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The ability of streamwise-travelling waves of spanwise velocity to reduce the turbulent
skin-friction drag is assessed in the compressible regime. Direct numerical simulations
are carried out to compare drag reduction in subsonic, transonic and supersonic channel
flows. Compressibility improves the benefits of the travelling waves, in a way that depends
on the control parameters: drag reduction becomes larger than the incompressible one for
small frequencies and wavenumbers. However, the improvement depends on the specific
procedure employed for comparison. When the Mach number is varied and, at the same
time, wall friction is changed by the control, the bulk temperature in the flow can either
evolve freely in time until the aerodynamic heating balances the heat flux at the walls, or
be constrained such that a fixed percentage of kinetic energy is transformed into thermal
energy. Physical arguments suggest that, in the present context, the latter approach should
be preferred. This provides a test condition in which the wall-normal temperature profile
more realistically mimics that in an external flow, and also leads to a much better scaling of
the results, over both the Mach number and the control parameters. Under this comparison,
drag reduction is only marginally improved by compressibility.

Key words: drag reduction, turbulence control

1. Introduction

One of the distinctive features of fluid turbulence is the ability to transport and mix
mass and momentum more effectively than a laminar flow, resulting in more intense
wall-shear stress and a larger friction drag (Fukagata, Iwamoto & Kasagi 2002).
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Flow control for skin-friction drag reduction aims to mitigate the negative effects
of turbulence near the wall, in order to cut energy consumption and to improve
cost effectiveness and the environmental footprint. This is of particular interest in
aeronautics: nearly 50 % of the total drag of a civil aircraft is due to the viscous
drag caused by the interaction of the turbulent boundary layer with the surface
(Gad-el-Hak & Pollard 1998). An efficient drag reduction technology capable of achieving
even a tiny drag reduction rate would yield enormous economic and environmental
benefits.

Drag reduction strategies are often classified as passive or active. The former do
not require extra energy, and usually exploit a non-planar wall (see Foggi Rota et al.
(2023) for an exception). Among them, riblets (Bechert et al. 1997) are the closest to
being implemented in practical applications. Laboratory tests show that they can reduce
drag by up to 8 %–10 % at low Reynolds numbers; on considering their requirement
of periodic maintenance, however, riblets do not yield enough economic benefits to be
routinely used yet. Active strategies, instead, require actuation and external energy to
work. Those involving the motion of the wall are an interesting category, and include
spanwise wall oscillations (Jung, Mangiavacchi & Akhavan 1992), streamwise-travelling
waves of spanwise velocity (Quadrio, Ricco & Viotti 2009), spanwise-travelling waves of
spanwise velocity (Du, Symeonidis & Karniadakis 2002) and streamwise-travelling waves
of wall deformation (Nakanishi, Mamori & Fukagata 2012). They are all predetermined
strategies, since the control parameters are set a priori, and enjoy the relative simplicity
resulting from the lack of sensors and feedback laws. However, several of them do not
yield an energetic benefit once the control energy is accounted for. This work focuses on
the streamwise-travelling waves (StTW) of spanwise velocity introduced by Quadrio et al.
(2009). Streamwise-travelling waves are among the most promising techniques, because
of their rather large net savings. This type of forcing, thoroughly reviewed by Ricco, Skote
& Leschziner (2021), is defined by the following space–time distribution of the spanwise
velocity component at the wall:

W(x, t) = A sin(κxx − ωt), (1.1)

where x and t are the streamwise direction and time, A is the forcing amplitude, κx is
the wavenumber and ω is the frequency (which define the wavelength λx = 2π/κx and
the oscillation period T = 2π/ω). The spatially uniform spanwise-oscillating wall (Jung
et al. 1992) and the stationary wave (Quadrio, Viotti & Luchini 2007; Viotti, Quadrio &
Luchini 2009) are two limit cases of the general forcing (1.1), obtained for κx = 0 and
ω = 0, respectively.

Via a generalized Stokes layer (Quadrio & Ricco 2011), StTW create an
unsteady near-wall transverse shear which continuously changes the inclination of the
near-wall structures in wall-parallel planes, weakening the regeneration mechanism
of the near-wall cycle (Schoppa & Hussain 2002). Once actuation parameters
are properly tuned, this process can even lead to the complete suppression of
turbulence.

The spatially uniform wall oscillation, studied in depth by Quadrio & Ricco (2004)
in an incompressible channel flow at a Reynolds number (based on the friction velocity
uτ of the uncontrolled flow, the fluid kinematic viscosity ν and the half-channel height)
of Reτ = 200, yields a drag reduction rate DR of 45 % (at A+ ≡ A/uτ = 12) for
the so-called ‘optimal’ actuation period T+ ≡ Tu2

τ /ν ≈ 100. However, the maximum
energy saving after the control energy is accounted for is found at lower forcing
intensities, and amounts to 7 % only. The spatially distributed StTW are a natural
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generalization of the wall oscillations, and present substantial advantages in terms of
net savings. Quadrio et al. (2009) have shown how drag reduction, power input and
total saved power vary with the control parameters. Depending on the (κx, ω) value pair,
drag increase or drag reduction can be achieved. The parameters yielding maximum
drag reduction and maximum energy saving are almost coincident, and correspond
(at this Reynolds number) to low frequencies and low wavenumbers. The largest drag
reduction of 48 % (at A+ = 12) still yields a positive net power saving of 17 %, and
smaller forcing intensities lead to net savings as high as 32 %. Streamwise-travelling
waves have been demonstrated in the laboratory with a pipe flow experiment (Auteri
et al. 2010), in which up to a 33 % drag reduction was measured, and have been
proven to work in boundary layers too (Skote, Schlatter & Wu 2015; Bird, Santer &
Morrison 2018).

A number of practical aspects that need to be considered before declaring spanwise
forcing as a viable strategy for applications have recently been considered. Gatti & Quadrio
(2013, 2016) showed that the expected performance deterioration at larger Reynolds
numbers, which afflicts all drag reduction strategies acting via near-wall turbulence
manipulation, is only marginal for StTW and linked to the natural variation of the
skin-friction coefficient itself with the Reynolds number. Once the performance of
StTW is measured, as it should be, via the upward shift of the logarithmic portion
of the mean velocity profile in the law-of-the-wall form, it does not change with the
Reynolds number, so that in flight conditions 30 %–40 % friction drag reduction could
be expected. Marusic et al. (2021) hinted at an even better scenario for StTW at high Re,
thanks to the interaction of the near-wall forcing with the large-scale outer motions of
the turbulent boundary layer, although the energetic consequences of using a spatially
discrete forcing recently brought to light by Gallorini & Quadrio (2024) were not
considered. Banchetti, Luchini & Quadrio (2020) demonstrated the beneficial effect of
skin-friction drag reduction via StTW on pressure drag when applied to bluff bodies of
complex shape, and Nguyen, Ricco & Pironti (2021) used spanwise forcing for separation
control.

