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Data from direct numerical simulations of disperse bubbly flows in a vertical channel are
used to study the effect of the bubbles on the carrier-phase turbulence. We developed a
new method, based on an extension of the barycentric map approach, that allows us to
quantify and visualize the anisotropy and componentiality of the flow at any scale. Using
this we found that the bubbles significantly enhance anisotropy in the flow at all scales
compared with the unladen case, and that for some bubble cases, very strong anisotropy
persists down to the smallest scales of the flow. The strongest anisotropy observed was
for the cases involving small bubbles. Concerning the energy transfer among the scales of
the flow, our results indicate that for the bubble-laden cases, the energy transfer is from
large to small scales, just as for the unladen case. However, there is evidence of an upscale
transfer when considering the transfer of energy associated with particular components
of the velocity field. Although the direction of the energy transfer is the same with and
without the bubbles, the behaviour of the energy transfer is significantly modified by
the bubbles, suggesting that the bubbles play a strong role in altering the activity of the
nonlinear term in the flow. The skewness of the velocity increments also reveals a strong
effect of the bubbles on the flow, changing both its sign and magnitude compared with
the single-phase case. We also consider the normalized forms of the fourth-order structure
functions, and the results reveal that the introduction of bubbles into the flow strongly
enhances intermittency in the dissipation range, but suppresses it at larger scales. This
strong enhancement of the dissipation-scale intermittency has significant implications for
understanding how the bubbles might modify the mixing properties of turbulent flows.
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1. Introduction

Turbulence and multiphase flows are two of the most challenging topics in fluid mechanics
and when combined they pose a formidable challenge, even in the dilute dispersed regime
(Balachandar & Eaton 2010). The focus here is on liquid flows laden with disperse bubbles,
which can be particularly challenging since the bubbles can strongly alter the liquid phase
turbulence (Mudde 2005; Lohse 2018; Elghobashi 2019). In particular, the bubbles can
modify the turbulence due to production effects arising from the bubble wakes (Riboux,
Risso & Legendre 2010; Lai & Socolofsky 2019), enhanced local turbulent kinetic energy
dissipation rates in the vicinity of the bubble surfaces (Santarelli, Roussel & Fröhlich 2016;
Masuk, Salibindla & Ni 2021) and modulation of the liquid mean velocity profile due to
interphase momentum transfer, resulting in an alteration of shear-induced turbulence (Lu
& Tryggvason 2013; du Cluzeau, Bois & Toutant 2019; Cifani, Kuerten & Geurts 2020;
Bragg et al. 2021). Mathai, Lohse & Sun (2020) highlighted particular ways in which the
classical scenario for single-phase turbulence, based on single-point statistical analysis,
is modified due to the bubbles moving relative to the fluid. Turbulence arising from this
relative motion is often referred to as bubble-induced turbulence (BIT) and its effects can
be captured in the Reynolds-averaged Navier–Stokes modelling framework through the
inclusion of additional source terms in the relevant transport equations (Fox 2014; Joshi &
Nandakumar 2015; Ma 2017; Liao et al. 2019; Ma, Lucas & Bragg 2020a).

While significant progress has been made in understanding and characterizing how
the bubbles influence the single-point turbulence statistics of the liquid phase, less
attention has been paid to the influence of the bubbles on the multiscale/multipoint flow
statistics. Those that have considered this aspect have only focused on the kinetic energy
spectrum of the liquid velocity fluctuations, with a key observation being that in BIT
dominated flows, a power-law behaviour for the energy spectrum arises with exponent
−3 in both the wavenumber and frequency domain (Lance & Bataille 1991; Roghair
et al. 2011; Mendez-Diaz et al. 2013; Ma et al. 2017). This behaviour was also reported
in Pandey, Ramadugu & Perlekar (2020), who investigated the energy budget equations
in wavenumber space and explained the −3 slope as arising due to a balance between
kinetic energy production due to the bubbles and viscous dissipation. In their analysis
they evaluated the nonlinear scale-to-scale energy flux term for bubbly flows, showing
a forward (downscale) energy cascade, just as also occurs for single-phase turbulence in
three dimensions. An issue with their analysis, however, is that they included the values
of the flow at grid points occupied by the bubbles when evaluating the statistics of the
carrier phase, thereby contaminating the fluid statistics. A similar finding concerning an
average forward energy cascade was reported by Lai et al. (2018), who performed direct
numerical simulation (DNS) of bubbles rising vertically in a channel flow filled with
initially quiescent water. They also showed that the energy cascade is highly anisotropic,
and that there is a strong inverse energy cascade for eddies orientated vertically in the flow.

There have been very few studies exploring the multiscale properties of bubble-laden
turbulent flows in physical space, e.g. using structure function analysis. Rensen, Luther
& Lohse (2005) performed hot-film anemometry measurements in the Twente water
tunnel and computed the longitudinal second- and fourth-order structure functions with
the aid of Taylor’s hypothesis. They found an increase of the second-order structure
function for the two-phase case compared with the single-phase case under the same bulk
Reynolds number, and that this increase was more pronounced at the small scales than
the large scales. Their fourth-order structure function results revealed an increase of the
intermittency at the small scales of the flow when the flow contained bubbles, even for a
relatively low gas void fraction (0.5 %). Similar behaviour was also observed in Biferale
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et al. (2012) when comparing the small-scale properties of boiling and non-boiling
convective turbulent flows.

An important aspect yet to be quantified is how the bubbles affect the anisotropy of the
flow at different scales. For single-phase turbulence, the energy containing scales in many
flows such as those with shear, rotation and buoyancy are anisotropic (Biferale & Procaccia
2005). Phenomenological theories of turbulence predict a return to isotropy at small
enough scales (Kolmogorov 1941b; Frisch 1995; Sreenivasan & Antonia 1997). However,
measurements have revealed persistent small-scale anisotropy (Pumir & Shraiman 1995;
Shen & Warhaft 2000; Ouellette et al. 2006; Carter & Coletti 2017). In contrast to
single-phase flow, where energy is often injected into the flow at large scales, bubbles
can inject energy into the flow at the scale of their size, which usually corresponds to the
small scales of the turbulence. Since the bubbles have a preferential direction of motion
due to buoyancy, this could lead to the injection of strong anisotropy into the flow at the
small scales, leading to strong departures from the behaviour of the single-phase case. The
study of Pandey et al. (2020) was based on Fourier space analysis with averaging over
spherical shells in wavevector space, and so did not permit them to explore the anisotropy
of the flow at different scales.

Another important point is that, in Pandey et al. (2020), the flow had no background
turbulence (i.e. all the turbulence was generated by the bubbles), and hence it was
not possible to consider how the bubbles modify the turbulence compared with the
single-phase case. In order to more fully understand how the bubbles modify the properties
of the turbulence, it is desirable to consider a configuration in which the unladen flow is
already turbulent, and then one can explore how the bubbles modify the properties of the
turbulence when they are introduced.

