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The self-generated magnetic field in three-dimensional (3-D) single-mode ablative
Rayleigh–Taylor instability (ARTI) relevant to the acceleration phase of a direct-drive
inertial confinement fusion (ICF) implosion is investigated. It is found that stronger
magnetic fields up to a few thousand teslas can be generated by 3-D ARTI rather than by
its two-dimensional (2-D) counterpart. The Nernst effects significantly alter the magnetic
field convection and amplify the magnetic fields. The magnetic field of thousands of teslas
yields the Hall parameter of the order of unity, leading to profound magnetized heat flux
modification. While the magnetic field significantly accelerates the bubble growth in the
short-wavelength 2-D modes through modifying the heat fluxes, the magnetic field mostly
accelerates the spike growth but has little influence on the bubble growth in 3-D ARTI.
The accelerated growth of spikes in 3-D ARTI is expected to enhance material mixing
and degrade ICF implosion performance. This work is focused on a regime relevant to
direct-drive ICF parameters at the National Ignition Facility, and it also covers a range
of key parameters that are relevant to other ICF designs and hydrodynamic/astrophysical
scenarios.
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Figure 1. Schematic of ICF target implosion: (a) direct drive, (b) indirect drive.

1. Introduction

The Rayleigh–Taylor instability (RTI) (Rayleigh 1900; Taylor 1950) is a fundamental
hydrodynamic instability that occurs at the interface between heavy and light fluids when
the heavy fluid is supported by the light fluid against gravity. The RTI plays an important
role in a number of astrophysical processes, such as supernova explosions (Burrows
2000; Gamezo et al. 2003), and is considered as a critical risk in inertial confinement
fusion (ICF) implosions (Lindl 1998; Atzeni & Meyer-ter-vehn 2004). In a typical ICF
experiment, a cold spherical deuterium and tritium (DT) target coated by an ablator is
irradiated either by direct laser light in the direct-drive approach (Craxton et al. 2015),
or by X-rays emitted by a high-Z hohlraum (Lindl 1998) in the indirect-drive approach
(Lindl 1995; Lindl et al. 2004), as illustrated in figures 1(a) and 1(b), respectively. As
the laser or X-ray energy is absorbed by the ablator on the outer surface of the target,
the material on the ablator gets rapidly heated up and ablated off the target shell to form
a hot plasma. The intense mass ablation off the target shell leads to the shell’s inward
acceleration and compression due to momentum conservation. As the target is compressed,
its internal pressure gradually increases and causes the implosion to enter a deceleration
phase; meanwhile, the kinetic energy of the shell is converted into the internal energy
of DT fuels, and eventually forms a ‘hot spot’ in the centre of the target where fusion
reaction occurs. As the heavy target shell is accelerated by the light ablated plasma, the
interface perturbed by initial surface roughness or irradiation non-uniformity is unstable
to RTI, which develops into an interchange of heavy and light fluids. The light fluid
rises up, forming ‘bubbles’, while the heavy fluid falls down, forming ‘spikes’. The RTI
dramatically degrades the implosion performances by compromising the shell integrity
and mixing the inside DT fuel with the outside high-Z ablator. As the milestone on ignition
has been achieved recently (Abu-Shawareb et al. 2022; Zylstra et al. 2022) at the National
Ignition Facility (NIF), further improved implosion performance and higher gain are being
pursued in future ICF designs where controlling the hydrodynamic instabilities remains a
key factor to be considered.

According to the classical linear (i.e. without mass ablation) theory (Taylor 1950), the
interface between a heavy fluid of constant density ρh and a lighter fluid of constant density
ρl is unstable to RTI when gravity g points towards the lighter fluid. An infinitesimal
sinusoidal perturbation on the interface would grow exponentially in time ∼ eγclt, at a
linear growth rate γcl = √

ATkg, where k ≡ 2π/λ is the perturbation wavenumber, λ is
the perturbation wavelength, and AT ≡ (ρh − ρl)/(ρh − ρl) is the Atwood number. As the
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Self-generated magnetic field in 3-D ARTI

amplitude of the perturbation exceeds a critical value ∼ 0.1λ (Ikegawa & Nishihara 2002),
the amplitude stops growing exponentially, and the bubble of lighter fluid rises at a
constant velocity inside the heavy fluid driven by the buoyancy force against the flow drag.
The first nonlinear model of single-mode RTI introduced by Layzer (1955) based on a
potential-flow assumption with AT ≈ 1 describes the RTI growth from the early linear
stage to the nonlinear bubble rising at a constant velocity. Goncharov (2002) extended
Layzer’s model to include finite density of the light fluid (AT ≤ 1), and found an exact
solution of the equation describing the fluid motion near the bubble vertex. The asymptotic
or terminal bubble velocity Ucl

b depends on the dimensionality of the initial perturbation.
The terminal bubble velocities for two-dimensional (2-D) and three-dimensional (3-D)
initial perturbations are Ucl2D

b = √
g(1 − rd)/3k and Ucl3D

b = √
g(1 − rd)/k, respectively,

where rd = ρl/ρh. In the turbulent stage of the single mode RTI, chaotic development is
observed at high Reynolds numbers, where the instability undergoes seemingly random
acceleration and deceleration due to complex vertex motions (Wei & Livescu 2012).
Despite this chaotic behaviour, the mean acceleration of the bubble front eventually
stabilizes at late times. Bian et al. (2020) found that this acceleration progress is influenced
by vorticity dynamics.

Flows of plasmas typically involve rich electromagnetic processes, and the magnetic
field is well known to be able to affect hydrodynamics through applying the magnetic
forces directly on the macroscopic plasma flow (Chandrasekhar 1961) and/or through
applying the anisotropic Lorentz forces microscopically on electrons to alter the electron
thermal conduction, which in return influences the macroscopic plasma flow (Braginskii
1965). The macroscopic magnetic forces include the magnetic pressure and the magnetic
tension, both of which are typically proportional to B2 – the significance of magnetic
forces in the system is usually assessed by β ≡ 8πp/B2, where p is the plasma
thermal pressure, and B is the magnetic field strength in Gaussian units. In the regime
β � 1, the hydrodynamic forces dominate the plasma flow and the magnetic forces are
generally neglected (Manuel et al. 2015; Moody et al. 2022a; Sadler et al. 2022). In
the small-β regime, the magnetic forces are important, and the system is governed by
magnetohydrodynamics (MHD). The significance of the anisotropic heat conduction due
to magnetic fields are usually assessed by the Hall parameter χ ≡ ωceτei (Braginskii
1965), where ωce is the electron cyclotron frequency, and τei is the characteristic time
of electron-ion collisions. A detailed form of the formula calculating χ is described in
§ A.1. In the regime χ � 1, collisions prevent electron heat transport anisotropy (Manuel
et al. 2015). As χ is of the order of 1 or even larger, electron heat transport across the
magnetic field is reduced significantly (Braginskii 1965; Epperlein & Haines 1986). The
modifications of the magnetic field on the electron thermal conduction are discussed in
more detail in § 2.

The evolution of RTI affected by the magnetic forces has been studied extensively. The
classical linear theory by Chandrasekhar (1961) showed that a magnetic field tangential
to the fluid interface can decrease the linear growth of RTI due to the magnetic tension.
A critical wavelength below which RTI is suppressed is placed by the magnetic field.
In another regime where the magnetic field is perpendicular to the interface, the linear
growth was reported to be also decreased by the magnetic tension; however, there is no
critical wavelength (Chandrasekhar 1961; Jun, Norman & Stone 1995). For the nonlinear
stage of RTI, Stone & Gardiner (2007a,b) performed 3-D simulations and found that
strong magnetic fields can reduce mixing between the heavy and light fluids by inhibiting
secondary shear instabilities, and increase the rate of growth of bubbles and spikes. Carlyle
& Hillier (2017) found that an intense tangential magnetic field slows down the growth of
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the rising bubbles but speeds up the falling spikes, introducing an asymmetry to the system
in their 3-D simulations. Grea & Briard (2023) extended the potential model of Goncharov
(2002) to the regime with uniform magnetic fields at various inclinations. Briard, Gréa &
Nguyen (2022) proposed a theoretical prediction for the growth of the RTI mixing zone
in the presence of a vertical magnetic field based on turbulence quantities, which was
verified by direct numerical simulations. Recent simulations by Briard, Gréa & Nguyen
(2024) found that the perpendicular magnetic field delays the transition to turbulence by
inhibiting small-scale shear instabilities, leading to vertical stretching and rapid mixing
zone growth, followed by increased turbulent dissipation that ultimately slows down the
mixing zone’s growth.

Other than the remarkable applications of magnetic fields in astrophysical fluid
mechanics, the applications of magnetic fields in ICF have also been attracting intensive
research interest as a candidate for improving ICF implosion performance. The ICF fluids
are usually in a specific high-energy-density regime where the plasma thermal energy
far exceeds the magnetic pressure (i.e. β � 1), thus the magnetic pressure and tension
applied on the fluid motion are generally considered unimportant and usually neglected
in ICF-relevant simulations (Manuel et al. 2012b; Gao et al. 2013; Davies et al. 2018).
However, in this regime, the Hall parameter χ can be significant, thus the heat flows
can be notably magnetized. An externally applied magnetic field has been proposed as
a promising approach to improve ICF implosion performance by reducing the electron
thermal conduction and magnetically confining the DT-α burning plasma in the hot spot
(Wurden et al. 2016; Perkins et al. 2017). Enhanced fusion yield and temperature have
been reported in cylindrical magnetized linear inertial fusion implosions (Slutz & Vesey
2012; Gomez et al. 2014) and magnetized direct-drive ICF implosions (Chang et al.
2011). Recent experiments at the NIF have also demonstrated performance enhancement
from an applied magnetic field in room-temperature (‘warm’) indirect-drive implosions
(Moody et al. 2022b; Sio et al. 2023). The effects of externally applied magnetic fields
on RTI in ICF-relevant conditions were also studied via numerical simulations (Walsh
et al. 2017; Walsh 2022) and experiments (Matsuo et al. 2021). Walsh (2022) investigated
the effects of externally applied external magnetic fields in different directions on the
growth of the magnetized ablative Rayleigh–Taylor instability (ARTI), considering both
the magnetic tension and the magnetized heat flow, via 3-D extended-MHD simulations.
The experimental work by Matsuo et al. (2021) found that the external magnetic field
reduces the electron thermal conduction across the magnetic field lines, and enhances the
ARTI growth.

