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Abstract

It is shown that a minimal surface in H2 × R is invariant under a one-parameter group of screw motions
if and only if it lies in the associate family of helicoids. It is also shown that the conjugate surfaces of the
parabolic and hyperbolic helicoids in H2 × R are certain types of catenoids.
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1. Introduction

It is well known that a minimal surface in Euclidean 3-space R3 can be deformed
isometrically to a minimal surface. The isometrically deformed minimal surface is
called associate. In fact, the isometric deformation is obtained by rotating the shape
operator. When the rotation angle is π/2, the two surfaces are called conjugate. A
famous example of conjugate minimal surfaces in R3 is catenoids and helicoids. It can
be shown that the associate surfaces of helicoids (hence of catenoids) are invariant
under a one-parameter group of screw motions in R3. Therefore one may ask if
a minimal surface invariant under a one-parameter group of screw motions is an
associate of a helicoid. Regarding this question, it was shown by H. A. Schwarz that
if two (open, simply connected) minimal surfaces in R3 are isometric, then they are
associate (see [8, p. 166]).

In this paper, we will discuss the corresponding question in the product space
H2 × R. In fact, associate minimal surfaces in H2 × R have been well studied after
a series of works [1, 7, 9]. In particular, the existence of the minimal associate family
was shown in [2, 4]. It was also shown in [11] that if two minimal surfaces in H2 × R
invariant under a one-parameter group of elliptic screw motions are isometric, then
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136 Y. W. Kim et al. [2]

T 1. Conjugate surfaces to the elliptic helicoids in H2 × R.

Eliptic helicoid EHβ, β > 1 Elliptic catenoid ECα β2 − α2 = 1
Elliptic helicoid EH1 Parabolic catenoid PC

Elliptic helicoid EHβ, β < 1 Hyperbolic catenoid HCα, α < 1 β2 + α2 = 1

they are associate, a partial result similar to that of H. A. Schwarz. Other partial
results for minimal surfaces invariant under a one-parameter group of parabolic or
hyperbolic screw motions were given in [10]. But these results split the three cases of
screw motions and do not show the interrelation between them.

We give in this paper a complete description of the minimal surfaces invariant under
screw motions. In fact, both minimal surfaces and the surfaces invariant under a one-
parameter group of screw motions in H2 × R give a solution to the Bonnet problem: it
was shown in [3] that if two real analytic surfaces Σ1, Σ2 are Bonnet mates, then both Σ1

and Σ2 are either minimal surfaces or parts of surfaces invariant under a one-parameter
group of screw motions. We also give a complete set of conjugate relations between
these invariant minimal surfaces. It is interesting that some of the minimal surfaces
invariant under a one-parameter group of elliptic screw motions have some of their
associate (and conjugate) surfaces which are invariant under a one-parameter group
of parabolic or hyperbolic screw motions. Our proof follows the geometric existence
argument of associate surfaces of Daniel [2], which is summarised in Section 2.1.

We show in Theorem 2.6 that a minimal surface inH2 × R is helicoidal if and only if
it lies in the associate family of helicoids. A surface is called helicoidal if it is invariant
under a one-parameter group of screw motions inH2 × R. Screw motions inH2 × R are
rigid motions generated by rotations in H2 and vertical translations along R. The same
theorem for the maximal surfaces in the three-dimensional Lorentz–Minkowski space
was proven in [6]. Whereas the Bjöling representation formula is a crucial tool for the
proof there, we compute the Killing vector fields explicitly in terms of the conformal
parameter of the surface, which gives a helicoidal motion in H2 × R under which the
surface is invariant. As our method is constructive in a sense, it applies to the case of
minimal surfaces in R3 as well.

It was also shown in [2] that, for surfaces in H2 × R, the elliptic helicoids (ruled
minimal surfaces invariant under the elliptic screw motion) EHβ are conjugate to the
elliptic catenoids ECα, the parabolic catenoid PC or the hyperbolic catenoids HCα

according to the size of the ‘rotating speed’ α of the catenoids and the ‘pitch’ β of the
helicoids. Table 1 summarises the result.