In the present work we seek to advance the understanding of the properties of
bubble-laden turbulent flows across its range of scales. To do this, data from DNS of
finite-size bubbles in a turbulent channel flow with a prescribed bulk Reynolds number
are utilized, for different bubble sizes and for mono- and bidisperse cases. A new method
is developed based on the barycentric map (Banerjee et al. 2007), and applied to the DNS
data to quantify the anisotropy of the bubble-laden turbulence flow across the range of its
scales. By computing the structure functions of various orders, the direction-dependent
liquid velocity fluctuations are also explored at different scales, as is the scale-to-scale
energy transfer and intermittency. These results provide new insights into the properties
of bubble-laden turbulent flows, and how they differ from the single-phase counterpart at
different scales in the flow.

2. Direct numerical simulations

2.1. Database
The DNS data we use are from the studies of Santarelli & Fröhlich (2015, 2016) who
simulated the motion of many thousands of bubbles at low Eötvös number in a vertical
turbulent channel flow. The bubbles are handled using an immersed boundary method,
and are modelled as rigid spherical objects with a no-slip condition enforced at their
surface, representing the behaviour of air bubbles rising in contaminated water. Compared
with other simulations of this type (see the related references in Mathai et al. 2020),
these simulations are substantially closer to applications in that they involve a turbulent
background flow, contaminated fluid, realistic density ratio ρG/ρL (where ρG and ρL are
the gas and liquid densities, respectively), higher bubble Reynolds number, a much larger
domain and a much larger number of bubbles.
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Figure 1. Schematic representation of the DNS configuration (not to scale). The marked region shows the
location where the structure functions are calculated. (Main part of the picture reprinted from Ma et al. 2017.)

As shown in figure 1, the vertical flow takes place between two flat walls separated by
the distance H, and the size of the computational domain is Lx × Ly × Lz = 4.41H × H ×
2.21H. Here, x denotes the streamwise coordinate, y the wall-normal coordinate and z the
spanwise coordinate, and the corresponding unit basis vectors are ex, ey, ez, respectively.
The numerical grid employed has the same spacing Δ = H/232 in all directions, resulting
in 1024 × 232 × 512 grid points in the x, y and z directions, respectively. A no-slip
condition was applied at the walls, and periodic boundary conditions were applied in the
x and z directions. The gravitational acceleration acts in the direction −ex with magnitude
g, and the bulk velocity Ub was kept constant by instantaneously adjusting a volume
force, equivalent to a pressure gradient, thus imposing a desired bulk Reynolds number
Reb = UbH/ν, where ν is the kinematic viscosity of the fluid. The DNS were all conducted
with Reb = 5263.

The data used in this work were obtained for three monodisperse cases (SmMany,
SmFew, LaMany) and one bi-disperse case labelled BiDisp, of the same void fraction
as SmMany and LaMany with half the void fraction consisting of smaller bubbles and the
other half of larger bubbles. Additionally, a single-phase simulation labelled Unladen was
performed under the same conditions for comparison. Table 1 provides an overview of all
cases with the corresponding labels.

The ratios of Δ/η for all the cases are given table 1, where η is the Kolmogorov
scale based on the averaged dissipation in the channel centre obtained in Santarelli &
Fröhlich (2016). For single-phase turbulence, Δ/η � 2.1 is considered the requirement
for a DNS to be well resolved in terms of accurately capturing the dissipation rate in
the flow (Pope 2000). Based on this criterion, our DNS are well resolved. For accurately
capturing high-order moments of small-scale, single-phase turbulence, it is known that
finer grids are required, and this likely also applies to bubble-laden turbulent flows. Given
these resolution constraints, we restrict our focus in this paper to moments of order four
or less. We expect that the grid resolutions of the DNS are sufficient to fully resolve the
second- and third-order flow statistics which are the main focus of our paper. For the
fourth-order moments, it is possible that the DNS is slightly under-resolved and these
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Parameter Unladen SmMany SmFew LaMany BiDisp(Sm) BiDisp(La)

Np — 2880 384 913 1440 546
αb — 2.14 % 0.29 % 2.14 % 1.07 % 1.07 %
dp/H — 0.052 0.052 0.076 0.052 0.076
Ar — 38171 38171 114528 38171 114528
Rep — 235.5 268.3 475.2 233.6 463.6
CD — 0.89 0.705 0.666 0.93 0.703
Δ/η 0.41 1.5 0.99 1.8 1.7

Table 1. Parameters of the cases used for the present study according to Santarelli & Fröhlich (2016). The
labels BiDisp(Sm) and BiDisp(La) denote the results for the bi-disperse case, BiDisp, where averaging has
been restricted to small and large, respectively. Here, Np is the number of bubbles, αb is the bulk void fraction,
dp the bubble diameter, Ar ≡ |ρG − ρL|gd3

p/(ρLν2) the Archimedes number. The values of Rep, the bubble
Reynolds number based on dp and the bubble to fluid relative velocity, as well as CD the drag coefficient, are
obtained from the DNS; Δ/η is the ratio of grid resolution and Kolmogorov length η ≡ (ν3/〈ε〉)1/4.

results must therefore be treated with some caution. However, as will be shown later,
the SmFew case is the one which displays greatest flow intermittency at the small scales,
but this case has Δ/η = 0.99, which is more than twice as fine as required to resolve
the dissipation, and may be sufficient for resolving the fourth-order moment. A study
similar to Yeung, Sreenivasan & Pope (2018) will need to be conducted in future work
in order to precisely consider the effect of the grid resolution on higher-order statistics in
bubble-laden turbulent flows. Another related point is that in Dodd & Jofre (2019) it was
shown that the viscous length scale of the flow at a droplet interface in a turbulent flow,
δν = ν

√
ρG/τΣ (τΣ is the mean interfacial shear stress), can be less that η, and that the

grid resolution must be sufficiently fine to resolve this length scale. However, since δν is
small, αb � 2.14 %, and we only consider flow data at points where there are no bubbles
(see below), then the contribution to the flow data we are analysing arising from flow in
the viscous layer around the bubbles in our flow will be very small. Hence, in the regions
the flow that are the focus of our analysis, the grid resolution criterion is determined by η,
not δν . If, by contrast, we were to consider the flow properties close to the surface of the
bubbles, such as was considered in Dodd & Jofre (2019), then it would indeed be necessary
to ensure that the grid is sufficiently fine to resolve δν .

