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ABSTRACT. An energy-balance climate model designed for coupling to ice-sheet
models is presented. Its inde pendent variables are longitude, latitude and time of the
year. The model is based on the vertically 1111(‘crran'rl equations of conservation of
energy and humidity. It can predict the \(m(dlh averaged temperature. Since it
includes a hy drological cvcle, it can also diagnose the net h esh-water flux and hence
the annual snow budget at the atmosphere-ice-sheet interface. To this end, the model
does not require observed precipitation rates. The computational cost is reduced by
using an analytically computed Fourier-Legendre representation of daily insolation.
For a highly idealized test-case configuration, two simple sensitivity experiments are

carried out.

1. INTRODUCTION

To study the Pleistocene ice ages, it is desirable to use a
global coupled climate -ice-sheet model. Unfortunately, a
general circulation model is very expensive to run. It does
not permit extensive sensitivity experiments and often its
results are diflicult to interpret. Therefore, an atmo-
spheric model is needed which contains the essential feed-
back mechanisms that affect the growth and decay of ice
sheets but it takes a much smaller amount ol additional
computing time and is easier to interpret. As has been
suggested by Pollard (1983), Esch and Herterich (1990)
and Deblonde and Pelder (1991), these requirements
seem to be met by an energy-balance climate model.

Therelore, a global. two-dimensional, vertically inte-
grated energy-balance climate model is presented. It is
solved by the spectral method in space and time. The
horizontal resolution is T'16 and the seasonal and semi-
seasonal variations are included. The land sea distribu-
tion and the albedo can be specified arbitrarily.

Although the model is quite similar to those of Hyde
and others (1989) and Deblonde and Peltier (1991), it
differs from them in three important respects. First, the
model does not use observed precipitation rates which
may change considerably on the time-scale ol the ice ages.
[t rather employs a simple parameterization of the
evaporation of water, transport of water vapour and its
precipitation, based on the ideas of Pollard (1983),
Sanherg and Oerlemans (1983) and Bowman (19853).
Secondly, to reduce the computational cost, the model
takes advantage of an analytically computed Fourier
Legendre representation of daily insolation. Thirdly, the
coellicients which couple the spectral modes of the
different fields together are evaluated recursively (Schul-
ten and Gordan, 1975, 1976).

In the present version, the model is linear in that the

sea-ice extent does not depend on temperature. To

https://doi.qrgqo.31 89/50260305500013410 Published online by Cambridge University Press

investigate its behaviour, a test case is studied which is
based on the highly idealized land-sea distribution
proposed by Pollard (1983).
experiments are carried out which show the effect of
varying the size of an ice sheet on the global annual mean

Two simple sensitivity

lt‘lll]J(’I"dllll’(‘.

2. MODEL DESCRIPTION

2.1. Basic equations

The vertically integrated equations of conservation of
energy and humidity may be cast into the form (cf

Jentsch, 1991)

()f(("l‘):—V-F%vX (1)
g—r{n\,n’) = A B X, (2)

where T is the sea-level air temperature in “C and W is
the amount of water vapour in an atmospheric column
extending from the surface to the top of the atmosphere.
The sea-level air temperature can be formally related o
the vertically integrated temperature by setting

pHT = / P (2)T'(z)dz. (3)

Here, p is taken to be a constant surface-air density over
land and a constant mixed-layer density over ocean: H is
the effective height of the atmosphere ocean column
considered. which may well differ from its actual height.
Iurthermore, p' denotes the height-dependent density
and T the height-dependent temperature of this column.

On the lefthand side of Equations (1) and (2), C'T" and
LW denote,

respectively, the wvertically integrated
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sensible heat of atmosphere and ocean and the vertically
integrated latent heat of the atmosphere alone. Here,
C = ¢ppH and L, play the role of inertia coeflicients with
ep being the specific heat at constant pressure. while Ly is
the latent heat of vaporization.

Following North and others (1983) and Hyde and
others (1989), the thermal inerta coellicient C' is given a
large value C'y, over the ocean, a smaller value C; over sea
ice and a very small value C) over land. In the first case, it
is taken to represent the heat capacity of an ocean mixed
layer with an average depth H, =75m, while in the
third case it stands for the heat capacity of an atmospheric
layer with effective upper boundary H, =4.2 km. Hence,
Cy =97Wam 2°C!, C3=0.75Wam2°C"' and C, =
0.165Wam *°C .