Another type of magnetic field is self-generated by the plasmas and accompanies the
evolution of hydrodynamic instabilities. It was first predicted by the theoretical works
that magnetic field can be generated in RTI in laser-produced plasmas (Stamper et al.
1971; Mima, Tajima & Leboeuf 1978; Haines 1985; Stamper 1991). The Biermann battery
effect was identified as the key source generating a magnetic field in RTI (Mima et al.
1978). The misaligned temperature and density gradients generate magnetic fields via
the non-zero ∇Te × ∇ne, where Te and ne are the electron temperature and electron
number density, respectively. The laboratory astrophysical experiments by Gregori et al.
(2012) verified the Biermann battery mechanism at shocks associated with the collapse
of protogalactic structures and its relation to protogalactic magnetic field generation.
Tzeferacos et al. (2018) demonstrated experimentally the turbulent dynamo mechanism
that turbulence is capable of, rapidly amplifying seed magnetic fields generated via
Biermann battery. In experiments, simultaneous Faraday rotation was utilized to diagnose
the spontaneous magnetic field in laser-produced plasmas (Stamper & Ripin 1975;

1000 A94-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
81

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1081


Self-generated magnetic field in 3-D ARTI

Raven, Willi & Rumsby 1978; Stamper, McLean & Ripin 1978), but such diagnostic
techniques used external optical probing, thus were inadequate to measure inside the heavy
plasmas opaque to the probing lights (Wagner et al. 2004). Proton radiography was used
widely to diagnose the laser-driven magnetic field structures under more extreme plasma
parameters (Li et al. 2007, 2009; Gao et al. 2012, 2013, 2015; Manuel et al. 2012a, 2015).
The proton radiography experiments have shown that megagauss-level magnetic fields can
be generated in RTI in laser-produced plasmas (Manuel et al. 2012a, 2015; Gao et al.
2013).

Self-generated magnetic fields not only facilitate diagnostics on the deliberate fluid
structures of RTI inside hot plasmas for applications in proton radiography, but may also
influence hydrodynamic evolution if intense enough. While a megagauss-level magnetic
field is not strong enough to directly affect the implosion hydrodynamics in the large-β
regime, it may be strong enough to magnetize the plasma and alter the electron thermal
conduction when the cyclotron frequency of the electron reaches the same order of
magnitude as the electron collision frequency. The self-generated magnetic fields due to
RTI in ICF is largely determined by the mass ablation feature, which brings rich physics
to not only the hydrodynamics but also the generation and transportation of the magnetic
fields.

When the intense laser energy is deposited on an ICF target shell, an ablated plasma
outflow develops rapidly from the surface of the shell (ablation front) and creates a hot
and light fluid relative to the unablated materials, as shown in figure 2. The laser-driven
RTI is characterized by this ablation process on the outer surface of the shell during the
acceleration phase of the implosion, and the ablative RTI (ARTI) consequently behaves
quite differently from the classical RTI (CRTI) due to the mass ablation near the ablation
front. It has been well known that mass ablation can mitigate the linear growth and place
a linear cutoff wavenumber kc in the unstable spectrum such that all modes with the
perturbation wavenumber k ≥ kc are linearly stable (Sanz 1994; Betti et al. 1995). The
penetration velocity of the ablation front into the heavy shell material – often referred to
as the ablation velocity (Va) – is a key parameter mitigating the linear growth rate (γabl)
of ARTI, and γabl can be well approximated using the Bodner–Takabe formula (Bodner
1974; Takabe et al. 1985) obtained by fitting numerical results:

γabl = α̃
√

kg − β̃kVa, (1.1)

where the first term on the right-hand side is the classical part, and the second term is
due to mass ablation. Different values of α̃ and β̃ have to be chosen for different ablator
materials, e.g. α̃ ≈ 0.94 and β̃ ≈ 2.7 for DT ablators (Betti et al. 1998). The growth
rate curve calculated by (1.1) based on the typical initial profiles shown in figure 2(c)
is plotted in figure 3 and compared with its classical counterpart, showing the linear cutoff
wavelength λc ≈ 5 μm for this set of parameters. The analytical stability theories for
ARTI were then carried out in the limit of subsonic ablation flows by using complicated
asymptotic matching techniques (Sanz 1994; Betti et al. 1995, 1996; Goncharov et al.
1996a,b; Piriz, Sanz & Ibañez 1997). The subsonic ablation – i.e. the Mach number (Ma)
on the ablation front less than 1 – can be characterized by two dimensionless parameters
(Betti et al. 1995) that affect the density and temperature profiles near the ablation
front: the Froude number Fr ≡ V2

a/(gL0), and the power index for thermal conduction
ν (with κ ∼ Tν), where L0 is the characteristic thickness of the ablation front, which is
proportional to the minimal density gradient scale length Lm as L0 ≡ Lmνν/(ν + 1)ν+1.
In ARTI, where the fluid density has non-uniform spacial profiles as plotted in figure 2(c),
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Figure 2. The simulation set-up. (a) A schematic of the acceleration stage of a direct-drive target. The area
in the red box near the target surface is the domain of the simulation. (b) The contour of the initial density.
(c) The initial profile for ρ (blue solid line), T (red dashed line) and vz (green dash-dotted line) along the z axis.
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Figure 3. The linear growth rates for CRTI and ARTI based on the typical initial profiles shown in
figure 2(c). The ARTI growth rate is calculated using (1.1).

the Atwood number is typically defined as AT ≡ (ρa − ρbo)/(ρa + ρbo), where ρa is the
density on the ablation front, ρbo = ρaμ(kL0)

ν is the density of the blowoff material,
μ = (2/ν)1/ν/Γ (1 + 1/ν) + 0.12/ν2, and Γ (x) is the gamma function, as presented by
the comprehensive theory of Goncharov et al. (1996a,b).

While ablation is stabilizing the linear growth of ARTI, it has been known that ablation
destabilizes ARTI in the nonlinear stage through the vortex acceleration mechanism in
both 2-D (Betti & Sanz 2006) and 3-D (Yan et al. 2016) geometry. The vortices generated
near spike tips are transported into the bubble and provide centrifugal forces to the bubble
vertex, thereby accelerating the nonlinear terminal bubble velocity above the classical
values predicted by Goncharov (2002). The vortex acceleration mechanism was found
to be especially significant for the small-scale 3-D bubbles (Yan et al. 2016) in ARTI. In
contrast to CRTI, which transits to a turbulent state later on, it was found in simulations
that the spikes are significantly suppressed, and the late-time nonlinear stage ARTI is far
from a turbulent state due to mass ablation (Zhang et al. 2018).

The large temperature gradient created by the ablation provides the well-known Nernst
effect (Nishiguchi et al. 1984) on the magnetic fields. The Nernst effect is known to provide
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an additional convective velocity against the direction of temperature gradient on the
magnetic field, which will significantly affect the transport process of the magnetic field.
One-dimensional (1-D) simulations showed that the Nernst effect convects the magnetic
field towards the high-density region in laser-driven ablation plasma, and the magnetic
field is significantly compressed and amplified (Nishiguchi et al. 1984; Nishiguchi, Yabe
& Haines 1985).

The pioneering simulations (Srinivasan, Dimonte & Tang 2012; Srinivasan & Tang
2012, 2013) were performed on the magnetic field generation and evolution for 2-D
single-mode and multi-mode RTI in a stratified two-fluid plasma using a Hall MHD model.
However, neither the mass ablation due to heat conduction nor the Nernst effect was
considered in those simulations. Our previous simulations (Zhang et al. 2022) including
the heat conduction and the Nernst effect showed that ∼100 T magnetic fields – a
challenging value to be obtained directly in the laboratory using superconductor coils
(Shneerson, Dolotenko & Krivosheev 2014) – can be generated via ARTI, and the Nernst
effect is a critical factor determining the magnetic fields’ peak amplitude and spacial
distribution. As feedback to hydrodynamics, the self-generated magnetic field changes
electron thermal conduction by magnetizing the plasma. Analytical study of the effects
of self-generated magnetic fields on ARTI in the linear regime (García-Rubio et al. 2021)
showed that the magnetic field affects the ARTI growth by bending the heat flux lines,
and it destabilizes ARTI for moderate Froude numbers Fr and stabilizes ARTI for large
Fr, which is consistent with our 2-D simulations (Zhang et al. 2022). The 2-D simulations
also showed that both the linear growth rate and the nonlinear amplitude of ARTI are
increased by approximately 10 % due to the magnetic feedback (Cui et al. 2024). The
simulations on the stagnation phase of an ICF implosion showed that the magnetic field
can cool the spikes and weaken the ablative stabilization, which harmfully increases the
heat loss of the hot spot (Walsh et al. 2017).

In this work, we present the simulation results for the evolution of the magnetic field
generated via 3-D ICF-relevant single-mode ARTI in a quasi-equilibrium frame of the
acceleration phase of implosion. Important physics – including ablation, Nernst effect,
resistance and magnetized heat conduction – is taken into account to sketch more realistic
magnetic fields’ generation, evolution and feedback to ARTI evolution. It is found that
∼103 T magnetic fields can be generated via 3-D ARTI, which is an order of magnitude
stronger than that found in our previous 2-D work (Zhang et al. 2022). Such strong
magnetic fields are able to profoundly alter local hydrodynamics by modifying the electron
thermal conduction, and speed up the growth of the spikes.

