their experiment). So, Trials 4 and 36 in Tablaance of the linear order model in RDDS, we also provide
[ becomet = 1 andt = 2 for the gamble paifi,i’)  an analysis where we leave out the two data sets (Cash
wherei:*36% chance of24.44” andi’": “28% chance of | & II, Participant 16) where Regenwetter et al. (2011)

$31.43". Fort € {1,2,...,20}, let already rejected the linear order model (underlnée-
) - jections by Smith and Batchelder’s (2008, Eq. 21) test
if the decision maker chooses occurred at a rate of 3%, well within standard Type |
Xit = alternatives on trial ¢, error range. There is no reason to conclude, based on this
0 otherwise. test, that the binary choices of each individual in Regen-

wetter et al.’s (2011) data were anything but independent
We wish to test, for each gamble pdiri’), whether and identically distributed Bernoulli trials, hence thiaé t
the X;; result from 20 independent and identically dischoice frequencies originated from anything but Binomi-
tributed Bernoulli trials, for = 1,2,...,20. By Smith als. The null hypothesis of iid sampling in RDDS is re-
and Batchelder (2008, p. 727), we can consider the folained in this hypothesis test.
lowing quantity defined in their Eq. 21, which checks for
a 1-step choice reversal from triado trial ¢ + 1:

L XA X 4 Type-| error rates of Birnbaum’s
"7 10, otherwise. (2012) tests.
Based on this quantity, we consider the number of 1-Stqg contrast to Smith and Batchelder’s test statistic, whose
choice reversals given blg expected value and standard error we reviewed above,
A — Z A ) Birnbaum (2012) created two new test statistics with un-
v pat i known sampling distributions. Using these new statis-

. N . .. tics, Birnbaum (2012) estimated two quantitigsandp,.
By Smith and Batchelder (2008), if the 20 Bernoull U~ from the data and, without formal proof, interpreted these

als are independent and identically distributed, i.e.ghav - - :
! - ’ uantitiesp,, andp, as p-values of tests of iid samplin
fixed probabilityd; of success, we must have ] P Pr 83 p ping

for a given participant in RDDS. Birnbaum concluded
E(A;) =380,(1—-06,). (3) thata data setin RDDS violates the iid assumption “sig-
nificantly” (at ana level of 0.05) wherp,, < 0.05, re-
Epectively, whem, < 0.05.

To better understand Birnbaum'’s test statistics, we can
borrow tools from an ongoing debate in the behavioral,

statistical, and medical sciences. That debate is priynaril

SE(A) = \/38 6:i(1—6)(1—20:(1-0).  (4) concerned about “publication bias”, “p-hacking”, “data

Table[2 shows the results of this test when applied tBeeking", the ‘_‘ﬁ,le draV\_/er Pmb'em"' etc. (Franc;is, 2012a,
the RDDS data. For each of the 18 participants in Re2012D; loannidis & Trikalinos, 2007; Macaskill, Walter
genwetter et al. (2011), we carried out 30 tests (for th& '"Wid. 2001; Simmons, Nelson & Simonsohn, 2011).

30 binomials that RDDS use for each person, 10 for eac_We tap into some of the tools with which this Iiterat_ure
of Cash I, Cash II, and Noncash) to see whether we malvestigates whether reported p-values match what is ex-

assume, for each of the 30 gamble pairs, iid draws from _ected for a given set of hypotheses and a given effect
fixed Bernoulli process to obtain 30 distinct binomials pe

We give a proof in the Appendix. Smith and Batchelde
(2008) did not provide a standard error fdy. We show
in the Appendix that the standard error equals

pize. Specifically, we build on the fact that p-values are,

respondent. This analysis of iid sampling involved a totaf’€Mselves, random variables (Murdoch, Tsai & Adcock,
of 18 x 30 = 540 hypothesis tests We determined confi- 2008). The p-values of a continuous statistic must satisfy

dence intervals using the point estimate given in ouEEq."f},uniform distribution under the null hypothesis, whereas

and the standard errdfE(A,) given in our EqCK. We re- the p-values of finite statistics can display more compli-

port the number of significant violations (markediold) cated behavior (Gibbons & Pratt, 1975; Hung, O’Ne|_II,
Bauer & Kohne, 1997; Murdoch et al., 2008). We will

3Besides a full analysis of all data sets, the table also gesvan  consider the distribution of Birnbaum’s (2012)- and

analysis for the reduced data sets where we dropped thediinstrfals -values. In particular we use Monte Carlo simulation
for each participant and for each gamble pair. We providedtienale Dr ’ ’

for this analysis later. Tab[ 2 shows no major changes whedrap {0 Check how C!osely the actual Type-I error rates match
the first four trials. the stated nominal-level of each test (Little, 1989).
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Table 2: Test of iid binary choice following Eq. 21 and texSmith and Batchelder (2008, p. 727).