One parameter that is crucial in aeronautical applications has received limited attention
so far in drag reduction studies: the Mach number M, a parameter which quantifies the
importance of compressibility effects. A few works, numerical (Duan & Choudhari 2012,
2014; Mele, Tognaccini & Catalano 2016) and experimental, both in wind tunnels (Gaudet
1989; Coustols & Cousteix 1994) and with flight tests (Zuniga, Anderson & Bertelrud
1992), investigated the drag reduction effectiveness of riblets in a turbulent compressible
boundary layer. Fewer studies have been carried out to assess how compressibility alters
the drag reduction capabilities of active techniques; for example, Chen et al. (2016)
examined the uniform blowing or suction in an hypersonic turbulent boundary layer at
a free-stream Mach number of 6.

As far as spanwise forcing goes, the large eddy simulation study of Fang, Lu & Shao
(2009) was the first to consider the spanwise-oscillating wall in a turbulent channel flow at
M = 0.5, followed by the direct numerical simulation (DNS) study of Ni et al. (2016)
for a turbulent boundary layer at M = 2.5. However, the first comprehensive study of
compressibility effects in drag reduction via spanwise wall oscillations was performed
by Yao & Hussain (2019). They carried out DNS of a plane channel flow subjected
to spanwise-oscillating walls at M = 0.3, 0.8, 1.5, at Reτ = 200, A+ = 12 and T+ in
the range 25 − 300. The value of DR was found to be qualitatively similar to the
incompressible case: for a given period T+, DR increases with the amplitude A+, at a
rate that saturates when A+ becomes large. For A+ = 12, they reported DR increasing
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from 34.8 % at T+ = 100 for M = 0.3 to an outstanding value of 47.1 % at the largest
period investigated T+ = 300 for M = 1.5. For A+ = 18 and M = 1.5, the flow reached
relaminarization. The effect of Re was also investigated via a few additional cases run at
Reτ ≈ 500, confirming the related decline of DR. Yao & Hussain (2019) did not consider
the impact of the Mach number on the power budget. Both drag reduction and power
budget performance were later discussed in the recent work by Ruby & Foysi (2022) for
a channel flow at M = 0.3, 1.5, 3 and Reτ = 200–1000 forced by stationary waves with
A+ = 12 and κ+

x = 0.0025–0.01. They found the optimum κx and the maximum net power
saving to increase significantly with Mach number, thus confirming the beneficial effect
of compressibility.

When applying flow control for drag reduction in duct flows at various M, the
thermodynamic properties of the flow change because of the increased bulk temperature,
owing to the combination of the increased Mach number and the action of the control. To
understand whether changes of drag reduction with M directly depend on compressibility,
rather than being indirectly derived from temperature changes induced by changes of the
skin-friction drag, the comparison procedure between uncontrolled and controlled flows
should decouple compressibility from purely thermodynamic effects. Yao & Hussain
(2019) examined the effect of M on DR by matching the semi-local Reynolds number
(at half-channel height), which provides a relatively good collapse of DR between
incompressible and compressible cases. In the present work, we also propose a further,
alternative approach: the value of the bulk temperature is constrained such that the amount
of turbulent kinetic energy transformed into thermal energy remains constant, both across
the variation of M and between uncontrolled and controlled cases. This strategy presents
a significant advantage. The simplified set-up of the turbulent channel flow can be used
in configurations where the coupling between the velocity and thermal fields is closer to
that found in external flows, where the application of the spanwise forcing to reduce drag
is more attractive. For example, compressible boundary layers of practical aeronautical
interest are usually characterized by adiabatic or moderately cold walls, with a thermal
stratification leading to a denser, colder outer region and a layer of warmer fluid in the
near-wall zone.

The present work is the first comprehensive analysis of the StTW technique in the
compressible regime. The only prior work is the single case computed by Quadrio et al.
(2022), who studied by DNS the StTW applied on a portion of a wing in transonic flight at
M = 0.7 and Re = 3 × 105 (based on the free-stream velocity and the wing cord), finding
that a localized actuation has the potential to boost the aerodynamic efficiency of the whole
aircraft, with an estimate reduction of 9 % of the total drag of the airplane at a negligible
energy cost. In this work, we consider by DNS a compressible turbulent plane channel
flow modified by StTW, and we aim at fully characterizing how DR and the power budget
depend on the Mach number.

The paper is organized as follows. After this Introduction, § 2 describes the
computational framework used to produce the DNS database, presenting the governing
equations in § 2.1, the DNS solver in § 2.2 and the simulation parameters in § 2.3. The
parameters used to quantify drag reduction are defined in § 2.4, and § 2.5 describes two
approaches to compare unforced and forced compressible channel flows at different M.
In § 3 the effects of the Mach number are discussed, first in terms of drag reduction in
§ 3.1, and then in terms of power budgets in § 3.2. Lastly, in § 4, the main conclusions are
briefly outlined. The paper is concluded by a brief appendix where the raw results of the
numerical study are compactly shown.
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2. Methods

2.1. Governing equations
The compressible Navier–Stokes equations for a perfect and heat-conducting gas are
written in conservative form as

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (2.1)

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂σij

∂xj
+ f δi1, (2.2)

∂ρe
∂t

+ ∂ρ(e + p/ρ)uj

∂xj
= ∂σijui

∂xj
− ∂qj

∂xj
+ fu1 + Φ. (2.3)

Here, and throughout the paper, repeated indices imply summation; ρ is the fluid density,
p is the pressure, ui is the velocity component in the ith direction, and i = 1, 2, 3 represent
the streamwise (x), wall-normal (y) and spanwise (z) directions, respectively. The total
energy per unit mass e = cvT + uiui/2 is the sum of the internal energy and the kinetic
energy, where cv is the specific heat at constant volume and T the temperature. The viscous
stress tensor σij for a Newtonian fluid subjected to the Stokes hypothesis becomes

σij = μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
, (2.4)

where μ is the dynamic viscosity and δij is the Kronecker delta; the dependence of
viscosity on the temperature is accounted for through the Sutherland’s law. The heat flux
vector qj is modelled after the Fourier law

qj = −k
∂T
∂xj

, (2.5)

where k = cpμ/Pr is the thermal conductivity, with cp the specific heat at constant
pressure and Pr the Prandtl number, set to Pr = 0.72. We consider the turbulent channel
configuration, where the flow between two isothermal walls is driven in the streamwise
direction by the time-dependent body force f in (2.2), evaluated at each time step to
maintain a constant mass flow rate. The corresponding power is included in (2.3), where
the additional term Φ represents a uniformly distributed heat source which controls the
value of the bulk flow temperature (Yu, Xu & Pirozzoli 2019).