The rest of the paper is organized as follows. In § 2, the physical model and the numerical
method are outlined. In § 3, the simulation settings are presented. In § 4.1, the simulation
results on the magnetic fields’ generation and transportation are presented and analysed.
In § 4.2, the feedback of a self-generated magnetic field on 3-D ARTI nonlinear evolution
is investigated. Section 5 is a summary. In Appendix A, the magnetized plasma transport
coefficients used in this paper are presented.

2. Physics models

The simulations on 3-D ARTI and self-generated magnetic fields are carried out in planar
geometry using the hydrodynamic code ART . Specifically designed for modelling ARTI
in ICF-relevant scenarios, ART has been used in a number of recent works (Betti & Sanz
2006; Yan et al. 2016; Zhang et al. 2018, 2020, 2022; Xin et al. 2019, 2023; Li et al.
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2022, 2023, 2024; Fu et al. 2023b; Liu et al. 2023). Code ART solves the single-fluid
equations in 2-D/3-D Cartesian coordinates, and this paper focus on the 3-D geometry.
The hydrodynamic equations are

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

∂ρv

∂t
+ ∇ · (ρvv) = −∇p + ρg, (2.2)

∂ε

∂t
+ ∇ · [(ε + p)v] = ρv · g − ∇ · q, (2.3)

where ρ is the mass density, v is the macroscopic single-fluid velocity of the plasma, p is
the plasma thermal pressure, and g is the acceleration. The equation of state of an ideal
gas is used, the plasma energy is ε = [p/(γ − 1)] + [ρv2/2], and γ = 5/3 is the specific
heat ratio. As discussed in § 1, the magnetic forces have been neglected in (2.2). The
low viscosity in high-energy-density plasma flows commonly neglected in the simulations
on hydrodynamic instabilities (Betti & Sanz 2006; Wang et al. 2010; Zhang et al. 2018;
Li et al. 2022) is not considered in this work either. Although ARTI is in a regime with
high Reynolds numbers (Re ∼ 105 evaluated using the viscosity coefficient in Huba 1998),
the ablative effect in ARTI flattens the fine structures typically generated in CRTI, and
prevents the transition to a turbulent state (Zhang et al. 2018).

The heat flux q contributes to the energy equation (2.3) via a thermal conduction term
−∇ · q, which is treated separately in a Strang-splitting way (Strang 1968) by solving the
heat conduction equation

ρcv

∂T
∂t

= −∇ · q, (2.4)

after solving the pure hydrodynamic equations (2.1)–(2.3) without the −∇ · q term.
Here, T is the kinetic temperature including the Boltzmann constant, and cv is the
constant-volume specific heat capacity. An MUSCL-Hancock scheme (van Leer 1984)
with an HLLC (Harten, Lax & van Leer 1983) approximate Riemann solver is used as
the hydrodynamic solver with second-order accuracy in both space and time to solve
the hydrodynamics equations. For each computational time step, the pure hydrodynamic
equations (2.1)–(2.3) without the −∇ · q term are advanced first, followed by an
intermediate update of T and p with the help of the equation of state. Equation (2.4) is then
solved to update T once again, using a temporally implicit scheme to avoid the strict time
step (�t) requirement of explicit diffusion equation solvers. Then p and ε are updated with
the newly calculated T using the equation of state before entering the next time step. The
single-temperature approximation of the plasma is applied so that the electron temperature
Te and ion temperature Ti are equal (i.e. Te = Ti = T), since the relaxation time (∼10−4 ns
evaluated using the formula in Huba 1998) for electron–ion temperature equilibration on
the ablation front is much shorter than the time scale of the ARTI evolution. For the
magnetic-free cases, the classical Spitzer–Harm model (Spitzer & Härm 1953) is used
to calculate the heat flux q in (2.4) as

qsh = −κsh ∇T, (2.5)

where κsh is the Spitzer–Harm conductivity without flux limiter. The heat flux limiters
that are often used in high-energy-density fluid simulations in various regimes to cap the
unphysically large heat fluxes given by (2.5) and to match experiments are not applied
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in the simulations in this paper, since the maximum ratio of q to the free-stream heat
flux in the simulations always reads below 0.06, a commonly used flux-limiting threshold
(Bell 1985; Craxton et al. 2015). Equation (2.5) also does not include the non-local electron
heat transport that is attracting research interest. Our previous simulations (Li et al. 2022,
2023) showed that the non-local electron heat transport can mitigate ARTI growths. Recent
work by Campbell et al. (2022) demonstrated the need to account for suppression of
Biermann battery generation due to non-local effects by comparing experimental data and
simulations. However, modelling the non-local electron heat transport is computationally
costly in 3-D simulations, and beyond the scope of this paper. In the simulations, we set
the single fluid to be a DT plasma with the number ratio 1 : 1. The advantage of using a DT
plasma in the simulations is that it can avoid complex physics such as radiation transport
coming from higher-Z materials.

The equation of magnetic field (B) evolution can be derived readily from Ampère’s
law, Faraday’s law, and the momentum equation of electrons (Nishiguchi et al. 1984), and
formulated in Gaussian units as

∂B
∂t

= ∇ × (v × B)︸ ︷︷ ︸
I

+ c
e

∇ ×
(∇pe

ne

)
︸ ︷︷ ︸

II

− c
4πe

∇ ×
[
(∇ × B) × B

ne

]
︸ ︷︷ ︸

III

− c
e

∇ × R
ne︸ ︷︷ ︸

IV

, (2.6)

where e is the elementary charge carried by an electron, c is the speed of light in vacuum,
ne is the number density of the electrons, and pe is the isotropic pressure of the electrons.
Isotropic electron pressure has been used in (2.6), since the pressure anisotropy that is
crucial in collisionless plasmas is not important in collisional plasmas (Egedal, Le &
Daughton 2013; Tubman et al. 2021) as in this regime. Here, R = Ru + RT as the transfer
of momentum from ions to electrons caused by collisions consists of two parts: (i) the
thermal force RT due to the gradient of the electron temperatures; and (ii) the friction
force Ru due to the relative velocity of electrons and ions. These RT and Ru are usually
formulated in a Braginskii-like form (Braginskii 1965) as

RT = −βuT
‖ ∇‖Te − βuT

⊥ ∇⊥Te − βuT
∧ b × ∇Te, (2.7)

Ru = −α‖u‖ − α⊥u⊥ + α∧b × u, (2.8)

where b ≡ B/|B| is the unit direction vector parallel to the magnetic field, and u = ue − ui
is the relative velocity of electrons and ions that can be associated with the magnetic field
via Ampère’s law u = −c ∇ × B/(4πnee). Also, ∇‖Te and ∇⊥Te are the components of
the temperature gradient parallel and perpendicular to the direction of B, respectively,
and u‖ and u⊥ are the components of u parallel and perpendicular to the direction
of B, respectively. Here, βuT

‖ , βuT
⊥ , βuT∧ , α‖, α⊥ and α∧ are the plasma transport

coefficients that are detailed in Appendix A. The Braginskii formulation on the transport
coefficients is a classical model that has been used widely in collisional astrophysical and
high-energy-density plasmas (Velikovich, Giuliani & Zalesak 2019; Sadler, Walsh & Li
2021; Tapinou et al. 2023; Kopp & Yanovsky 2024), including ARTI-relevant problems
(García-Rubio et al. 2021; Zhang et al. 2022). Improved transport coefficients with less
physical approximation than Braginskii’s were obtained later (Epperlein & Haines 1986; Ji
& Held 2013; Davies et al. 2021) through fitting numerical solutions of the Fokker–Planck
equation with different fitting strategies. It was reported in Davies et al. (2021) that the
fitted transport coefficients can give physically incorrect results under certain conditions.
Davies et al. (2021) clarified that the only serious error in Braginskii’s coefficients is an
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overestimation of perpendicular resistivity (α⊥) at intermediate Hall parameters (χ > 2 up
to ∼100), while the errors in the Epperlein and Haines coefficients are particularly severe,
giving increasing βuT

‖ − βuT
⊥ and α‖ − α⊥ for χ < 1 when they should decrease linearly

to zero. In this work, we still utilize the classical Braginskii coefficients in most of the
simulations, also to be consistent with our previous work on 2-D ARTI (Zhang et al. 2022)
for a fair comparison. Moreover, a few simulation cases (cases xiv–xvi) are performed with
the Davies et al. (2021) transport coefficients to show the difference introduced by different
transport models.

Term I of (2.6) is usually known as the convection term that freezes the magnetic field
along with the plasma. Term II is the baroclinic term (also known as the Biermann battery)
generating the self-magnetic field through the misaligned density and pressure gradients,
since c ∇ × (∇pe/ne)/e = c ∇pe × ∇ne/(en2

e). Term III is often referred to as the Hall
term, which is neglected since the ratio of III to II approximately equals 1/β � 1 in
the regimes covered by this work. Term IV brings the effects of collisions, including the
magnetic dissipation related to Ru and the Nernst effect related to RT . Bringing in the
expressions for RT and Ru, term IV of (2.6) can be written as

−c
e

∇ × R
ne

= c
e

∇ ×
(

βuT
‖ ∇Te

ne

)
− c

e
∇ ×

[
(βuT

‖ − βuT
⊥ )(b × ∇Te) × B

Bne

]

− c
e

∇ ×
(

βuT∧ ∇Te × B
Bne

)
− c2

4πe2 ∇

×
{

α‖ ∇ × B − α∧b × (∇ × B) − (α⊥ − α‖)b × [b × (∇ × B)]
n2

e

}
.