Full Data Sets First 4 Trials removed
Total | Cash| Cash Il Noncash Total | Cash| Cash Il Noncash

Particip.| 30 testg 10 tests 10 tests 10 tests30 testg 10 tests 10 tests 10 tests
1 1 0 0 1 1 0 1 0

2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 1(2) 1 0(1) 0 1 1 0 0

5 0 0 0 0 0 0 0 0
6 3 1 2 0 3 1 2 0

7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 1 1 0 0 1 1 0 0
10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 1 0 0 1 0 0 0 0
13 2 1 1 0 0 0 0 0
14 0 0 0 0 0 0 0 0
15 4 2 2 0 3 1 2 0
16 4 2 2 0 3 2 1 0
17 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0

# signif.| 17 (18)] 8 7(8) 2 12 6 6 0
#tests | 540 180 180 180 540 180 180 180

After dropping Cash | and Cash Il for Participant 16:

# signif.| 13 (14)] 6 5 (6) 2 9 4 5 0
#tests | 520 170 170 180 520 170 170 180

Figured? andI3 show five histograms for the distribution of p,-values is different for different choice proba-
tion of p,-values ang,.-values (computed separately forbilities, even though in each case, the data were simu-
p, andp,) for five different sets of binary choice prob- lated via the null hypothesis of iid sampling. The distri-
abilities. Each histogram tallies the distribution @f bution ofp,-values appears to reflect other properties of
values for 3,000 simulated iid sample#n each case, we the data, not just whether or not iid holeisn Figure[3,
expect 10Q-values per bin under the null hypothesis, ag Kolmogorov-Smirnoff test comes out significant in one
indicated by the horizontal line. Even for 3,000 simulateaf the five cases, suggesting that thevalues in question
iid samples, the actual observed numberg-ohlues in  are not uniformly distributed as they should be under the
each bin varies substantially around that expected numull hypothesis.
ber. Forp, in Figure[3, a Kolmogorov-Smirnoff test  Table[3 provides comparisons of the simulated sam-
comes out significant in each histogram, suggesting thpling distributions forp, andp,, among pairs of bino-
thep, -values are not uniformly distributed as they shouldnial collections that generated the iid data. For the
be if we treat the underlying statistic as a continuous rarcomparison of the simulated sampling distributions, the
dom variable. Furthermore, it appears that the distribukolmogorov-Smirnov test finds the three pairs differ sig-

40ur Tabld® shows that we replicated the valugpf(using only nificantly from each other fos, . The corresponding test

10,000 pseudo-random permutations to save computatiog) tihat  fOr p,- did not yield any significant disagreements among
Birnbaum (2012) provided for Cash | (using 100,000 pernria).
Even running the Monte Carlo simulation with 10,000 psetataom 5The Smith and Batchelder test explicitly accounts for bjreoice
permutations per run used up months of computer time. probabilities by incorporating them into E@3. 3 &ihd 4.
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Figure 2: lllustrative analysis of the sampling distriloutiof p,, approximated through 3,000 simulated iid data sets
using the maximum likelihood binomial parameters of thredipipants from Regenwetter et al. (2011) Cash I, and
a hypothetical participant. The underlying binomial proitiies are given above the histograms. The expected
frequency in each bin under the uniform null is given by thezanmtal line. The Kolmogorov-Smirnov statistic is
significant in each case, i.e., each distribution diffegaiicantly from a uniform orf0, 1].
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simulated sampling distributions, even though Fiddre 3 The requirement that a p-value be uniformly dis-
suggests a deviation from uniformity for the samplingributed under the null hypothesis applies only for con-
distribution forp, on data simulated from the collection tinuous statistics. However, the novel statistics underly
of binomials that best fits Participant 10 in Cash | ofing p, andp, can, in fact, only take finitely many dif-
RDDS. This makes the analysis fpr somewhat more ferent values in data like those in RDDS. Therefore, it
ambiguous. may be more informative to compare nominal Type-I er-
In each histogram of Figurés 2 a@l 3, the left tail ofor rates ) with the actual rates of false rejection, for
the distribution is of utmost importance, because it showgarious nominal Type-I error rates when analyzing data
how often one will observe small p-values when the nulets that we know to be iid. We report this in Table 4.
hypothesis holds. This means that the left tail of the hisfhere appears to be little rhyme or reason to the actual
togram gives an idea of Type-| error rates: A spike in theype-| error rates. Fop,, the test appears to be conser-
left tail suggests that the Type-I error rate is higher than iative, except for data simulated according to Participant
should be, because there are too many small p-values.i8y's best fitting binomials. Strangely, though, as we move
trough in the left tail suggests a conservative test becaugem Participant 10 to its “mirror,” where we replaced

there are not enough small p-values to reject the null attae binomial probabilities of “success” by probabilitids o
rate ofa when we use a significance level @f
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Table 3: Comparison of simulated sampling distributionrgsfpoandp,. for different collections of binomials.

Paired comparison Kolmogorov-Smirnov test fop,, || Kolmogorov-Smirnov test fop,.
among Binomial collections | Statistic p-value Statistic| p-value
Participants 2 vs. 10 .0437 .01 0.0317 .10
Participants 2 vs. 12 .0113 .99 0.0257 .27
Participants 2 vs. hypotheticgl .0207 .54 0.0227 A2
Participants 10 vs. 12 .0430 .01 0.0143 .92
Participants 10 vs. hypothetidal.0433 .01 0.0287 17
Participants 12 vs. hypothetidal.0163 .82 0.0210 .52
Participants 10 vs. 10 Mirror | 0.019 .65 0.0297 14

“failure” the tesf is no longer conservative, even though® DO the findings of Birnbaum
these binary choice probabilities are the same and differ ; i Py
only by how pairwise choices are labeled. A test of iid (2012) rephcate within part|C|
should not depend on whether “a pairwise choicerof pant?
overy” is always coded as “a success (fg' or always

coded as “a failure (fop)” in the Bernoulli process and e now consider whether small valuesgf and/orp,.,
the corresponding Binomials. if they were to serve as a proxy for iid violations, at
For the test based op., even though FigurEl 3 sug- least have a coherent substantive interpretation. Birn-
gested that four of the five distributions of p-values, irbaum (2012) analyzed only a fraction of RDDS’ data.
their entirety, do not differ significantly from a uniform As we explained in the introduction and illustrated in Ta-
distribution, it is rather salient that the Type-I erroremt ble[d, the experiment of Regenwetter et al. (2011) con-
are nonetheless inflated for two of the three cases. Agaimined three different stimulus sets, labeled Cash I, Cash
the actual Type-I error rate appears to vary quite substah; and Noncash, as well as various Distractor items many
tially, depending on the underlying binomial probabili-of which resembled either the Cash or the Noncash items.
ties. This strongly suggests that the results of Birnbaumll stimuli and distractors were mixed with each other
tests do not depend just on whether data are iid or najithin the same experiment (see Tdlle 1). When thinking
they depend on the choice probabilities themselves. Thepout iid sampling, we may be concerned about mem-
also depend on the way that binary choices are codeaty effects: The decision maker might recognize previ-
This does not strike us as a desirable property of a meaously seen stimuli, recall the choices previously made,
ingful test for iid sampling. and attempt to either be consistent or seek variety. Hence,