2.2. Data processing
A standard way to analyse the multiscale properties of turbulence is to use the fluid velocity
increments �u′(x, r, t) ≡ u′(x + r, t) − u′(x, t), where u′ ≡ u − 〈u〉 is the fluctuating
fluid velocity, r is the separation vector and 〈·〉 denotes an ensemble average (estimated
using appropriate space and time averages). The calculation of velocity increments in a
bubble-laden flow is, however, delicate, since the phase boundaries can interrupt the fluid
flow signal. To overcome this non-continuous velocity signal challenge, different methods
have been used in the literature, such as smoothing the discontinuities by a Gauss function
(Lance & Bataille 1991); considering only intervals between bubbles where the velocity
signal is continuous (Martínez et al. 2010; Roghair et al. 2011; Mendez-Diaz et al. 2013);
and measuring the wake behind a rising swarm of bubbles, where there are no bubbles
(Riboux et al. 2010). Here, we use a method ideally suited for interface-resolved DNS of
disperse flows proposed in our previous study (Ma et al. 2017). In this method, the fluid
velocity is recorded along grid lines in the spanwise direction whose wall-normal location
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lies within the centre region 0.474H < y < 0.526H highlighted in figure 1. This width
corresponds to the smaller bubble diameter (table 1), which is a sufficiently thin region
for these lines to be considered statistically equivalent. For each line, data were recorded
whenever the entire line was free from bubbles, and we recorded 1 000 000 instances of
this for each case. With this method, one cannot compute �u′(x, r, t) for arbitrary r, but
can compute �u′(x, r3e3, t), allowing us to perform an extensive investigation into the
scale-dependent properties of bubble-laden turbulent flows. Note that in the data analysis
that follows, 〈u〉 is computed based only on these lines of data, and therefore does not
correspond to the average over the entire flow field. The mean velocity makes a negligible
direct contribution to the statistics of �u′(x, r3e3, t) since the mean velocity is almost
constant over the region 0.474H < y < 0.526H in which the data are collected.

To test for statistical convergence, we computed higher-order moments of �u′(x, r3e3, t)
over the first and second halves of the dataset consisting of 1 000 000 lines of data.
The results showed negligible differences, indicating that the 1 000 000 realizations are
sufficient for statistical convergence of the results.

2.3. Reynolds number in bubble-laden turbulent flows
Before analysing the properties of the bubble-laden turbulent channel flows at different
scales we first consider the Reynolds numbers of the different cases, since this gives insight
into the range of excited scales of motion in the turbulent flow. As mentioned in § 2, the
bulk Reynolds number Reb = UbH/ν was kept fixed at Reb = 5263. However, since we
are interested in the properties of the fluctuating component of the velocity field, it is
more informative for our purposes to consider a Reynolds number based on the fluctuating
velocity field. To that end we consider the Reynolds number ReH ≡ u∗H/ν, where u∗ ≡√

(2/3)kc, and kc is the turbulent kinetic energy (TKE) k ≡ (1/2)〈u′
iu

′
i〉 evaluated at the

channel centre.
In figure 2 we plot ReH vs A2, where A2 = ajiaij is the second invariant of the

Reynolds-stress anisotropy tensor (evaluated at the channel centre), aij = 〈u′
iu

′
j〉/k −

(2/3)δij, that quantifies the magnitude of the large-scale anisotropy in the flow. Plotting the
results in this way gives further insight into how the range of excited scales in the flow is
also related to the flow anisotropy. The results show that ReH varies significantly across the
cases. In the SmFew case, it is only slightly larger than the unladen case as the bubble size
dp is small and the bulk void fraction αb is quite low. However, as dp and αb are increased,
ReH increases significantly, implying that as dp and αb are increased (at least over the
range we consider), the range of excited scales in the flow also increases, and hence the
flow becomes increasingly multiscale. The increase cannot continue indefinitely, however,
since when dp and αb become sufficiently large, the problem becomes analogous to flow
through a porous medium, for which the flow Reynolds number cannot be very large. This
is also related to the fact that in such a regime, H is no longer the relevant length scale in
the flow Reynolds number, but rather the inter-bubble distance becomes the appropriate
length scale. In the range of parameters considered for the bubble-laden cases, figure 2
suggests that ReH monotonically decreases with increasing A2. While one may speculate
that this is due to the differing properties of the bubble wakes for different sized bubbles,
the explanation for the observed trend is not entirely clear since the behaviour may also
depend on wake interactions which are more difficult to understand.

3. Multiscale anisotropy and second-order structure function

A systematic approach for analysing the multiscale anisotropy of a turbulent flow is to
use the irreducible representations of the SO(3) group, which consists of projecting the
927 A16-6
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Figure 2. Reynolds number, ReH plotted vs the second anisotropy invariant.

multipoint turbulent correlation functions onto the space of spherical harmonics (Arad,
L’vov & Procaccia 1999; Biferale & Toschi 2001; Biferale & Procaccia 2005). However,
such an analysis requires information on the full three-dimensional flow field, something
that is usually not obtainable from experiments. Furthermore, as discussed in § 2, phase
boundaries interrupt the flow field in multiphase flows, introducing further challenges in
applying this method.

Due to these challenges, many investigations on anisotropy in turbulent flows focus
directly on the structure function tensor (which are essentially moments of the velocity
increments), comparing the longitudinal and transverse components in order to discern the
level of anisotropy in the flow. In single-phase flows, the main focus was on scrutinizing
the postulate of local isotropy and its implications (Kolmogorov 1941b, K41 for brevity).
In general, experiments and numerical simulations do not strictly confirm the convergence
toward isotropy predicted within K41 theory as a function of the scale (Dhruva, Tsuji &
Sreenivasan 1997; Kurien & Sreenivasan 2000; Shen & Warhaft 2002). In the context
of the single-point Reynolds stresses, the Lumley triangle (Lumley & Newman 1977)
provided a powerful way to quantify and visualize anisotropy in the flow. It would be
desirable to have something analogous to this for the structure functions, which would
then provide a way to quantify and visualize anisotropy in the flow at different scales.

3.1. Second-order structure function and its anisotropy
Consider the second-order structure function

Dij(r, t) ≡ 〈�u′
i(r, t)�u′

j(r, t)〉. (3.1)

Hereafter, we will suppress the time argument since we are focusing on statistically
stationary flows. The Cartesian coordinate system chosen is depicted in figure 1, and as
discussed in § 2, our DNS data only allow us to compute the velocity increments for
separations in the spanwise direction, i.e. r = r3e3 (and r ≡ ‖r‖ = r3). In this case the
longitudinal structure function is DLL(r3) = D33(r3), and for an incompressible, isotropic
flow we would have

Diso
11 = Diso

22 = D33 + r
2

∂

∂r
D33; Diso

ij = 0 (for i /= j). (3.2a,b)

Figure 3 displays the results for D11, D22, D33 as a function of r/H for all of the DNS
cases. We also plot the isotropic form of the results based on (3.2a,b) for the cases Unladen
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Figure 3. DNS results for the second-order transverse (a,b) and longitudinal (c) structure functions.