Elliptic (parabolic, hyperbolic, respectively) catenoids are minimal surfaces
invariant under elliptic (parabolic, hyperbolic, respectively) rotations. As there are
two more kinds of minimal helicoids in H2 × R, namely, the parabolic helicoid
(ruled minimal surface invariant under the parabolic screw motion) PH and the
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T 2. Conjugate correspondence between helicoids and catenoids.

EHβ>1 ECα β2 − α2 = 1
EH1 PC

EHβ<1 HCα<1 β2 + α2 = 1
PH HC1

HHβ HCα>1 α2 − β2 = 1

hyperbolic helicoids (ruled minimal surfaces invariant under the hyperbolic screw
motion) HHβ [5], it seems natural to ask what the conjugate minimal surfaces of
PH and HHβ are. We show in Theorem 3.2 in the last section that they are certain
hyperbolic catenoids, to complete the correspondence table as in Table 2.

2. Helicoidal minimal surfaces

In this section, we show that a minimal surface in H2 × R is helicoidal if and only
if it lies in the associate family of helicoids. For this purpose, the following theorem
in [2] is crucial.

2.1. Daniel’s theorem. Let Σ be a simply connected Riemann surface and X : Σ→

H2 × R a conformal minimal immersion. Let N be the induced unit normal vector field
and S the symmetric operator on Σ induced by the shape operator of X(Σ). Let ξ be
the vertical unit vector field (corresponding to the factor R) and T be the vector field
on Σ such that dX(T ) is the projection of ξ onto T (X(Σ)) and ν = 〈N, ξ〉. Let z0 ∈ Σ.
Then there exists a unique continuous family Xθ, θ ∈ R, of conformal immersions
Xθ : Σ→ H2 × R such that:

(i) Xθ(z0) = X(z0), (dXθ)z0 = (dX)z0 ;
(ii) the metrics induced on Σ by X and Xθ are the same;
(iii) the symmetric operator on Σ induced by the shape operator of Xθ(Σ) is eθJS ,

where J is the complex structure on Σ;
(iv) ξ = dXθ(eθJT ) + νNθ, where Nθ is the unit normal to Xθ.

2.2. A conformal parametrisation of helicoidal surfaces. Let Σ be a simply
connected Riemann surface and X : Σ→ H2 × R be a helicoidal immersion. A
natural parametrisation X(u, v) : Σ→ H2 × R for such a helicoidal immersion can be
introduced by letting the v-curves be the trajectories of the helicoidal motion, that is,
orbits, and letting the u-curves be their orthogonal trajectories. Then

〈Xu, Xv〉 = 0.

Since ‖Xv‖ is constant along the orbit, one can assume, by reparametrising u if
necessary, that

‖Xv‖
2 = ‖Xu‖

2 := λ(u)
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on Σ. For notational convention, we write

Xuu := ∇Xu Xu, Xvv := ∇Xv Xv, Xuv := ∇Xv Xu, Xvu := ∇Xu Xv.

Then, since [Xu, Xv] = 0, we have Xuv = Xvu. If, furthermore, X is minimal, then

Xuu + Xvv = 0.

2.3. Helicoidal minimal surfaces. Now let X(u, v) : Σ→ H2 × R be a conformal
minimal helicoidal immersion with the above parametrisation. Then the following
result holds.

P 2.1. Both 〈Xu, ξ〉 and 〈Xv, ξ〉 are constant functions and λ(u) is a convex
function.

P. The function 〈Xv, ξ〉 is a constant function from the choice of the parameter v.
Then, since X(Σ) is minimal and ξ is a parallel vector field,

∂

∂u
〈Xu, ξ〉 = 〈Xuu, ξ〉 = −〈Xvv, ξ〉 = −

∂

∂v
〈Xv, ξ〉 = 0,

∂

∂v
〈Xu, ξ〉 = 〈Xuv, ξ〉 = 〈Xvu, ξ〉 =

∂

∂u
〈Xv, ξ〉 = 0,

which shows that 〈Xu, ξ〉 is a constant function.
Now let R be the curvature tensor of H2 × R. Then

dλ(u)
du

=
∂

∂u
〈Xv, Xv〉 = 2〈Xvu, Xv〉 = 2〈Xuv, Xv〉.