The analyses in this section were based on simulatirﬁjmices might be interdependent and/or choice probabil-
iid data from given collections of binary choice probadties might drift over time because memory of earlier
bilities. For real data, where we do not know the un¢hoices mightinterfere with new choices.
derlying binary choice probabilities that hold under the While all Cash | and Cash Il stimuli were two-outcome
null hypothesis, we cannot know the Type-I error rates cdambles for very similar cash amounts of money, the
Birnbaum'’s tests. All in all, in contrast to the Smith andNoncash gambles involved prizes such as free movie
Batchelder (2008) test, which rests on analytically de€ntals, free coffee, free books, etc. The purpose of the
rived expected values and standard errors, and which tféstractor items and of the intermixing of different stim-
RDDS data pass with flying colors, Birnbaum’s (2012)ulus_ sets was to rgduce or eliminate thg role of mem-
two tests of iid sampling currently lack a solid and coher2"Y in repeated choices from the same stimulus set. Yet,
ent mathematical foundation. if nonetheless memory affected the choice probabilities
or created dependencies, this effect should be most pro-
- nounced in the Noncash condition because these stim-
Forexample, we repladBs 5 = 0.05by Pap = 1-0.05 = .95, i were arguably much more recognizable. Second, the

Pac = .01 by Poc =1 —0.01 = .99, etc. This “mirror” amounts . . ..
to a relabeling of pairwise choices. In Talle 7, the analagte switch Cash | and Cash II stimuli looked so similar to each

1's and O's in the table. This choice of coding is arbitrargl ahould cher that Olnly a person W_ith kn_owlgdge of the exper-
not influence the behavior of any meaningful statistical. tes imental design can tell which stimuli belong to which
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Figure 3: lllustrative analysis of the sampling distrilautiof p,. approximated through 3,000 simulated iid data sets
using the maximum likelihood binomial parameters of thragipipants from Regenwetter et al. (2011) Cash I, and
a hypothetical participant. The underlying binomial proiities are given above the histograms. The expected
frequency in each bin under the uniform null is given by thezanmtal line. The Kolmogorov-Smirnov statistic is
significant in one case, i.e., the distribution differs #igantly from a uniform on0, 1] for the iid samples from the
best fitting collection of binomials of Participant 10.
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[.85,.85,.99,.80,.70, [.05,.01,.01,.05,.15, [.95,.99,.99,.95,.85, [.50,.40,.25,.15,.80, [.5,.4,.45,.55,.5,
.80,.80,.95,.85,.60] .01,.05,.15,.10,.15] .99,.95,.85,.90,.85] .45,.05,.65,.20,.55] .45,.5,.6,.5,.55]
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Table 4: Nominal versus actual Type-I error rates for Biunb& (2012) tests of iid.

Participant # Nominala-level for p, Nominala-level for p,.
1% 4% 5% 6% 10%|| 1% 4% 5% 6% 10%

Participant 2 0.9% 3.4% 4.8% 5.6% 9.5%1.1% 3.7% 4.3% 5.6% 9.7%
Participant 12 0.7% 3.1% 4.3% 5.1% 8.9%1.1% 4.4% 5.4% 6.5% 11.4%
Hypothetical Participan®0.5% 3.3% 4.4% 5.4% 8.9%1.4% 5.2% 6.4% 7.4% 11.7%
Participant 10 1.4% 4.6% 5.6% 6.7% 10.5%4.1% 4.3% 5.0% 6.3% 10.2%
Participant 10 (mirror) {0.7% 3.1% 4.2% 5.2% 9.2%1.4% 4.7% 5.7% 6.7% 10.2%
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stimulus set. Since the data collections for Cash |,assumption might be violated, but only so slightly that it
Cash Il, and Noncash gambles were fully interwoven witldoes not turn up significant very often. In that case, the
each other, any substantive conclusions about non-iid rquestion would arise how the analysis of RDDS would
sponses, if valid in one stimulus set, should replicatesally be affected by an iid assumption that is only an ap-
in another. We do not know how to make conceptugbroximation, but a close approximation, of the data.
sense of concluding, say, that a person’s choices on Tri- We have shown that the RDDS data pass Smith and
als1,5,9,13,...,797 were iid, while choices on Trials Batchelder’s (2008) test of iid sampling with top marks.
4,8,12,16,...,800 were not iid. We have shown that Birnbaum'’s (2012) statisticsand
Because of these considerations, we checked whethermay not be p-values, that their Type-I error rates are
Birnbaum’s (2012) conclusions about non-iid samplinginknown, and that these statistics appear to depend on
are consistent across stimulus sets, and whether the &lore than just iid sampling alone, they even appear to
leged violations are indeed more pronounced in the Nolepend on how data are coded. We have now established
cash condition. Hence, we applied Birnbaum’s (2012)hat no single participant, out of 18 participants, has con-
R code not only on the Cash | gambles, as was done #istently small values op, and/orp, across all three
Birnbaum (2012), but also on the Cash Il and Noncas$timulus sets, either. Combining these observations, we
gambles. The results of our analysis of these three seige no merit in interpreting values pf < 0.05 and/or
are given in TablEl5 under the headiri§ull Data Sets”. p» < 0.05 as pin-pointing individual participants who vi-
The R code computes simulated random permutations efate iid sampling. Likewise, we see no justification for
the data: We used 10,000 such pseudo-random permutde much broader blanket statement that “the data of Re-
tion iterations per analysis. Values pf andp, smaller genwetter, et al. (2011) do not satisfy the iid assumptions
than 0.05 are marked toold. Values that would round to required by their method of analysis” (Birnbaum, 2012,
0.05 are given to three significant digits. Cases where th 99).
linear order model is rejected are in parentheses. Cases