2.2. Solver
The flow solver employed for the analysis is STREAmS (Supersonic TuRbulEnt
Accelerated Navier–Stokes Solver), a high-fidelity code designed for large-scale
simulations of compressible turbulent wall-bounded flows that runs in parallel on CPU
and GPU architectures.

The code, developed by Bernardini et al. (2021), incorporates state-of-the-art numerical
algorithms, specifically designed for the solution of compressible turbulent flows, with a
focus on the high-speed regime. The distinctive feature of the solver is the methodology
adopted for the discretization of the convective terms of the Navier–Stokes equations with
hybrid, high-order, energy-consistent/shock-capturing schemes in locally conservative
form. An energy-preserving discretization, based on sixth-order central approximations,
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is applied where the solution is smooth, and guarantees discrete conservation of the
total kinetic energy in the limit case of inviscid, low-speed flows. This is the case
of interest for all the simulations presented in this study, where shock waves do not
occur. The Navier–Stokes equations are reduced to a semi-discrete system of ordinary
differential equations, integrated in time using a three-stage third-order Runge–Kutta
scheme. The solver is written in Fortran, and uses the MPI paradigm with a double domain
decomposition; in its current version (Bernardini et al. 2023), it can be run on modern
HPC architectures based on GPU acceleration. All the computations reported in this work
have been performed using the CUDA Fortran backend, capable of taking advantage of the
Volta NVIDIA GPUs available on Marconi 100 of the Italian CINECA supercomputing
centre.

2.3. Parameters and computational set-up
A wall-bounded turbulent flow in the compressible regime is described by three
independent parameters: the Reynolds number, the Mach number and a third parameter
that specifies the thermal condition of the wall. For the channel flow configuration, relevant
parameters are usually defined using bulk quantities, i.e. the bulk density ρb, the bulk
velocity Ub and the bulk temperature Tb

ρb = 1
2h

∫ h

−h
〈ρ〉 dy, Ub = 1

2hρb

∫ h

−h
〈ρu〉 dy, Tb = 1

2hρbUb

∫ h

−h
〈ρuT〉 dy. (2.6a–c)

The operator 〈·〉 computes a mean value by averaging over time and homogeneous
directions.

The main goal of this work is to understand the effect of Mach number. Since the control
is wall based and the control parameters are known (Gatti & Quadrio 2016) to scale in
viscous units, i.e. with the friction and density at the wall, it is convenient (Coleman, Kim
& Moser 1995) to define the Mach number as Mb

w = Ub/cw, in which the superscript and
subscript emphasize that the velocity scale is Ub and the speed of sound cw = √

γ RTw is
evaluated at the (reference) wall temperature Tw. Three sets of simulations are performed,
at Mb

w = 0.3, 0.8, 1.5. These values are identical to those used by Yao & Hussain (2019)
in their study of the oscillating wall. The simulations are run at a constant flow rate (CFR)
(Quadrio, Frohnapfel & Hasegawa 2016): the pressure gradient evolves in time to keep
a constant Ub. For all cases, the bulk Reynolds number Reb = ρbUbh/μw is chosen in
such a way that the corresponding friction Reynolds number is fixed to the target value for
the uncontrolled simulations. Although most of the incompressible information on StTW
is available at Reτ = 200, in our study, the target value is set at the higher Reτ = 400.
This choice brings in extra computational costs, but avoids issues with relaminarization,
that are expected to become significant at lower Reτ in view of the expected increased
effectiveness of StTW in the compressible regime.

For each case (defined by a pair of values for Mb
w and Reτ ), two distinct simulations

are carried out, which differ in the way the system is thermally managed. In one, dubbed
zero bulk cooling (ZBC), the bulk heating term Φ in (2.3) is set to zero, and the bulk
temperature Tb is left free to evolve until the aerodynamic heating rate and the heat
flux at the wall are in balance. In the other, named constrained bulk cooling (CBC), the
heat produced within the flow is balanced not only by the wall heat flux, but also by a
cooling source term Φ (Yu et al. 2019), which evolves to keep a constant Tb. A detailed
description of the two strategies is provided later in § 2.5, where the different implications
of comparing at ZBC or CBC are discussed.
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Mb
w Reτ Reb �t+ Nx × Ny × Nz �x+ �y+ �z+

ZBC 0.3 404 7115 0.007 768 × 258 × 528 9.8 0.51–6.35 4.8
ZBC 0.8 400 6691 0.017 768 × 258 × 528 9.8 0.51–6.28 4.8
ZBC 1.5 394 5751 0.025 1024 × 258 × 512 7.4 0.50–6.19 4.9
CBC 0.3 403 7250 0.007 768 × 258 × 528 9.8 0.51–6.35 4.8
CBC 0.8 399 7602 0.017 768 × 258 × 528 9.8 0.51–6.28 4.8
CBC 1.5 387 8597 0.025 1024 × 258 × 512 7.4 0.50–6.19 4.9

Table 1. Parameters of the six uncontrolled simulations: Mach number Mb
w, friction Reynolds number Reτ ,

bulk Reynolds number Reb, time step, mesh size and spatial resolution in each direction.

For each of the three values of Mb
w, a single uncontrolled and 42 cases with spanwise

forcing are considered; each case is carried out twice, with ZBC and CBC. Hence, the
computational study consists of 258 simulations. Table 1 summarizes the parameters for
the 6 uncontrolled simulations.

Periodic boundary conditions in the wall-parallel directions and no-slip and
no-penetration conditions at the solid walls are applied for the velocity vector, and
isothermal boundary conditions are used for the temperature. In the cases with control, the
no-slip condition for the spanwise velocity component is modified to apply the travelling
wave (1.1). The wave amplitude is fixed at A+ = 12, and 42 different combinations of
wavelength κ+

x and frequency ω+ are considered. Here, and throughout the paper, the +
superscript denotes quantities expressed in wall units of the uncontrolled case.

Figure 1 plots the incompressible drag reduction map, with dots identifying the present
simulations. The incompressible drag reduction map resembles the original one computed
by Quadrio et al. (2009) at Reτ = 200. Since the present study considers Reτ = 400, the
map is obtained via interpolation from the two datasets at Reτ = 200 and Reτ = 1000
produced by Gatti & Quadrio (2016) (see § 3 for details). The simulations sample the
parameter space along five lines, all visible in figure 1. In particular, the oscillating-wall
case (dashed line 1 in figure 1) at κ+

x = 0 is chosen to replicate data by Yao & Hussain
(2019), and sampled with 7 simulations (all with positive frequency, since negative
frequencies at κx = 0 can be obtained by symmetry). The steady wave at ω+ = 0 is
scanned by 5 simulations along line 2; line 3 at constant κ+

x = 0.005 contains 20 points,
crosses the low-Re incompressible maximum drag reduction and also cuts through the
region of drag increase. Five simulations along line 4 explore the area of low drag
reduction at large negative frequencies. Lastly, line 5 with 5 points analyses the ridge
of maximum drag reduction.

