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Reply: Birnbaum’s (2012) statistical tests of independence have
unknown Type-I error rates and do not replicate within participant
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Abstract

Birnbaum (2011, 2012) questioned the iid (independent and identically distributed) sampling assumptions used by
state-of-the-art statistical tests in Regenwetter, Dana and Davis-Stober’s (2010, 2011) analysis of the “linear order
model”. Birnbaum (2012) cited, but did not use, a test of iid by Smith and Batchelder (2008) with analytically known
properties. Instead, he created two new test statistics with unknown sampling distributions.

Our rebuttal has five components: 1) We demonstrate that the Regenwetter et al. data pass Smith and Batchelder’s
test of iid with flying colors. 2) We provide evidence from Monte Carlo simulations that Birnbaum’s (2012) proposed
tests have unknown Type-I error rates, which depend on the actual choice probabilities and on how data are coded as
well as on the null hypothesis of iid sampling. 3) Birnbaum analyzed only a third of Regenwetter et al.’s data. We show
that his two new tests fail to replicate on the other two-thirds of the data, within participants. 4) Birnbaum selectively
picked data of one respondent to suggest that choice probabilities may have changed partway into the experiment. Such
nonstationarity could potentially cause a seemingly good fit to be a Type-II error. We show that the linear order model fits
equally well if we allow for warm-up effects. 5) Using hypothetical data, Birnbaum (2012) claimed to show that “true-
and-error” models for binary pattern probabilities overcome the alleged short-comings of Regenwetter et al.’s approach.
We disprove this claim on the same data.
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1 Introduction.

Imagine that you are offered the choice between two
wheels of chance, as displayed in Figure 1. The chosen
wheel of chance, in such a gamble pair, if played for real
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money, will be spun. If the black part of the wheel is
oriented towards the Dollar amount when it stops (which
is the case in both wheels as displayed in Figure 1) then
you win the indicated amount, otherwise nothing. In the
left gamble of Figure 1 you can win $25.2 (with 37.5%
chance), whereas in the right gamble you can win $22.4
(with 48.8% chance). As the screenshot shows, the nu-
merical probabilities of winning are not provided. The
decision maker depends on the relative size of the black
shaded area to evaluate the chance of winning. When
offered such stimuli repeatedly, decision makers tend to
fluctuate in the choices they make. For over 50 years, it
has been a point of debate how one can model choice vari-
ability formally. A natural approach is to model choice
behavior probabilistically.

Regenwetter, Dana and Davis-Stober (2010, 2011)
[henceforth RDDS] investigated a mathematical model
of binary choice probabilities with a distinguished his-
tory in economics, operations research, and psychology,
whose mathematical structure has been studied intensely
over several decades (see, e.g., Becker, DeGroot, &
Marschak; 1963, Block & Marschak, 1960, Bolotashvili,
Kovalev, & Girlich, 1999; Cohen & Falmagne, 1978,
1990; Fiorini, 2001; Fishburn, 1992; Fishburn & Fal-
magne, 1989; Gilboa, 1990; Grötschel, Jünger & Reinelt,
1985; Heyer & Niederée, 1992; Koppen, 1991, 1995;
Marschak, 1960), but for which there did not previ-
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Figure 1: Screen shot of a Cash I paired-comparisonstim-
ulus (see also RDDS, Figure 2)

ously exist an appropriate statistical test. This model
has been studied under several labels, including “binary
choice model”, “linear ordering polytope”, “random pref-
erence model”, “random utility model” and “rationaliz-
able model of stochastic choice”, and it has been stated in
several different mathematical forms that make the same
empirical predictions (see, e.g., Fishburn, 2001; Regen-
wetter & Marley, 2001). We will refer to it as thelinear
order model. According to this model, preferences form a
probability distribution over linear orders, i.e., over rank-
ings without ties. The probability that a person chooses
one gamble over another is the probability that s/he ranks
the chosen gamble higher than the non-chosen gamble.
Denote the probability that a person choosesx (say, the
left gamble in Figure 1) overy (say, the right gamble in
Figure 1) asPxy. The linear order model makes restric-
tive predictions: It requires that thetriangle inequalities
hold, according to which, for all distinct choice options
a, b, c,

Pab + Pbc − Pac ≤ 1. (1)

This model has a particular mathematical form that long
eluded statistical testing: For inequality constraints like
these, standard likelihood ratio tests are not applicable,
goodness-of-fit statistics need not satisfy the familiar
asymptoticχ2 (Chi-squared) distributions, and it is not
even meaningful to count parameters (e.g., binary choice
probabilities) to obtain degrees of freedom of a test. For-
mally adequate statistical tests for such models have been
discovered only recently (Davis-Stober, 2009). Regen-
wetter, Dana and Davis-Stober (2010, 2011) were the first
to carry out such a state-of-the-art “order-constrained”
test of the linear order model. Even breakthrough re-
sults come at a price: To our knowledge, there does cur-
rently not exist a statistical test for the triangle inequali-
ties that does not assume iid (independent and identically
distributed) sampling of empirical observations.

Notice that the triangle inequalities (1) make no men-
tion of time, of the individual making these choices, or
of repeated observations. They do not require binary

choice probabilities to remain constant over time or be
the same for different decision makers (i.e., they do not
require an identical distribution), nor do they require bi-
nary choices to be made stochastically independently of
each other (see Regenwetter, submitted, for a thorough
discussion). Birnbaum (2011, 2012) [henceforth MB] has
questioned the iid sampling assumption used by RDDS’s
statistical test and recommended his own models, the so
called “true-and-error” models, as an alternative. Regen-
wetter (submitted) shows that MB is mistaken to attribute
the iid assumption to the linear order model itself, i.e., to
the triangle inequalities (1). Among the leading models
of probabilistic choice, the linear order model stands out
in being invariant under non-stationary choice probabili-
ties (i.e., invariant under certain violations of the “iden-
tically distributed” part of “iid”). Regenwetter (submit-
ted) also shows that, in contrast, a number of published
papers on “true-and-error” models do, in fact, require bi-
nary choice to be iid in both the model formulation and
in the statistical test.

The main concern in this paper, however, is with Birn-
baum’s (2012) claim that the iid assumption, used by the
state-of-the-art test in RDDS, is violated in the RDDS
data. We will first provide a brief introduction to the
RDDS experiment, then show that the RDDS data pass a
well-known test of iid sampling without a hitch. We then
document that Birnbaum’s (2012) proposed tests of iid
sampling have unknown Type-I error rates that even ap-
pear to change with the way in which binary choices are
coded, and do not actually appear to test iid sampling per
se. We add to this conclusion the finding that Birnbaum’s
(2012) tests fail to replicate within participant. We pro-
vide evidence against MB’s suggestion that the excellent
model performance in RDDS might be a Type-II error
in which warm-up effects could have made binary choice
probabilities shift early in the experiment and then choice
probabilities violating the model could have accidentally
averaged to satisfy the triangle inequalities. Last but not
least, we use Birnbaum’s own (2012) hypothetical data to
disprove MB’s claim that “true-and-error” models over-
come alleged limitations of the linear order model.

2 The experiment of RDDS.

In a seminal paper, Tversky (1969) used a collection of 5
distinct wheels of chance and formed all 10 possible pairs
of these gambles. Faced with variability in behavior, he
presented each decision maker 20 times with each gamble
pair in an effort to assess their preferences among the five
gambles from the observed choice proportions. Tversky
augmented the set by 10 “irrelevant” distractor pairs, also
presented 20 times. In other words, he presented his par-
ticipants with a sequence of 400 binary choices like the
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Table 1: First 36 out of 800 pairwise choices of Participant #100 in RDDS.