that were undefined due to division by zero are marke AT
with a —. We confirm Birnbaum’s finding that, in Cash I, g Could RDDS’s f|nd|ngs be an ar-

four values of, are smaller than.05.° In addition, there tifact of warm-up effects?
are six such values in Cash Il and four in Noncash. For
pr, Birnbaum (2012) reports six values smaller tlis0b  The discussion around Birnbaum’s (2012) Table 2 sug-
in Cash I, and we find five in each stimulus set. Howgests that decision makers might change their choice
ever, it is important to note that not a single individualprobability after the first few trials. We consider whether
generated small values pf or p,. for all three sets. the great model fit in RDDS could be an accidental ar-

Following the train of thought in Birnbaum (2012), tifact of drifting choice probabilities in the first few tri-
each of these “significant” values might suggest, by itals due to some sort of warm-up period during which the
self, that the participant might violate iid sampling. How-decision makers familiarized themselves with the experi-
ever, the Noncash case has relatively few “violationsnent.
even though this should be the prime source of poten- Since Birnbaum (2012) stressed that violations of iid
tial memory effects that could cause interdependencieampling may have led to false acceptance of the linear
and/or make the probabilities change in some systematider model in Regenwetter et al. (2011), we consider
way. This lack of replicability is consistent with our con-whether, by dropping the first four of twenty trials for all
cern in the previous section, namely that small values gfamble pairs, we are able to reject the linear order model
p,, and/orp,. may be difficult to interpret. On the other on more participants. Starting from Birnbaum'’s (2012)
hand, if we give MB the benefit of the doubt and we preTable 2, we dropped the first four trials for each gamble
sume that the tests really do detect violations of iid, thepair, every stimulus set, and every participant. Note that,
the lack of replications could alternatively be interpcete to decide how many trials to drop, we inspected the data
as indicating very small effect sizes. In that case, the iigf only the one participant and one stimulus set discussed

in Birnbaum’s (2012) Table ¥
7See the gamble pairs on Trials 1, 5, 9, etc. versus the garable p~ Table[® shows the results of two analyses of the data

on Trials 4, 8, 12, etc. in Tabld 1, keeping in mind that nuga@mprob-  in Regenwetter et al. (2011) using a newer software for
abilities were not provided.

8Table[® shows no major changes with the first 4 trials droplé. 10This is important because looking at data to generate a hgpist
provide the rationale for this analysis later. before testing that hypothesis is problematic in that the depection

9Birnbaum initially reported a larger number of violatiorsfter the  uses up some unknown number of degrees of freedom in the déta a
Regenwetter lab had difficulties replicating his resulscbrrected his could bias the outcome of a hypothesis test. Since we did xict
data extraction program, and reported (Birnbaum, 2012)egbfp, any information from any other data sets, we also did not tteggees
andp, for Cash | that members of the Regenwetter lab (Y. Cha and Mof freedom in any other data sets, nor did we bias our alteméaty-
Choi) were able to confirm independently. pothesis.
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Table 5: Summary g, andp,. values, rounded to two significant digits, according to trethd of Birnbaum (2012)
for Cash I, Cash Il, and Noncash of Regenwetter et al. (2@&fipoth the full data sets, as well as the reduced data
sets where the first four trials for each gamble pair pair wieopped.

Participant # Full Data Sets First 4 Trials removed
Cash | Cash Il NoncagpCash | Cash Il Noncash
1 pv| 0.26 0.57 0.20 || 0.30 0.68 0.32

p| 009 032 0053|| 021 004 006
2 | 0 0 030 || 047 1 0.38
»| 0 021 0301 008 015 0.02
3 »| 1 083 053] 1 068 067
p.| 051 0.89 003 || 0.12 023 0.73
4 p,| 0.08 047 1 [[(0.58) 0.29 1
p-| 098 011 0.80 [[(0.58) 0.81  0.50
5 »| 001 O 008 ||002 0 023
»| 011 085 012 093 077 0.051
6 ] 011 0 1 049 0 1
py| 0.050 0O 012 || 057 © 0.39
7 ] 023 0 1 092 058 1
.| 001 0 055 || 035 074 0.30

8 po| 1 0.18 0 1 0.20 0.57
pr| 090 0.72 0 0.68 0.75 0.74
9 p,| 0.78 0.27 0.01 092 0.26 0.22

pr| 012 0.046 0.01 || 0.38 0.13 0.65
10 p,| 0.045 0.15 0.27 || 0.13 0.26 1
pr| 0.54  0.68 0.90 || 0.38 1.00 0.49
11 p,| 0.47 0.38 1 0.55 0.48 1
pr| 0.87 0.48 0.46 || 0.58 0.21 0.20
12 pv,| 079 0.06 0.02 0.97 0.07 1
pr| 0.24 0.88 0 0.22 051 0.01
13 p,| 0.18 0.65 0.48 || 0.49 0.89 0.70
pr| 0.01 0.08 0.04 0.16 0.76 0.02

14 po| 1 1 1 1 1 1
pr| 0.39 - 0.60 0.49 - 0.21

15 p,| O 0 1 0.01 0.04 1
p-| O 0 0.35 0.03 0 0.20

16 p,| (1) (© 023 @O (© 006
»-|(0.09 (0.02 0.36 [[(0.48) (0.09) 0.41
17  p,| 075 070 011] 055 066 0.14
p-| 033 034 060 010 088 0.64
18  p,| 095 047 001 || 098 0.22 1
p-| 031 031 007 024 009 044
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Table 6: Analysis of the linear order model on the full dats s&d on reduced data sets where the first four trials for
each gamble pair are dropped. A checkmdrindicates perfect fit.