The size of the computational domain is (Lx, Ly, Lz) = (6πh, 2h, 2πh) in the
streamwise, wall-normal and spanwise directions for the uncontrolled cases. For the
controlled cases with κx /= 0, Lx is slightly adjusted on a case-by-case basis to fit the
nearest integer multiple of the streamwise wavelength λx. In the case of longest forcing
wavelength, two waves are contained by the computational domains.

Although the discretization parameters have been chosen to replicate or improve upon
those used in related studies, we have explicitly checked for the effect of wall-normal
discretization and spanwise size of the computational domain. One specific case which
yielded one of the largest drag reductions (namely the CBC case at κ+

x = 0.005 and
ω+ = 0.0251) has been repeated by independently doubling Ny and Lz. Starting from
a baseline value for the friction coefficient of Cf = 3.41402 × 10−3, we have measured
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Figure 1. Incompressible drag reduction vs κ+
x and ω+, at A+ = 12 and Reτ = 400. The map is obtained

from Gatti & Quadrio (2016) via interpolation of their datasets at Reτ = 200 and Reτ = 1000. The dots on the
dashed lines correspond to the present compressible simulations.

Cf = 3.41347 × 10−3 with doubled Ny and Cf = 3.41733 × 10−3 with doubled Lz. In both
cases, the difference is below 0.1 %.

Statistics are computed with a temporal average of no less than Tave = 700 h/Ub, after
discarding the initial transient. The statistical time averaging error on the skin-friction
coefficient is estimated via the procedure introduced by Russo & Luchini (2017). After
propagating the error on the drag reduction, the corresponding uncertainties are found to
be so small that the error bars are smaller than the symbols used in the figures in § 3.

2.4. Performance indicators
The control performance is evaluated in terms of the dimensionless indicators drag
reduction rate DR%, input power Pin% and net power saving Pnet%. These definitions,
introduced by Kasagi, Hasegawa & Fukagata (2009), are suitable for CFR studies. The
drag reduction rate describes the relative reduction of (dimensional) pumping power P∗
per unit channel area

DR% = 100
P∗

0 − P∗

P∗
0

, (2.7)

where the subscript 0 refers to the uncontrolled flow. Since all the simulations run at CFR,
DR is equivalent to the reduction of the skin-friction coefficient Cf = 2τw/(ρbU2

b), and
(2.7) can be expressed in terms of Cf as

DR% = 100
(

1 − Cf

Cf ,0

)
. (2.8)

The time-averaged pumping power per unit channel area is computed as

P∗ = Ub

TaveLxLz

∫ tf

ti

∫ Lx

0

∫ Lz

0
τx dx dz dt, (2.9)
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where τx is the streamwise component of the instantaneous wall-shear stress, and Tave =
tf − ti is the interval for time averaging, defined by the final time tf and the time ti at which
the initial transient due to the sudden introduction of the forcing has elapsed, the flow has
reached a new statistically stationary state, and a meaningful time average can be started.
The control power Pc% is the power required to create the wall forcing while neglecting
the losses of the actuation device, and is expressed as a fraction of the pumping power P∗

0.
When the CBC strategy is employed, the power PΦ required to cool the bulk flow should
also be accounted for. Hence, the complete expression for the input power Pin is

Pin% = Pc% + PΦ%

= 1
P∗

0

100
TaveLxLz

∫ tf

ti

∫ Lx

0

∫ Lz

0
W τz dx dz dt + 100

Tave

∫ tf

ti

Φ

Φ∗
0

dt, (2.10)

where τz is the spanwise component of the instantaneous wall-shear stress, W the enforced
spanwise wall velocity and Φ∗

0 the cooling power of the reference case. Finally, to compare
benefits and costs of the control, the net energy saving rate Pnet is defined as

Pnet% = DR% − Pin%. (2.11)

2.5. On the comparison strategy
As mentioned above in § 2.3, we consider two strategies to run the compressible channel
flow, once Mb

w and Reτ are fixed.
The first one, denominated ZBC, sets to zero the bulk heating/cooling term Φ in (2.3):

the bulk temperature is thus free to increase until, at equilibrium, the heat produced within
the flow is balanced by the heat flux at the walls. This set-up corresponds to the one
originally adopted by Coleman et al. (1995) for the plane channel, and employed in all
previous compressible studies of drag reduction by spanwise wall motion (Fang et al.
2009; Yao & Hussain 2019; Ruby & Foysi 2022). The ZBC simulations indicate that
compressibility leads to a larger drag reduction achieved by spanwise forcing. However,
with ZBC, the spanwise forcing causes Tb to increase above the value of the uncontrolled
flow, in a way that depends on the control parameters; the different heat transfer rates make
it difficult to discern the specific effects of compressibility and wall cooling. Furthermore,
the equilibrium thermal condition achieved when the bulk temperature is free to evolve
corresponds to extremely cold walls; the consequently large heat transfer rates are not
representative of typical external flows, for which active techniques such as spanwise
forcing are primarily attractive.

To overcome these issues, a second strategy is considered, that is expected to provide
more insight into the performance of flow control. With this strategy, named CBC, the
heat produced within the flow is balanced not only by the heat flux through the walls,
but also by a cooling source term Φ, that is computed at each time step to keep the bulk
temperature constant.

Following Zhang et al. (2014), we specify the thermal condition of the system by using
the diabatic parameter Θ , also named the dimensionless temperature

Θ = Tw − Tb

Tr − Tb
, (2.12)

where Tr is the recovery temperature

Tr =
(

1 + γ − 1
2

r(Mb
w)2

)
Tb, (2.13)
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with γ = cp/cv the heat capacity ratio, and r the recovery factor, a coefficient that,
according to Shapiro (1953), for a turbulent flow over a flat surface is r = Pr1/3.

Recent studies (Cogo et al. 2023) have shown that a constant diabatic parameter, or
equivalently, a constant Eckert number (Wenzel, Gibis & Kloker 2022), is the proper
condition under which compressible flows at different Mach numbers should be compared.
The parameter Θ represents the fraction of the available kinetic energy transformed into
thermal energy at the wall (Modesti et al. 2022), and the importance of wall cooling
increases when Θ decreases. In this study, we set Θ = 0.75, which corresponds to a
moderately cold wall.