(labelled Unladen iso) and SmFew (labelled SmFew iso). The results show that, in general,
the introduction of bubbles into the flow leads to strong enhancements of the fluctuations
in all three directions of the flow. For r/H � O(1), Dγ γ ≈ 2〈u′

γ u′
γ 〉 as expected (no

index summation is implied), and are consistent with the values obtained by Santarelli
& Fröhlich (2016) for the corresponding Reynolds normal stresses in the channel centre.
Compared with the unladen case, the enhancement of the structure function level is in the
sequence SmFew, SmMany, BiDisp to LaMany, which corresponds to increasing averaged
bubble Reynolds number and/or gas void fraction. This holds for all three directions across
all scales from around one channel width to the smallest dissipative scales, and shows that
the bubbles modify fluctuations in the flow at scales both larger and smaller than the bubble
length scale dp. Moreover, the increase of the structure functions in the bubble-laden cases
is more pronounced at the smaller scales than at the larger scales. This behaviour is in
close agreement with the experimental results of Rensen et al. (2005) who used Taylor’s
hypothesis to construct the results. We also note that, although D22 is very similar for the
Unladen and the SmFew cases at the large scales, it is significantly different for these cases
at the smaller scales (and similarly for D33), with the bubbles significantly enhancing the
smaller-scale fluctuations in the flow.

For the unladen case, departures from D11 = Diso
11 and D22 = Diso

22 are not too strong,
with stronger departures at the larger scales, consistent with the Reynolds-stress behaviour
in the channel centre 〈u′

1u′
1〉/〈u′

2u′
2〉 ≈ 1.47. As r is decreased the flow becomes more

isotropic, although, as we shall show later, the small scales do not actually reach an
isotropic state. In contrast, for the bubble-laden cases, there are strong departures from
isotropy at all scales. For example, for the SmFew case, D11 shows significant deviations
from Diso

11 at all scales, and for D22 the deviations from the isotropic form Diso
22 actually

become stronger as one goes to scales smaller than the bubble length scale (dp ≈ 0.05H
for this case), while the larger scales behave more isotropically. The return to isotropy can
therefore be strongly violated for bubbly turbulent flows. This is not surprising, however,
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Figure 4. Ratio of DTT/DTT (a) and DTT/DLL (b,c) vs separation distance for all cases considered.

since the mean velocity of the bubbles is unidirectional, and the fact that dp 
 H means
that the bubbles can directly inject fluctuations into the flow at the small scales, in contrast
to the unladen case where the fluctuations are injected into the flow at large scales due to
the mean shearing of the flow.

Figure 4 shows the ratios of the different structure function components in order to
see more clearly the anisotropy of the flow. For an isotropic system we would have
D11/D22 = 1 at all scales, and for the unladen case D11/D22 is quite close to 1, especially
at smaller scales, while for the bubble-laden cases D11/D22 deviates strongly from 1,
reaching values O(10). Except for the SmFew case, the curves for D11/D22 in the
bubble-laden cases tend to decrease with decreasing r, but with a bump at scale r =
O(dp), indicating the injection of anisotropy at the bubble scale. In isotropic turbulence,
D11/D33 → 1 and D22/D33 → 1 for r � O(H), while D11/D33 → 2 and D22/D33 → 2
for r/H → 0 (Pope 2000). While deviations from these are not too strong for the unladen
case, strong departures are observed for the bubble-laden cases at all scales. The departures
are strongest for the ratios involving D11, which is to be expected since this is the direction
of the mean trajectory of the bubbles. Moreover, for each of the ratios plotted in figure 4,
the bubble-laden cases reveal a bump at r = O(dp), indicating the injection of anisotropy
into the flow due to the bubbles and their anisotropic motion in the flow due to the
buoyancy force acting on them.

While comparisons of the ratios of D11, D22, D33 are a standard way to analyse the
multiscale anisotropy in the flow (van de Water & Herweijer 1999; Brugger et al. 2018),
this method provides limited quantitative insight into the degree of anisotropy. For
example, while the behaviour of these ratios is well known for an isotropic flow in the
limits r/H → 0, r/H � O(1), their behaviour for intermediate r/H is not known and
cannot be determined simply by the condition of isotropy. It is therefore desirable to
provide a simple measure of anisotropy based on Dij that applies at all scales, and also
helps to visualize the anisotropic behaviour. In the context of the Reynolds-stress tensor,
this can be achieved using either the Lumley triangle (Lumley & Newman 1977) or, more
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recently, the barycentric map (BAM) proposed by Banerjee et al. (2007). However, as
we describe in the next subsection, these methods cannot be directly applied to quantify
multiscale anisotropy associated with Dij, and modification is required.

3.2. Quantifying and visualizing scale-dependent anisotropy
Characterizing the scale-dependent anisotropy associated with Dij is considerably more
involved than that based on the Reynolds stress 〈uiuj〉. This is because the relationship
between componentiality and isotropy breaks down at sub-integral scales. For example, in
the case of the Reynolds-stress tensor, its components in the isotropic state are 〈u′

iu
′
j〉iso ≡

〈u′
mu′

m〉δij/3, according to which the components in all three Cartesian directions are the
same (a ‘three-component flow’). In the case of Dij, its isotropic state is (assuming the
flow is incompressible)

Diso
ij = DLLδij + r

2

(
δij − rirj

r2

) ∂

∂r
DLL. (3.3)

At the large scales (∂/∂r)DLL = 0, and we have Diso
ij = DLLδij = 〈u′

mu′
m〉δij/3, and hence

the isotropic state corresponds to a three-component flow. On the other hand, in the limit
r → 0 one has DLL = 〈ε〉r2/15ν (Pope 2000) and

Diso
ij = 2DLLδij − rirj

r2 DLL. (3.4)

In this case the isotropic state does not correspond to a three-component flow, but rather
the components transverse to r are twice as large as those parallel to r. Hence, in general
there is no correspondence between the componentiality of the flow and isotropy. For this
reason, measures such as Dij − (Dmmδij/3), which have previously been used to define
scale-dependent anisotropy (e.g. Brugger et al. 2018), do not in fact quantify isotropy, but
rather only quantify deviations from the three-component state.