Trial Stimulus Left gamble Right gamble Observed

Set L R Choice

1 Cash I 41.7% chance of$23.8 33.3% chance of$26.6 R

2 Distractor 18% chance of$27.5 12% chance of$31.43 L

3 Noncash 24% chance of∼ 4 music CDs 20% chance of∼ 7 paperbacks R

4 Cash II 36% chance of$24.44 28% chance of$31.43 R

5 Cash I 37.5% chance of$25.2 45.8% chance of$22.4 R

6 Distractor 24% chance of$22 16% chance of$22 L

7 Noncash 22% chance of∼ 40 movie rentals 26% chance of∼ 40 coffees L

8 Cash II 40% chance of$22 32% chance of$27.5 R

9 Cash I 41.7% chance of$23.8 29.2% chance of$28 L

10 Distractor 4% chance of∼ 40 coffees 20% chance of∼ 4 music CDs R

11 Noncash 18% chance of∼ 15 sandwiches 24% chance of∼ 4 music CDs L

12 Cash II 36% chance of$24.44 44% chance of$20 R

13 Cash I 37.5% chance of$25.2 33.3% chance of$26.6 L

14 Distractor 6% chance of∼ 40 coffees 16% chance of∼ 7 paperbacks R

15 Noncash 20% chance of∼ 7 paperbacks 22% chance of∼ 40 movie rentals L

16 Cash II 28% chance of$31.43 40% chance of$22 L

17 Cash I 45.8% chance of$22.4 29.2% chance of$28 L

18 Distractor 8% chance of∼ 7 paperbacks 16% chance of∼ 40 coffees L

19 Noncash 26% chance of∼ 40 coffees 18% chance of∼ 15 sandwiches R

20 Cash II 36% chance of$24.44 32% chance of$27.5 R

21 Cash I 37.5% chance of$25.2 41.7% chance of$23.8 R

22 Distractor 14% chance of$22 26% chance of$22 R

23 Noncash 22% chance of∼ 40 movie rentals 24% chance of∼ 4 music CDs L

24 Cash II 44% chance of$20 28% chance of$31.43 L

25 Cash I 45.8% chance of$22.4 33.3% chance of$26.6 L

26 Distractor 8.3% chance of$28 25% chance of$25.2 R

27 Noncash 20% chance of∼ 7 paperbacks 26% chance of∼ 40 coffees L

28 Cash II 40% chance of$22 36% chance of$24.44 R

29 Cash I 37.5% chance of$25.2 29.2% chance of$28 R

30 Distractor 28% chance of$20 12% chance of$27.5 L

31 Noncash 22% chance of∼ 40 movie rentals 18% chance of∼ 15 sandwiches R

32 Cash II 32% chance of$27.5 44% chance of$20 R

33 Cash I 45.8% chance of$22.4 41.7% chance of$23.8 L

34 Distractor 10% chance of∼ 40 coffees 12% chance of∼ 15 sandwiches R

35 Noncash 26% chance of∼ 40 coffees 24% chance of∼ 4 music CDs R

36 Cash II 36% chance of$24.44 28% chance of$31.43 R

Note: The symbol∼ stands for “approximately”.

one in Figure 1. The 400 pairwise choices were spread
over five weekly test sessions of 80 choices each. RDDS

built on this design by asking altogether twice as many
pairwise choices, but in a single session and using a com-
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puter. They considered three distinct sets of 5 lotteries, as
well as some Distractor items. Their Cash I set was the
contemporary dollar equivalent of Tversky’s (1969) stim-
uli, whereas their Cash II and Noncash stimulus sets were
new. Like Tversky (1969) they presented each lottery pair
20 times (except for the Distractors, which varied).

Table 1 gives an example summary of the first 36 tri-
als of the RDDS experiment1 for Participant#100. On
Trial 1, the decision maker faced the choice between a
“41.7% chance of winning$23.8” (presented as a wheel
of chance on the left side of the screen) and a “33.3%
chance of winning$26.6” (presented on the right side).
This was a stimulus from the Cash I set. The decision
maker chose the gamble presented on the right. On Trial
2, the decision maker was presented with the first of 200
Distractor items, which were intended to interfere with
the memory of earlier choices, thus making it difficult to
recognize repeated items. Trial 3 involved gambles for
non-cash prizes, namely a “24% chance of winning a gift
certificate worth approximately 4 music CDs” or a “20%
chance of winning a gift certificate for approximately 7
paperback books”.

In Table 1, Trials 4, 12, 20, 28, and 36 are set apart
by horizontal lines. The lottery with a “36% chance of
winning $24.44” was presented in each of these five tri-
als. The side of the screen on which each lottery appeared
was randomized. The lottery presentation, unbeknownst
to the participant, cycled through the four stimulus sets in
the order Cash I, Distractor, Noncash, Cash II. The pair
of lotteries presented in a given trial was picked randomly
from its stimulus set with the constraint that it had not ap-
peared in the previous five trials from that set; and each
individual lottery was chosen with the constraint that it
had not appeared in the previous trial from that set. This
is why the trials involving a “36% chance of winning
$24.44” are separated by at least eight pairwise choices,
and why the repetition of the lottery pair in Trial 4 did
not occur until at least 24 trials later; in this case, it was
in Trial 36.

Many prominent probabilistic models of choice in the
behavioral and economic sciences, including the models
that Tversky (1969) considered,2 assume that the deci-
sion maker has a single fixed deterministic preference
state throughout the experiment and that variability in
observed choices is due to noise or error in one form

1These followed an initial set of 18 trials, not shown in the table,
designed to familiarize the participant with the task.

2Tversky attempted to reject weak stochastic transitivity in favor of
a modal choice model of a lexicographic semiorder. See Regenwetter
(submitted) for an explanation and mathematical proofs about what is
allowed to vary and what is required to be fixed, in such models, as
well as the role of independence assumptions in these modelsand in
statistical tests of these models. See Iverson and Falmagne(1985) and
RDDS for an explanation why Tversky’s (1969) attempt did notsuc-
ceed, despite hundreds of citations of Tversky’s paper reporting that it
succeeded.

or another (Becker et al., 1963; Birnbaum, 2004; Block
& Marschak, 1960; Carbone & Hey, 2000; Harless &
Camerer, 1994, 1995; Hey, 1995, 2005; Hey & Car-
bone, 1995; Loomes, 2005; Loomes, Moffatt & Sug-
den, 2002; Loomes, Starmer & Sugden, 1991; Loomes &
Sugden, 1995, 1998; Luce, 1959; Luce & Suppes, 1965;
Marschak, 1960; Tversky, 1969). The linear order model
tested in RDDS models preferences themselves as proba-
bilistic. For example, a decision maker could be uncertain
about what he or she prefers on a given trial.

The statistical test currently available for such mod-
els requires that one can combine multiple observations
together to estimate choice probabilities from choice pro-
portions:

1. Writing x for the lottery with a “36% chance of
winning $24.44” and y for the lottery with a “28%
chance of$31.43,” the statistical test in RDDS
treated Trials 4 and 36 as two independent draws
from a single underlying Bernoulli process with
probabilityPxy of choosingx overy.

2. Similarly, for two lottery pairs, say,x versusy anda

versusb, from the same stimulus set (thus separated
by at least 4 trials), the statistical test assumed that
those two binary choices were independent draws
from two Bernoulli processes with probabilitiesPxy

andPab.

Because each stimulus set was analyzed separately,
there was no assumption about the relationship between
choices from different stimulus sets, say, the choices
made on Trials 1 and 2, for instance. The iid assumptions
applied only to choices within stimulus set. These two
assumptions allow a researcher to use choice proportions
as estimators of choice probabilities and this is precisely
how they are routinely used in quantitative analyses of
probabilistic choice models in psychology, econometrics,
and related disciplines. It is the first iid sampling assump-
tion above that MB has questioned. Birnbaum (2012)
claims that this iid assumption is violated in the RDDS
data. We will now consider the legitimacy of that infer-
ence.

3 A test of iid sampling suggested in
Smith and Batchelder (2008).

Smith and Batchelder (2008, p. 727) provided a statisti-
cal test of iid sampling in binary choice data. Birnbaum
(2012) cited Smith and Batchelder but left out any ap-
plication of their test. We fill this gap by implementing
Smith and Batchelder’s (2008) test on the RDDS data.
This test uses the analytically derived expected value and
standard error of a particular test statistic.
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Let (i, i′) denote some gamble pair. Throughout this
section, we will enumerate only the 20 trials that the gam-
ble pair(i, i′) was presented in RDDS (not the 800 tri-
als of their experiment). So, Trials 4 and 36 in Table
1 becomet = 1 and t = 2 for the gamble pair(i, i′)
wherei:“36% chance of$24.44” and i′: “28% chance of
$31.43”. For t ∈ {1, 2, . . . , 20}, let

Xit =







1
if the decision maker chooses

alternativei on trial t,

0 otherwise.