On the righthand side ol Equations (1) and (2), F and
F, denote the fluxes of heat and water vapour, and X and
X, represent the diabatic terms which are given by

X=R-R,, (4)
X,=L*E—L,P (5)

where R; and R, are the incoming and outgoing radiative
[Tuxes at the top of the atmosphere, while £ and P denote
evaporation and precipitation. The latent heat of the
phase change of water is L* = L, =2.5008 x 10° ] kg "'
for vaporization and L* = L, =2.8345 % 10“.] kg ' Tor
sublimation,

All fields in Equations (1) and (2) depend on
longitude A, latitude ¢ and time ¢ in the year. Olften
ft = sin ¢ is used rather than ¢ itself.

2.2. Radiation

The incoming short-wave radiation is given by
Sy
4
SRR T
where Sy = 1360 Wm = is the solar constant as used by

North and others (1983), a is the co-albedo (or one
minus the albedo) and S determines the distribution of

R as (6)

daily insolation at each latitude and at each time in the
year (North and Coakley, 1979). Over ice-free areas,
the co-albedo 1s taken to be a smooth function of
latitude

a(p) = ag + a) Py (p) + az Po(pe) (7)

where P, is the nth-order Legendre polynomial and the
coeflicients ap =0.679, a; =-0.012 and a> =-0.241 are
derived from present-day satellite observations (Graves
and others, 1993). The discontinuous change in albedo in
the presence of snow cover over land areas or sea-ice cover
over ocean areas is represented by the albedo jumps
Aag, =-0.14 and Aag = 0.07. Over land, ice-covered
areas, a constant value a; =0.3 15 used (Deblonde and
Peltier, 1991).

According to Budyko (1969), the outgoing long-wave
radiation can be parameterized as

R, = A+ B(T —vh) (8)

AT TR i
where the constants A =205Wm ~ and B=19Wm
°C " are taken from Pollard (1983) and Graves and others
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(1993), respectively. The term —Bvyh accounts for the
negative feedback ol cold, elevated ice-sheet surfaces on
the temperature (Bowman, 1982): y=65Kkm ' is a
constant lapse rate (Pollard. 1983) and h denotes the ice-
sheet surface elevation above sea level.

2.3. Heat transport

In Equation (1), the transport of heat in the atmosphere
ocean system is given by the divergence of the vertically
integrated heat flux F. The explicit form of the horizontal
divergence operator in spherical coordinates is
1 9 3
1

)

. 3 1 d
B R].j (}ﬂ it

Ris(1 — i2)t O

+ (9)

where R =6.37122 x 10°m is the radius of the Earth.
The various kinds of heat transport are simulated by a
diffusion process. Hence, they are taken to be propor-
tional to the negative of the sea-level temperature
aradient

F=—-K (l—;.’g)i‘—-f'—* = (10)
A (1 —p2) A
where
K 2 4
D:F:D()(1+D2”—+D4ﬂ ) (11)
E

is the effective diffusivity for sensible heat, K, divided by
the radius of the Earth, Rg. Here, the latitude-dependence
of D is based on the argument that the wopical Hadley
cells are much more eflicient at smoothing temperature
anomalies than the mid-latitude eddies (North and others,
1983). Hence, D is assumed to be three times as large at the
Equator as at the poles (see Table 1). The constant &
determines the degree of anisotropy of the diffusion process;
in this study, it is set to 1.

2.4. Precipitation, evaporation and snow budget

The parameterization of mid-latitude precipitation and
evaporation is that of Sanberg and Oerlemans (1983)

E=(Whx—W)/r (12)

P=(f+ fLS)W (13)
where Wi.x is the maximum value ol the moisture
content W in the atmospheric column. Evaporation E is
taken to depend on a characteristic time 7, which is the
time-scale on which the atmosphere tends to become
saturated; it 1s estimated as 7, = 3 d over water, 1 =6d
over land and 7; = 30d over ice sheets. Precipitation P is
proportional to the moisture content W and consists of
some background precipitation fyW and the upslope
precipitation fiSW, where S is the upwind slope of the
ice-sheet surface in percent. Furthermore, fy =0.188s '
and f; =0.353s .