Let K be the sectional curvature of the section generated by Xu and Xv. Since a
sectional curvature of the space H2 × R is nonpositive and X(Σ) is minimal,

1
2

d2λ

du2
=

∂

∂u
〈Xuv, Xv〉

= 〈Xuvu, Xv〉 + 〈Xuv, Xuv〉

= 〈Xuvu − Xuuv, Xv〉 + 〈Xuuv, Xv〉 + 〈Xuv, Xuv〉

= R(Xu, Xv, Xu, Xv) +
∂

∂v
〈Xuu, Xv〉 − 〈Xuu, Xvv〉 + 〈Xuv, Xuv〉

= R(Xu, Xv, Xu, Xv) −
∂

∂v
〈Xvv, Xv〉 + 〈Xuu, Xuu〉 + 〈Xuv, Xuv〉

= −K‖Xu ∧ Xv‖
2 −

1
2
〈Xv, Xv〉vv + 〈Xuu, Xuu〉 + 〈Xuv, Xuv〉

= −K‖Xu ∧ Xv‖
2 + 〈Xuu, Xuu〉 + 〈Xuv, Xuv〉 ≥ 0.

This completes the proof. �
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Now let ∂u, ∂v, T ∈ TΣ be vector fields satisfying dX(∂u) = Xu, dX(∂v) = Xv, and
dX(T ) is the projection of ξ onto T (X(Σ)). Let N be the induced unit normal vector
field and let ν = 〈N, ξ〉. Set 〈Xu, ξ〉 = a and 〈Xv, ξ〉 = b. Then, since ‖ξ‖ = 1,

ξ =
〈Xu, ξ〉

‖Xu‖
2

Xu +
〈Xv, ξ〉

‖Xv‖
2

Xv + 〈N, ξ〉N

=
a
λ(u)

Xu +
b
λ(u)

Xv + νN,

which implies that

T =
a
λ(u)

∂u +
b
λ(u)

∂v,

ν2 =
λ(u) − (a2 + b2)

λ(u)
.

2.4. Associated immersions. Let X : Σ→ H2 × R be the conformal helicoidal
minimal immersion given in Section 2.3 and let Y be the associated minimal immersion
to X corresponding to the angle θ. Then, from (ii) of Section 2.1,

‖Yu‖
2 = ‖Yv‖

2 = λ(u).

Let Tθ ∈ TΣ be the vector field such that dY(Tθ) is the projection of ξ into T (Y(Σ)), Nθ

the induced unit normal vector field and νθ = 〈Nθ, ξ〉. Then, from (iv) of Section 2.1,

Tθ =
a cos θ − b sin θ

λ(u)
∂u +

a sin θ + b cos θ
λ(u)

∂v

and

ν2
θ =

λ(u) − (a2 + b2)
λ(u)

.

Then, since Yu = (cos θ)Xu − (sin θ)Xv, Yv = (sin θ)Xu + (cos θ)Xv,

〈Yu, ξ〉 = a cos θ − b sin θ,

〈Yv, ξ〉 = a sin θ + b cos θ.

Let π : H2 × R→ H2 be the horizontal projection. Then the horizontal components
YH

u := dπ(Yu), YH
v := dπ(Yv) are given by

YH
u = Yu − (a cos θ − b sin θ)ξ, (2.1)

YH
v = Yv − (a sin θ + b cos θ)ξ. (2.2)

Since ξ is a parallel field,

YH
uu = Yuu, YH

uv = Yuv = Yvu = YH
vu, YH

vv = Yvv. (2.3)

Note first that two vector fields YH
u , YH

v are linearly dependent if and only if Nθ ⊥ ξ,
that is, if and only if λ(u) = a2 + b2. Now suppose that there exists a point u0 such
that λ(u0) = a2 + b2. Then, since the function λ(u) is convex, it follows that either
λ(u) = a2 + b2 on an interval I containing u0 or λ(u) , a2 + b2 if u , u0.

https://doi.org/10.1017/S0004972711003042 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711003042
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P 2.2. Suppose that λ(u) = a2 + b2 on an interval I. Then the surface Y(Σ)
is a part of a vertical plane.