We wish to test, for each gamble pair(i, i′), whether
the Xit result from 20 independent and identically dis-
tributed Bernoulli trials, fort = 1, 2, . . . , 20. By Smith
and Batchelder (2008, p. 727), we can consider the fol-
lowing quantity defined in their Eq. 21, which checks for
a 1-step choice reversal from trialt to trial t + 1:

Ait =

{

1, if Xi,t 6= Xi,t+1,

0, otherwise.

Based on this quantity, we consider the number of 1-step
choice reversals given by

Ai =
19∑

t=1

Ait. (2)

By Smith and Batchelder (2008), if the 20 Bernoulli tri-
als are independent and identically distributed, i.e., have
fixed probabilityθi of success, we must have

E(Ai) = 38 θi(1 − θi). (3)

We give a proof in the Appendix. Smith and Batchelder
(2008) did not provide a standard error forAi. We show
in the Appendix that the standard error equals

SE(Ai) =
√

38 θi(1 − θi)
(
1 − 2θi(1 − θi)

)
. (4)

Table 2 shows the results of this test when applied to
the RDDS data. For each of the 18 participants in Re-
genwetter et al. (2011), we carried out 30 tests (for the
30 binomials that RDDS use for each person, 10 for each
of Cash I, Cash II, and Noncash) to see whether we may
assume, for each of the 30 gamble pairs, iid draws from a
fixed Bernoulli process to obtain 30 distinct binomials per
respondent. This analysis of iid sampling involved a total
of 18×30 = 540 hypothesis tests.3 We determined confi-
dence intervals using the point estimate given in our Eq. 3
and the standard error,SE(Ai) given in our Eq. 4. We re-
port the number of significant violations (marked inbold)

3Besides a full analysis of all data sets, the table also provides an
analysis for the reduced data sets where we dropped the first four trials
for each participant and for each gamble pair. We provide therationale
for this analysis later. Table 2 shows no major changes when we drop
the first four trials.

using a margin of error of2 SE(Ai), or1.96 SE(Ai) (re-
ported in parentheses, when different).

Since we are looking for evidence of mistaken accep-
tance of the linear order model in RDDS, we also provide
an analysis where we leave out the two data sets (Cash
I & II, Participant 16) where Regenwetter et al. (2011)
already rejected the linear order model (underlined). Re-
jections by Smith and Batchelder’s (2008, Eq. 21) test
occurred at a rate of∼ 3%, well within standard Type I
error range. There is no reason to conclude, based on this
test, that the binary choices of each individual in Regen-
wetter et al.’s (2011) data were anything but independent
and identically distributed Bernoulli trials, hence that the
choice frequencies originated from anything but Binomi-
als. The null hypothesis of iid sampling in RDDS is re-
tained in this hypothesis test.

4 Type-I error rates of Birnbaum’s
(2012) tests.

In contrast to Smith and Batchelder’s test statistic, whose
expected value and standard error we reviewed above,
Birnbaum (2012) created two new test statistics with un-
known sampling distributions. Using these new statis-
tics, Birnbaum (2012) estimated two quantitiespν andpr

from the data and, without formal proof, interpreted these
quantitiespν andpr as p-values of tests of iid sampling
for a given participant in RDDS. Birnbaum concluded
that a data set in RDDS violates the iid assumption “sig-
nificantly” (at anα level of 0.05) whenpν < 0.05, re-
spectively, whenpr < 0.05.

To better understand Birnbaum’s test statistics, we can
borrow tools from an ongoing debate in the behavioral,
statistical, and medical sciences. That debate is primarily
concerned about “publication bias”, “p-hacking”, “data
peeking”, the “file drawer problem”, etc. (Francis, 2012a,
2012b; Ioannidis & Trikalinos, 2007; Macaskill, Walter
& Irwig, 2001; Simmons, Nelson & Simonsohn, 2011).
We tap into some of the tools with which this literature
investigates whether reported p-values match what is ex-
pected for a given set of hypotheses and a given effect
size. Specifically, we build on the fact that p-values are,
themselves, random variables (Murdoch, Tsai & Adcock,
2008). The p-values of a continuous statistic must satisfy
a uniform distribution under the null hypothesis, whereas
the p-values of finite statistics can display more compli-
cated behavior (Gibbons & Pratt, 1975; Hung, O’Neill,
Bauer & Kohne, 1997; Murdoch et al., 2008). We will
consider the distribution of Birnbaum’s (2012)pν- and
pr-values. In particular, we use Monte Carlo simulation
to check how closely the actual Type-I error rates match
the stated nominalα-level of each test (Little, 1989).
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Table 2: Test of iid binary choice following Eq. 21 and text inSmith and Batchelder (2008, p. 727).

Full Data Sets First 4 Trials removed

Total Cash I Cash II Noncash Total Cash I Cash II Noncash

Particip. 30 tests 10 tests 10 tests 10 tests30 tests 10 tests 10 tests 10 tests

1 1 0 0 1 1 0 1 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 1 (2) 1 0 (1) 0 1 1 0 0

5 0 0 0 0 0 0 0 0

6 3 1 2 0 3 1 2 0

7 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0

9 1 1 0 0 1 1 0 0

10 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0

12 1 0 0 1 0 0 0 0

13 2 1 1 0 0 0 0 0

14 0 0 0 0 0 0 0 0

15 4 2 2 0 3 1 2 0

16 4 2 2 0 3 2 1 0

17 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0

# signif. 17 (18) 8 7 (8) 2 12 6 6 0

# tests 540 180 180 180 540 180 180 180

After dropping Cash I and Cash II for Participant 16:

# signif. 13 (14) 6 5 (6) 2 9 4 5 0

# tests 520 170 170 180 520 170 170 180

Figures 2 and 3 show five histograms for the distribu-
tion of pν-values andpr-values (computed separately for
pν andpr) for five different sets of binary choice prob-
abilities. Each histogram tallies the distribution ofp-
values for 3,000 simulated iid samples.4 In each case, we
expect 100p-values per bin under the null hypothesis, as
indicated by the horizontal line. Even for 3,000 simulated
iid samples, the actual observed numbers ofp-values in
each bin varies substantially around that expected num-
ber. Forpν in Figure 3, a Kolmogorov-Smirnoff test
comes out significant in each histogram, suggesting that
thepν-values are not uniformly distributed as they should
be if we treat the underlying statistic as a continuous ran-
dom variable. Furthermore, it appears that the distribu-

4Our Table 5 shows that we replicated the value ofpν (using only
10,000 pseudo-random permutations to save computation time) that
Birnbaum (2012) provided for Cash I (using 100,000 permutations).
Even running the Monte Carlo simulation with 10,000 pseudo-random
permutations per run used up months of computer time.

tion of pν-values is different for different choice proba-
bilities, even though in each case, the data were simu-
lated via the null hypothesis of iid sampling. The distri-
bution ofpν-values appears to reflect other properties of
the data, not just whether or not iid holds.5 In Figure 3,
a Kolmogorov-Smirnoff test comes out significant in one
of the five cases, suggesting that thepr-values in question
are not uniformly distributed as they should be under the
null hypothesis.

Table 3 provides comparisons of the simulated sam-
pling distributions forpν and pr among pairs of bino-
mial collections that generated the iid data. For the
comparison of the simulated sampling distributions, the
Kolmogorov-Smirnov test finds the three pairs differ sig-
nificantly from each other forpν . The corresponding test
for pr did not yield any significant disagreements among

5The Smith and Batchelder test explicitly accounts for binary choice
probabilities by incorporating them into Eqs. 3 and 4.
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Figure 2: Illustrative analysis of the sampling distribution of pν approximated through 3,000 simulated iid data sets
using the maximum likelihood binomial parameters of three participants from Regenwetter et al. (2011) Cash I, and
a hypothetical participant. The underlying binomial probabilities are given above the histograms. The expected
frequency in each bin under the uniform null is given by the horizontal line. The Kolmogorov-Smirnov statistic is
significant in each case, i.e., each distribution differs significantly from a uniform on[0, 1].
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simulated sampling distributions, even though Figure 3
suggests a deviation from uniformity for the sampling
distribution forpr on data simulated from the collection
of binomials that best fits Participant 10 in Cash I of
RDDS. This makes the analysis forpr somewhat more
ambiguous.