In view of these considerations, anisotropy must be quantified by the deviation of Dij

from Diso
ij , rather than from Dmmδij/3. To this end, we define two normalized tensors Aiso

and A with components

Aiso
ij (r) ≡

Diso
ij

Diso
kk

, (3.5)

and

Aij(r) ≡ Dij

Dkk
, (3.6)

respectively. We may represent these symmetric tensors in their respective eigenframes,
and then re-arrange to write them in the form

Aiso = (λ1 − λ2)P1c + (λ2 − λ3)P2c + λ3P3c, (3.7)

A = (μ1 − μ2)Q1c + (μ2 − μ3)Q2c + μ3Q3c, (3.8)

where λ1 � λ2 � λ3 are the ordered eigenvalues of Aiso (due to isotropy we have λ1 = λ2)
with corresponding normalized eigenvectors p1, p2, p3 and μ1 � μ2 � μ3 are the ordered
eigenvalues of A with corresponding normalized eigenvectors q1, q2, q3. The basis tensors
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in (3.7) and (3.8) are defined as

P1c ≡ p1p1; P2c ≡ p1p1 + p2p2; P3c ≡ p1p1 + p2p2 + p3p3, (3.9)

Q1c ≡ q1q1; Q2c ≡ q1q1 + q2q2; Q3c ≡ q1q1 + q2q2 + q3q3, (3.10)

and represent the one-component, two-component and three-component limiting states of
the tensor. For example, if the tensor A has μ1 /= 0, μ2 = μ3 = 0 then A = μ1Q1c so that
the tensor is one-component, while if the tensor has μ1 = μ2, μ3 = 0 then A = μ2Q2c
so that the tensor is two-component etc. The two sets of basis tensors P1c, P2c, P3c and
Q1c, Q2c, Q3c are related by rotation matrices and contain information on the orientation
of the tensors. Our aim is to use a BAM to visualize the componentiality of the tensors, and
the information on the componentiality is contained within the coefficients multiplying
the basis tensors in (3.7) and (3.8). The BAM (like the Lumley triangle) therefore does not
convey information about the orientation of the tensor in space, which is contained in the
basis tensors.

The coordinates of a BAM are used to represent the componentiality of the flow, and
to construct such a map, new variables are introduced corresponding to the coefficients in
(3.7) and (3.8) normalized by the largest associated eigenvalue

I1c = (λ1 − λ2)/λ1; I2c = (λ2 − λ3)/λ1; I3c = λ3/λ1, (3.11)

J1c = (μ1 − μ2)/μ1; J2c = (μ2 − μ3)/μ1; J3c = μ3/μ1. (3.12)

Using these variables, the coordinates for a BAM can be defined as (Banerjee et al. 2007)

(xiso
BAM, yiso

BAM) = I1c(x1c, y1c) + I2c(x2c, y2c) + I3c(x3c, y3c), (3.13)

(xBAM, yBAM) = J1c(x1c, y1c) + J2c(x2c, y2c) + J3c(x3c, y3c). (3.14)

Here, (x1c, y1c) = (1, 0), (x2c, y2c) = (0, 0) and (x3c, y3c) = (1/2,
√

3/2) are the three
corner points corresponding to the limiting states of componentiality, which are chosen
to be corner points of an equilateral triangle as this aids the interpretation of the
BAM results. By design, according to their definitions we have I1c + I2c + I3c = 1,
J1c + J2c + J3c = 1 and at each corner of the triangle, only one of the coefficients is
finite. As such, the location of a given coordinate in the triangle provides direct visual
information regarding the componentiality of the flow at the scale considered, and the
relative contribution of each of the three limiting states.

With this approach, Aiso(r) and A(r) can be mapped to a location in the BAM, and the
linear distance between the coordinates corresponding to these two tensors then gives a
measure of the anisotropy at that scale. In particular, the anisotropy at a given scale can be
quantified by

Cani(r) ≡
√

(xBAM − xiso
BAM)2 + ( yBAM − yiso

BAM)2. (3.15)

For an isotropic flow, A = Aiso, and consistent with this our definition yields Cani =
0 ∀r. The point in the BAM representing the state A = Aiso will in general depend
upon scale. At the large scales of an isotropic flow, I1c = I2c = 0 and I3c = 1, so
that the coordinates for Aiso are (xBAM, yBAM) = (x3c, y3c). Therefore, at the large scales
Cani(r) recovers the property that anisotropy is related to distance from the top of the
triangle which corresponds to the three-component state, just as for the single-point
Reynolds-stress tensor (Banerjee et al. 2007). At smaller scales, Aiso is not located at
the point (xBAM, yBAM) = (x3c, y3c), and its location in the triangle will depend upon r.
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Figure 5. Representation of A (3.6) and its isotropic form Aiso (3.5) in the BAM (a) for all cases considered.
The transparency of a given colour reflects the scale size, with lighter/darker denoting smaller/larger scale.
(b) Plot to illustrate the meaning of Cani(r), defined in (3.15), using data for the BiDisp case. In this plot,
Cani(r) is depicted by the double-arrow lines, with different lines corresponding to Cani at different scales r.
The start and end points for a given line correspond to points in the BAM representing A(r) and Aiso(r), and the
length of the line denotes the value of Cani. The lines shown correspond to the values of Cani for the smallest
scale r = Δ and largest scale r = 1.1H accessible with our dataset, and illustrate that the anisotropy is stronger
at r = 1.1H than it is at r = Δ.

Provided that (∂/∂r)DLL � 0 (true for a homogeneous flow), then all projections of Diso
ij

in the plane orthogonal to r are equivalent and are greater than or equal to DLL. As a
result, the point representing Aiso is confined to the left side of the triangle, corresponding
to a state of axisymmetric contraction. Moreover, as r is decreased, this point moves
monotonically away from the three-component state towards the two-component state.
The linear distance from this point to the point in the triangle representing A represents
the amount of anisotropy. This is illustrated in figure 5.

We note that in the traditional Lumley triangle, it is the fact the trace of the
Reynolds-stress anisotropy tensor, aii, is zero that allows its properties to be represented in
a two-dimensional triangle using two independent eigenvalues of aij. This restriction does
not apply to the BAM approach, which is why we are able to represent the properties of
Aiso and A in a two-dimensional map, even though the trace of these tensors is not zero.

3.3. Application of the new method
We now turn to apply the new method described in § 3.2 to our DNS results. The
trajectories for Aiso in figure 5(a) all lie on the left side of the triangle, corresponding
to the state of axisymmetric contraction, associated with the fact that Diso

11 = Diso
22 � D33.