(2.9)

The first term on the right-hand side of (2.9) has no contribution in a fully ionized plasma
(Sadler et al. 2021), while the combination of the second and third terms can be rewritten
as ∇ × [(V N + V CN) × B], where V N and V CN are often referred as the Nernst velocity
and the cross-gradient Nernst velocity in the forms

V N = −cβuT∧
eBne

∇Te, (2.10)

V CN = −
c(βuT

‖ − βuT
⊥ )(b × ∇Te)

eBne
, (2.11)

respectively. Here, V N is along the direction opposite to ∇Te so that it convects the
magnetic field in the direction of the heat flow; V CN is in the direction of −b × ∇Te,
which causes the magnetic field to convect along the isothermal line. Also, VN is much
larger than VCN where χ ∼ T3/2

e B/ne � 1, thus the contribution of VN is dominating with
moderate magnetic fields. The last term on the right-hand side of (2.9) reflects the diffusion
of the magnetic field in different directions. Both the Nernst effect and the magnetic field
diffusion are implemented in our simulations.

The intense magnetic field changes the process of electron heat conduction by
magnetizing the plasma. While the magnetic field is not expected to be strong enough
to significantly affect the implosion hydrodynamics via the momentum equation in
ICF-relevant plasmas, it may be strong enough to magnetize the plasma and make
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Self-generated magnetic field in 3-D ARTI

the heat flux q anisotropic via the Lorentz forces applied on the electrons moving in
different directions with respect to the local magnetic field. The magnetic field leads to
a flux-limiting effect perpendicular to B compared to the classical Spitzer–Harm heat flux
qsh, which was derived in a magnetic-free plasma. In addition, the magnetic field generates
a heat flux component known as the Righi–Leduc heat flux perpendicular to both B and
∇T . The heat flux in a magnetized plasma to feed (2.4) reads as

qmag = −κ‖ ∇‖Te − κ⊥ ∇⊥Te − κ∧b × ∇Te, (2.12)

where κ‖, κ⊥ and κ∧ are the conduction coefficients in magnetized plasma. The detailed
forms of κ‖, κ⊥ and κ∧ are given in Appendix A. Along the direction parallel to B, the
magnetic field has no modification on the electron conduction, and κ‖ is identical to κsh.
Also, κ⊥ is smaller than κ‖ where B /= 0, κ⊥ retreats to κsh where B = 0, and κ⊥ decreases
as χ increases, leading to a flux-limiting effect perpendicular to the magnetic fields. The
term −κ∧b × ∇Te, known as the Righi–Leduc heat flux, makes a special contribution to
the heat conduction in a magnetized plasma. Both (2.6) and (2.12) have been implemented
in ART , with the option to turn on and off different terms to be able to investigate a specific
physical process. In this paper, qmag and qsh are switched in the calculation of ∇ · q in (2.4)
in the simulations to compare the 3-D ARTI evolution with and without the magnetized
heat fluxes and investigate the magnetic feedback on ARTI.

3. Simulation settings

In the ART simulations, ARTI is initialized to grow from small perturbations on top of
a quasi-equilibrium state abstracted from a typical profile of direct-drive NIF targets as
shown in figure 2. In figure 2(a), the red box outlines the region on the target surface where
ARTI occurs, which has been selected as the computational domain for the simulations
in this paper. A planar approximation is valid as long as the target thickness, mode
wavelength and conduction zone region are much smaller than the target radius. This
condition is satisfied during most of the acceleration stage. The initial hydrodynamic
profiles of a DT ablator used in case i in table 1, shown in figure 2(c), are similar to
those of a direct-drive ignition target (McKenty et al. 2001) during the acceleration phase
of an implosion driven by the 1.5 MJ, 351 nm wavelength lasers.

As shown in figure 2(b), the cold and dense unablated DT shell is placed on top
of the ablated DT plasma with a higher temperature but a lower density. The initial
ablation front (the interface between the dense and the ablated plasma) is located at
z0 = 70 μm, with the peak density ρa = 5.3 g cm−3 reached on the ablation front. The
quasi-equilibrium state is obtained by integrating the 1-D hydrodynamic equilibrium
equations in the frame of reference of the shell from the ablation front towards both
sides. Above the ablation front, the shell is performing like a solid piston, so vz = Va is
initially set in the shell. In the ablation area below the ablation front, the 1-D profiles
can be found by neglecting the derivatives on t, x and y in (2.1)–(2.3). The ablation
front is kept approximately fixed in the middle of the computational domain by balancing
the ablative pressure with a dynamically adjusted effective gravity g. This is equivalent
to solving the fluid equations in the frame of reference of the accelerated shell. The
initial gravity is g(0) = 100 μm ns−2. Since the shell mass decreases due to ablation,
the effective acceleration g(t) is slowly and automatically adjusted in time during the
simulation to keep the ablation front approximately fixed in space, i.e. g(t) = [( p +
ρu2)bot − ( p + ρu2)top]/Mtot, where the subscripts ‘bot’ and ‘top’ indicate the integral
values at the bottom and top boundaries, respectively, and Mtot is the total mass of the
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λ Va pa g0
Index 2-D/3-D (μm) (μm ns−1) (Mbar) (μm ns−2) Fr Ma AT V N V CN qmag

i 3-D 10 3.5 140 100 4.61 0.43 0.66 off off off
ii 3-D 10 3.5 140 100 4.61 0.43 0.66 on on off
iii 3-D 10 3.5 140 100 4.61 0.43 0.66 on off off
iv 2-D 10 3.5 140 100 4.61 0.43 0.66 on on off
v 3-D 10 2.75 140 100 2.69 0.27 0.65 on on off
vi 3-D 10 2.0 140 100 1.25 0.17 0.64 on on off
vii 3-D 10 3.5 200 100 3.12 0.25 0.62 on on off
viii 3-D 10 3.5 300 100 1.64 0.16 0.53 on on off
ix 3-D 10 3.5 140 120 3.71 0.42 0.65 on on off
x 3-D 10 3.5 140 80 5.88 0.45 0.67 on on off
xi 3-D 6 3.5 140 100 4.61 0.43 0.60 on on off
xii 3-D 20 3.5 140 100 4.61 0.43 0.73 on on off
xiii 3-D 30 3.5 140 100 4.61 0.43 0.78 on on off
xiv 3-D 6 3.5 140 100 4.61 0.43 0.60 on on on
xv 3-D 10 3.5 140 100 4.61 0.43 0.66 on on on
xvi 3-D 20 3.5 140 100 4.61 0.43 0.73 on on on
xvii 3-D 30 3.5 140 100 4.61 0.43 0.78 on on on

Table 1. Parameters and physical options of the simulation cases in this paper. All simulation cases are
conducted with grid resolution 10 grid points per micron. The Mach numbers Ma are calculated on the bottom
boundaries. If the qmag option is off, then qsh is used in (2.4). If the qmag option is on, then qmag is used in (2.4)
instead.

remaining plasma in the computational domain. The quasi-equilibrium hydrodynamic
profiles together with a time-dependent but spatially uniform gravity g(t) are used to
mimic an already well-established quasi-equilibrium ICF plasma slowly evolving under
the isobaric assumption also used in the analytical ARTI theories (Goncharov et al.
1996a,b). The ablation velocity is Va = 3.5 μm ns−1, and the ablation pressure (i.e. the
pressure at the ablation surface) is pa = 140 Mbar. In this quasi-equilibrium state, the
unablated plasma flows in from the top boundary approximately at the ablation velocity,
and the ablated plasma flows out through the bottom boundary at a very high velocity, as
shown in figure 2(c).

Our simulations do not include the underdense region where the lasers are interacting
with the plasma, therefore we do not handle laser absorption directly. Instead, the
laser energy transported towards the ablation front is simulated by a constant bottom
boundary heat flux Qbottom = 6.0 MW μm−2, which is calculated self-consistently with
the Spitzer–Harm model on the basis of the 1-D hydrodynamic profiles. A characteristic
Mach number that is also the maximum in the simulation zone is evaluated on the bottom
boundary as Ma = 0.43, indicating a subsonic outflow. The Mach number decreases
rapidly from the bottom boundary towards the ablation front neighbourhood where ARTI
grows (typically Ma < 0.3). The Atwood number is AT = 0.66, and the Froude number is
Fr = 4.61. In addition to the above parameters associated with the initial hydrodynamic
profiles in figure 2(c), we also use different Va, Pa and g0 to explore the ARTI and magnetic
evolution in a broader parameter space. The detailed simulation parameters are listed in
table 1.

In order to seed 3-D ARTI, the velocity perturbations (vp) are initialized around the
ablation front in a divergence-free form as

vpx = vp0 sin(kx) exp(−k|z − z0|), (3.1)
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vpy = vp0 sin(ky) exp(−k|z − z0|), (3.2)

vpz = vp0[cos(kx) + cos(ky)] exp(−k|z − z0|), (3.3)

where vp0 is the magnitude of the initial velocity perturbation, set as vp0 = 0.5 μm ns−1.
A typical simulation is carried out with a simulation box 140 μm in the z direction, while
the widths in the x and y directions are chosen to be λ. A uniform Cartesian grid is used,
with resolution 10 grid points per micron, and the grid independence is checked to ensure
numerical convergence. Periodic boundary conditions are applied in the x and y directions
for both the hydrodynamic quantities and the magnetic field. The inflow/outflow boundary
conditions are used on the top/bottom boundaries in the z direction for hydrodynamics
to facilitate the ablated plasma flow to leave the simulation zone smoothly. The adiabatic
boundary condition is applied for the top boundary, i.e. ∂T/∂z = 0. And the fixed-flux
boundary condition is applied for the bottom boundary, i.e. −κ ∂T/∂z = Qbottom. The top
and bottom boundary conditions for the magnetic field are set as ∂(vzB)/∂z = 0.