In each histogram of Figures 2 and 3, the left tail of
the distribution is of utmost importance, because it shows
how often one will observe small p-values when the null
hypothesis holds. This means that the left tail of the his-
togram gives an idea of Type-I error rates: A spike in the
left tail suggests that the Type-I error rate is higher than it
should be, because there are too many small p-values. A
trough in the left tail suggests a conservative test because
there are not enough small p-values to reject the null at a
rate ofα when we use a significance level ofα.

The requirement that a p-value be uniformly dis-
tributed under the null hypothesis applies only for con-
tinuous statistics. However, the novel statistics underly-
ing pν andpr can, in fact, only take finitely many dif-
ferent values in data like those in RDDS. Therefore, it
may be more informative to compare nominal Type-I er-
ror rates (α) with the actual rates of false rejection, for
various nominal Type-I error rates when analyzing data
sets that we know to be iid. We report this in Table 4.
There appears to be little rhyme or reason to the actual
Type-I error rates. Forpν , the test appears to be conser-
vative, except for data simulated according to Participant
10’s best fitting binomials. Strangely, though, as we move
from Participant 10 to its “mirror,” where we replaced
the binomial probabilities of “success” by probabilities of
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Table 3: Comparison of simulated sampling distributions for pν andpr for different collections of binomials.

Paired comparison Kolmogorov-Smirnov test forpν Kolmogorov-Smirnov test forpr

among Binomial collections Statistic p-value Statistic p-value

Participants 2 vs. 10 .0437 .01 0.0317 .10

Participants 2 vs. 12 .0113 .99 0.0257 .27

Participants 2 vs. hypothetical .0207 .54 0.0227 .42

Participants 10 vs. 12 .0430 .01 0.0143 .92

Participants 10 vs. hypothetical.0433 .01 0.0287 .17

Participants 12 vs. hypothetical.0163 .82 0.0210 .52

Participants 10 vs. 10 Mirror 0.019 .65 0.0297 .14

“failure” the test6 is no longer conservative, even though
these binary choice probabilities are the same and differ
only by how pairwise choices are labeled. A test of iid
should not depend on whether “a pairwise choice ofx

overy” is always coded as “a success (forx)” or always
coded as “a failure (fory)” in the Bernoulli process and
the corresponding Binomials.

For the test based onpr, even though Figure 3 sug-
gested that four of the five distributions of p-values, in
their entirety, do not differ significantly from a uniform
distribution, it is rather salient that the Type-I error rates
are nonetheless inflated for two of the three cases. Again,
the actual Type-I error rate appears to vary quite substan-
tially, depending on the underlying binomial probabili-
ties. This strongly suggests that the results of Birnbaum’s
tests do not depend just on whether data are iid or not,
they depend on the choice probabilities themselves. They
also depend on the way that binary choices are coded.
This does not strike us as a desirable property of a mean-
ingful test for iid sampling.

The analyses in this section were based on simulating
iid data from given collections of binary choice proba-
bilities. For real data, where we do not know the un-
derlying binary choice probabilities that hold under the
null hypothesis, we cannot know the Type-I error rates of
Birnbaum’s tests. All in all, in contrast to the Smith and
Batchelder (2008) test, which rests on analytically de-
rived expected values and standard errors, and which the
RDDS data pass with flying colors, Birnbaum’s (2012)
two tests of iid sampling currently lack a solid and coher-
ent mathematical foundation.

6For example, we replacePAB = 0.05 byPAB = 1−0.05 = .95,
PAC = .01 by PAC = 1 − 0.01 = .99, etc. This “mirror” amounts
to a relabeling of pairwise choices. In Table 7, the analogueis to switch
1’s and 0’s in the table. This choice of coding is arbitrary and should
not influence the behavior of any meaningful statistical test.

5 Do the findings of Birnbaum
(2012) replicate within partici-
pant?

We now consider whether small values ofpν and/orpr,
if they were to serve as a proxy for iid violations, at
least have a coherent substantive interpretation. Birn-
baum (2012) analyzed only a fraction of RDDS’ data.
As we explained in the introduction and illustrated in Ta-
ble 1, the experiment of Regenwetter et al. (2011) con-
tained three different stimulus sets, labeled Cash I, Cash
II, and Noncash, as well as various Distractor items many
of which resembled either the Cash or the Noncash items.
All stimuli and distractors were mixed with each other
within the same experiment (see Table 1). When thinking
about iid sampling, we may be concerned about mem-
ory effects: The decision maker might recognize previ-
ously seen stimuli, recall the choices previously made,
and attempt to either be consistent or seek variety. Hence,
choices might be interdependent and/or choice probabil-
ities might drift over time because memory of earlier
choices might interfere with new choices.

While all Cash I and Cash II stimuli were two-outcome
gambles for very similar cash amounts of money, the
Noncash gambles involved prizes such as free movie
rentals, free coffee, free books, etc. The purpose of the
Distractor items and of the intermixing of different stim-
ulus sets was to reduce or eliminate the role of mem-
ory in repeated choices from the same stimulus set. Yet,
if nonetheless memory affected the choice probabilities
or created dependencies, this effect should be most pro-
nounced in the Noncash condition because these stim-
uli were arguably much more recognizable. Second, the
Cash I and Cash II stimuli looked so similar to each
other that only a person with knowledge of the exper-
imental design can tell which stimuli belong to which
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Figure 3: Illustrative analysis of the sampling distribution of pr approximated through 3,000 simulated iid data sets
using the maximum likelihood binomial parameters of three participants from Regenwetter et al. (2011) Cash I, and
a hypothetical participant. The underlying binomial probabilities are given above the histograms. The expected
frequency in each bin under the uniform null is given by the horizontal line. The Kolmogorov-Smirnov statistic is
significant in one case, i.e., the distribution differs significantly from a uniform on[0, 1] for the iid samples from the
best fitting collection of binomials of Participant 10.
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Table 4: Nominal versus actual Type-I error rates for Birnbaum’s (2012) tests of iid.

Participant # Nominalα-level forpν Nominalα-level forpr

1% 4% 5% 6% 10% 1% 4% 5% 6% 10%

Participant 2 0.9% 3.4% 4.8% 5.6% 9.5%1.1% 3.7% 4.3% 5.6% 9.7%

Participant 12 0.7% 3.1% 4.3% 5.1% 8.9%1.1% 4.4% 5.4% 6.5% 11.4%

Hypothetical Participant0.5% 3.3% 4.4% 5.4% 8.9%1.4% 5.2% 6.4% 7.4% 11.7%

Participant 10 1.4% 4.6% 5.6% 6.7% 10.5%1.1% 4.3% 5.0% 6.3% 10.2%

Participant 10 (mirror) 0.7% 3.1% 4.2% 5.2% 9.2%1.4% 4.7% 5.7% 6.7% 10.2%
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stimulus set.7 Since the data collections for Cash I,
Cash II, and Noncash gambles were fully interwoven with
each other, any substantive conclusions about non-iid re-
sponses, if valid in one stimulus set, should replicate
in another. We do not know how to make conceptual
sense of concluding, say, that a person’s choices on Tri-
als 1, 5, 9, 13, . . . , 797 were iid, while choices on Trials
4, 8, 12, 16, . . . , 800 were not iid.