Full Data Sets First 4 Trials removed
Cash | Cash Il  Noncasti Cash | Cash Noncash
Res#  G*(p) G*(p)  G*(p) G*(p) G*(p) G*(p)
1 v 2.01(0.28) v 0.11(0.35) 2.82(0.20) v
2 v v 2.85(0.33 V] v 1.41(0.56
3 v v 1.41(0.47 v v 1.41(0.47
4 3.76(0.14) 0.09(0.76) Vv 8.91(0.01) 0.50(0.69) v
5 v v v v v v
6 0.35(0.64) 0.08(0.38) Vv 1.02(0.57) 0.45(0.25) v
7 v v 3.63(0.18 v v 3.64(0.18
8 v v v v v v
9 v v v v v v
10 v 0.37(0.27) v v 0.37(0.27) v
11 v 1.41(0.55) v v 1.41(0.55) v
12 v v v v v v
13 v v v 0.10(0.39) v v
14 v v 0.37(0.89 v v 0.37(0.90
15 v v v v v v
16 |16.46< 0.01) 9.51(0.01)1.41(0.64)[19.43< 0.01) 16.68< 0.01) v
17 1.50(0.21) v v 1.76(0.1) v v
18 v 0.33(0.45) 0.37(0.74 v 0.39(0.26) v

order-constrained inferené&.A checkmarky” indicates nonsignificant violations, giving a nearly identical ovéra
perfect fit, where the choice proportions fully satisfy thepicture of goodness-of-fit. This pattern of results demon-
triangle inequalities, hence the model cannot be rejectestrates clearly that the excellent fit of the model in RDDS
no matter how small the significance levelFor all cases was not an artifact of a potential 4-trial-per-gamble-pair
with choice proportions outside the linear order modelarm-up as Birnbaum’s (2012) discussion of his Figure
we provide the test statistic? followed by itsp-value. 2 seems to suggest.

G? values cannot be compared across cells due to order-

constrained inference. Significant violations of the linea, ] ,
order model are marked bold. One analysigmarked / What do Birnbaum’s (2012) hy-

in bracketg involved prior inspection of the data. As we pothetical data tell us about
drop the first four trials for all stimuli and participants

the linear order model fits the data again very well. one true-and-error” models?

person, Participant 16, violates Cash | and Cash Il Sii-' N
nificantly in the full data sets. This person also violatesinear orders are a type of transitive preferefitRDDS

the model in the reduced data. As we move from the fufested the linear order model as a proxy for testing tran-
to the reduced data, one nonsignificant violation becomé#ivity of preferences when preferences are allowed to
significant (Participant 4, Cash ), two nonsignificant vi-vary between and within persons. Birnbaum (2012) pro-

olations become perfect fits and two perfect fits becomdded three tables of hypothetical data to suggest that

one can construct thought experiments in which the ap-

11The new software |mp|emented an improved a|gor|thm forproach Of RDDS Wl” C|aSS|fy a.” three data SetS as tranSI-

order-constrained inference with higher speed and peecisi See  tive when Birnbaum generated some of the hypothetical

http://labs.psychology.illinois.edu/labs/DecisioritegLab/gtesl/. As

a consequence, the Full Data analysis slightly differs migalty from L2Transitivity states that ifd is preferred taB and B is preferred to
the results table in Regenwetter et al. (2011). C, thenA is preferred taC'.
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data by simulating certain intransitive decision makerselated to individual binary responses on individual sial

Birnbaum (2012) suggested that “true-and-error” mod the STE model the decision maker has a single, deter-

els overcome this challenge. We will now explain brieflyministic, fixed, “true” preference pattern throughout the

how a “true-and-error” model works and then prove thaéxperiment, and the reason that he or she does not choose

such models do not overcome the stated challenge.  consistently with that preference pattern is because she
Consider once again Tabl@ 1 with the first 36 trial®r he makes errors (trembles) with some probability. Ac-

in the RDDS experiment. The basic unit of analysis ircording to Birnbaum (2004, pp. 59, 61), Birnbaum (2007,

RDDS is the binary response on one trial. In contrasR- 163), Birnbaum and Bahra (2007, p. 1024), Birnbaum

the basic unit of analysis and the basic theoretical primind Gutierrez (2007, p. 100), Birnbaum (2008a, p. 483),

tive in “true-and-error” models is that of a “response patBirnbaum (2008b, p. 315), Birnbaum and Lacroix (2008,

tern”. Consider the Cash Il gamble set. Because Cagh 125), Birnbaum and Schmidt (2008, p. 82), Birnbaum

Il involved five distinct lotteries and all possible pairs 0f(2010, p. 369), as well as Birnbaum and Schmidt (2010,

these five gambles, there are 10 distinct pairs of ganf- 604), errors occur independently of each other, with the

bles in Cash II, each of which was presented 20 time€/ror probability of each gamble pair being constant over