Integrating the saturation absolute humidity pe over
an atmospheric column of height H,, using a height-
dependent density p/, but a constant lapse rate v, Wiy
can be obtained as a [unction of sea-level temperature 1°
and clevation h. If one neglects the change of the latent
heat ol vaporization L, with pressure, one gets the

175
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Table 1. Values, units and sources of the model paramelters

Para- Value Units Source

meter

So 1360 Wm * North and others (1983)
A 205 Wm ? Pollard (1983)

B 1.9Wm 2°C"  Graves and others (1993)
[l 9.7Wam “°C ' Hyde and others (1989)
(345 0.75Wam *°C"' Hyde and others (1989)

(@) 0.165 Wam *°C" Hyde and others (1989)

Dy 1.5Wm 2°C"  This study

Dy 1.330 Hyde and others (1989)

Dy 0.670 Hyde and others (1989)

ap 0.679 Graves and others (1993)

a;  —0.012 Graves and others (1993)

as  —0.241 Graves and others (1993)
Aay, —0.14 Graves and others (1993)
Aag —0.07 Graves and others (1993)

aj; 0.3 Deblonde and Peltier (1991)

Tei 3d Sanberg and Oerlemans (1983)

il 6d Sanberg and Oerlemans (1983)
T 30d Sanberg and Oerlemans (1983)
fo 0.1885 "' Sanberg and Oerlemans (1983)
fi 0.353s ' Sanberg and Oerlemans (1983)
Hy 8.0 km This study

v 6.5 °Ckm ' Pollard (1983)

a 10.0 Pollard (1983)

b 0.2 Pollard (1983)

(5 —70.0 Pollard (1983)

approximate result

. e(To) Ly
Wanax (T, b) =
Vel T Bl =" g B [R,.Tn}

e
% |Ei| —————
( R\'(T = 'YHQ))

. By
M (_ Ro(T - m)] W

where e(7) =610 Pa is the saturation vapour pressure at

Ty = 0°C and Ry =461.5] ke 'K 'is the gas constant for

moist air. The function Ei is the exponential integral
(Press and others, 1992). The upper boundary of the
atmosphere for moisture is taken to be approximately
H, =8km high.

Assuming that the rate of change of the atmospheric
latent-heat content is small compared to the net evapora-
tion (Bowman, 1985; Chen and others, 1993), the equation
of conservation of moisture Equation (2) reduces to a
diagnostic relation for moisture content W, where

= =N Fq 4 L‘”,umx/'r
L'/t + Ly(fo+ fi5)

Now, the moisture content can be related to the
temperature through the relative humidity X,
W = xWiax. where y =0.8 is used. Approximating the
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[Tux of moisture, like that of heat, by a diffusion process,
one gets

0T o

_I_L *

(16)

with
D, = Ka _ LoX Woae (17)
““"Rg C OT

being the effective diffusivity for latent heat K divided by
the radius of the Earth Rg.

From Equations (12), (13) and (15), evaporation E
and precipitation P can he obtained. The rate of snowfall
or accumulation is then simply given by

=<0

18
if Ty == HEl

=
s [m month™'] = { [}]3 [m month™]

where T, is the monthly sea-level temperature, corrected
for height, Following Pollard (1983), the rate of snowmelt
or ablation can be related to monthly surface-air
temperature and insolation by

m [m month™] = max(0,aT,[°C] + bR, [Wm ] + ¢)
(19)

where @ =10, b=0.2 and ¢ =-70. Finally, the annual
net snow-budget b is the difference (s — m) averaged over
1 year.

2.5. Spectral method

The method of solving Equation (2.1) is to solve directly
for the steady-state seasonal cycle rather than integrate it
forward in time (North and others, 1983). This is
achieved by expanding all relevant fields into truncated
series of spherical harmonics in space and complex
exponentials in time:

N M Lm)
Oty =Y Y > Ul Yiu(A ) exp(i2mnt)
n=—N m=—M |=|m|

(20)

where Y (A, p) = PP (u)e™ and Pf™(p) are the
associated Legendre polynomials, normalized 1o one.
For triangular truncation, L(m) = M and lor rhomboi-
dal truncation, L(m) = |m| + M (Washington and Par-
kinson, 1986). Since the fields are real, the complex-mode
amplitudes satisfy the symmetry " = (},)". At
present, triangular truncation is used.