Because of these considerations, we checked whether
Birnbaum’s (2012) conclusions about non-iid sampling
are consistent across stimulus sets, and whether the al-
leged violations are indeed more pronounced in the Non-
cash condition. Hence, we applied Birnbaum’s (2012)
R code not only on the Cash I gambles, as was done in
Birnbaum (2012), but also on the Cash II and Noncash
gambles. The results of our analysis of these three sets
are given in Table 5 under the heading8 “Full Data Sets”.
The R code computes simulated random permutations of
the data: We used 10,000 such pseudo-random permuta-
tion iterations per analysis. Values ofpν andpr smaller
than 0.05 are marked inbold. Values that would round to
0.05 are given to three significant digits. Cases where the
linear order model is rejected are in parentheses. Cases
that were undefined due to division by zero are marked
with a−. We confirm Birnbaum’s finding that, in Cash I,
four values ofpν are smaller than0.05.9 In addition, there
are six such values in Cash II and four in Noncash. For
pr, Birnbaum (2012) reports six values smaller than0.05
in Cash I, and we find five in each stimulus set. How-
ever, it is important to note that not a single individual
generated small values ofpν or pr for all three sets.

Following the train of thought in Birnbaum (2012),
each of these “significant” values might suggest, by it-
self, that the participant might violate iid sampling. How-
ever, the Noncash case has relatively few “violations”,
even though this should be the prime source of poten-
tial memory effects that could cause interdependencies
and/or make the probabilities change in some systematic
way. This lack of replicability is consistent with our con-
cern in the previous section, namely that small values of
pν and/orpr may be difficult to interpret. On the other
hand, if we give MB the benefit of the doubt and we pre-
sume that the tests really do detect violations of iid, then
the lack of replications could alternatively be interpreted
as indicating very small effect sizes. In that case, the iid

7See the gamble pairs on Trials 1, 5, 9, etc. versus the gamble pairs
on Trials 4, 8, 12, etc. in Table 1, keeping in mind that numerical prob-
abilities were not provided.

8Table 5 shows no major changes with the first 4 trials dropped.We
provide the rationale for this analysis later.

9Birnbaum initially reported a larger number of violations.After the
Regenwetter lab had difficulties replicating his results, he corrected his
data extraction program, and reported (Birnbaum, 2012) values ofpν

andpr for Cash I that members of the Regenwetter lab (Y. Cha and M.
Choi) were able to confirm independently.

assumption might be violated, but only so slightly that it
does not turn up significant very often. In that case, the
question would arise how the analysis of RDDS would
really be affected by an iid assumption that is only an ap-
proximation, but a close approximation, of the data.

We have shown that the RDDS data pass Smith and
Batchelder’s (2008) test of iid sampling with top marks.
We have shown that Birnbaum’s (2012) statisticspν and
pr may not be p-values, that their Type-I error rates are
unknown, and that these statistics appear to depend on
more than just iid sampling alone, they even appear to
depend on how data are coded. We have now established
that no single participant, out of 18 participants, has con-
sistently small values ofpν and/orpr across all three
stimulus sets, either. Combining these observations, we
see no merit in interpreting values ofpν < 0.05 and/or
pr < 0.05 as pin-pointing individual participants who vi-
olate iid sampling. Likewise, we see no justification for
the much broader blanket statement that “the data of Re-
genwetter, et al. (2011) do not satisfy the iid assumptions
required by their method of analysis” (Birnbaum, 2012,
p. 99).

6 Could RDDS’s findings be an ar-
tifact of warm-up effects?

The discussion around Birnbaum’s (2012) Table 2 sug-
gests that decision makers might change their choice
probability after the first few trials. We consider whether
the great model fit in RDDS could be an accidental ar-
tifact of drifting choice probabilities in the first few tri-
als due to some sort of warm-up period during which the
decision makers familiarized themselves with the experi-
ment.

Since Birnbaum (2012) stressed that violations of iid
sampling may have led to false acceptance of the linear
order model in Regenwetter et al. (2011), we consider
whether, by dropping the first four of twenty trials for all
gamble pairs, we are able to reject the linear order model
on more participants. Starting from Birnbaum’s (2012)
Table 2, we dropped the first four trials for each gamble
pair, every stimulus set, and every participant. Note that,
to decide how many trials to drop, we inspected the data
of only the one participant and one stimulus set discussed
in Birnbaum’s (2012) Table 2.10

Table 6 shows the results of two analyses of the data
in Regenwetter et al. (2011) using a newer software for

10This is important because looking at data to generate a hypothesis
before testing that hypothesis is problematic in that the data inspection
uses up some unknown number of degrees of freedom in the data and
could bias the outcome of a hypothesis test. Since we did not extract
any information from any other data sets, we also did not losedegrees
of freedom in any other data sets, nor did we bias our alternative hy-
pothesis.
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Table 5: Summary ofpν andpr values, rounded to two significant digits, according to the method of Birnbaum (2012)
for Cash I, Cash II, and Noncash of Regenwetter et al. (2011),for both the full data sets, as well as the reduced data
sets where the first four trials for each gamble pair pair weredropped.

Participant # Full Data Sets First 4 Trials removed

Cash I Cash II NoncashCash I Cash II Noncash

1 pν 0.26 0.57 0.20 0.30 0.68 0.32

pr 0.09 0.32 0.053 0.21 0.04 0.06

2 pν 0 0 0.30 0.47 1 0.38

pr 0 0.21 0.30 0.08 0.15 0.02

3 pν 1 0.83 0.53 1 0.68 0.67

pr 0.51 0.89 0.03 0.12 0.23 0.73

4 pν 0.08 0.47 1 (0.58) 0.29 1

pr 0.98 0.11 0.80 (0.58) 0.81 0.50

5 pν 0.01 0 0.08 0.02 0 0.23

pr 0.11 0.85 0.12 0.93 0.77 0.051

6 pν 0.11 0 1 0.49 0 1

pr 0.050 0 0.12 0.57 0 0.39

7 pν 0.23 0 1 0.92 0.58 1

pr 0.01 0 0.55 0.35 0.74 0.30

8 pν 1 0.18 0 1 0.20 0.57

pr 0.90 0.72 0 0.68 0.75 0.74

9 pν 0.78 0.27 0.01 0.92 0.26 0.22

pr 0.12 0.046 0.01 0.38 0.13 0.65

10 pν 0.045 0.15 0.27 0.13 0.26 1

pr 0.54 0.68 0.90 0.38 1.00 0.49

11 pν 0.47 0.38 1 0.55 0.48 1

pr 0.87 0.48 0.46 0.58 0.21 0.20

12 pν 0.79 0.06 0.02 0.97 0.07 1

pr 0.24 0.88 0 0.22 0.51 0.01

13 pν 0.18 0.65 0.48 0.49 0.89 0.70

pr 0.01 0.08 0.04 0.16 0.76 0.02

14 pν 1 1 1 1 1 1

pr 0.39 − 0.60 0.49 − 0.21

15 pν 0 0 1 0.01 0.04 1

pr 0 0 0.35 0.03 0 0.20

16 pν (1) (0) 0.23 (1) (0) 0.06

pr (0.02) (0.02) 0.36 (0.48) (0.09) 0.41

17 pν 0.75 0.70 0.11 0.55 0.66 0.14

pr 0.33 0.34 0.60 0.10 0.88 0.64

18 pν 0.95 0.47 0.01 0.98 0.22 1

pr 0.31 0.31 0.07 0.24 0.09 0.44
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Table 6: Analysis of the linear order model on the full data sets and on reduced data sets where the first four trials for
each gamble pair are dropped. A checkmarkX indicates perfect fit.