4. Results and discussions

A series of ART simulations have been performed to study the generation, evolution and
feedback of the self-generated magnetic fields accompanying ARTI in 3-D geometry.
As outlined in § 2, we have set up an idealized but still experimentally relevant
scenario to be able to focus on the pure ARTI evolution and the magnetic generation
in the ART simulations. This approach also enables us to conveniently investigate the
factors (i.e. geometric dimensions, ablation, the Nernst effects and magnetized heat
fluxes) that influence RTI and/or magnetic evolution by switching these modules in the
simulations on and off while still allowing the simulations to start from virtually the
same quasi-equilibrium hydrodynamic state, for a relatively fair comparison. Our previous
2-D work (Zhang et al. 2022) demonstrated that the effects involving the self-generated
magnetic fields are more profound for short-wavelength modes with λ close to the linear
cutoff wavelength λc ≡ 2π/kc. Therefore, the simulation cases are more focused on the
short-wavelength regime in this work.

4.1. Evolution of the self-generated magnetic field
The evolution of ARTI from the linear stage up to the highly nonlinear stage in case
i is illustrated in figure 4. It is shown that a clear 3-D bubble is formed in the centre
of the simulation box as the perturbation amplitude increases, with the heavy fluid
surrounding the bubble penetrating down into the light fluid. The ‘bubble–spike’ topology
is significantly different from its 2-D counterpart. A bubble tends to expand to form a
round shape, as shown in figure 4(b) at the early nonlinear stage (t = 1.4 ns). However,
as the bubble grows larger and longer, it expands but gets confined by the four adjacent
bubbles due to the geometrical characteristic of the ‘single square mode’ (Dahlburg et al.
1993) system that is periodic along both x and y directions. The squeezing between
adjacent bubbles leads to square-like bubble shapes in the highly nonlinear stages, as
illustrated by figures 4(c,d). Finer grids have been used to make sure that this feature
is not caused by grid resolutions. The ratio of the volume of the bubble to the simulation
box plotted in figure 4(e) also demonstrates the growth of the bubble.

The magnetic field generation is found to be correlated with the growth of ARTI. The
magnetic fields at the linear stage in cases i (without Nernst) and ii (with Nernst) are
illustrated in figures 5(a) and 5(b), respectively. Note that in cases i and ii, the magnetic
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Figure 4. (a–d) The ARTI bubble structures at different times, from the linear stage (t = 0.8 ns) to the
nonlinear stage (t = 1.4, 2.0 and 2.5 ns), in case i. (e) The ratio of the volume of the bubble to the simulation
box σb versus time in case i.

feedbacks are both kept off, so the hydrodynamics in these two cases are essentially
identical. Figure 5(a) shows that the magnetic fields are mostly generated near the ablation
front where the baroclinic source, i.e. term II of (2.6), is concentrated. The generated
magnetic field then expands with the ablated material and enters the low-density area by
convection. As a result, a magnetic field layer is formed below the ablation front. Case ii
with the Nernst effects turned on clearly shows the influence from V N and V CN , which
are largely determined by the amplitude of the magnetic field and ∇Te (see (2.10) and
(2.11)). The Nernst velocity V N tends to convect the magnetic field against the ablation
front (figure 5b), where Te transits abruptly from the cold dense shell to the ablated
low-density plasma, thus V N is towards the shell. The cross-gradient Nernst velocity V CN
tends to transport the magnetic field towards the central axis of the bubble, illustrated by
the arrows in figure 5(b). Here, VCN is read in the simulations to be much smaller than VN
at the linear stage, consistent with the small Hall parameter at this moment (χmax � 1 as
plotted in figure 9c). The Nernst effects lead to a stronger magnetic field in a thinner layer
below the ablation front, with the peak value of the magnetic field Bpeak amplified by more
than three times.

It is usually considered that ARTI enters the nonlinear stage when the perturbation
amplitude grows larger than 0.1λ (Ikegawa & Nishihara 2002) and a ‘bubble’ filled by the
hot light fluid emerges. In the nonlinear stage, the growth of the ARTI bubble is subject
to the vortex dynamics near the ablation front and inside the bubble. The isosurfaces at
B = 1000 T in cases i (without Nernst) and ii (with Nernst) are shown in figure 6 to
demonstrate the different distribution of the self-generated magnetic field due to the Nernst
effect. Figure 6(a) shows a complicated magnetic ring inside the bubble in case i, while
a slice passing the bubble axis is plotted in figure 6(c) to illustrate the transportation of
the magnetic field. As the large-amplitude bubble is formed, the hot light plasma ablated
off the spike tip convects into the bubble but quickly gets cooled down by the cold shell
surrounding the bubble though heat conduction. Figure 6(d) demonstrates that inside the
bubble, Te is significantly lower near the bubble vertex than at the entrance (z ≈ 65 μm).
The low temperature inside the bubble largely reduces ablation on the interface inside
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Figure 5. The magnetic field at the linear stage (t = 0.8 ns) of ARTI: (a) magnetic field isosurface at B = 20 T
in case i; (b) magnetic field isosurface of B = 105 T in case ii, with the coloured arrows illustrating the
schematic of V N , V CN , B and −∇T near the ablation front.

the bubble as the heat conduction is sensitive to Te as κ ∝ T2.5
e . Intense ablation is mostly

concentrated on the ‘spike’ tips where the baroclinic source generating magnetic fields also
reaches the maximum, as shown by the yellow areas in figure 6(c). Then the magnetic field
is transported into the bubble along with the fluid convection. The arrows demonstrate the
fluid velocities relative to the bubble motion, namely how the ablated light fluid carrying
the magnetic field moves around inside the bubble. The ablated light fluid first moves
upwards towards the bubble vertex, then downwards guided by the bubble wall, forming a
fairly complicated magnetic ring. The magnetic field reaches the maximum at the top of
the bubble in case i, as shown in figure 6(a).

Due to the similarity of the equations on the magnetic field evolution (2.6) and
on the vortex dynamics, the evolution of the magnetic field without Nernst effect
is quite similar to the evolution of vorticity ω ≡ ∇ × v. Equation (2.6) retreats to
∂tB = ∇ × (v × B) + (cmi/2e)∇ × (∇p/ρ) for a DT plasma if not considering the
resistivity or Nernst effect, where mi is the average ion mass, while ∂tω = ∇ × (v × ω) −
∇ × (∇p/ρ) describes the vorticity evolution in a non-viscous fluid with conservative
body force. The self-generated magnetic field can be considered as an approximate
signature of the vorticity in a non-Nernst fluid since B ≈ −(cmi/2e)ω, which is verified
in the simulation of case i. It should be pointed out that strictly speaking, the analogy
of ω and B also requires their initial profiles to be morphologically similar. It seems
that the discrepancy between the small initial vorticity perturbations introduced by the
velocity perturbations (3.1), (3.2) and (3.3), and the zero initial magnetic field, has not
notably impacted the analogy in case i. Gregori, Reville & Miniati (2015) also exploited the
similarity between the Biermann mechanism and the vorticity generation to estimate the
amplitude of the seed field generated by the Biermann mechanism in structure formation
shocks in laboratory astrophysical experiments.

The Nernst effects are found to alter the magnetic field distribution in the nonlinear stage
of ARTI in case ii, as shown in figures 6(b,d). Compared to its non-Nernst counterpart
in case i (figure 6a), the magnetic fields are more concentrated towards the spike tips,
and reach much higher magnitudes by approximately two times, as shown in figure 6(b).
Figures 6(a) and 6(b) both demonstrate the magnetic field isosurface at B = 1000 T. The
peak value of the magnetic field Bpeak with the Nernst effect is approximately 3.5 kT,
whereas Bpeak without the Nernst effect is approximately 1.8 kT. Figure 6(d) shows the
slice passing the bubble axis to illustrate the temperature distribution inside the bubble,
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Figure 6. Comparison of self-generated magnetic fields at the deeply nonlinear stage (t = 2.0 ns) of 3-D ARTI
with and without the Nernst effect. (a) Magnetic field isosurface at B = 1000 T in case i. (b) Magnetic field
isosurface B = 1000 T in case ii. (c) Schematic diagram of the magnetic field transport in case i. Arrows are
fluid velocities relative to the bubble vertex. The blue line is the bubble interface, while the green lines are the
magnetic field contours at 1000 T. Yellow areas enclosed by red lines are the regions where the baroclinic term
exceeds 5000 T ns−1. (d) Temperature contours inside the bubble in case ii. The green lines are the magnetic
field contours at 1000 T. The arrows depict the schematic diagrams of V N and V CN inside the bubble. We take
both (c) and (d) at the slice y = 5 μm passing through the bubble axis.

which largely determines V N and V CN . The schematic on the directions of V N and V CN
is also demonstrated with the arrows. The fluid inside the bubble gets rapidly cooled
down on leaving the spike tips, forming an intense temperature gradient and a very large
V N inside the bubble towards the spike tips. So the magnetic field is compressed by
the V N convection to a smaller area close to the spike tips compared to the non-Nernst
case i (figure 6a). The cross-gradient Nernst velocity V CN tends to convect the magnetic
field along the isotherm surfaces. However, as VCN � VN is found in case ii, the V CN
convection is expected to be less important than the V N convection, which is further
verified by comparing to case iii, where V CN is neglected. The magnetic distributions
in cases ii and iii are very similar.