The spatial truncation wave number M is 16 for solar
forcing S and temperature response T and, to avoid
aliasing, 33 for all other fields. Furthermore, the temporal
truncation wave number is N =2, Substituting the
truncated series into Equation (2.1) and applying the
integral operator

| [ S| 27 _
- / dt] d,u] dA P () exp(—imA) exp(—i2mnt)
21 Jy -1 0

(21)

vields a complex system of (2N +1)(M + 1)(M +2)/2
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linear algebraic t‘qualmm for triangular truncation and of
(2N + 1)(M + 1)° linear algebraic equations for rhom-
boidal truncation. For example, the explicit form ol the
heat-transport term is

ot >

ey dy o ey

4 1y rmain 1t 1)
(Sl?-f'!‘*'”scfﬂ-_.f Dm ’I}

11y

X[+ 1)+ Ll +1) — bl +1)]
(22)
where the coupling coeflicients G} /""" are given in

Appendix B.

3. NUMERICAL IMPLEMENTATION

All input and output fields can be represented by grid-
point values on Gaussian grids. For solar forcing S and
temperature response T', the number of grid points in the
longitudinal direction is 64 and the number of grid points
in the meridional direction is 32. For all other fields, these
numbers are 128 and 64, respectively. The transformation
from physical space to spectral space is performed by a
two-dimensional forward Fast Fourier Transform (Press

and others, 1992) and Gaussian quadrature, In the case of

solar forcing, the mode amplitudes are given analytically
(see Appendix A). In spectral space, the complex system
of linear algebraic equations is solved by LU decomposi-
tion (Press and others, 1992). Finally, the transformation
from spectral space to physical space is done by
computing the sum

Lim)

> P (W (23)

T=ly
and performing a two-dimensional inverse Fast Fourier
Translorm.
associated Legendre polynomials are calculated using
1962).

The gnd-point values of the normalized

recurrence formulae (Belousov,

4. SENSITIVITY ANALYSIS

For analyzing some of the model’s behaviour, a test case
with highly idealized geometry and orography is studied
(Pollard, 1983).
land-sea distribution on climate, a continent is assumed

which extends from 6°S to 74°N and covers 180° of

longitude. The sea-ice lines are fixed at their present-day
locations in both hemispheres and taken to be at 6278
and 66" N. South of 70”5 a fixed Antarctic ice sheet is
prescribed.

On the northern part of the continent, a one-
dimensional ice sheet with elliptic profile

h(z) = hoy/1 — (z/R)* (24)

can exist. Here, fig is the maximum height, R is the half-
width and x is the distance from the centre. The surface
elevation of land not covered by an ice sheet is set to zero,

In Figures | and 2, under modern solar [orcing and
without an ice sheet, the zonally integrated temperature
response of the energy-balance climate model is compared
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In order to capture the dominant effect of
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Fig. 1. Jonally averaged sea-level temperature, corrected
Jor height, in ~C, as simulated by the T16 energy-balance
elimate model.

with the result from the ECHAM 3 general circulation
model at T42 resolution (Roeckner and others, 1992).
Although the polar regions are too warm. the energy-
balance climate model simulates the modern climate
reasonably well. But one must bear in mind that any
energy-balance climate model is tuned to modern
conditions, more so than a general circulation model.

4.1. Varying maximum height

In the first sensitivity experiment, the southern-tip
position of the Northern Hemisphere ice sheet is fixed at
45" N which roughly corresponds to the extent of the
Laurentide ice sheet at the Last Glacial Maximum. The
maximum height of the ice sheet is varied between 0 and
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Fig. 2. Jonally averaged 2m temperature v “C. as
simudated by the ECHAM 3/T42 global cireulation
model.
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Fig. 3. Global annual mean sea-level temperalure versus
maximum ice-sheet surface elevation. The ice sheet extends
Srom 72° N to the fixed southern-tip position at 457 N.

6000 m. Figure 3 shows the response of the global annual
mean temperature. It increases linearly with maximum
height. This is expected since, according to Equation (8),
the outgoing long-wave radiation decreases linearly with
height. A difference in the maximum height of 1000 m
corresponds roughly to a difference in global annual mean
temperature of 0.3°C.

4.2. Varying southern-tip position

In the second sensitivity experiment, the maximum height
of the ice sheet is taken to be hy =85,/ R/1000m (Pollard,
1983). The ice sheet extends from 727 N to the southern-tip
position which is varied. The result of this experiment is
shown in Figure 4, in which the global annual mean
temperature is plotted against the southern-tip position,
There is a general decrease of the global annual mean
temperature with an increase of the ice-sheet size. This
decrease is much stronger, if the ice sheet is given zero
height, such that the negative temperature-clevation feed-
back in Equation (8) is suppressed. For an ice sheet with a
southern-tip position at 45°N, the difference in the
temperature response amounts to about 1.0°C.