Full Data Sets First 4 Trials removed

Cash I Cash II Noncash Cash I Cash II Noncash

Res.# G2(p) G2(p) G2(p) G2(p) G2(p) G2(p)

1 X 2.01(0.28) X 0.11(0.35) 2.82(0.20) X

2 X X 2.85(0.33) [X] X 1.41(0.56)

3 X X 1.41(0.47) X X 1.41(0.47)

4 3.76(0.14) 0.09(0.76) X 8.91(0.01) 0.50(0.69) X

5 X X X X X X

6 0.35(0.64) 0.08(0.38) X 1.02(0.57) 0.45(0.25) X

7 X X 3.63(0.18) X X 3.64(0.18)

8 X X X X X X

9 X X X X X X

10 X 0.37(0.27) X X 0.37(0.27) X

11 X 1.41(0.55) X X 1.41(0.55) X

12 X X X X X X

13 X X X 0.10(0.39) X X

14 X X 0.37(0.89) X X 0.37(0.90)

15 X X X X X X

16 16.46(< 0.01) 9.51(0.01) 1.41(0.64) 19.43(< 0.01) 16.68(< 0.01) X

17 1.50(0.21) X X 1.76(0.1) X X

18 X 0.33(0.45) 0.37(0.74) X 0.39(0.26) X

order-constrained inference.11 A checkmarkX indicates
perfect fit, where the choice proportions fully satisfy the
triangle inequalities, hence the model cannot be rejected
no matter how small the significance levelα. For all cases
with choice proportions outside the linear order model,
we provide the test statisticG2 followed by itsp-value.
G2 values cannot be compared across cells due to order-
constrained inference. Significant violations of the linear
order model are marked inbold. One analysis[ marked
in brackets] involved prior inspection of the data. As we
drop the first four trials for all stimuli and participants
the linear order model fits the data again very well. One
person, Participant 16, violates Cash I and Cash II sig-
nificantly in the full data sets. This person also violates
the model in the reduced data. As we move from the full
to the reduced data, one nonsignificant violation becomes
significant (Participant 4, Cash I), two nonsignificant vi-
olations become perfect fits and two perfect fits become

11The new software implemented an improved algorithm for
order-constrained inference with higher speed and precision. See
http://labs.psychology.illinois.edu/labs/DecisionMakingLab/qtest/. As
a consequence, the Full Data analysis slightly differs numerically from
the results table in Regenwetter et al. (2011).

nonsignificant violations, giving a nearly identical overall
picture of goodness-of-fit. This pattern of results demon-
strates clearly that the excellent fit of the model in RDDS
was not an artifact of a potential 4-trial-per-gamble-pair
warm-up as Birnbaum’s (2012) discussion of his Figure
2 seems to suggest.

7 What do Birnbaum’s (2012) hy-
pothetical data tell us about
“true-and-error” models?

Linear orders are a type of transitive preference.12 RDDS
tested the linear order model as a proxy for testing tran-
sitivity of preferences when preferences are allowed to
vary between and within persons. Birnbaum (2012) pro-
vided three tables of hypothetical data to suggest that
one can construct thought experiments in which the ap-
proach of RDDS will classify all three data sets as transi-
tive when Birnbaum generated some of the hypothetical

12Transitivity states that ifA is preferred toB andB is preferred to
C, thenA is preferred toC.
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data by simulating certain intransitive decision makers.
Birnbaum (2012) suggested that “true-and-error” mod-
els overcome this challenge. We will now explain briefly
how a “true-and-error” model works and then prove that
such models do not overcome the stated challenge.

Consider once again Table 1 with the first 36 trials
in the RDDS experiment. The basic unit of analysis in
RDDS is the binary response on one trial. In contrast,
the basic unit of analysis and the basic theoretical primi-
tive in “true-and-error” models is that of a “response pat-
tern”. Consider the Cash II gamble set. Because Cash
II involved five distinct lotteries and all possible pairs of
these five gambles, there are 10 distinct pairs of gam-
bles in Cash II, each of which was presented 20 times.
Each of Trials 4, 8, 12, 16, 20, 24, 28, and 32 is the “first
replicate” of a gamble pair in Cash II, whereas Trial 36
is the “second replicate” of the lottery pair used previ-
ously in Trial 4. In a “true-and-error” model, the pattern
of responses in Trials 4, 8, 12, 16, 20, 24, 28, 32 (and
two more later trials), namelyRRRLRLRR. . . , form
one observation, namely the observed choice pattern for
thefirst replicate(see the underlined responses in the last
column of Table 1). The second replicate overlaps with
the first in time in that Trial 36 is already part of the ob-
served pattern for the second replicate. We callblock-
ing assumptionthe assumption that pairwise choices in
Trials 4, 8, 12, 16, 20, 24, 28, 32, and two more later
trials can be blocked together to form a single observa-
tion RRRLRLRR. . . of one pattern. According to the
blocking assumption, the pairwise choice in Trial 36 is
not interchangeable with the choice in Trial 4, because
Trial 36 is part of the second “replicate”. In Table 1 the
respondent happens to have chosen R again as in Trial 4,
but if this observed choice were L, the blocking assump-
tion would disallow exchanging the observations in Trials
4 and 36.

In the analysis of RDDS, the 200 trials that make up
the data for a given stimulus set (say, Cash II) are treated
as 20 observations for each of 10 binomials (this gives the
usual 20 observations per binomial that is recommended
as a rule of thumb for using asymptotic statistics). In a
“true and error model” the same 200 binary choices form
20 observations (20 observed patterns from 20 replicates)
of one single multinomial with210 = 1, 024 cells, i.e.,
with 1,023 degrees of freedom. This is because there are
1,024 distinct possible patterns of 10 binary choices. For
a multinomial with over 1,000 degrees of freedom, 20 ob-
servations can be labeledextremely sparsedata that are
nowhere close to warranting the use of asymptotic distri-
butions for test statistics.

We now introduce what we will label thestandard true-
and-errormodel [henceforth STE] for such a multino-
mial. The STE model spells out how a binary response
pattern, the primitive unit of observation for the model, is

related to individual binary responses on individual trials.
In the STE model the decision maker has a single, deter-
ministic, fixed, “true” preference pattern throughout the
experiment, and the reason that he or she does not choose
consistently with that preference pattern is because she
or he makes errors (trembles) with some probability. Ac-
cording to Birnbaum (2004, pp. 59, 61), Birnbaum (2007,
p. 163), Birnbaum and Bahra (2007, p. 1024), Birnbaum
and Gutierrez (2007, p. 100), Birnbaum (2008a, p. 483),
Birnbaum (2008b, p. 315), Birnbaum and Lacroix (2008,
p. 125), Birnbaum and Schmidt (2008, p. 82), Birnbaum
(2010, p. 369), as well as Birnbaum and Schmidt (2010,
p. 604), errors occur independently of each other, with the
error probability of each gamble pair being constant over
time. Denoting the decision maker’s true preference pat-
tern asB and lettingBs denote the entry inB for gamble
pair s, i.e., the person’s true preference for gamble pair
s, and denoting byps the probability of making an error
when responding to gamble pairs, the probability that
this decision maker gives responseXs at timet does not
depend ont and it equals

{

(1 − ps) if Xs = Bs (no error),

ps if Xs 6= Bs (error).
(5)

For example, suppose that there are 10 pairs of gam-
bles. Following the equations in the referenced papers,
the probability of a binary pattern in which a given deci-
sion maker chooses correctly on Gamble Pairs 6, 7, and
10 and chooses incorrectly on Gamble Pairs 1, 2, 3, 4, 5,
8, 9 , according to the STE model, is

p1p2p3p4p5(1 − p6)(1 − p7)p8p9(1 − p10). (6)

There are 1,024 such formulae to provide the probabili-
ties of all 1,024 different choice patterns that are possible
in the STE model. In Table 1 we used labels L and R to
refer to left-hand-side and right-hand-side gambles. In-
stead, we could also label one gamble as Gamble 0 and
the other gamble as Gamble 1 (and in the process drop
the distinction of the side on which a given gamble was
presented visually), and then record, for each trial a zero
or a one to code which gamble was chosen. If we fix
the sequence by which we consider the gamble pairs in
such a binary coding13, we can represent both the “true”
preference and each of the observed preference patterns
as 10-digit strings of zeros and ones.

Say, if the decision maker’s true preference is binary
pattern0000000000 then, by Formula 6, the observed
pattern 1111100110 has probabilityp1p2p3p4p5(1 −
p6)(1 − p7)p8p9(1 − p10). The STE model also spells

13This means we disregard the sequence of trial presentationswithin
a replicate. Relabeling the zeros as ones and the ones as zeros yields
what we called a “mirror” in Figures 2 and 3, and in Tables 3 and4.
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out what happens if each question (gamble pair) is pre-
sented on two replicates. If the decision maker makes 10
choices on 10 distinct gamble pairs in one replicate, and
another set of 10 choices on the same 10 gamble pairs in a
second replicate, the probability that s/he makes 10 errors
on the first replicate and makes no errors on the second
replicate, according to STE is,

10∏

j=1

pj

︸ ︷︷ ︸

errors on items 1-10
first replicate

×

10∏

i=1

(1 − pi)

︸ ︷︷ ︸

correct choices on items 1-10
second replicate

. (7)

We now move to the hypothetical data in Birnbaum
(2012). Birnbaum (2012) argued that the linear order
model analysis of RDDS may fail to distinguish transi-
tive from intransitive cases when iid is violated. For con-
venience, we reproduce the hypothetical data in question
in Table 7. The columns list hypothetical gamble pairs,
the rows list the hypothetical replicates (repetitions). In
the interior of the table an entry “1” indicates the choice
of the first gamble in the gamble pair, and a “0” indicates
a choice of the second gamble in a gamble pair.