P. Since λ is constant on I, we have from (2.2) that

(a sin θ + b cos θ)YH
u + (a cos θ − b sin θ)YH

v = 0,

which gives

(a sin θ + b cos θ)YH
uu + (a cos θ − b sin θ)YH

vu = 0,

(a sin θ + b cos θ)YH
uv + (a cos θ − b sin θ)YH

vv = 0.

From (2.3),

(a sin θ + b cos θ)Yuu + (a cos θ − b sin θ)Yvu = 0,

(a sin θ + b cos θ)Yuv + (a cos θ − b sin θ)Yvv = 0.

Combining these with the minimality equation Yuu + Yvv = 0 leads to

Yuu = Yvv = 0, Yuv = 0,

which implies that the surface {Y(u, v) : u ∈ I} is totally geodesic and hence is a vertical
plane by [5]. Now the elliptic regularity theorem gives that the whole surface Y(Σ) is
(a part of) a vertical plane. �

Now assume that Y(Σ) is not a vertical plane and suppose that λ(u0) = a2 + b2

and λ(u) , a2 + b2 if u , u0. Let us set Σ+ = {(u, v) ∈ Σ : u > u0}, Σ
0 = {(u0, v) ∈ Σ} and

Σ− = {(u, v) ∈ Σ : u < u0}. For p ∈ Y(Σ+), there is a neighbourhood Up, p ∈ Up ⊂ Y(Σ+),
such that:

(a) π is a diffeomorphism on Up;
(b) YH

u , YH
v are linearly independent on Up.

Then one can regard YH
u , YH

v restricted to Up as vector fields on π(Up) ⊂ H2.

P 2.3. There is a Killing fieldU of H2 such that YH
v |π(Up) =U|π(Up).

P. We are to show that YH
v satisfies the Killing equation. To do so, since YH

u , YH
v

are linearly independent, it is enough to show that

〈YH
vv, YH

v 〉 = 〈Y
H
vu, YH

u 〉 = 0, 〈YH
vu, YH

v 〉 + 〈Y
H
vv, YH

u 〉 = 0.

Since YH
uu = Yuu, YH

uv = Yuv, YH
vv = Yvv,

〈YH
vv, YH

v 〉 = 〈Y
H
vv, Yv〉 = 〈Yvv, Yv〉 =

1
2
∂

∂v
〈Yv, Yv〉 =

1
2
∂

∂v
λ(u) = 0,

〈YH
vu, YH

u 〉 = 〈Yvu, Yu〉 = 〈Yuv, Yu〉 =
1
2
∂

∂v
〈Yu, Yu〉 =

1
2
∂

∂v
λ(u) = 0,
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and

〈YH
vu, YH

v 〉 + 〈Y
H
vv, YH

u 〉 = 〈Yvu, Yv〉 + 〈Yvv, Yu〉 = 〈Yuv, Yv〉 + 〈Yu, Yvv〉

=
∂

∂v
〈Yu, Yu〉 =

∂

∂v
λ(u) = 0.

This completes the proof. �

Let U, V be the two neighbourhoods satisfying (a) and (b). Then there are Killing
fieldsU,V of H2 such that

U|π(U) = YH
v |π(U), V|π(V) = YH

v |π(V).

SinceU|π(U∩V) = YH
v |π(U∩V) =V|π(U∩V), it follows that the two Killing fieldsU andV

are in fact the same field. Hence one can see that the vector field YH
v |Σ+ is a well-defined

vector field on π(Y(Σ+) ⊂ H2 and is a restriction of a Killing field on H2. Moreover,
since the vector field YH

v is C∞ on the line (u0, v), one can see that the vector field
YH

v |Σ+∪Σ0 is (a restriction of) a Killing field on H2. In exactly the same way, one can see
that the vector field YH

v |Σ−∪Σ0 is (a restriction of) a Killing field on H2. Since these two
Killing vector fields are the same on Σ0, they are in fact the same Killing field. Hence
we have the following result.