5. DISCUSSION

An energy-balance climate model has been deseribed
which represents the vertically integrated atmosphere-
ocean system. To couple it to an ice-sheet model, it has
been combined with a simple parameterization of the
hydrological cycle. T'he model includes seasonal variation
and land-ocean contrast. In fact, the ellective-heat
capacity and co-albedo fields can be specified arbitrarily.
When the present, linear version of the madel is coupled
to an ice-sheet model, the resultant model will include
both the ice-sheet-albedo feed-back and the temperature-
clevation feed-back, but it will not contain the sea-ice
albedo feed-back since the sea-ice extent is not allowed to
vary with temperature. This and other feed-hacks, which
seem to be essential [or the build-up and retreat of ice
sheets, are to be incorporated into luture non-linear
versions of the model.

First sensitivity experiments indicate that the energy-
balance climate model is indeed economical and casy to

understand. On an IBM RS/6000 3AT, the CPU time
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Lig. 4. Global annual mean sea-level temperature versus
ice-sheet size. The ice sheel extends from 72° N to the
southern-tip  position. Open triangles: the elevation

temperature ¢ffect is suppressed. Solid circles: the elevation-
temperature effect ts included.

required is as follows: using the T16 ('T'11) truncation, the
intial set-up of the model requires 56s (9s), while the
solution for a particular seasonal cycle of sea-level
temperature only takes 1.7s (0.4s). However, a matrix
of size 765 x 765 (390 x 390), which is fairly large, must
be inverted and held in memory.
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APPENDIX A

FOURIER-LEGENDRE AMPLITUDES OF DAILY
INSOLATION

Since the daily insolation is azimuthally symmetric, it can
be represented by a truncated Fourier Legendre series.
Expressed in terms of real sines and cosines and ordinary
Legendre polynomials, the distribution funetion S(p. 1)
then reads

S(p,t) =
L[, N
Z % + Z(rzr,, cos 2mnt + by sin 27nt) | By(p) . (25)
=0 n=I0)

As outlined by North and Coakley (1979), the Fourier—
Legendre amplitudes aj, and b, can be computed
analytically; North and others (1981) provided them up
to L =2 and N = 1. In order to resolve better the high
latitudes where there is a long polar night or a long polar
day, it is desirable to truncate the series at a higher level.
It is found that the series expansion converges everywhere
except on the boundary between latitudes where there is
daily sunrise and sunset and latitudes where there is a
long polar night or day. On this boundary, it converges
only asymptotically. In this Appendix, the Fourier
Legendre amplitudes up to L=16 and N =4 are
presented,
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Table 2. Non-zero Fourier—Legendre amplitudes of daily
wsolation_for a circular orbit

0 1

1 n (IEL‘] a‘l{,H]

0 0  0.200006937712830E+01  0.727942758418422E-05
0 2 0.400237880620236E-04  0.405864863738902E-05
0 4 0.384008880692430E-05  0.219833378589675E-06
06 0.105708020960206E-05  —0.143008071882862E-06
11 —0.795897262615221E+00 -0.320235698738689E-01
2 0 0.952798892747514E+00  0.239170534814404E-01
2 2 0.148612104737919E+00  0.119579970963495E-01
2 4 0.327263318824749E-05  0.158599691090462E-05
2 6 -0.579408398811024E-05 —0.713927156439525E-06
' 0.89180629499928 1 E-01  0.129534856100613E-01
4 2 0.908660546839573E-01  0.564134725247211E-02
L 4 0.518297314541085E-02 -0.836626644588256E-03
4 6 -0.862737752502799E-05 —0.379406997768469E-06
6 0 0.161700415839655E-01  0.659397757505650E-02
6 2 0.607569895483279E-01  0.170476437752998E-02
6 4  —0.104497133305928E-01  —0.1502638160643081.-02
6 6 0.365173904060323E-03  0.910140949910895E-04
8 0 0.274670440259754E-01  0.156219728852043E-02
8 2 0.344338960738196E-01  -0.120875401071182E-02
8 1 0.142793513326073E-01 0.168154032492723E-02
8 6 0.131672740464584E-02  0.298747109595551E-03
10 0 0.169206966017579E-01  -0.150026652105335E-02
10 2 0.136574240909285E-01 - 0.2599301522721441E-02
10 4 0.153450099424626E-01 - 0.122866099620399E-02
10 6 0.279707792567078E-02  0.565758380696060E-03
12 0 0.438844019404613E-02 - 0.241048167951 194E-02
12 2 0.379162634333408E-03 0.24409935098303 1 E-02
12 0.133730749218794E-01 -0.319199411707478E-03
12 B 0.444329301059370E-02  0.760429595640364F-03
14 1) (.320325695203605E-02  —0.171347627984590E-02
14 2 0.543088446402534E-02 - 0.12764442248807 1 E-02
14 4 0.,919778613631028E-02  0.64090927787 1 103E-03
14 6 0.570103239957716E-02  0.744916837095426 E-03
16 0 —0.520660985852039E-02 -0.382322464746662E-03
16 2 0.565836490753235E-02  0.730153093586380E-04
16 4 0.433278564876695E-02  0.122568561865220E-02
16 6 0.606691359814282E-02  0.458375110159306E-03