Moreover, the growth of the magnetic fluxes (φ ≡ ∫ |B| dS on an area passing the bubble
axis and inside the bubble, where the integration in a 3-D simulation is calculated on
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φ ≡ ∫ |B| dS at the slice y = λ/2, and hb is defined as the height from the bubble vertex to the spike tip. The
circles indicate case i. The squares indicate case ii. The stars indicate case iii. The solid line indicates case iv.

the slice y = λ/2), which was used to evaluate an average intensity of the magnetic field
(Zhang et al. 2022), with the ARTI bubble amplitude hb throughout a series of 3-D and
2-D simulations (cases i–iv) with/without Nernst effects are plotted in figure 7. Cases
i–iv use the same perturbation wavelength λ = 10 μm. It was found that φ inside 2-D
ARTI bubbles is monotonically correlated with hb in our previous research, and can be
well formulated by a scaling law, no matter if the Nernst effects are included (Zhang
et al. 2022). It was also found that the Nernst velocity affects the convection process
but not the generation of magnetic field, and has little impact on φ in the 2-D cases.
Although the peak value of the 3-D magnetic field (approximately 3.5 kT) is much larger
than that of 2-D (approximately 1.5 kT), and the magnetic fields in 3-D ARTI have more
complicated structures as illustrated in figures 6(a,b), the evolution of 3-D φ (cases ii and
iii) is qualitatively consistent to 2-D (case iv), as shown in figure 7. Figure 7 also shows
that among the 3-D cases, φ with the Nernst effects (cases ii and iii) is just slightly larger
than the non-Nernst φ (case i), indicating that the Nernst effects have mild impact on φ,
which is qualitatively consistent with the findings in two dimensions reported in Zhang
et al. (2022). The small difference on φ between cases ii and iii is also evidence that
the influence of V CN is insignificant. The spatial distribution and the maximum of the
self-generated magnetic field in ARTI differs significantly in 2-D or 3-D, with or without
Nernst effects. However, the dependence of φ on hb in various cases is not that different,
as a common feature shown by figure 7.

We then examine if the scaling law for φ obtained in the 2-D cases (Zhang et al. 2022)
is applicable in the 3-D cases. The scaling law reads

φ

φ0
= b

(
h
λ

)ξ (Va

V0

)η ( g
g0

)θ

, (4.1)

where V0 ≡ √
pa/ρa, g0 ≡ pa/(ρaλ) and φ0 ≡ cmiλ

√
pa/ρa/e. The coefficients b =

41.55, ξ = 1.397, η = 0.759 and θ = 0.267 were fitted using the 2-D simulation data.
The scaling law (4.1) demonstrates positive correlations between φ and Va and g, and a
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Figure 8. The magnetic fluxes φ of 10 μm simulations (cases ii and v–x). (a) Circles indicate case ii; squares
indicate case v; stars indicate case vi. (b) Circles indicate case ii; squares indicate case vii; stars indicate case
viii. (c) Circles indicate case ii; squares indicate case ix; stars indicate case x. The solid lines in (a), (b) and
(c) represent φ obtained by applying the magnetic flux scaling law (4.1) to the parameters of the cases with
the same colour, where V0 ≡ √

pa/ρa, g0 ≡ pa/(ρaλ), φ0 ≡ cmiλ
√

pa/ρa/e, b = 41.55, ξ = 1.397, η = 0.759
and θ = 0.267.

negative correlation between φ and pa. Figures 8(a–c) plot the curves of φ versus hb in
cases ii and v–x at different values of Va, pa and g, respectively. It is shown that larger Va
or g leads to larger φ at the same hb in figures 8(a,c), while figure 8(b) shows that larger
pa leads to smaller φ. These trends are qualitatively consistent with the prediction of the
scaling law (4.1). However, there is a saturation of φ at moderate hb in the 3-D simulations,
which is absent in the 2-D simulations, likely caused by more intense nonlinear effects and
more complicated magnetic structures inside the bubble in 3-D ARTI.

As the magnitude of the magnetic field increases with hb, the modification on the heat
conduction is expected to be more significant. The magnetized heat flux perpendicular
to the magnetic field q⊥ ≡ −κ⊥ ∇⊥Te is mitigated, while the Righi–Leduc heat flux
qRL ≡ −κ∧b × ∇Te that was absent in a magnetic-free plasma shows up to contribute
to heat conduction. The significance of the magnetic modifications on the heat conduction
is usually evaluated by the Hall parameter χ (Braginskii 1965; Epperlein & Haines 1986).
A brief summary of the calculation of χ is supplied in § A.1. The presence of χ makes κ⊥
deviate from κ‖, and makes values of κ∧ non-trivial, both contributing to the anisotropy
of the magnetized heat fluxes. Figure 9(a) demonstrates the dependence of the ratios of
κ⊥ and κ∧ to κ‖ on χ in a DT plasma. It is shown that κ⊥/κ‖ decreases monotonically
with the increase of χ , while κ∧/κ‖ reaches the maximum at χ ≈ 0.4, where κ⊥/κ‖ drops
by approximately half. It is convenient to define a characteristic χc = 0.4 such that the
feedback of magnetic field to the heat conduction is considered to be significant where χ

approaches or even exceeds χc.
Figure 9(b) illustrates the isosurface (green) where χ = χc of case ii in the deeply

nonlinear stage at t = 2.0 ns. Here, χ is calculated using the local magnetic field and
plasma states. It shows that large χ is mainly concentrated near the spike tip where the
mass ablation is the strongest, and the peak value of χ can be larger than 0.8. This indicates
that the self-generated magnetic field has a significant modification on the heat conduction
near the spike tip. The maxima of χ in cases ii and v–x with different physical parameters
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Figure 9. The Hall parameter in ARTI. (a) The ratios of κ⊥/κ‖ and κ∧/κ‖ at different χ values. (b) The Hall
parameter at t = 2.0 ns in case ii. The red surface is the bubble interface, and the green surface is the isosurface
of the Hall parameter at χ = 0.4. (c) The peak value of the Hall parameter χmax versus time in cases ii and
v–x, all with the Nernst effects included.

(Va, g and pa), and all including the Nernst effects, are plotted in figure 9(c). It is shown
that χc can be reached in all cases, which indicates that the feedback of the self-generated
magnetic field on the thermal conduction and consequently on the hydrodynamics could
be significant with ICF-relevant parameters. It was found that the magnetic field boosts
the ARTI bubble velocities of the short-wavelength modes while it has minimal effect on
the long-wavelength modes in 2-D simulations (Zhang et al. 2022). The 3-D simulations
including the feedback are discussed in § 4.2.

4.2. Effects of magnetized heat flux on the growth of 3-D ARTI
To investigate the feedback of the magnetic field on the hydrodynamic evolution in ARTI,
a series of simulations (cases xiv–xvii) using the magnetized heat flux described by (2.12)
are performed. The non-feedback cases (ii and xi–xiii), with the same other parameters but
using the classical non-magnetized Spitzer–Harm heat flux, are available for comparison.
Four wavelengths (6, 10, 20 and 30 μm) are selected in order to investigate the magnetic
feedback at different wavelengths. The Nernst effects are always turned on in these
simulation cases in this subsection to take into account the Nernst enhancement on the
magnetic field as well as χ .

The magnetized heat fluxes are found to significantly alter the bubble–spike ARTI
structures in the nonlinear stage. Figures 10(a,c) and 10(b,d) compare the λ = 10 μm
ARTI bubble/spike structures without (case ii) and with (case xv) the magnetized heat
flux at the same time (t = 2.5 ns), respectively. Unlike in a 3-D CRTI case where long
spikes typically develop and fall downwards (Jacobs & Catton 1988; Hecht et al. 1995; He
et al. 1999), the ‘spike’ morphology in ARTI is largely altered by the mass ablation. The
spike looks like the layer surrounding the bubble, and has a flatter bottom interface near
the spike vertex, as illustrated by figure 10(c). The density contours on the diagonal slices
of figures 10(c,d) are compared side by side in figures 10(e, f ). Figures 10(e, f ) demonstrate
that the magnetic feedback has little impact on the bubble evolution as the position
of the bubble vertex with the magnetized heat flux is only slightly higher than in the
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Figure 10. (a–d) The ARTI bubble and spike structures in the deeply nonlinear stage (t = 2.5 ns) for the case
without (case ii) and with (case xv) magnetic feedback. Images (a) and (c) are the bubble and spike of the case
without magnetized heat flux (case ii). Images (c) and (d) are the bubble and spike of the case with magnetized
heat flux (case xv). Images (c) and (d) are translational shifts of (a) and (b), respectively, to put the spikes in
the centre for better visualization. Images (a–d) are plotted on the same axis scales, which are omitted in (b–d).
(e, f ) Density contours of case without (case ii) and with (case xv) magnetic feedback in the slice of y = x,
respectively. The horizontal axis in (e, f ) is the diagonal L =

√
x2 + y2. (g) The bubble penetration velocity

Ub and (h) the spike penetration velocity Us in the different wavelength cases without (solid lines) and with
(markers) magnetic feedback. The blue lines/markers indicate 6 μm (cases xi and xiv); the orange lines/markers
indicate 10 μm (cases ii and xv); the purple lines/markers indicate 20 μm (cases xii and xvi); and the yellow
lines/markers indicate 30 μm (cases xiii and xvii). The bubble velocity Ub and the spike velocity Us are defined
as the velocities of the vertices of the bubble and the spike relative to the velocity of the dense target plasma
averaged in the x–y plane.

non-feedback case. However, the magnetized heat flux has a significant enhancement on
the growth of the spikes. The spike (figure 10d) with the magnetized heat flux is longer
and finer than that (figure 10c) without the magnetized heat flux.

Moreover, the bubble velocity Ub and the spike velocity Us without and with magnetic
feedback are plotted in figures 10(e, f ) for the simulations with different perturbation
wavelengths, to demonstrate the distinguished magnetic effects on the bubble and spike
growths in 3-D ARTI. The bubble velocity Ub and the spike velocity Us are computed
as the velocities of the vertices of the bubble and spike relative to the averaged velocity
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of the dense target plasma, respectively. For the cases without magnetic feedback, the
bubble velocities Ub first saturate approaching Ucl3D

b predicted theoretically by Goncharov
(2002), then re-accelerate above Ucl3D

b in the λ = 6 and 10 μm cases, while Ub keeps
growing without the obvious saturation–re-acceleration pattern in the λ = 20 and 30 μm
cases, as shown in figure 10(g). The absence of the saturation–re-acceleration pattern in
the λ = 20 and 30 μm cases is attributed to the fact that larger-wavelength ARTI bubbles
penetrate through the shell faster, and the shell is almost broken through after 2 ns in
these cases. The saturation–re-acceleration pattern was observed in previous simulations
(Yan et al. 2016) where thicker shells were used. In the highly nonlinear stages, the spike
velocities Us are found to be larger than Ub in the cases with λ ≥ 10 μm, while Us is
smaller than Ub in the λ = 6 μm case, as shown by figures 10(g,h). Faster Us than Ub in
the larger-wavelength cases of ARTI in the highly nonlinear stages is qualitatively similar
to the well-known behaviour of CRTI spikes and bubbles. The anomalous behaviour of
Us < Ub in the λ = 6 μm ARTI case is attributed to the ablation effect that is known to
be more significant on the shorter-wavelength modes (Yan et al. 2016; Fu et al. 2023a;
Xin et al. 2023), and is consistent with the recent findings by Fu et al. (2023a). It was
found by Fu et al. (2023a) that mass ablation significantly suppresses the re-acceleration
of the spike in the nonlinear phase, and the nonlinear growth of the mixing width induced
is dominated by the bubble growth for small-wavelength ARTI, whereas it is dominated
by the spike growth for CRTI and large-wavelength ARTI.