Each of Trials 4, 8, 12, 16, 20, 24, 28, and 32 is the “firstme. Denoting the decision maker’s true preference pat-

replicate” of a gamble pair in Cash Il, whereas Trial 3@ern asB and lettingB, denote the entry i3 for gamble

is the “second replicate” of the lottery pair used previpair s, i.e., the person’s true preference for gamble pair

ously in Trial 4. In a “true-and-error” model, the patterns, and denoting by, the probability of making an error

of responses in Trials 4, 8, 12, 16, 20, 24, 28, 32 (an@hen responding to gamble pair the probability that

two more later trials), namelfRRRLRLRR. .., form this decision maker gives responkg at timet does not

one observatiomamely the observed choice pattern fodepend ort and it equals

thefirst replicate(see the underlined responses in the last

column of Tabld1l). The second replicate overlaps with (1—-ps) if Xs=Bs (no error),

the first in time in that Trial 36 is already part of the ob- Ds if X, # B, (error).

served pattern for the second replicate. We bédick-

ing assumptiorthe assumption that pairwise choices inFor example, suppose that there are 10 pairs of gam-

Trials 4, 8, 12, 16, 20, 24, 28, 32, and two more latebles. Following the equations in the referenced papers,

trials can be blocked together to form a single observahe probability of a binary pattern in which a given deci-

tion RRRLRLRR. .. of one pattern. According to the sion maker chooses correctly on Gamble Pairs 6, 7, and

blocking assumption, the pairwise choice in Trial 36 isl0 and chooses incorrectly on Gamble Pairs 1, 2, 3, 4, 5,
not interchangeable with the choice in Trial 4, becausg, 9 , according to the STE model, is

Trial 36 is part of the second “replicate”. In Tallle 1 the

respondent happens to have chosen R again as in Trial 4, p1p2p3paps(1 — pe)(1 — p7)pspo(l — p1o)- (6)

but if this observed choice were L, the blocking assump-

tion would disallow exchanging the observations in Trial§ here are 1,024 such formulae to provide the probabili-

4 and 36. ties of all 1,024 different choice patterns that are possibl
In the analysis of RDDS, the 200 trials that make up the STE model. In Tablel 1 we used labels L and R to

the data for a given stimulus set (say, Cash I1) are treatégfer to left-hand-side and right-hand-side gambles. In-

as 20 observations for each of 10 binomials (this gives thead, we could also label one gamble as Gamble 0 and

usual 20 observations per binomial that is recommenddie other gamble as Gamble 1 (and in the process drop

as a rule of thumb for using asymptotic statistics). In dhe distinction of the side on which a given gamble was

“true and error model” the same 200 binary choices forfiresented visually), and then record, for each trial a zero

20 observations (20 observed patterns from 20 replicate®) & one to code which gamble was chosen. If we fix
of one single multinomial witi2'® = 1,024 cells, i.e., the sequence by which we consider the gamble pairs in

with 1,023 degrees of freedom. This is because there ag&ch a binary coding, we can represent both the “true”
1,024 distinct possible patterns of 10 binary choices. Fdteference and each of the observed preference patterns
a multinomial with over 1,000 degrees of freedom, 20 obas 10-digit strings of zeros and ones.
servations can be labelextremely sparseata that are ~ Say, if the decision maker’s true preference is binary
nowhere close to warranting the use of asymptotic distrPattern0000000000 then, by Formuldl6, the observed
butions for test statistics. pattern 1111100110 has probability p1papspaps(1 —

We now introduce what we will label thetandard true- P6)(1 — p7)pspo(l — p1o). The STE model also spells
angd-errormodel [henceforth STE] for such a mukino- 13This means we disregard the sequence of trial presentatitiis

mial. The STE m_Odel s.pells out hOW a binary r€SPONSE eplicate. Relabeling the zeros as ones and the ones asyiels
pattern, the primitive unit of observation for the model, isvhat we called a “mirror” in FiguréS 2 afid 3, and in Tatfles 3@nd

(5)
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out what happens if each question (gamble pair) is pré&§TE model in FormulaEl5 arfd 7 to a situation with 10
sented on two replicates. If the decision maker makes I@plicates. The probability of the observations in each ta-
choices on 10 distinct gamble pairs in one replicate, arale is given by

another set of 10 choices on the same 10 gamble pairsina 10

second _repllcat(_a, the probability that s/he makes 10 errors H [Bi(1—pi) + (1 — Bi)pi]ﬁ

on the first replicate and makes no errors on the second
replicate, according to STE is,

i=1

each column of\/

10 10 contains 6 ones
10
Pj X (1—pi) .M A
71;[1 };[1 x [IBp;+1=Bya-p)*.  ®
—— ——— j=1
errors on items 1-10 correct choices on items 1-10
first replicate second replicate each column of\f

contains 4 zeros
We now move to the hypothetical data in Birnbaun]:

. . or example, if the true preferencefis= 1111111111,
(2012). Birnbaum (2012) argued that the linear order o . o
model analysis of RDDS may fail to distinguish transi—the probability of the data in each table is given by

tive from intransitive cases when iid is violated. For con- 10 5 10 .