The trajectories for Aiso at large r are near to the three-component upper corner of the
triangle, however, for the largest r/H for which we have data, (∂/∂r)DLL /= 0 and so the
exact three-component state Aiso = I/3 is not observed. As r is decreased, the trajectory
for Aiso moves down the left side of the triangle, towards the two-component corner.
As discussed in § 3.2, the reason why Aiso is located along this edge of the triangle is
that Diso

11 = Diso
22 > D33 when (∂/∂r)D33 > 0, corresponding to a state of axisymmetric

contraction.
The results in figure 5(a) for A show that for all cases, at the large scales the flow is

closer to a state of axisymmetric expansion than contraction (unlike Aiso), due to the
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Figure 6. Anisotropy measures Cani (a) linear plot, (b) the same data with semi-log plot. The two vertical
dashed lines in (b) show r = dp for smaller and larger bubbles, respectively.

streamwise fluctuations being larger than those for the other directions. However, the
bubble cases are much closer to the one-component corner of the triangle at the large scales
than the unladen case. This is due to the fact that in addition to the streamwise pressure
gradient acting on the flow, the bubbles also experience a strong buoyancy force in this
direction which causes their streamwise fluctuations to be much larger than the fluctuations
in the other directions. The trajectories of A in the triangle are highly nonlinear, and
show a tendency to migrate towards the axisymmetric contraction side of the triangle
as r is decreased, consistent with an approach to isotropy as r is decreased, although
never obtaining an isotropic state. The exception to this is the SmFew case for which
the trajectory of A actually approaches the one-component corner of the triangle as r is
decreased. This surprising behaviour is consistent with that observed in figure 4. For each
of the bubble cases, and most noticeably for the LaMany and BiDisp cases, there is a cusp
point at which the trajectory of Cani as a function of r in the triangle changes direction.
This turning point occurs at r = O(dp).

A quantitative measure of the scale-wise anisotropy is provided by Cani, introduced in
§ 3.2. This quantity provides a linear measure of anisotropy, and is zero for an isotropic
flow. For illustration, in figure 5(b) we show the trajectories of A and Aiso for the BiDisp
case and join the starting and ending points of these trajectories with double-arrow lines.
The length of the line connecting the starting points represents Cani(r = 1.1H), while the
length of the line connecting the ending points represents Cani(r = Δ), where Δ is the
grid spacing in the spanwise direction. The plot shows that Cani(1.1H) > Cani(Δ), such
that the flow is more isotropic at the smaller scales in BiDisp case.

In figure 6 we show the results for Cani as a function of r/H for all cases. In general,
Cani monotonically decreases with decreasing r, showing that the flow becomes more
isotropic at decreasing scales. However, for these cases isotropy is never fully recovered,
with anisotropy persisting into the dissipative range scales. Such behaviour for unladen
turbulent flows has also been observed experimentally, including at much higher Reynolds
numbers, as seen in studies by Kurien & Sreenivasan (2000), Antonia, Zhou & Romano
(2002) and Carter & Coletti (2017). Furthermore, we note that for r � 0.02H (most clearly
seen in the semi-log plot of figure 6b) the return to isotropy is interrupted for the unladen
case, and Cani actually becomes larger as r is further decreased, implying increasing
anisotropy at these scales. Similar behaviour has also been observed in both experimental
(Carter & Coletti 2017) and numerical studies (Meneveau 1991; Bos, Liechtenstein &
Schneider 2007), where it was suggested to be due to anisotropic intermittency at the
dissipative scales.
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The results in figure 6 show that the departure from isotropy is in general much more
pronounced for the bubble-laden cases than for the unladen case. This is again due to
the fact that the bubbles introduce a significant source of momentum into the flow in the
direction parallel to gravity due to the buoyancy force they experience. For the unladen
case, the anisotropy is quite weak in the channel centre because the mean shear that
generates the anisotropy is weak in that region of the flow. We also notice from figure 6(a)
that the level of anisotropy decreases with increasing bubble Reynolds number, Rep. In
particular, the anisotropy across the scales generally decreases in the sequence SmMany
(SmFew), BiDisp to LaMany, which corresponds to increasing Rep. This behaviour is
likely due to both the Rep-dependent structure of the wakes produced by the bubbles (see
the supplementary material to Santarelli & Fröhlich 2016) and also the path of the rising
bubbles which becomes more chaotic and less uni-directional as Rep increases (Horowitz
& Williamson 2010; Ern et al. 2012). It is also interesting to note that the cases SmFew
and SmMany which have similar Rep, but different αb, have a similar level of anisotropy.
This suggests that Rep plays more of a role than αb in determining the contribution
of the bubbles to the flow anisotropy, at least over some regimes of αb (of course it
cannot be true in general since, for example, when αb = 0 the bubbles have no effect on
the flow).

Another observation prompted by figure 6 is that the shape of the Cani curve is
remarkably similar for the three cases involving the highest αb (SmMany, LaMany and
BiDisp). This shape may be approximately divided into three regimes: for r > O(dp),
a range in which the anisotropy gradually reduces as r is decreased; a bump (seen
more clearly in the semi-log plot) is observed at the scale of the bubble r = O(dp);
and a third regime at r < O(dp) where the anisotropy again reduces, but at a much
faster rate with decreasing r than it does in the first regime. This rapid reduction in
anisotropy in the last regime is never fully successful, however, with significant anisotropy
persisting at the smallest scales. For the SmFew case, the first two regimes can also be
identified, however, we observe scale-independent anisotropy for r < O(dp). A possible
reason for this difference is that due to the low gas void fraction in the SmFew case,
scales at r < O(dp) are influenced more strongly than the other cases by the single-phase
behaviour, which as discussed, leads Cani to actually increase at the smallest scales.
Moreover, we notice that the rate at which the anisotropy decays with decreasing r is
stronger with increasing Rep, even though the actual value of the anisotropy becomes
weaker with increasing Rep. This is in contrast with the phenomenological notion from
single-phase homogeneous anisotropic turbulence that the rate of return is typically faster
for more strongly anisotropic flows, and is related to the nature of the slow part of the
pressure–strain interaction term (Chung & Kim 1995). The present observation implies,
however, that in bubbly flows the additional rapid pressure–strain term arising from
the bubble-induced force production (Ma et al. 2020b) may play an important role in
determining the scale-dependent anisotropy in bubbly turbulent flows. More extensive
DNS data would be required in order to investigate this in detail.

The results in figure 6(b) also show that there is no clear difference in the scale at which
the bump occurs in the Cani curve when comparing cases with small and large bubbles.
One reason for this is simply that if the injection of fluctuations into the flow by the bubbles
occurs primarily at r = O(dp), then, unless dp differs significantly, one might not be able
to discern a clear difference in the scale of the injection. This is the case for the present
data, since the small and large bubbles have diameters in the ratio 0.052 : 0.076, i.e. their
ratio is order 1.
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4. High-order structure functions

4.1. Energy transfer and third-order structure functions
The third-order structure function is of particular significance since it is related to the mean
nonlinear energy transfer among the scales of a turbulent flow (Alexakis & Biferale 2018).
In particular, in the Kármán–Howarth-type equation governing Dii(r3, t), the inter-scale
energy transfer term is (Hill 2001)