For the cases with magnetic feedback, it is shown in figure 10(g) that the magnetized
heat flux has mild modifications on Ub in the cases with λ ≥ 10 μm, while it just slightly
increases Ub in the λ = 6 μm case in the highly nonlinear stage (t > 2.0 ns). However,
Us is increased more significantly than Ub due to the magnetized heat flux in all the cases
with different λ, as shown in figure 10(h). The behaviours of Ub in the 3-D cases are
substantially different from the results in the 2-D simulations (Zhang et al. 2022), where
the magnetized heat flux significantly increases the short-wavelength (λ ≤ 15μm) Ub in
two dimensions. The magnetic modifications on Ub in both two and three dimensions can
be attributed to the ablation weakening near the spike tip.

A schematic of the magnetic fields, the magnetic-perpendicular heat flux q⊥, and
the Righi–Leduc heat flux qRL near a 3-D spike–bubble interface are illustrated on top
of the density contour in the highly nonlinear stage of case xv in figure 11(a). Here,
q⊥ = −κ⊥ ∇⊥Te and qRL = −κ∧b × ∇Te are both the components of magnetized heat
flux qmag; see (2.12). As ∇Te is perpendicular to the magnetic field on the plane shown
in figure 11(a), the heat flux q⊥ along −∇Te is reduced by the magnetic field, while the
presence of qRL tends to guide the heat flux along the surface of the spike towards the
inside of the bubble. Figure 11(b) further plots the heat flux components on the surface
of the spike versus the distance s on the lower cyan curve to the spike vertex S1. The
unmagnetized classical Spitzer–Harm heat flux qsh is also plotted for comparison. It is
shown that the strongest ablation is concentrated on the area near the spike tip, as q⊥ is
large near the spike tip (s < 5 μm). On the spike vertex (s = 0), where it is magnetic-free,
q⊥ is equivalent to qsh. Elsewhere, near the spike tip, q⊥ is significantly smaller than qsh,
leading to weaker ablation on the spike. The Righi–Leduc heat flux whose peak value
is comparable to q⊥ tends to transport more heat into the bubble away from the spike
vertex, which also helps to reduce the ablation near the spike tip. The weakened ablation
helps to form the long spike in the magnetized heat flux case xv, as shown in figure 10(d).
The components of magnetized heat flux on the surface of the bubble versus the distance
s on the upper cyan curve to the bubble vertex S2, with qsh for comparison, are also
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Figure 11. (a) Density contour in the diagonal slice of y = x and the schematic diagram of the magnetic
field direction surrounding the spike in the nonlinear stage (t = 2.5 ns) for the 10 μm wavelength case with
magnetic feedback (case xv). The blue and pink arrows are the schematic diagram of q⊥ and qRL, respectively.
The horizontal axis is the diagonal L =

√
x2 + y2. (b) Heat flux at the spike interface (lower cyan curve in (a))

versus s, which is defined as the distance on the cyan curve to the spike vertex S1. (c) Heat flux at the bubble
interface (upper cyan curve in (a)) versus s, which is defined as the distance on the cyan curve to the bubble
vertex S2. In (b) and (c), the red line is the classical Spitzer–Harm heat flux qsh, and the blue and green lines
are q⊥ and qRL, respectively.

demonstrated in figure 11(c). It is found that the heat fluxes near the bubble vertex are
two orders of magnitude weaker than those near the spikes, indicating that the ablation
occurs mostly near the spikes rather than the bubbles. Moreover, figure 11(c) shows that
the difference between q⊥ and qsh is minimal, and qRL is negligible compared to q⊥ and
qsh, indicating that heat conduction near the bubble vertex takes insignificant magnetized
effects.

One mechanism that weaker ablation helps to form a longer spike is that less material
would get ablated off the spike tip thus the spike tip survives longer, which is analogical
to the ‘mass flow’ ablative stabilization mechanism (Bodner 1974; Takabe et al. 1985) on
the ARTI linear growth. Another mechanism can be attributed to the lower pressure near
the spike tip against the spike growth, which is readily found in our simulations, as shown
in figure 12, and is analogical to the ‘overpressure’ ablative stabilization mechanism (Sanz
1994; Piriz et al. 1997) on the ARTI linear growth. Figure 12 compares the pressure on
the spike vertex ps in the case without (case ii) and with (case xv) magnetic feedback
evolving with the ARTI amplitude hb. It is shown that ps resisting the spike falling down
is slightly reduced in the case with magnetic feedback, which is consistent with the longer
spike formation in this case.

Moreover, a few simulations (cases xiv–xvi) using the Davies et al. (2021) transport
coefficients for (2.7) and (2.8) have been performed to show the differences between the
transport models. A brief summary of the Davies et al. (2021) transport coefficients can
be found in § A.3. Figure 13(a) shows the ARTI amplitude hb versus time in cases xiv–xvi
with the Braginskii (1965) and Davies et al. (2021) models. It is shown that the differences
in the hydrodynamic evolution of ARTI with these two transport models are minimal.
The evolution of two key quantities (Bpeak and φ) for the magnetic field is compared in
figures 13(b) and 13(c), respectively. Figure 13(b) shows that the Davies et al. (2021) model
leads to notably smaller Bpeak in the nonlinear stage for all the wavelengths, while the

1000 A94-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
81

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1081


Self-generated magnetic field in 3-D ARTI

5
136

138

140

142

144

146

148

10 15 20 25

hb (µm)

p s
 (

M
b
ar

)

30 35

With B feedback

Without B feedback

Figure 12. The pressure on the spike vertex ps in the λ = 10 μm case without (case ii) and with (case xv)
magnetic feedback.

0
0

10

20

30

40

50

60 4000

3000

(×104)
14

12

10

6

8

2

4

2000

1000

0.5 1.0 1.5 2.0 2.5

λ = 6 µm Braginskii

λ = 6 µm Davies et al.

λ = 10 µm Braginskii

λ = 10 µm Davies et al.

λ = 20 µm Braginskii

λ = 20 µm Davies et al.

Time (ns)

B p
ea

k 
(T

)

φ
 (

T
 µ

m
2
)

0 10 20 30 40 0 10 20 30 40

hb (µm)

h b
 (
µ

m
)

hb (µm)

(b)(a) (c)

Figure 13. The ARTI amplitudes hb, the magnetic field peak values Bpeak, and the magnetic fluxes φ in cases
xiv–xvi using the Braginskii and Davies et al. (2021) transport coefficients: (a) hb versus time; (b) Bpeak versus
hb; (c) φ versus hb.

evolution of φ, which represents the averaged magnetic intensity inside the bubble, is
quite similar with these two models. The differences of the magnetic field caused by the
two transport models are attributed to the Davies et al. (2021) correction on the Nernst
effect that changes the convection of the magnetic field while has little effects on the
magnetic generation. In our cases, the Davies et al. (2021) model generally yields smaller
βuT∧ than that of Braginskii (1965), as calculated by (A9) and (A32). Overall, switching
from the Braginskii (1965) model to that of Davies et al. (2021) causes minimal effects
on the ARTI growths, while mostly changing the distribution of the magnetic field and
reducing Bpeak.
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Figure 14. Plots of (a) Bpeak, (b) φ and (c) Us, without (circles) and with (crosses) the magnetic field energy
sink.

The different efficacy of the magnetic feedback boosting the bubble velocity in two and
three dimensions is likely due to the different compressibility of the bubble in two and
three dimensions. The width of a 2-D bubble has to be squeezed as the spike gets wider
due to the reduction of ablation, and smaller bubble width is known to lead to stronger
vorticity inside, which supplies a stronger lifting force to the bubble vertex through the
vortex acceleration mechanism (Betti & Sanz 2006; Zhang et al. 2022). However, a 3-D
bubble is more difficult to squeeze as it always tends to expand itself to form a round
bubble. As shown in figures 10(a,b), the sizes of the upper part of the 3-D bubbles in
the cases with and without magnetic feedback are not notably different, which indicates
that the vortex acceleration on a 3-D bubble is not significantly enhanced by the magnetic
feedback.