The main differences arising from the two channel configurations, ZBC and CBC, can
be appreciated in figure 2, where temperature, density and dynamic viscosity profiles
across the channel are shown for the uncontrolled flow cases. In ZBC, at equilibrium,
the mean temperature profile monotonically increases from its minimum at the wall to its
maximum at the channel centreline; the same trend is shared by the viscosity, whereas
the opposite trend is observed for the density. Since Tb grows with Mb

w, the profile of
T/Tw across the channel, shown in figure 2(a), gets progressively steeper at the wall with
increasing Mb

w. While T/Tw ≈ 1 for the subsonic M, at the channel centre for Mb
w = 1.5

(not shown) the mean temperature is approximately 39 % higher than at the wall. The
significant changes (especially for Mb

w = 1.5) of thermodynamic properties across the
buffer layer imply that the local properties are quite different from the wall properties.
In particular, the friction-velocity-based Reynolds number Reτ is intended to be constant
across the comparison while Mb

w varies. However, in the buffer layer, the semi-local
Reynolds number Re∗

τ = Reτ

√
(ρμw)/(ρwμ) (Huang, Coleman & Bradshaw 1995) is far

from constant (see 2d), and varies significantly as a function of Mb
w.

With CBC, instead, Re∗
τ across the channel is such that its value in the buffer layer is

still similar to the one at the wall (with a maximum observed increase of 2 % for Mb
w = 1.5

at y+ = 10) with a variation of less than 1.5 % around the mean value of Re∗
τ at y+ = 10,

for the three values of Mb
w. Moreover, the profile of T/Tw across the channel qualitatively

resembles the temperature distribution of a typical compressible boundary layer. In fact,
at supersonic speeds, the wall temperature can be considered for practical purposes to be
very close to the recovery temperature of the flow, implying a very low heat exchange at
the wall. Smaller values of Θ imply a cooler wall, and a local maximum of T/Tw further
from the wall. For Θ = 0.75, the local peak is minor and located right within the buffer
layer, as shown in figure 2(a).

The difference between ZBC and CBC can be visually appreciated by looking at the
near-wall turbulent structures in the uncontrolled flow, shown in figure 3. It is known
(Coleman et al. 1995) that, by increasing Mb

w, the low-velocity streaks become longer,
less wavy and more widely spaced. This is indeed confirmed in figure 3(a,b), where
colour contours of an instantaneous field of streamwise velocity fluctuations computed
with ZBC at y+ = 10 are plotted for Mb

w = 0.3 (a,c) and Mb
w = 1.5 (b,d). However,

when switching to CBC (c,d), the streaks appear not to differ significantly between the
subsonic and the supersonic cases. This suggests that a matching diabatic parameter
allows us to discriminate those changes of the near-wall structures that directly derive
from compressibility effects from those linked to a change in the wall-normal temperature
profile. In fact, a non-uniform temperature across the channel implies changes to other
thermodynamic properties (i.e. density and viscosity), and their wall values become not
fully representative of the physics in the buffer layer. This observation is essential when the
purpose of the study is to assess skin-friction drag changes induced by spanwise forcing,
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Figure 2. Temperature (a), density (b), dynamic viscosity (c) and semi-local Reynolds number (d) profiles in
the wall region of a canonical compressible channel flow at Mb

w = 0.3, 0.8 and 1.5, with ZBC (dashed lines)
and CBC (continuous lines).

whose physical mechanism is not fully uncovered yet, but which certainly resides within
the thin transversal Stokes layer which interacts with the near-wall cycle occurring in the
buffer layer. When the actuation parameters scale in viscous wall units, their effects in the
buffer layer are not easily comparable in the ZBC case.

As an example, figure 4 plots the control parameters ω̃+, κ̃+
x and Ã+ of the simulations

taken along line 3 of figure 1. The parameters are still scaled in wall units, but the tilde
indicates that viscous units are built with density and viscosity measured in the actuated
flow at y+ = 10, for the ZCB (a) and CBC (b) comparison strategy. Figure 4 is effective
at showing that, with ZBC, the buffer layer experiences a forcing whose set of parameters
changes with the Mach number, whereas, with CBC, the simulation parameters match at
the various Mb

w, and enable the comparison of compressibility effects for a given control.

3. Drag reduction and power savings

The database produced in the present work is used for a comprehensive analysis of
the effect of compressibility on the drag reduction and power budget performance of
StTW. The reference Reynolds number of choice is Reτ = 400, i.e. higher than Reτ =
200, where most of the incompressible information is available, to avoid full or partial
relaminarization. Data at Reτ = 400 are also relatively free from the low-Re effects that
plague results obtained at Reτ = 200. Obviously, the downsides are a larger computational
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Figure 3. Streamwise velocity fluctuations u+ in a wall-parallel portion of the x–z plane at y+ = 10 for ZBC
(a,b) and CBC (c,d) at Mb

w = 0.3 (a,c) and Mb
w = 1.5 (b,d) for the uncontrolled case. The blue-to-red colour

scale ranges from −10 to +10; the black line is for the zero contour level.
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Figure 4. Frequency ω̃+, wavenumber κ̃+
x and amplitude Ã+ of the control forcing for the travelling waves at

κ+
x = 0.005 (line 3 of figure 1) made dimensionless with the thermodynamic properties of the actuated flow at

y+ = 10.
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cost, and a limited number of incompressible data to directly compare with. Results at
Mb

w = 0.3 are compared with those of Hurst, Yang & Chung (2014) for the oscillating
wall, stationary waves and the travelling waves at fixed wavenumber. For the oscillating
wall, a few data points from Ricco & Quadrio (2008) are also available. For the other
control cases, the main incompressible comparison data are the StTW results of Gatti &
Quadrio (2016). Their comprehensive datasets at Reτ = 200 and Reτ = 1000, available
as Supplementary Material to their paper, are interpolated to obtain drag reduction
for arbitrary combinations of the control parameters. As suggested in that paper, drag
reduction data are expressed in terms of the vertical shift �B+ of the streamwise
mean velocity profile in its logarithmic region, which minimizes the effect of the small
computational domain and reduces the Re effect on DR. In fact, �B+ becomes a
Re-independent measure of drag reduction, once Re is sufficiently large (they tentatively
suggested Reτ > 2000) for the mean profile to feature a well-defined logarithmic layer.
Since �B+ is still Re-dependent at the present values of Re, we interpolate linearly the
�B+ data by Gatti & Quadrio (2016) between Reτ = 200 and Reτ = 1000 to retrieve
�B+ at Reτ = 400. Note that, owing to the small computational domain, the Reτ = 200
data by Gatti & Quadrio (2016) slightly overestimate drag reduction, particularly at
small frequencies and wavelengths. The incompressible control power is interpolated at
Reτ = 400 from data of Gatti & Quadrio (2016), by assuming a power law dependence
with Reτ , as stated by Ricco & Quadrio (2008) and Gatti & Quadrio (2013).

