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Additive manufacturing (AM) is revolutionizing almost all industries through the production of intricate 

geometries that were previously prohibited by cost or machinability. Ni-based superalloys form a primary 

alloy class for high-temperature applications in the petrochemical, aerospace, and nuclear industries 

because of their intrinsic resistance to creep and high strength. Despite these attractive properties, the 

extreme work hardening of Ni-based superalloys [1] makes traditional manufacturing of complex shapes 

difficult, so these alloys are an attractive target for AM. Superalloy 718 was chosen as an example 

superalloy because of the wide variety of precipitates that can form within its composition space from the 

repetitive heating and cooling cycles of the AM process. The precipitates and other microstructure features 

will dictate the mechanical properties, so there is a significant challenge to characterize the size, number 

density, composition, and volume fraction of each microstructural feature from AM fabrication using 

analytical electron microscopy. 

This work focused on the application of a pixel-wise classification machine learning (ML) model called a 

dynamic segmentation convolutional neural network (DSCNN) to identify the microstructural features of 

an as-fabricated additively manufactured superalloy 718. The specimen was produced using laser powder 

bed fusion on the Concept X-Line 2000R at the Manufacturing Demonstration Facility at Oak Ridge 

National Laboratory (ORNL), and it was examined using the FEI Talos F200X at the Low Activation 

Materials Development and Analysis laboratory at ORNL. Scanning transmission electron microscopy 

(STEM) was chosen over conventional TEM because it collects data across four detectors simultaneously 

for STEM bright field (BF), two annular dark field (DF1 and DF2), and high angle annular dark field 

(HAADF) images. In addition, the SuperX energy dispersive spectroscopy (EDS) system allows for x-ray 

spectra collection for each pixel, adding an elemental component to the dataset. Examples of the electron 

images and colorized EDS intensity maps from Kα x-rays for select elements are shown in Figure 1. In 

practice, the DSCNN works with any input imaging mode and can be used for almost any electron 

microscopy that results in an image. 

The ML algorithm used is a DSCNN that was originally developed to detect defects during additive 

manufacturing at ORNL [2]. The DSCNN accepts an arbitrary number of input images of arbitrary 

resolution while ensuring that the output segmentation is always at the input image resolution. Three 

parallel legs encode information at multiple size scales, enabling the use of global and local information 

for segmentation. Deep morphological features are extracted with the U-net leg of the DSCNN while 

recalling approximate spatial locations. The low-resolution leg is a simple convolutional neural network 

which has a receptive field equal to the entire image. The high-resolution localization leg always has a 

receptive field which can be dynamically configured by the user, guaranteeing pixel-wise classification at 

the native input resolution. It also provides sublinear analysis times: that is, doubling the image resolution 

will not double the inference time. Together, these three legs form a model that can provide microstructural 

identification with near real-time identification. 

Traditional CNNs are hindered by the requirement of hundreds of images with many individual features 

in which to train the network and by their high computational cost. The DSCNN, like other segmentation 

neural networks, uses pixel-wise information to reduce the necessary training set to a minimum of 100,000 
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pixels per class. Thus, the training of the DSCNN for superalloy 718 could be performed on a small image 

set with complementary EDS maps that includes representation of each microstructural feature. A simple 

pipeline was created in the Python environment to facilitate commonality (resolution, file format) among 

the STEM images and EDS x-ray spectra maps to feed into the DSCNN, as shown in Figure 2. Image 

labelling for the training dataset was performed within a custom user interface developed for this 

application. The DSCNN was trained with 24 input channels (4 STEM images, 10 EDS x-ray intensity 

maps, and 10 EDS quantified maps using the Cliff-Lorimer method [3]) to identify and classify 10 classes 

of features: the matrix γ phase, precipitating phases (γ′, γ″, δ, Laves, carbides), grain boundaries, 

dislocations, oxides, and platinum from the focused ion beam (FIB) lamella liftout process. Training and 

identification were performed on a commercially available desktop computer. A performance comparison 

with human experts to determine measures of precision and recall on a test dataset separate from the 

training dataset is still in development. Nevertheless, the implementation of a DSCNN on relatively low-

cost, commonly available hardware will be beneficial to the microstructure analysis community. 

The ultimate intent of this effort is to demonstrate a generalized approach for characterization of complex 

microstructures at large scale. This is being made possible through (1) advances in microscopy and its 

automation to assess large areas of the material (~ 2–3 orders of magnitude greater than what is usually 

performed) and (2) advances in pixel-wise machine learning classification tools that are agnostic to the 

image size, type, and number of input channels. This generalized approach will allow for an unprecedented 

view into materials microstructure that in turn facilitates more accurate prediction of their properties and 

rich source of data for design of new high-performance materials. 

 
Figure 1. Figure 1. Examples of STEM images and EDS intensity maps from additively manufactured 

superalloy 718 for input into the DSCNN for feature identification with added labels. 
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Figure 2. Figure 2. Flowchart from the acquisition of images on the S/TEM instrument through a series 

of custom Python scripts to analyze the images and EDS maps to identify precipitates and other 

microstructural features. 
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