In general, the distribution function S(p.t) depends
on the orbital elements eccentricity e, longitude of
perihelion w and obliquity € (Berger, 1978) and so do
the Fourier-Legendre amplitudes a, and by,. But, for a
circular orbit, the only dependence is on obliquity e
Furthermore, taking the true longitude of the Earth to be
zero at the winter s;)lsli('(', all sine coefficients vanish (ef.
Taylor, 1984). Hence, in this particularly simple case, the
Fourier-Legendre representation is

L N
S(p.t) = Z % + Z ayy, cos 2mnt | Bi(p) .

=0 n=l()

(26)

where all remaining non-zero amplitudes are given by

(0
ay(€) = (1-,”)

- (};:}(F — &) (27)

Table 2. Here, ¢y =23.45

obliquity. The amplitudes for a general orbit can be

and is the present-day
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obtained from the formulas

am(e.w, €) = ap(€) +ne COSL:J[G,!_,,_I(E) - c!;_,,+}(f)}
- ”.2‘);2{ [m_“_l(e) — 20y, (€) + n;_,,Al(r)]
+ (3) cos 20 [m_,,_g(e) — 2ay,-1(€)
+ 20 (€) — 20y 541 (€) + (.11_,,4,2{6)} } (28)

and

by, (e,w, €) = ne sinu)[(r,u',,_i(e) — 20, (€) + (11_,,_1{(-”
9

T
+

sin 2w [(.U',,_g(f) — 20,1 (€)

&

=+ 20‘1‘.1:+l(5) = a1.11+2(f)] . (29)

These formulae are similar to those obtained by Taylor
% . 9 i 5 x
(1984) but include the terms in = which are required for

n>2. If n=0, then
bin(e,@, €) = 0. Finally, the complex-mode amplitudes Sy

are given by

e 2 QY| = ibl\n] S
‘5’”_"/21+1( 7 Jifn>0,  (30)

o 2 Qfjp| — ih.'\n| .
Sp = 21+1( 5 Al U (31)

am(e, @, €) = ap,(e) and

APPENDIX B

COUPLING COEFFICIENTS FOR SPECTRAL
MODES

In contrast to the spectral transform method (Machen-
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hauer, 1979), the multiplication of two fields is also
carried out in spectral space. For example, on the
lefthand side of Equation (2.1), the product of tempera-
ture 7" and eflective heat capacity C' is represented by

TC=3Y"

f\ Iy -"1=|"_“|||m

1y n—it|
x 1F!.m, Ly om—1my

annx
=y .an

i2m(ny +n2) Gy
Yin (A, ) exp(i2mnt)  (32)

where lo i = max (|l — 1;|,m2) and Iy ux = { + 1. Here,

s

the coupling coeflicients Ghl‘u‘ are defined by

s 1 - 4
Gh,’t,‘ = % / Y:’,w;}/f-_.mgyf.—m dQ . (’33)

Now, the integral involving three spherical harmonics can
he expressed in terms of Wigner 3j symbols

(“ L ”) (34)
m; M m

or, equivalently, in terms of Clebsch-Gordon coeflicients
(Messiah, 1962). Using Wigner 3j symbols, they read

[

Gm!f 2

L 1 I8 Iy l
& < (88)
G 0 0 m; Mo m

For a recursive evaluation of the Wigner 3j symbols, a
modified version of the algorithm by Schulten and
Gordon (1975, 1976) is used. This algorithm is, at the
same tme, ellicient and accurate even for large wave
numbers.

i mam [(2'“ o 1)(212 o 1)(Ql € 1)}
=2
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