The few available compressible data are from Yao & Hussain (2019), who considered
the oscillating wall only, at the slightly higher Reτ = 466 for Mb

w = 0.8 and Reτ = 506 for
Mb

w = 1.5. Moreover, the data points computed by Ruby & Foysi (2022) for a stationary
wave are at Mb

w = 0.3, Reτ = 396 and Mb
w = 1.5, Reτ = 604.

A combined view of the raw results of the simulations, in terms of drag reduction and
power budget, is shown first in figure 5 for the oscillating-wall case (line 1 of figure 1).
Panel (a) plots the data collected with ZBC, and panel (b) illustrates CBC. The scaling
of the data computed with CBC appears to improve significantly. Since the different
ranges of variation for drag and powers makes the details difficult to appreciate, in the
following we consider them separately, providing in §§ 3.1 and 3.2 a detailed comparison
with existing literature data, and studying the power cost in terms of control power and
cooling power. For completeness, Appendix A contains the remaining raw data, computed
on the remaining four lines of figure 1, plotted together as in figure 5.

3.1. Drag reduction
Figure 6 shows the drag reduction rate obtained for the temporally oscillating wall, i.e.
along line 1 of figure 1, as a function of the oscillation period T+.

We first consider the ZBC case on the left. For Mb
w = 0.3, DR grows with T+ up

to a maximum at approximately T+ = 100, and then monotonically shrinks. This is in
agreement with the incompressible results of Hurst et al. (2014), Ricco & Quadrio (2008)
and Gatti & Quadrio (2016), whose interpolated data, as expected, slightly overpredict
DR, especially at large periods. This is due to the combined effect of low Re and small
computational domain employed in that study, which – particularly for the oscillating
wall, where only one forcing phase is present at a particular time – leads to partial
relaminarization during the cycle. The curves at higher Mb

w are qualitatively similar,
but tend to remain below the incompressible data at small periods, and to go above
them at large ones. Near the optimal period, compressibility makes the maximum DR%
grow, and shift towards larger periods: for Mb

w = 0.3 the maximum drag reduction is
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Figure 5. Drag reduction rate and power budget as a function of the period T+ for the oscillating wall (line 1
of figure 1, see inset), for ZBC (a) and CBC (b).
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Figure 6. Drag reduction rate vs period T+ for the oscillating wall (line 1 of figure 1, see inset), for ZBC
(a) and CBC (b). Incompressible data are in green: solid line without symbols from Gatti & Quadrio (2016),
solid symbols from Hurst et al. (2014) and open symbols from Ricco & Quadrio (2008). The blue and black
open symbols are from Yao & Hussain (2019) at Mb

w = 0.8, Reτ = 466 and Mb
w = 1.5, Reτ = 506. Solid lines

indicate interpolation. Dashed lines on the right panel are results for ZBC.

DRm
0.3 = 30.3 % at T+ = 100, whereas DRm

0.8 = 30.6 % at T+ = 100 and for Mb
w = 1.5

it becomes DRm
1.5 = 35.9 % at T+ = 150. This picture confirms the compressible results

at Reτ = 200 discussed by Yao & Hussain (2019), except for the supersonic case, where
they reported a monotonic increase of DR% with T+. This is ascribed to the partial
relaminarization occurring at Reτ = 200 when drag reduction is large; the present study,
owing to its higher Reτ = 400, is able to identify a well-defined DR% peak even in
the supersonic regime. Figure 6 also includes results at higher Reτ from Yao & Hussain
(2019) for the transonic and supersonic cases. Again, qualitative agreement is observed;
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Figure 7. Drag reduction rate vs wavenumber κ+
x for the steady waves (line 2 of figure 1, see inset), for ZBC

(a) and CBC (b). Incompressible data are in green and dashed lines are for ZBC, as in figure 6. Red and black
open symbols are from Ruby & Foysi (2022) at Mb

w = 0.3, Reτ = 396 and Mb
w = 1.5, Reτ = 604.

quantitative differences are due to their slightly different Reynolds numbers, which are
Reτ = 466 for Mb

w = 0.8 and Reτ = 506 for Mb
w = 1.5.

Figure 6(b) plots the results computed under CBC, and compares them with those under
ZBC. The Mb

w = 0.3 cases are almost identical; at this low Mb
w, compressibility effects are

minor, and the difference between ZBC and CBC negligible. At larger Mb
w, however, with

CBC the results show a much better collapse over the three values of Mb
w. The maximum

drag reduction consistently occurs at T+ = 100, and is nearly unchanged across the three
cases.

Overall, the favourable effect of compressibility in terms of maximum drag reduction of
the oscillating wall is confirmed. However, the significant increase of the maximum drag
reduction reported by Yao & Hussain (2019) is only confirmed when the comparison is
carried out with ZBC, whereas for CBC this increment is very limited.

Figure 7 shows results for the stationary waves, i.e. along line 2 of figure 1, plotted
as a function of the streamwise wavenumber κx. The trend resembles that of the temporal
oscillation. Again, at Mb

w = 0.3, differences from the incompressible limit are minor. Once
Mb

w grows, a significant dependency on the wavenumber is observed: at large κx DR%
slightly decreases, but at small κx it increases significantly.

For the ZBC dataset (a), a significant shift of the DR% peak towards smaller
wavenumbers is observed, with a peak value of DRm

0.3 = 40.4 % for κ+
x = 0.005,

DRm
0.8 = 42.5 % for κ+

x = 0.005 and DRm
1.5 = 47.1 % for κ+

x = 0.0017. However, once
the CBC comparison is considered (b), the overshoot at small κ+

x disappears; data at
Mb

w = 0.3 and Mb
w = 0.8 collapse, and the supersonic case still presents its maximum at

κ+
x = 0.005.
Open symbols in figure 7(a) are the results of Ruby & Foysi (2022), computed with

ZBC. One immediately notices their different trend compared with the present data. In
fact, in their numerical experiments the value of the semi-local Reynolds number evaluated
at the centreline was kept fixed at Re∗

τ,c = 400: this implies a variation of Reτ between 396
and 604 while moving from the subsonic to the supersonic case. In the present simulations,
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Figure 8. Drag reduction rate vs frequency ω+ for the StTW at κ+
x = 0.005 (line 3 of figure 1, see inset), for

ZBC (a) and CBC (b). Incompressible data are in green and dashed lines data are for ZBC, as in figure 6.

instead, Reτ ≈ 400 at all M. Additionally, in their study the forcing wavelength was scaled
with semi-local quantities, so that a direct comparison is problematic. Red and black open
symbols represent their results at Mb

w = 0.3 and Mb
w = 1.5, rescaled in viscous units: these

rescaled data present the same trend observed here with CBC, with the supersonic case
lacking the DR% peak at the smallest κ+

x , and suggest a qualitative similarity between a
comparison based on a semi-local scaling and the present CBC strategy.