Our table also gives the results of the iid test of Smith
and Batchelder (2008). For the top data set, there are
10 separate tests, of which one turns out significant.
Birnbaum (2012) states that these data were iid gen-
erated, hence we have one Type I error by Smith and
Batchelder’s (2008) test in ten tests. (Recall that our anal-
ysis in Table 2 yielded significant results in 3% of cases in
RDDS.) In the data in the center of Table 7, all columns
are the same, hence we only need to apply Smith and
Batchelder’s test once. Indeed, it is significant, consis-
tent with a violation of iid sampling. In the third data set,
which involves only two types of column collections, the
corresponding two tests of Smith and Batchelder (2008)
turn out significant both times, consistent with a violation
of iid sampling. Birnbaum’s (2012) latter two hypotheti-
cal data sets are quite different from RDDS’ real data.

Birnbaum (2012) stated that the RDDS analysis, by
counting pairwise choice proportions only, treat the three
tables the same and classify all three cases as transitive,
whereas true-and error models would distinguish the first,
transitive, case from the other two, intransitive, cases. We
first show that standard true-and-error models (as used
in Birnbaum 2004, pp. 59, 61; Birnbaum, 2007, p. 163;
Birnbaum & Bahra, 2007, p. 1024; Birnbaum & Gutier-
rez, 2007, p. 100; Birnbaum, 2008a, p. 483; Birnbaum,
2008b, p. 315; Birnbaum and Lacroix, 2008, p. 125; Birn-
baum & Schmidt, 2008, p. 82; Birnbaum, 2010, p. 369;
Birnbaum & Schmidt, 2010, p. 604), will also treat all
three tables the same and will likewise classify all three
data tables as transitive. For each of Tables A.4-A.6 in
Birnbaum (2012), we can expand the formulations of the

STE model in Formulae 5 and 7 to a situation with 10
replicates. The probability of the observations in each ta-
ble is given by

10∏

i=1

[Bi(1 − pi) + (1 − Bi)pi]
6

︸ ︷︷ ︸

each column ofM
contains 6 ones

×
10∏

j=1

[Bjpj + (1 − Bj)(1 − pj)]
4

︸ ︷︷ ︸

each column ofM
contains 4 zeros

. (8)

For example, if the true preference isB = 1111111111,
the probability of the data in each table is given by

10∏

i=1

[(1 − pi)]
6

︸ ︷︷ ︸

each column ofM
contains 6 correct choices

×

10∏

j=1

[pj ]
4

︸ ︷︷ ︸

each column ofM
contains 4 errors

. (9)

If, as is usually the case, we restrict the error probabilities
to beps < 0.5, ∀s, then the maximum likelihood esti-
mate will yield the “true” preference pattern 1111111111
and estimated error probabilities of0.4 for every error
term, in every one of the three Tables A.4-A.6 of Birn-
baum (2012), as summarized in our Table 7. The STE
model analysis cannot distinguish the three hypothetical
data tables. Birnbaum (2012) designed these three hypo-
thetical data sets to illustrate alleged weaknesses of the
analysis of RDDS and strengths of the “true-and-error”
approach. Yet, like the analysis used in RDDS, the STE
model analysis cannot differentiate between the data in
the three tables either, and it will also classify all three
cases as transitive.

In the discussion of Tables A.4-A.6, Birnbaum (2012,
p. 106) states that Birnbaum and Bahra (2007) “found
that some people had 20 responses out of 20 choice prob-
lems exactly the opposite between two blocks of trials.
Such extreme cases of perfect reversal mean that iid is
not tenable because they are so improbable given the as-
sumption of iid.” If true, then this would mean that Birn-
baum and Bahra’s (2007) analysis, which used a STE
model with iid errors (Birnbaum and Bahra, 2007, p.
1024), is itself “not tenable” on those data, in Birnbaum’s
words.

We have shown that the STE model, the model used
in 10 or more published papers, cannot distinguish be-
tween the three data tables any better than the analysis
in RDDS. We have also shown in Table 7 that Smith and
Batchelder’s (2008) test successfully picks up the iid vio-
lations that Birnbaum built into two of the tables. Recall
that this is the test that the RDDS data passed with flying
colors.
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Table 7: Hypothetical data in Birnbaum’s (2012) Tables A.4 (top), A.5. (center), and A.6. (bottom). A “1” indicates
choice of the first option in pair, a “0” indicates choice of the second option. For each column of data, we also provide
the result of a test for iid sampling of Smith and Batchelder (2008, p.727) using confidence intervals of point estimates
± 2 standard errors (or± 1.96 standard errors. The results of using 1.96 or 2 standarderrors matched throughout.).

Repetition AB AC AD AE BC BD BE CD CE DE

1 1 0 1 1 1 1 0 1 1 1

2 0 0 0 0 1 0 1 0 0 1

3 0 1 1 1 1 1 1 0 1 1

4 1 1 0 0 1 1 1 0 1 0

5 0 0 1 1 0 1 0 1 0 0

6 1 1 1 1 0 1 0 0 1 0

7 1 1 1 0 0 1 1 1 1 1

8 1 1 0 1 1 0 1 1 0 1

9 1 0 0 0 1 0 0 1 1 0

10 0 1 1 1 0 0 1 1 0 1

Reject iid? no no no yes no no no no no no

Repetition AB AC AD AE BC BD BE CD CE DE

1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1

7 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0

Reject iid? yes yes yes yes yes yes yes yes yes yes

Repetition AB AC AD AE BC BD BE CD CE DE

1 0 0 1 1 0 0 1 0 0 0

2 0 0 1 1 0 0 1 0 0 0

3 0 0 1 1 0 0 1 0 0 0

4 0 0 1 1 0 0 1 0 0 0

5 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1

7 1 1 0 0 1 1 0 1 1 1

8 1 1 0 0 1 1 0 1 1 1

9 1 1 0 0 1 1 0 1 1 1

10 1 1 0 0 1 1 0 1 1 1

Reject iid? yes yes yes yes yes yes yes yes yes yes

Next, consider a modification of the STE model test
in which there is still a single true preference, but where

the iid assumption for errors is dropped. Then the data
in Birnbaum’s (2012) Table A.5 (center of our Table 7)
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can originate from a person with transitive true prefer-
ence pattern 1111111111 who makes no errors for the
first 60 binary choice trials (i.e., the first 6 lines in the
table) and who makes errors for all remaining trials of
the study. However, this person can instead have fixed
intransitive true preference pattern 0011001000 and gen-
erate the same data because she or he makes no errors on
the first 6 trials of stimuliAD, AE, BE but errors in all
first 6 trials of stimuliAB, AC, BC, BD, CD, CE, DE,
then switches to the opposite error behavior for the re-
maining four replicates. Similar constructions are possi-
ble for Birnbaum’s (2012) Tables A.4 and A.6 (top and
bottom of our Table 7). If errors are allowed to be inter-
dependent and if error probabilities are allowed to change
over the course of the experiment, then “true-and-error”
models can generate a perfect fit toany data, no matter
what fixed “true preference” they use. In other words,
“true-and-error” models without iid assumption for errors
are neither identifiable nor testable. They are vacuous,
even if they permit only one single and fixed “true” pref-
erence.

Finally, we consider what happens in Tables A.4-A.6
(our Table 7) if we consider “true-and-error” models in
which the preferences are allowed to vary. For example,
a person may have preference patternB1 = 1111111111,
say, 60% of the time, and preference patternB0 =
0000000000 on 40% of occasions. We denote this as
Hypothesis H. Or the person may have preference state
B2 = 0011001000, say, 60% of the time, andB3 =
1100110111 the other 40% of the time. We denote this as
Hypothesis HH.