In the cases presented so far (cases i–xvii), the magnetic field energies have not been
modelled to be coupled in (2.3) in the large-β regime where the magnetic field energy
is negligible compared to the plasma internal energy. However, the locally concentrated
intense magnetic fields up to a few thousands of teslas generated in the highly nonlinear
ARTI stages bring our attention to the validation of the modelling. We then take the
magnetic field energy into account in the energy equation (2.3) by putting the magnetic
field energy change due to the Biermann battery source as an energy sink −∂εB/∂t from
the plasma energy as

∂ε

∂t
+ ∇ · [(ε + p)v] = ρv · g − ∇ · q − ∂εB

∂t
, (4.2)

where εB ≡ B2/(8π) is the magnetic field energy. The simulation with the magnetic field
energy modification is also performed, which has the same other simulation configurations
as case ii. The results of the simulation with the magnetic field energy sink and case ii are
plotted in figure 14. It is shown that magnetic field energy sink has a very small influence
on Bpeak, φ and Us in the highly nonlinear stage, indicating that the magnetic field energy
sink is unimportant in this regime.
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5. Summary

The self-generated magnetic field in 3-D single-mode ARTI is investigated numerically
with the parameters relevant to direct-drive ICF. This study finds that 3-D ARTI can
produce much stronger magnetic fields, reaching magnitudes up to a few thousand teslas,
compared to its 2-D counterpart. Similar to the 2-D cases, the inclusion of the Nernst
effect significantly alters magnetic field convection and amplifies magnetic fields from
the linear to the nonlinear stage of ARTI. The magnetic field is compressed towards
the spike tip by the Nernst effect, reaching approximately twice the peak magnitude in
the non-Nernst case. Moreover, it is found that the influence coming from V CN on the
magnetic field convection is less significant than that from V N . The Davies et al. (2021)
transport model causes minimal changes on the ARTI growths, but mostly alters the
magnetic field distribution and reduces Bpeak compared to the Braginskii (1965) model.

In many 3-D cases, the Hall parameter can reach a characteristic value χc = 0.4,
beyond which the magnetized heat flux deviating significantly from the unmagnetized
classical Spitzer–Harm heat flux is able to affect ARTI evolution. Unlike the magnetic
field significantly accelerating the bubble growth in the short-wavelength 2-D modes, the
magnetic field mostly accelerates the spike growth but has little influence on the bubble
growth in 3-D ARTI. The spike acceleration due to magnetic feedback is attributed to
the ablation reduction and the pressure reduction near the spike tip. The accelerated
growth of spikes in ARTI due to the self-generated magnetic field is expected to
enhance mixing of the materials near the ablation front, threatening the shell integrity.
Moreover, the kinetic energy carried by the spikes and bubbles does not contribute well
to the implosion and is harmful to the shell compression and implosion performance
in ICF.

This work is focused on NIF direct-drive ICF-relevant parameters. The ICF fluids
are influenced by sophisticated physics, and other laser configurations and/or target
designs generally yield different hydrodynamic profiles. However, common key features
exist in most direct-drive ICF fluids near the ablation front: high energy density, strong
ablation, large β, etc. The findings of this work are expected to be representative
in capturing the physical picture of the self-generated magnetic field in ARTI in the
plasmas with these common features. By scanning Va, pa and g, we have also explored
a broader parameter space in which the trends of the magnetic field evolution obtained
are expected to provide referential information to other ICF designs. The simulations
also cover a range of key hydrodynamic parameters (AT , Fr and Ma) that are relevant
to other hydrodynamic or astrophysical scenarios. The self-generated magnetic fields in
hydrodynamic instabilities in various regimes are important topics to be explored in the
future.
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Appendix A. Transport coefficients in magnetized plasmas

A.1. The Hall parameter
Transport coefficients in magnetized plasmas are determined by the Hall parameter
χ ≡ ωceτei and the effective ion charge Z. The electron cyclotron frequency ωce and the
characteristic time of electron collisions τei are given by

ωce = eB
mec

, (A1)

τei = 3
√

me T3/2

4
√

2π ln Λ e4Z2ni
, (A2)

where ni is the ion number density, and ni = Zne given the quasi-neutral approximation.
The Coulomb logarithms ln Λ used in this paper at different ne and T are

ln Λ =
{

23.4 − 1.15 log10 ne(cm−3) + 3.45 log10 T(eV), T ≤ 50 eV,

25.3 − 1.15 log10 ne(cm−3) + 2.30 log10 T(eV), T > 50 eV.
(A3)

A.2. Braginskii transport coefficients
The electrical resistivity coefficients, thermoelectric coefficients and thermal conductivity
coefficients given by Braginskii (1965) are formulated as

α‖ = mene

τei
α0, (A4)

α⊥ = mene

τei

(
1 − α′

1χ
2 + α′

0
Δ

)
, (A5)

α∧ = mene

τei

χ(α′′
1χ2 + α′′

0 )

Δ
, (A6)

βuT
‖ = neβ0, (A7)

βuT
⊥ = ne

β ′
1χ

2 + β ′
0

Δ
, (A8)

βuT
∧ = ne

χ(β ′′
1 χ2 + β ′′

0 )

Δ
, (A9)

κ‖ = neTτei

me
γ0, (A10)

κ⊥ = neTτei

me

(γ ′
1χ

2 + γ ′
0)

Δ
, (A11)

κ∧ = neTτei

me

χ(γ ′′
1 χ2 + γ ′′

0 )

Δ
, (A12)

where
Δ = χ4 + δ1χ

2 + δ0. (A13)

The above numerical coefficients α0, α1, α
′
1, . . ., for various values of Z, are listed in

table 2.
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Coefficient Z = 1 Z = 2 Z = 3 Z = 4 Z = ∞
α0 0.5129 0.4408 0.3965 0.3752 0.2949
β0 0.7110 0.9052 1.0160 1.0900 1.5210
γ0 3.1616 4.8900 6.0640 6.9200 12.471
δ0 3.7703 1.0465 0.5814 0.4106 0.0961
δ1 14.790 10.800 9.6180 9.0550 7.4820
α′

1 6.4160 5.5230 5.2260 5.0770 4.6300
α′

0 1.8370 0.5956 0.3515 0.2566 0.0678
α′′

1 1.7040 1.7040 1.7040 1.7040 1.7040
α′′

0 0.7796 0.3439 0.2400 0.1957 0.0940
β ′

1 5.1010 4.4500 4.2330 4.1240 3.7980
β ′

0 2.6810 0.9473 0.5905 0.4478 0.1461
β ′′

1 1.5000 1.5000 1.5000 1.5000 1.5000
β ′′

0 3.0530 1.7840 1.4420 1.2850 0.8770
γ ′

1 4.6640 3.9570 3.7210 3.6040 3.2500
γ ′

0 11.920 5.1180 3.5250 2.8410 1.2000
γ ′′

1 2.5000 2.5000 2.5000 2.5000 2.5000
γ ′′

0 21.670 15.370 13.530 12.650 10.230

Table 2. The coefficients α, β, γ and δ for various values of Z for the Braginskii transport model. This table
is a copy of table 2 of Braginskii (1965).

A.3. The Davies et al. (2021) transport coefficients
Davies et al. (2021) gave the formulas of electrical resistivity coefficients and
thermoelectric coefficients for any effective atomic number Z. The electrical resistivity
coefficients α‖, α⊥ and α∧ are formulated as

α‖ = mene

τei
η‖, (A14)

α⊥ = mene

τei
η⊥, (A15)

α∧ = mene

τei
η∧, (A16)

where η‖, η⊥ and η∧ are dimensionless electrical resistivity coefficients given by

η‖ = 1 − Z
1.42Z − 0.065Z2/3 + 0.352Z1/3 + 0.32

, (A17)

η⊥ = 1 − 1.46Z5/3χ + a0(1 − η‖)
Z5/3χ5/3 + a2χ4/3 + a1χ + a0

, (A18)

where

a0 = 0.331Z5/3 − 1.24Z4/3 + 2.54Z + 0.40, (A19)

a1 = 1.46Z5/3

1 − η‖
, (A20)

a2 = Z4/3(−0.114Z1/3 + 0.013), (A21)
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and

η∧ = Z5/3(2.53χ2 + a0/a5χ)

Z8/3χ8/3 + a4χ7/3 + a3χ2 + a2χ5/3 + a1χ + a0
, (A22)

where

a0 = 0.0759Z8/3 + 0.897Z2 + 2.06Z + 1.06, (A23)

a1 = Z(2.18Z5/3 + 5.31Z + 3.73), (A24)

a2 = Z5/3(7.41Z + 1.11Z2/3 − 1.17), (A25)

a3 = Z2(3.89Z2/3 − 4.51Z1/3 + 6.76), (A26)

a4 = Z7/3(2.26Z1/3 + 0.281), (A27)

a5 = 1.18Z5/3 − 1.03Z4/3 + 3.6Z + 1.32. (A28)

The thermoelectric coefficients βuT
‖ , βuT

⊥ and βuT∧ are formulated as

βuT
‖ = neβ‖, (A29)

βuT
⊥ = neβ⊥, (A30)

βuT
∧ = neβ∧, (A31)

where β‖, β⊥ and β∧ are dimensionless thermoelectric coefficients given by

β‖ = 1.5Z
Z − 0.115Z2/3 + 0.858Z1/3 + 0.401

, (A32)

β⊥ = 6.33Z8/3χ + a0β‖
Z8/3χ8/3 + a4χ7/3 + a3χ2 + a2χ5/3 + a1χ + a0

, (A33)

where

a0 = 0.288Z8/3 + 1.75Z2 + 5.09Z − 0.322, (A34)

a1 = 6.33Z8/3/β‖, (A35)

a2 = Z5/3(9.40Z + 5.42Z2/3 − 9.67Z1/3 + 3.06), (A36)

a3 = Z2(2.62Z2/3 + 0.704Z1/3 − 0.264), (A37)

a4 = Z7/3(2.58Z1/3 + 0.262), (A38)

and

β∧ = Z2(1.5Zχ2 + a0/a5χ)

Z3χ3 + a4χ7/3 + a3χ2 + a2χ5/3 + a1χ + a0
, (A39)
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where

a0 = 0.00687Z3 + 0.0782Z2 + 0.623Z + 0.366, (A40)

a1 = Z(0.134Z2 + 0.997Z + 0.17), (A41)

a2 = Z5/3(0.689Z4/3 − 0.377Z2/3 + 3.94Z1/3 + 0.644), (A42)

a3 = Z2(−0.109Z + 1.33Z2/3 − 3.80Z1/2 + 0.289), (A43)

a4 = Z7/3(2.46Z2/3 + 0.522), (A44)

a5 = 0.102Z2 + 0.746Z + 0.072Z1/3 + 0.211. (A45)
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