venience, we reproduce the hypothetical data in question H (1 —ps)] X H [pj] . 9)
in Table[I. The columns list hypothetical gamble pairs, i=1 Jj=1

the rows list the hypothetical replicates (repetitions). | each column of\/ each column of\f

the interior of the table an entry “1” indicates the choice ~ S°ntains 6 correct choices ~contains 4 errors

of the first gamble in the gamble pair, and a “0” indicatesf, as is usually the case, we restrict the error probabediti
a choice of the second gamble in a gamble pair. to beps < 0.5,Vs, then the maximum likelihood esti-
Our table also gives the results of the iid test of Smitimate will yield the “true” preference pattern 1111111111
and Batchelder (2008). For the top data set, there asmd estimated error probabilities 6f4 for every error
10 separate tests, of which one turns out significanterm, in every one of the three Tables A.4-A.6 of Birn-
Birnbaum (2012) states that these data were iid geraum (2012), as summarized in our Table 7. The STE
erated, hence we have one Type | error by Smith antlodel analysis cannot distinguish the three hypothetical
Batchelder’s (2008) test in ten tests. (Recall that our-anadlata tables. Birnbaum (2012) designed these three hypo-
ysis in TabldP yielded significant results in 3% of cases ithetical data sets to illustrate alleged weaknesses of the
RDDS.) In the data in the center of Talble 7, all columnsnalysis of RDDS and strengths of the “true-and-error”
are the same, hence we only need to apply Smith arapproach. Yet, like the analysis used in RDDS, the STE
Batchelder's test once. Indeed, it is significant, consisnodel analysis cannot differentiate between the data in
tent with a violation of iid sampling. In the third data set,the three tables either, and it will also classify all three
which involves only two types of column collections, thecases as transitive.
corresponding two tests of Smith and Batchelder (2008) In the discussion of Tables A.4-A.6, Birnbaum (2012,
turn out significant both times, consistent with a violatiorp. 106) states that Birnbaum and Bahra (200fduhd
of iid sampling. Birnbaum'’s (2012) latter two hypotheti-that some people had 20 responses out of 20 choice prob-
cal data sets are quite different from RDDS’ real data. lems exactly the opposite between two blocks of trials.
Birnbaum (2012) stated that the RDDS analysis, bguch extreme cases of perfect reversal mean that iid is
counting pairwise choice proportions only, treat the thremot tenable because they are so improbable given the as-
tables the same and classify all three cases as transitiggmption of iid’ If true, then this would mean that Birn-
whereas true-and error models would distinguish the firshaum and Bahra's (2007) analysis, which used a STE
transitive, case from the other two, intransitive, cases. Wmodel with iid errors (Birnbaum and Bahra, 2007, p.
first show that standard true-and-error models (as usd@24), is itself “not tenable” on those data, in Birnbaum'’s
in Birnbaum 2004, pp. 59, 61; Birnbaum, 2007, p. 163words.
Birnbaum & Bahra, 2007, p. 1024; Birnbaum & Gutier- We have shown that the STE model, the model used
rez, 2007, p. 100; Birnbaum, 2008a, p. 483; Birnbaunin 10 or more published papers, cannot distinguish be-
2008b, p. 315; Birnbaum and Lacroix, 2008, p. 125; Birntween the three data tables any better than the analysis
baum & Schmidt, 2008, p. 82; Birnbaum, 2010, p. 369in RDDS. We have also shown in Talfle 7 that Smith and
Birnbaum & Schmidt, 2010, p. 604), will also treat all Batchelder’s (2008) test successfully picks up the iid vio-
three tables the same and will likewise classify all thre@tions that Birnbaum built into two of the tables. Recall
data tables as transitive. For each of Tables A.4-A.6 ithat this is the test that the RDDS data passed with flying
Birnbaum (2012), we can expand the formulations of theolors.
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Table 7: Hypothetical data in Birnbaum’s (2012) Tables Aaopj, A.5. (center), and A.6. (bottom). A “1” indicates
choice of the first option in pair, a “0” indicates choice oétecond option. For each column of data, we also provide
the result of a test for iid sampling of Smith and Batchel@®08, p.727) using confidence intervals of point estimates
+ 2 standard errors (ot 1.96 standard errors. The results of using 1.96 or 2 staretasds matched throughout.).

Repetiton AB AC AD AE BC BD BE CD CE DE

1 1 0 1 1 1 1 O 1 1 1
2 0 0 0 01 0 1 O 0 1
3 60 1 1 1 1 1 1 O0 1 1
4 11 0 0 1 1 1 0 1 O
5 0 0 1.1 0 1 0 1 0 O
6 11 1 1 0 1 O O 1 O
7 11 1 0 0 1 1 1 1 1
8 11 0 1 1 0 1 1 0 1
9 1 0 0 0 1 0 O 1 1 O
10 0 1.1 1 0 0 1 1 0 1

Rejectiid? no no no yes no no n0O no Nno no
Repetition AB AC AD AE BC BD BE CD CE DE

1 11 1 1 1 1 1 1 1 1
2 11 1 1 1 1 1 1 1 1
3 11 1 1 1 1 1 1 1 1
4 11 1 1 1 1 1 1 1 1
5 11 1 1 1 1 1 1 1 1
6 11 1 1 1 1 1 1 1 1
7 0 0 0 0 0 0 0O 0O O O
8 0 0 0 0 0 0 0O 0O 0 O
9 0 0o 0o 0 0 0 0 0 0 O
10 O 0 0 0 0 0 0 0 O0 O

Rejectiid? yes yes yes yes yes yes yes yes yes yes
Repetition AB AC AD AE BC BD BE CD CE DE

1 0 0 1.1 0 0 1 O O O
2 0 o 1 1 0 0 1 O 0 O
3 0 o 1 1 0 0O 1 O 0 O
4 0 o 1 1 0 0 1 O 0 O
5 11 1 1 1 1 1 1 1 1
6 11 1 1 1 1 1 1 1 1
7 11 0 0 1 1 O 1 1 1
8 11 0 0 1 1 O 1 1 1
9 11 0 0 1 1 0 1 1 1
10 11 0 0 1 1 0 1 1 1