F(r3, t) =
3∑

γ=1

Fγ (r3, t) ≡
3∑

γ=1

∂

∂rγ

Dγ ii

∣∣∣∣
r=r3e3

, (4.1)

where Dγ ii(r, t) ≡ 〈�u′
γ (r, t)Δu′

i(r, t)�u′
i(r, t)〉. Note that this definition does not assume

isotropy of the flow, but applies to anisotropic flows as considered here.
When F < 0, this corresponds to the nonlinear term supplying energy to the scale,

while F > 0 corresponds to the nonlinear term removing energy from the scale. In a
single-phase, three-dimensional turbulent flow, there is on average a downscale flux of
energy with F < 0 in the inertial and dissipation ranges, representing the transfer of
energy injected into the flow at the large scales down to the smallest scales where it is
dissipated due to viscous stresses. However, the presence of bubbles in the flow could
change this picture, since bubbles produce kinetic energy at scales O(dp) and some of this
may then be transferred up towards the larger scales, as well as some being transferred
down towards smaller scales. It is of great interest to understand this basic question of how
the bubbles modify the energy transfer mechanisms and behaviour in the turbulent flow
compared with the single-phase behaviour and mechanisms of strain self-amplification
and vortex stretching (Carbone & Bragg 2020; Johnson 2020). However, since our DNS
data were obtained for a fixed streamwise and wall-normal location, we are only able to
compute the F3 contribution in (4.1), and thereby cannot fully determine F . Nevertheless,
we can still partially explore the question of the effect of the bubbles on the energy transfer
by considering F3.

In figure 7(a) we plot F3 for the unladen case. The results show that at larger scales
F3 > 0, while at smaller scales F3 < 0, corresponding to energy being taken from the
large scales and passed down to the small scales via the nonlinear transfer term. At this
low Reynolds number, there is no inertial range over which F3 is constant, indicating that
there is no cascade in the strict sense. In figure 7(b) we plot F3 for all the cases. The first
thing that is apparent from these results is that the nonlinear energy transfer is in general
much stronger for the bubble cases than the unladen case. For example, for the LaMany
case, the peak magnitude of F3 is three orders of magnitude larger than for the unladen
case. However, this is mainly due simply to the fact that the bubble-laden cases have more
turbulent kinetic energy in the flow (see figure 3). The second thing is that the direction
of the energy transfer for the bubble cases is the same as the unladen case, indicating that
energy is passed downscale from the large scales to the small scales in the flow. The study
of Pandey et al. (2020) explored a homogeneous bubbly turbulent flow using a Fourier
space analysis and also observed that there is a downscale energy transfer, although their
flow was considerably different to ours, and as noted in the introduction, there are some
issues with their analysis.

Our results indicate then that the introduction of bubbles into the turbulent flow does
not lead to an upscale energy transfer, at least for the cases we have considered and for
the F3 contribution. One possible reason for this is that the energy being sent downscale
from the large scales (where it is produced due to the mean-shear production), simply
overwhelms any energy being transferred upscale from the bubbles, so that overall the
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Figure 7. Contribution F3 to the nonlinear energy transfer term: (a) unladen case, (b) all the cases.

energy transfer is downscale. However, since in most of these bubble cases the dominant
source of TKE comes from bubble induced production (Santarelli & Fröhlich 2016), rather
than mean-shear production, this does not seem likely. A second possible reason is that
since the scales at which the bubbles are producing kinetic energy, O(dp), are also scales at
which the viscous forces in the flow are strong, then most of the kinetic energy produced by
the bubbles may be simply dissipated before it is able to be transferred upscale by nonlinear
forces in the flow. A third possible reason relates to the fact that although the bubble length
scale is dp, they may inject energy at scales significantly larger than this. Indeed, the wakes
produced by bubbles can have a length that is O(10dp). For the Reynolds number of our
DNS the scale separation between the bubble diameter and the large scales of the flow is
not very large, and therefore the bubbles may actually directly inject TKE into scales on
the order of the large scales of the flow, and this energy is then able to be sent downscale
via the nonlinear energy transfer term. If this third explanation is true, then an interesting
implication is that if BIT flows can develop with dp ≪ �I (where �I is the integral length
scale of the flow), then the maximum scale at which the bubbles will inject energy into the
flow will be much smaller than �I . In this case, an upscale energy transfer must occur at
scales 
 dp since otherwise the large scales would have no source of energy.

In figure 8 we plot one of the contributions to F3, namely dD333/dr. In contrast to
figure 7, this result shows that for the SmFew and SmMany cases there is an upscale
transfer of energy, with energy being extracted from the small scales and passed to the
large scales. This reveals a subtle effect of the bubbles; while overall the bubble cases
still exhibit a downscale energy transfer, the energy transfer associated with particular
components of the velocity field do exhibit an upscale energy transfer. By contrast, the
LaMany case shows dD333/dr < 0 at the small scales, corresponding to a downscale
energy transfer. This differing behaviour is likely because for this case Rep is much larger
than for the small bubbles, leading to stronger turbulent mixing in the flow, and a behaviour
closer to single-phase flow.

Figure 9 shows D333/D3/2
33 (the skewness of the longitudinal velocity increment), as

well as the unnormalized form D333. For the present unladen case, in the channel centre
we find D333/D3/2

33 ≈ −0.4 for r → 0, which is in close agreement with the value found
in isotropic turbulence (Ishihara et al. 2007; Davidson 2015). The Reynolds number of the
channel flow is too low for there to be a clear inertial range, and therefore the unladen data
for D333 do not show evidence of the ‘four-fifths law’ D333 = −(4/5)〈ε〉r predicted for
the inertial range of isotropic turbulence by Kolmogorov (1941a). For the cases involving
bubbles, a first observation is that D333/D3/2

33 is positive for all cases at r = O(dp), and for
the SmFew and SmMany cases it remains positive in the limit r → 0, while for others it

927 A16-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

76
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.760


Multiscale anisotropy, energy and intermittency in bubbly flows

10–3

0.04

0.02

–0.02

–0.04

0

dD
33

3/
dr

10–2 10–1

r/H
100

SmFew
BiDisp

Unladen
LaMany

SmMany

Figure 8. Derivative of D333, the third-order longitudinal structure function.
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Figure 9. Third-order longitudinal structure functions: (a) skewness; (b) unnormalized. The inset in (a) shows
zoomed for the cases excluding SmFew. The two vertical dashed lines in the inset of (a) and in (b) show r = dp
for smaller and larger bubbles, respectively. The horizontal line in (a) is the value of 0.

becomes negative in this limit. The data for D333 indicate that the fluctuations are much
larger for the bubble cases than for the unladen case, especially those with higher volume
fractions, while the results for the skewness show that the bubble cases have a skewness
that is either larger or smaller in magnitude than the unladen case, depending upon the
case. Note that, the skewness normalizes out the amount of energy in the longitudinal
component, and so gives a clearer indicator as to how the bubbles modify the behaviour
of the nonlinear transfer in the flow. The SmFew case is particularly interesting, since it
exhibits a very large value of the skewness for r < O(dp), even though this case has the
smallest volume fraction αb. However, as expected, the results for D333 for this case reveal
that the magnitude of D333 is much smaller for the SmFew case than for the other three
bubble cases that have higher values of αb. This shows how sensitive certain properties
of the turbulent flow are to the presence of the bubbles, even for relatively low αb. It also
implies that the bubbles could have a significant effect on tracer particle dispersion in
turbulent flows, whose irreversibility is intimately related to the asymmetry in the velocity
increment distributions (Jucha et al. 2014; Bragg, Ireland & Collins 2016; Bragg 2017).