Write Xt
s for the decision maker’s observed choice for

gamble pairs at replicatet, that is,Xt
s is the entry in a

given table in columns and rowt. Assume for a mo-
ment, that there are no errors, i.e.,ps = 0, for s ∈
{AB, AC, AD, AE, BC, BD, BE, CD, CE, DE}. We
obtain a perfect fit for the data in each of Tables A.4–
A.6 in Birnbaum (2012) under Hypothesis H by assum-
ing that the decision maker is in stateB1 whenever he
or she gives an answerXt

s = 1 in the Table, and that the
decision maker is in stateB0 whenever he or she gives an
answerXt

s = 0 in the Table. Likewise, we obtain a per-
fect fit of the data in each of Tables A.4-A.6 in Birnbaum
(2012) by assuming that the decision maker is in state






B2 if Xt
s = 0, and

s ∈ {AB, AC, BC, BD, CD, CE, DE},

B2 if Xt
s = 1, ands ∈ {AD, AE, BE},

B3 if Xt
s = 1, and

s ∈ {AB, AC, BC, BD, CD, CE, DE},

B3 if Xt
s = 0, ands ∈ {AD, AE, BE}.

In a “true-and-error”model test where preference patterns
may vary at any time, both Hypothesis H and Hypothe-

sis HH will fit the data in all three tables perfectly even
when setting all error probabilities to zero. The “true-
and-error” model with variable preferences is unidentifi-
able and can generate a perfect fit toanydata whatsoever,
such as those in Tables A.4-A.6 in Birnbaum (2012). Like
the previous case, this “true-and-error” model is vacuous.

Combining the last two points, if “true preferences”
can vary at any time, if the error probabilities are posi-
tive, if these error probabilities are allowed to change at
any time, and if errors are allowed to be interdependent,
the unidentifiability and nontestability problem is further
exacerbated and multiple mutually exclusive “true-and-
error” models will vacuously and simultaneously fitany
data perfectly.

How does MB propose to render tests of “true-and-
error” models non-vacuous? First, accommodating non-
iid errors seems challenging.14 Second, MB uses a
“blocking” assumption, not needed by RDDS, which reg-
ulates, at the researcher’s discretion, when exactly pref-
erences are permitted to change. Under the “blocking”
assumption, preferences are fixed during replicates and
preferences are permitted to change from one replicate
to the next. In other words, the decision maker must
keep or may change their preference at arbitrarily de-
termined time points that are selected by the scholar but
not communicated to the participant. Considering Table
1, the blocking assumption for a “true-and-error” model
with variable preferences from one block to the next as-
sumes that the decision maker stays in the first true pref-
erence for the first replicate of those two gamble pairs
that were not yet presented in the first 36 trials, whereas
the decision maker is allowed to have already moved
to a new preference state for the second replicate as of
Trial 36 where we observe the second replicate of the lot-
tery pair “36% chance of$24.44” versus “28% chance
of $31.43”. It is the “blocking” assumption that allows
Birnbaum (2012) to gather data into tables like Tables
A.4-A.6 where each row is interpreted as one fixed pref-
erence state. Our example above has shown that in the
absence of the “blocking” assumption both Hypotheses
H and HH can simultaneously fit all the data in the three
tables perfectly, even though they are mutually incompat-
ible, hence the model becomes vacuous and uninforma-
tive. The sequence of trials in RDDS in Table 1, where
the second replicate starts on Trial 36 (for some gamble
pairs) before the first replicate has even been completed
(for some other gamble pairs), shows how implausible it
is to assume that a decision maker switches preferences
between, but not within, blocks of trials that form a repli-
cate. The decision maker has no way of knowing when
she or he may use the first preference state and when she
or he may use the second preference state. Similar con-

14Note that, while the analysis in RDDS only uses iid in its teststatis-
tic, the STE model has the iid assumption built into the modelitself.
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cerns apply also when replicates are fully separated in
time and do not overlap.

8 Conclusion.

Every researcher depends on some simplifying assump-
tions. The state-of-the-art “order-constrained likelihood-
ratio” test in RDDS is currently available only under the
auxiliary assumption of iid data. Our application of Smith
and Batchelder’s (2008) test suggests that RDDS’ data,
indeed, satisfy that iid assumption. Birnbaum’s (2012)
inference that the RDDS data violate iid rests on ques-
tionable mathematical conjectures and leads to incoher-
ent interpretations within participants. In particular, Birn-
baum’s proposed test statistics have unknown Type-I er-
ror rates that are sometimes larger, sometimes smaller
than the nominalα-level, even for the same data, depend-
ing on how responses are coded.

Reducing 200 observations for a given stimulus set to
a manageable set of statistics that can serve as point es-
timates of parameters and ultimately help test theories,
requires making one assumption or another. We have
shown that Birnbaum’s proposed alternative rests on its
own, highly restrictive assumptions, some of which, to
date, have not been tested. Not only are the errors rou-
tinely assumed to be iid, the analysis also fundamen-
tally depends on the “blocking” assumptions according
to which pairwise choices at certain time points, such as
Trials 4, 8, 12, 16, 20, 24, 28, 32, and two more trials af-
ter Trial 36 in RDDS (see Table 1) form one observation,
whereas another collection of trials (starting with Trial 36
in Table 1) form another observation. Using Birnbaum’s
(2012) hypothetical data, we have illustrated how drop-
ping these assumptions would make the “true-and-error”
models vacuous and uninformative. A companion paper
has shown that, while many classical probabilistic choice
models, such as Luce’s (1959) choice model, the weak
utility model (Becker et al.,1963; Block & Marschak,
1960; Luce & Suppes, 1965; Marschak, 1960), and the
most heavily used “true-and-error” model in the litera-
ture (Birnbaum (2004, 2007, 2008a,b, 2010; Birnbaum
& Bahra, 2007; Birnbaum & Gutierrez, 2007; Birnbaum
& Lacroix, 2008; Birnbaum & Schmidt, 2008, 2010), re-
quire a person to have a single fixed preference through-
out an entire experiment, the model in RDDS not only al-
lows preferences to be probabilistic, it even has the some-
what unique property that one can average different prob-
ability distributions satisfying the model, and still satisfy
the model. Not only does the model in RDDS stand out
in its ability to model variability of preferences, it even
allows that variability itself to be non-stationary.

We have shown that MB’s inference of iid violations in
the RDDS data are premature: The RDDS data do not ap-

pear to violate iid sampling. We have also provided some
documentation on Birnbaum’s own (2012) hypothetical
data, suggesting the opposite of Birnbaum’s (2012) con-
clusion: “True-and-error”models hinge far more strongly
on their assumptions than does the analysis in RDDS.
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Appendix.

Expected value and standard error ofAi in Eq. 21 of
Smith and Batchelder (2008, p. 727).

Writing M for the number of repetitions, let

Ai =

M−1∑

t=1

Ait.

First, we first show that the expected value ofAi is
E(Ai) = 2(M − 1) θi(1 − θi) when iid holds.

E(Ai) = E

(
M−1∑

t=1

Ait

)

=

M−1∑

t=1

E(Ait)

=
M−1∑

t=1

P (Ait = 1)

=

M−1∑

t=1

2θi(1 − θi) by iid

= 2(M − 1)θi(1 − θi).

Second, we show that, when iid holds, the standard error
of Ai equals

SE(Ai) =
√

2(M − 1)θi(1 − θi)
(
1 − 2θi(1 − θi)

)
.

V ar(Ai) = V ar

(
M−1∑

t=1

Ait

)

=

M−1∑

t=1

V ar(Ait) by independence

=
M−1∑

t=1

(
E(A2

it) − E2(Ait)
)

=

M−1∑

t=1

(
P (A2

it = 1) − E2(Ait)
)

=

M−1∑

t=1

(
P (Ait = 1) − E2(Ait)

)

=

M−1∑

t=1

(
E(Ait) − E2(Ait)

)

=
M−1∑

t=1

2θi(1 − θi)(1 − 2θi(1 − θi)) by iid

= 2(M − 1)θi(1 − θi)
(
1 − 2θi(1 − θi)

)
.
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