We now move on to consider a travelling wave, and plot in figure 8 how DR% varies as
a function of the frequency ω+ for a travelling wave at fixed κ+

x = 0.005, i.e. along line 3
of figure 1. Once again, data for Mb

w = 0.3 do not differ from the incompressible ones. At
higher Mb

w, with ZBC the maximum drag reduction increases above the incompressible
value, but, far from the peak, drag reduction levels are generally lower. The boost in
maximum drag reduction grows with Mb

w, and is accompanied by a slight shift towards
higher frequencies. At Mb

w = 1.5, the peak is at ω+ = 0.025, and reaches the outstanding
value of DRm

1.5 = 51.6 %. Increasing Mb
w also intensifies the drag increase in the range

0.05 � κ+
x � 0.1, with a maximum of 12.2 % for Mb

w = 1.5.
Once again, if the comparison is carried out with the CBC criterion, the compressibility

effects remain generally favourable, but become much smaller. The extra gain is extremely
small, and the curves at varying Mb

w nearly collapse.
Figure 9 reports the results computed for the points on the vertical line 4 of figure 1

at fixed ω+ = −0.21, where the incompressible DR% is nearly constant with κ+
x . As

for lines 1 and 3, compressibility is found to deteriorate the control performances at large
(positive and negative) frequencies. However, this is emphasized by the ZBC comparisons,
whereas CBC results show a much better collapse.

Finally, results from simulations on line 5 in figure 1, drawn along the ridge of optimal
DR% in the ω–κx plane of parameters, are depicted in figure 10. It is worth recalling
that, according to Gatti & Quadrio (2016), this ridge, and in particular its portion near the
origin of the plane, is where the largest changes with Re are expected. Indeed, the subsonic
points do not fully overlap with incompressible data, which inherit the low-Re nature
of the reference through the interpolation, and show a rather uniform value of DR%.
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Figure 9. Drag reduction rate vs wavenumber κ+
x for the travelling waves at ω+ = −0.21 (line 4 of figure 1,

see inset), for ZBC (a) and CBC (b). Incompressible data are in green, and dashed lines are for ZBC, as in
figure 6.
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Figure 10. Drag reduction rate vs frequency ω+ for the travelling waves for the optimal ridge (line 5 of figure 1,
see inset), for ZBC (a) and CBC (b). Incompressible data are in green, and dashed lines are for ZBC, as in
figure 6.

The supersonic data lie below the subsonic ones at large frequencies, but outperform them
at small frequencies. Once CBC is used, the collapse of the curves at different Mb

w improves
significantly, while the general changes remain qualitatively the same.

3.2. Power budgets
Since StTW is an active form of flow control, quantifying the energy consumption of the
control system is key to assessing the overall efficiency: one needs to compare costs, i.e.
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Figure 11. Input power for the travelling waves with κ+
x = 0.005 (line 3 of figure 1, see inset) for ZBC (a) and

CBC (b). For CBC the two contributions to Pin%, i.e. the control power Pc% and the cooling power PΦ%, are
plotted separately. Incompressible data are in green, and dashed lines are for ZBC.

the control energy, and benefits, i.e. the energy savings made possible by a reduction of
the skin-friction drag.

Figure 11 plots, as one example, the input power Pin% on line 3 of figure 1. A similar
scenario holds in the entire plane. For the ZBC comparison (a), the input power, which
depends significantly on the control parameters, shows a decrease (in absolute value)
with Mb

w, especially at large frequencies. With CBC, Pin% features two contributions:
the control power and the cooling power. They turn out to be roughly of the same order of
magnitude, and both have a minor dependence on Mb

w, yet the dependence of the latter on
the control parameters resembles that of DR%. The extra cost to cool the flow is an effect
of the additional term in the energy equation, which serves the purpose of yielding an
internal flow with a temperature profile that resembles an external flow. In a true external
flow, however, cooling would occur naturally: Pin% would reduce to the control power
Pc%. Since the control contribution to Pin% in StTW is a rather simple quantity that can be
analytically predicted under the hypothesis of a laminar generalized Stokes layer (Quadrio
& Ricco 2011), the perfect collapse of Pc% under CBC witnesses how the controlled cases
are being properly compared.

Figure 12 plots the net power saving Pnet% for the temporal wall oscillations, i.e. along
line 1 of figure 1. Panel (a) is computed with ZBC; in agreement with the incompressible
case, for A+ = 12 no net saving is obtained. However, the power budget improves with
the Mach number, and at Mb

w = 1.5 it approaches zero. This is due to the combined
effect of increasing DR% (for T+ � 100, see figure 6), and decreasing Pin% (especially
for small T). Figure 12(b) plots Pnet% under CBC (lower set of curves), and the net
power saving without accounting for the cooling power, namely DR% − Pc%. Since
Pc% and PΦ% are of the same order of magnitude, Pnet% becomes largely negative; the
interesting outcome of the ZBC case vanishes. However, when only Pc% is considered,
Pnet% becomes comparable to the ZBC case (upper set of curves), albeit that the positive
compressibility effect decreases substantially.

Examining data along line 2 of figure 1 (stationary waves), which passes near the
absolute maximum of drag reduction, is instructive. The plot is shown in figure 13.
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Figure 12. Net power saving for the oscillating wall (line 1 of figure 1, see inset), for ZBC (a) and CBC (b).
Incompressible data are in green; (b) also plots DR% − Pc% (top set of curves), where dashed lines are for
ZBC.
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Figure 13. Net power saving for the steady waves (line 2 of figure 1, see inset), for ZBC (a) and CBC (b).
Incompressible data are in green; (b) also plots DR% − Pc% (top set of curves) where dashed lines are for ZBC.
Red and black open symbols are from Ruby & Foysi (2022) at Mb

w = 0.3, Reτ = 396 and Mb
w = 1.5, Reτ =

604.

For a ZBC comparison (a), the net saving increases substantially with Mb
w for κ+

x < 0.012,
such that the maximum shows a 5-fold increase, from 5 % in the incompressible case to
25.8 % for Mb

w = 1.5 The peak is also observed to shift towards smaller κ+
x . Under CBC,

however, much of the improvement disappears, and the curves almost collapse, with only a
small residual effect for the supersonic curve. When Pnet% takes into account the cooling
power, the outcome is negative regardless of the control parameters.
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Figure 14. Net power saving for the travelling waves with κ+
x = 0.005 (line 3 of figure 1, see inset) for ZBC

(a) and CBC (b). Incompressible data are in green; (b) also plots DR% − Pc% (top set of curves) where dashed
lines are for ZBC.