P 2.4. An associate minimal surface to a helicoidal minimal surface in
H2 × R is helicoidal.

Moreover, the following result is evident.

P 2.5. For every helicoidal minimal immersion X : Σ→ H2 × R, there exists
a helicoid associated to X.

P. Let Y : Σ→ H2 × R be the immersion associated to X corresponding to the
angle θ. Choose θ in (2.1) so that

〈Yu, ξ〉 = a cos θ − b sin θ = 0.

Then

ξ =

√
a2 + b2

λ(u)
Yv +

√
λ(u) − (a2 + b2)

λ(u)
N.

Now, from the minimality, we have

〈Yuu, Yv〉 = −〈Yvv, Yv〉 = −
∂

∂v
〈Yv, Yv〉 = −

∂

∂v
λ(u) = 0.

Moreover, since 〈Yu, ξ〉 = 0,
〈Yuu, ξ〉 = 0.

Hence for every v, the u-curve Y(·, v) is a horizontal geodesic and Y(Σ) is a horizontally
ruled minimal surface, which must be a helicoid by [5]. �
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Summarising this subsection, we have the following theorem.

T 2.6. A minimal surface in H2 × R is helicoidal if and only if it lies in the
associate family of helicoids (or a catenoid).

3. Conjugate surfaces of helicoids in H2 × R

In this section we compute the conjugate surfaces of the parabolic helicoid and
hyperbolic helicoids.

By taking the hyperboloid model of H2, let us consider H2 × R as the hypersurface
in the Lorentz–Minkowski space R3,1 given by the equation −x2 + y2 + z2 = −1,
x > 0. We first give the conformal parametrisations of the parabolic helicoids
PH, the hyperbolic helicoids HHβ, and the hyperbolic catenoids HCα. Conformal
parametrisations of any other types of helicoids and catenoids are given in [2].

3.1. Parabolic helicoids. It was shown in [5] that every parabolic helicoid has the
parametrisation

Xb(t, s) =


cosh t + 1

2 s2e−t

sinh t + 1
2 s2e−t

se−t

bs


for a constant b , 0. We first show that all parabolic helicoids are congruent.

P 3.1. Any parabolic helicoid Xb, b , 0, is congruent to the parabolic
helicoid X1.

P. One may assume that b = ea > 0 for some a. Note first that
cosh a sinh a 0 0
sinh a cosh a 0 0

0 0 1 0
0 0 0 1


gives a congruence motion in H2 × R. Reparametrising Xb by s̃ = eas, t̃ = t + a and
moving by the congruence in H2 × R,

cosh a sinh a 0 0
sinh a cosh a 0 0

0 0 1 0
0 0 0 1



cosh t + 1

2 s2e−t

sinh t + 1
2 s2e−t

se−t

bs

 =

cosh t̃ + 1

2 s̃2e−t̃

sinh t̃ + 1
2 s̃2e−t̃

s̃e−t̃

s̃

 = X1(t̃, s̃).

This completes the proof. �

This proposition can be observed more easily by using the upper half-plane model
for H2 as follows: considering H2 × R as {(x, y, z) | y > 0} with the metric ds2 = (dx2 +

dy2)/y2 + dz2, the parabolic helicoids can be given by the equations z = bx, b , 0
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since the map (x, y) 7→ (x + t, y) is the parabolic rotation in H2. Noting that the map
(x, y) 7→ (λx, λy), λ > 0, is the hyperbolic rotation in H2, one can see that the surface
z = bx is congruent to the surface z = x through the isometry (x, y, z) 7→ (bx, by, z) of
H2 × R.

Now consider the parametrisation of the parabolic helicoid
cosh f (u) + 1

2 v2e− f (u)

sinh f (u) + 1
2 v2e− f (u)

ve− f (u)

v


which is conformal if

f ′(u)2 = 1 + e−2 f (u).