Rejectiid? yes yes yes yes yes yes yes yes yes yes

Next, consider a modification of the STE model testhe iid assumption for errors is dropped. Then the data
in which there is still a single true preference, but wheri Birnbaum’s (2012) Table A.5 (center of our Talle 7)
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can originate from a person with transitive true prefersis HH will fit the data in all three tables perfectly even
ence pattern 1111111111 who makes no errors for tlvehen setting all error probabilities to zero. The “true-
first 60 binary choice trials (i.e., the first 6 lines in theand-error” model with variable preferences is unidentifi-
table) and who makes errors for all remaining trials ofible and can generate a perfect fiattydata whatsoever,
the study. However, this person can instead have fixemlich as those in Tables A.4-A.6 in Birnbaum (2012). Like
intransitive true preference pattern 0011001000 and getiie previous case, this “true-and-error” model is vacuous.
erate the same data because she or he makes no errors ddombining the last two points, if “true preferences”
the first 6 trials of stimuliAD, AFE, BE but errorsin all can vary at any time, if the error probabilities are posi-
first 6 trials of stimuliAB, AC, BC, BD,CD,CE,DE, tive, if these error probabilities are allowed to change at
then switches to the opposite error behavior for the reany time, and if errors are allowed to be interdependent,
maining four replicates. Similar constructions are possthe unidentifiability and nontestability problem is furthe
ble for Birnbaum’s (2012) Tables A.4 and A.6 (top andexacerbated and multiple mutually exclusive “true-and-
bottom of our Tabl€l7). If errors are allowed to be intererror” models will vacuously and simultaneouslydity
dependent and if error probabilities are allowed to chang#ata perfectly.
over the course of the experiment, then “true-and-error” How does MB propose to render tests of “true-and-
models can generate a perfect fitdoydata, no matter error” models non-vacuous? First, accommodating non-
what fixed “true preference” they use. In other wordsiid errors seems challengiid. Second, MB uses a
“true-and-error” models without iid assumption for errors'blocking” assumption, not needed by RDDS, which reg-
are neither identifiable nor testable. They are vacuouslates, at the researcher’s discretion, when exactly pref-
even if they permit only one single and fixed “true” pref-erences are permitted to change. Under the “blocking”
erence. assumption, preferences are fixed during replicates and
Finally, we consider what happens in Tables A.4-A.Greferences are permitted to change from one replicate
(our TablelF) if we consider “true-and-error” models into the next. In other words, the decision maker must
which the preferences are allowed to vary. For exampl&eep or may change their preference at arbitrarily de-
a person may have preference pattBin= 1111111111, termined time points that are selected by the scholar but
say, 60% of the time, and preference pattd&#fhi = not communicated to the participant. Considering Table
0000000000 on 40% of occasions. We denote this afll, the blocking assumption for a “true-and-error” model
Hypothesis H. Or the person may have preference statdth variable preferences from one block to the next as-

B2 = 0011001000, say, 60% of the time, an#3 = sumes that the decision maker stays in the first true pref-
1100110111 the other 40% of the time. We denote this asrence for the first replicate of those two gamble pairs
Hypothesis HH. that were not yet presented in the first 36 trials, whereas

Write X! for the decision maker’s observed choice foithe decision maker is allowed to have already moved
gamble pairs at replicatet, that is, X! is the entry in a to a new preference state for the second replicate as of
given table in columrs and rowt. Assume for a mo- Trial 36 where we observe the second replicate of the lot-
ment, that there are no errors, i.e, = 0, for s € tery pair “36% chance 0f$24.44" versus ‘28% chance
{AB,AC,AD,AE,BC,BD,BE,CD,CE,DE}. We of $31.43". It is the “blocking” assumption that allows
obtain a perfect fit for the data in each of Tables A.4-Birnbaum (2012) to gather data into tables like Tables
A.6 in Birnbaum (2012) under Hypothesis H by assumA.4-A.6 where each row is interpreted as one fixed pref-
ing that the decision maker is in stafl whenever he erence state. Our example above has shown that in the
or she gives an answef! = 1 in the Table, and that the absence of the “blocking” assumption both Hypotheses
decision maker is in statB0 whenever he or she gives anH and HH can simultaneously fit all the data in the three
answerX! = 0 in the Table. Likewise, we obtain a per- tables perfectly, even though they are mutually incompat-
fect fit of the data in each of Tables A.4-A.6 in Birnbaumible, hence the model becomes vacuous and uninforma-
(2012) by assuming that the decision maker is in state tive. The sequence of trials in RDDS in Table 1, where
the second replicate starts on Trial 36 (for some gamble

B2 if X{=0, and pairs) before the first replicate has even been completed

s € {AB,AC,BC,BD,CD,CE, DE}, (for some other gamble pairs), shows how implausible it
B2 if X! =1, ands € {AD, AE, BE}, is to assume that a decision maker switches preferences
B3 if Xt=1. and between, but not within, blocks of trials that form a repli-

cate. The decision maker has no way of knowing when
she or he may use the first preference state and when she
or he may use the second preference state. Similar con-

s € {AB, AC, BC,BD,CD,CE, DE},
B3 if Xt =0, ands € {AD, AE, BE}.

Ina “true-and-errqr”mode| test where F_Jreference patternsiaote that, while the analysis in RDDS only uses iid in its &tatis-
may vary at any time, both Hypothesis H and Hypothetc, the STE model has the iid assumption built into the matgelf.
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cerns apply also when replicates are fully separated jear to violate iid sampling. We have also provided some
time and do not overlap. documentation on Birnbaum’s own (2012) hypothetical
data, suggesting the opposite of Birnbaum’s (2012) con-
clusion: “True-and-error”models hinge far more strongly
8 Conclusion. on their assumptions than does the analysis in RDDS.
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