Results from Ruby & Foysi (2022) at ZBC and at fixed Re∗
τ,c are also plotted in

figure 13(a). They are computed at rather small wavenumbers, and overlap to the present
data for Mb

w = 0.3 but indicate much larger savings at Mb
w = 1.5. Nevertheless, their trend

resembles the one obtained here at CBC, and indicates the presence of a local maximum,
and a lack of explosive savings at vanishing wavenumbers.

Figure 14 plots the net power saving for travelling waves at fixed κ+
x = 0.005 (line 3 of

figure 1). The ZBC comparison shows a large increase of Pnet%, up to 31.4 % for the largest
M; the peaks shift towards larger positive ω. Interestingly, the peaks of DR% and Pin%
occur around the same frequency, and they are both enhanced by compressibility. When
the comparison is carried out at CBC, however, once again the curves show a tendency to
overlap, and the maximum saving shrinks to 17.8 % for DR% − Pin%, which remains an
interesting figure, but in line with the incompressible case. If both contributions to Pin%
are included, Pnet% is largely negative at every ω.

4. Concluding discussion

We have studied how spanwise forcing implemented via StTW of the spanwise velocity at
the wall alters the skin-friction drag in compressible flows. A set of 258 direct numerical
simulations for a turbulent plane channel flow are carried out, for subsonic (Mb

w = 0.3),
transonic (Mb

w = 0.8) and supersonic (Mb
w = 1.5) speeds, at the baseline friction Reynolds

number of Reτ = 400. The available literature information, which includes only a few
such studies for compressible flows, is significantly extended; in particular, travelling
waves are considered here for the first time. The study considers the control performance
for the temporally oscillating wall (κx = 0), the steady wave (ω = 0), travelling waves
at fixed wavenumber κ+

x = 0.005 and at fixed frequency ω+ = −0.21 and the ridge of
maximum drag reduction corresponding to waves travelling with a slow forward speed. All
the simulations are run by keeping the bulk velocity constant in time as well as between
unforced and forced cases.
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In addition to the bulk velocity, in the compressible setting a further quantity related
to the energy equation must be kept constant to enable a proper comparison. Since its
choice impacts the qualitative outcome of the study, we employ and compare two different
strategies. The first, that we indicate with ZBC, is commonly used for duct flows, and
lets the bulk temperature evolve freely until an asymptotic value is reached at which the
heat produced within the flow is balanced by the heat flux through the isothermal walls.
Unfortunately, ZBC leads to different bulk temperatures for each simulation, and in the
present context it hinders the physical interpretation of results.

In a second approach, named CBC, the value of the bulk temperature is kept constant
during the simulations, by means of a bulk cooling term in the energy equation. To do
so, the value of the diabatic parameter Θ is fixed across both the values of the Mach
number and the control parameters of the StTW, implying that a fixed portion of bulk
flow kinetic energy is converted into thermal energy, and that extra energy is spent for
the cooling process. Using the diabatic parameter (or, equivalently, the Eckert number)
has been recently considered by Cogo et al. (2023) as a means to achieve a similar wall
cooling across different values of the Mach number. Extending a Θ-based comparison to
account for different values of Θ with flow control and drag reduction is an interesting
future development of the present study.

Results of the simulations show that StTW remain fully effective in transonic and
supersonic flows, thus extending available results for the oscillating wall and the
steady waves. In fact, drag reduction can be higher in compressible flows than in
incompressible ones, when frequency and wavenumber of the forcing are small. However,
the improvement appears to be substantial only when the comparison is carried out at ZBC.
When CBC is used, only marginal improvements are detected; curves at various Mb

w tend to
collapse and to replicate the incompressible behaviour. Figure 15 shows, for the controlled
flow at κ+

x = 0.005 (line 3 of the map of figure 1), the drag reduction measured by the
simulations of the present work plotted against the drag reduction of the incompressible
case. The control parameters are made dimensionless with the thermodynamic properties
of each case at y+ = 10 (see § 2.5). Most points lie on the diagonal line: drag reduction
becomes constant with the Mach number, once the effect of the changed thermodynamics
is removed. The few outliers are points of the map where drag reduction gradients are
extremely large, and the limited number of available incompressible data leads to a poor
interpolation, as already pointed out in § 3. This picture demonstrates that, once spurious
thermodynamic changes are factored out, compressibility has little to no effect on the drag
reduction performance of the travelling waves.

Similar results hold for the power budget: StTW yield large net energy savings, even
in the compressible regime, but the impressive improvements observed with ZBC against
the incompressible reference do not carry over to the CBC comparison, which broadly
replicates the incompressible results. The last statement is only valid as long as the extra
cooling power implied by CBC is neglected, on the basis that it represents an artefact
to obtain an internal flow with a temperature profile that resembles that of an external
flow.

Hence, choosing the comparison strategy is key to properly describing how drag
reduction and power savings of an active drag reduction technique change in the
compressible regime. In a way, this recalls the incompressible case, where early studies
for the oscillating wall claimed ‘disruption of turbulence’ only because comparing at
the same bulk velocity implies an important reduction of Reτ when drag reduction
is achieved. While ZBC is certainly apt to describe internal flows, the observed drag
reduction figures are significantly larger than their incompressible counterpart, primarily
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Figure 15. Drag reduction for the StTW at κ+
x = 0.005 measured in the compressible regime vs drag reduction

of the incompressible regime when the control parameters are scaled with the thermodynamic properties of
each different case at y+ = 10.

because the control parameters affect the terms of the comparison. A CBC comparison, in
which the dimensionless temperature remains constant with M and across the controlled
cases, seems more appropriate, and in fact yields data that overlap well when the Mach
number is varied. With CBC, only a small, albeit non-negligible, extra drag reduction and
net power saving are found in comparison with the incompressible case.
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Appendix. A compact representation of the dataset

This appendix uses the format of figure 5 to report, for completeness, the entire dataset
with figures where drag and power changes are plotted together. After line 1 of figure 1,
already described in figure 5, the following figures 16, 17, 18 and 19 respectively concern
lines 2, 3, 4 and 5.
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x for the steady waves (line 2 of figure 1,

see inset), for ZBC (a) and CBC (b).
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for ZBC (a) and CBC (b).
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Figure 18. Drag reduction rate and power budget vs wavenumber κ+
x for the travelling waves at ω+ = −0.21

(line 4 of figure 1, see inset), for ZBC (a) and CBC (b).
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Figure 19. Drag reduction rate and power budget vs frequency ω+ for the optimal ridge (line 5 of figure 1,
see inset), for ZBC (a) and CBC (b).
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