A solution of this equation is f (u) = log sinh u, u > 0. Then we have the conformal
parametrisation of the parabolic helicoid

PH(u, v) =
1

2 sinh u


sinh2 u + 1 + v2

sinh2 u − 1 + v2

2v
2v sinh u

 , u > 0.

The induced metric is written as

ds2 =
cosh2 u

sinh2 u
(du2 + dv2) (3.1)

and the normal to H2 × R in R3,1 is

N̄(u, v) =
1

2 sinh u


sinh2 u + 1 + v2

sinh2 u − 1 + v2

2v
0

 .
The unit normal vector field N(u, v) of PH in H2 × R is computed as

N(u, v) =
1

cosh u


v sinh u
v sinh u
sinh u
−1


and the matrix of the shape operator S PH with respect to ∂/∂u, ∂/∂v is computed as

S PH = −
sinh u

cosh2 u

[
0 1
1 0

]
,

from which we can see that the immersion PH is minimal. Furthermore, the tangential
component TPH and the normal component νPH of ∂/∂t are computed as

TPH =
sinh2 u

cosh2 u

∂

∂v
, νPH = −

1
cosh u

.
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3.2. Hyperbolic helicoids. Since the hyperbolic rotation in H2 in the hyperboloid
model is represented as cosh t sinh t 0

0 0 1
sinh t cosh t 0

 ,
we have the following parametrisation of hyperbolic helicoids:

HHβ(u, v) =


cosh βv sinh βv 0 0

0 0 1 0
sinh βv cosh βv 0 0

0 0 0 1



cosh f (u)

0
sinh f (u)

v

 =

cosh f (u) cosh βv

sinh f (u)
cosh f (u) sinh βv

v


which is conformal if

f ′(u)2 = β2 cosh2 f (u) + 1. (3.2)

The normal to H2 × R in R3,1 is

N̄(u, v) =


cosh f (u) cosh βv

sinh f (u)
cosh f (u) sinh βv

0

 .
The unit normal vector field N(u, v) of HHβ in H2 × R is computed as

N(u, v) = −
1

f ′(u)


sinh βv

0
cosh βv

−β cosh f (u)

 .
Now assume that HHβ(u, v) is conformal. Then the matrix of the shape operator S HHβ

with respect to ∂/∂u, ∂/∂v is computed as

S HHβ
= −

β sinh f (u)
f ′(u)2

[
0 1
1 0

]
,

from which we see that the immersion HHβ is minimal. Furthermore, the tangential
component THHβ

and the normal component νHHβ
of ∂/∂t are computed as

THHβ
=

1
f ′2(u)

∂

∂v
, νHHβ

= −
β cosh f (u)

f ′(u)
.

3.3. Hyperbolic catenoids. The conformal parametrisations of the hyperbolic
helicoids HCα and the geometric properties when 0 < α < 1 are given in [2]. However,
we repeat the computation here for completeness and explain some of the geometric
properties when α ≥ 1.

https://doi.org/10.1017/S0004972711003042 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711003042


[11] Helicoidal minimal surfaces in H2 × R 145

Let Π be a vertical geodesic plane containing the origin of H2 and let γ be a smooth
curve in Π. Assume that γ is a graph over the t axis. Let u denote the height along the
t axis. Then the curve γ can be written as

cosh r(u)
0

sinh r(u)
u


for a smooth function r. Then we have the following parametrisation of the hyperbolic
catenoids HCα:

HCα(u, v) =


cosh αv sinh αv 0 0

0 0 1 0
sinh αv cosh αv 0 0

0 0 0 1



cosh r(u)

0
sinh r(u)

u


=


cosh r(u) cosh αv

sinh r(u)
cosh r(u) sinh αv

u


which is conformal if

1 + r′(u)2 = α2 cosh2 r(u). (3.3)

The normal to H2 × R in R3,1 is

N̄(u, v) =


cosh r(u) cosh αv

sinh r(u)
cosh r(u) sinh αv

0

 .
One can see that the unit normal vector field N(u, v) of HCα in H2 × R is computed as

N(u, v) = −
1

α cosh r(u)


sinh r(u) cosh αv

cosh r(u)
sinh r(u) sinh αv

−r′(u)

 .
Now assume that HCα(u, v) is conformal. Then the matrix of the shape operator
S HCα

with respect to ∂/∂u, ∂/∂v is computed as

S HCα
=

sinh r(u)

α cosh2 r(u)

[
−1 0

0 1

]
.