The transverse structure functions D111 and D222 were also considered for each case. The
associated skewness values were found to be very close to zero for all cases (not shown
here).
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Figure 10. Normalized fourth-order transverse (a,b) and longitudinal (c) structure functions, corresponding to
the flatness of the velocity increments. The two vertical dashed lines in (c) show r = dp for smaller and larger
bubbles, respectively. The horizontal lines in (a,b,c) correspond to the Gaussian value of 3 for the flatness.

4.2. Fourth-order structure functions
We now consider the fourth-order structure functions to explore how the bubbles
influence the intermittency of the background turbulence. In figure 10(a–c) we consider
the normalized fourth-order moments (i.e. the flatness of the velocity increments) in
each of the directions, denoted by D1111/D2

11, D2222/D2
22 and D3333/D2

33. If the velocity
increments had Gaussian probability distributions, then these quantities would be equal
to three at all scales. Departures from three indicate non-Gaussianity in the velocity
increment distributions, while spatial dependence of these quantities indicates that the
velocity increments are not only non-Gaussian, but also intermittent (Frisch 1995).

For the unladen case, the results in figure 10(a–c) show that, at the large scales, the
quantities are close to three, but increase as r decreases. Furthermore, the results show
that the departures from Gaussianity are stronger for the transverse components than they
are for the longitudinal component, also observed in isotropic turbulence (Ishihara, Gotoh
& Kaneda 2009). The effect of the bubbles on these quantities is non-trivial. At the very
smallest scales, the bubble cases show much stronger non-Gaussianity and intermittency
in the turbulent flow than for the unladen case. A similar finding was also observed in
the experiment of Rensen et al. (2005) for their fully developed turbulent bubbly flow
and in Biferale et al. (2012) when comparing the small-scale properties of boiling and
non-boiling convective turbulent flows. However, with the exception of the SmFew case,
the bubbles tend to suppress intermittency in the flow at scales comparable to their
diameter, for the streamwise and wall-normal velocity directions. Roughly speaking, it
is only at scales smaller than O(dp) that the flatness starts to increase significantly.

The flatness results for the SmFew case reveal much stronger non-Gaussianity and
intermittency in the flow compared with the other three bubble cases that have much
higher gas void fraction (≈7 times than SmFew). Some insight into this behaviour can
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be found by considering the ways in which the bubbles modify the turbulent flow. The
most significant qualitative modification the bubbles make to the turbulent flow is the
wakes they generate, and the flow properties in these wakes will typically be significantly
different from the properties of the background turbulence. When the number of bubbles
is not too large (but still large enough to make a statistically significant contribution to the
flow properties), there are relatively few regions in the flow where the flow differs due to
the wakes from everywhere else (i.e. these regions are ‘rare’), breaking self-similarity in
the flow and enhancing intermittency compared with the case without the bubbles. As the
number of bubbles increases, the regions of the flow occupied by the wakes becomes less
rare, and hence their contribution to the intermittency reduces. Moreover, as the number
of bubbles/size of the bubbles increases, the possibility for wake interaction increases, and
this can enhance mixing in the flow, which would reduce the impact of the wakes on the
flow intermittency.

A striking result implied by the results in figure 10(a–c) concerns the relationship
between ReH and the level of intermittency. For example, as shown in figure 2, the LaMany
case has a much larger ReH than the SmFew case, yet the latter exhibits much stronger
intermittency in the flow than the former. This is in contrast to single-phase turbulence
where small-scale intermittency increases with increasing Reynolds number (Frisch
1995). This again indicates that the mechanisms generating intermittency in bubble-laden
turbulent flows are significantly different from those in single-phase turbulence, and are
connected to the bubble wakes, as explained previously.

Finally, we remind the reader of the point made in § 2 that the fourth-order moments
might be slightly under-resolved by the DNS. Consequently, these fourth-order results
should be viewed with some caution, and future work is needed to examine the resolution
criteria more thoroughly.

5. Conclusions

In this paper we have analysed various properties of bubble-laden turbulent flows across
the range of scales of the flow, including the anisotropy, energy transfer and intermittency
in the flow.

To explore the anisotropy of the flow at different scales, we developed an extension of the
BAM approach that was previously developed for analysing the one-point Reynolds-stress
tensor (Banerjee et al. 2007). In our approach, the anisotropy at any scale may be
quantified and visualized, as well as providing information on the componentiality of the
flow at the scale. Using this we were able to explore how the bubbles modify anisotropy in
the flow. We found that the bubbles significantly enhance anisotropy at all scales compared
with the unladen case, and that for some bubble cases, very strong anisotropy persists
down to the smallest scales of the flow. The strongest anisotropy was observed for the
cases involving small bubbles. Deviations from the behaviour that would be expected for
an isotropic flow occur not only in the streamwise/gravity direction, but also in the other
directions.

Concerning the energy transfer among the scales of the flow, the DNS data did not
allow us to thoroughly explore this, but we were able to consider a number of its important
aspects. Our results indicate that for the bubble-laden cases, the energy transfer is from
large to small scales, just as for the unladen case. However, there is evidence of an upscale
transfer when considering the transfer of energy of particular components of the velocity
field, rather than the full kinetic energy involving all three components of the flow. Similar
findings were also reported in Lai et al. (2018) where the energy cascade in bubbly flows
was shown to be highly anisotropic. We also conjectured, however, that in a bubble-laden
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channel flow at sufficiently high Reynolds number, and with channel height sufficiently
large compared with the bubble size, there may exists an upscale transfer of energy at
scales much larger than the bubble diameter. Our DNS does not lie in the parameter range
required to observe such behaviour.

We also considered the normalized form of the fourth-order structure functions,
corresponding to the flatness of the fluid velocity increments. These results revealed
that the introduction of bubbles into the flow strongly enhances the intermittency of
the turbulence in the dissipation range, but suppresses it at scales comparable to the
bubble diameter. The SmFew case, however, shows enhancements of intermittency at all
scales. We interpreted the effect of the bubbles on the flow intermittency in terms of
the contributions of the bubble wakes to the overall properties of the turbulence. This
strong enhancement of the dissipation-scale intermittency has significant implications for
understanding how the bubbles might modify the mixing properties of turbulent flows, and
the associated large velocity gradients. These will be the subject of future investigations.
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