Hence we see that the immersion HCα in H2 × R is minimal if α , 0. Furthermore,

THCα
=

1

α2 cosh2 r(u)

∂

∂u
, νHCα

=
r′(u)

α cosh r(u)
.
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Let us consider two cases separately: (i) when α = 1, and (ii) when α > 1.
(i) When α = 1, since the function

r(u) = log
eu + 1
eu − 1

, u > 0,

is a solution of (3.3), we have a conformal parametrisation

HC1(u, v) =
1

sinh u


cosh u cosh v

1
cosh u sinh v

u sinh u


(see Figure 1) whose induced metric is written as

ds2 =
cosh2 u

sinh2 u
(du2 + dv2). (3.4)

We also have

S HC1 =
sinh u

cosh2 u

[
−1 0

0 1

]
, THC1 =

sinh2 u

cosh2 u

∂

∂u
, νHC1 = −

1
cosh u

.

(ii) Consider the case α > 1. One may assume in (3.3) that r′(u) > 0. Now (3.3) can
be written

dr√
α2 sinh2 r(u) + α2 − 1

= du.

Let u+ be the supremum of the domain of r(u) and let u− be the infimum of the domain
of r(u). Then, by putting x = sinh r(u),

u+ − u− =

∫ r(u+)

r(u−)

dr√
α2 sinh2 r + α2 − 1

=
1
α

∫ sinh r(u+)

sinh r(u−)

1√
x2 + α2−1

α2

√
x2 + 1

dx

<
1
α

∫ sinh r(u+)

sinh r(u−)

1

x2 + α2−1
α2

dx <∞,

which shows that, when α > 1, the height of the surface of the hyperbolic catenoid
HCα is finite (see Figure 2).

3.4. Conjugate correspondences. We prove the following theorem.

T 3.2. (i) The conjugate minimal surface of the parabolic helicoid PH is the
hyperbolic catenoid HC1. Moreover, PH and HC1 are isometric.
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F 1. Hyperbolic catenoid HC1

F 2. Hyperbolic catenoid HC2.
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(ii) The conjugate minimal surface of the hyperbolic helicoid HHβ is the hyperbolic
catenoid HCα if α2 = 1 + β2. Moreover, these two surfaces are isometric.

P. Take ∂/∂u, ∂/∂v to be positively oriented so that J∂/∂u = ∂/∂v.
(i) Equations (3.1) and (3.4) show that PH is locally isometric to HC1. Since

S PH = JS HC1 , TPH = JTHC1 , νPH = νHC1 ,

HC1 is conjugate to PH.Moreover, as the parametrisations of PH and HC1 are injective
in the common domains, the conjugate surfaces are globally isometric to each other.

(ii) We may assume that β > 1, f ′(u) > 0, r′(u) > 0 and that f and r satisfy the initial
condition β sinh f (0) = α sinh r(0),

β f ′(0) cosh f (0) = αr′(0) cosh r(0).
(3.5)

We set y1(u) = β sinh f (u), y2(u) = α sinh r(u). Then, since α2 = β2 + 1, a computation
shows that both y1 and y2 satisfy the equation

y′2 = (y2 + α2)(y2 + β2),

and hence they satisfy the equation

y′′ = y(2y2 + α2 + β2).

From (3.5), one can see that y1(u) = y2(u), which shows from (3.2) and (3.3) that HHβ

and HCα are locally isometric. Moreover, since it follows that

S HHβ
= JS HCα

, THHβ
= JTHCα

, νHHβ
= νHCα

,

HHβ is conjugate to HCα when α2 = 1 + β2. Moreover, as the parametrisations of HHβ

and HCα are injective in the common domains, the conjugate surfaces are globally
isometric to each other. �
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