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1. INTRODUCTION

We shall define a mutual insurance firm as a firm whose stockholders are the
bearers of the insurance contracts issued by the firm. The firm’s insurance is
then viewed as a collective process of say N persons seeking to protect themselves
against claims that may occur to any one of them. For example, large employers
protecting their employees by pooling risks and deducting for protection given
amounts from salaries may be a case in point. In this latter case, the employer
may match withdrawals from employees salaries and provide in the process a
fringe benefit and increase employees loyalty to the firm. Alternatively, agricul-
tural collectives have in some cases established mutual insurance firms whose
purposes are to protect them, at a cost, from the uncertainty implicit in their
production processes and the fluctuations of agricultural markets. Since these
firms do not work for profit, contingent payments, or fund reimbursement in
case of excess cash holdings are typical control policies which help cover extraor-
dinary claims and at the same time are assumed the best investment policies.
To further protect themselves against extraordinary claims, mutual insurers can
turn to reinsurance firms, “selling” for example the excess claims of, say, a given
amount R (e.g., see TAPIERO and ZUCKERMAN (1982)). The purpose of this
paper is to consider such a mutual insurance firm facing a jump stochastic claims
process, as is often assumed in the insurance literature (e.g., FELLER (1971),
BorcH (1974)). For example, Poisson and Compound Poisson processes are
typical jump processes treated in this paper, although other processes could be
considered as well (see SRINIVASAN (1973) and SRINIVASAN and MEHATA
(1976), BEnsoussaN and TApPiERO (1982)). First we define the mutual insurer
problem as a jump process stochastic control problem which we solve analytically
under the assumption of a gamma density claim sizes distribution. A solution is
obtained by applying arguments from stochastic dynamic programming and by
solving the resultant functional equation by application of Laplace transforms
(e.g., CoLoMmBO and LAVOINE (1972), MILLER (1956), TAaPIERO, Chapter V).
Subsequently, the effects of reinsurance are introduced and preliminary results
obtained. As in TAPIERO and ZUCKERMAN (1982), we assume that the mutual
insurance firm is a direct underwriter and that the reinsurer is a leader in a
Stackleberg game (STACKLEBERG (1952), SiMMAN and Cruz (1973), LUCE and
RAIFFA (1957)). Although, in this latter case, analytical results are harder to
obtain, numerical techniques can be applied to obtain practical results. Finally,
it should be pointed out that this study, although applied to stationary parameters
models to obtain analytical results, is equally valid for non-stationary parameters.
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In this vein, insurance problems under unstable environments and time varying
processes can be investigated, leading to a more realistic appreciation of insurance
firm’s difficulties in the face of a dynamic environment.

2. THE INSURANCE PROCESS

Consider a mutual insurance firm with N contracts at time ¢. Given N, the
probability of a claim occurring in a small time interval dt, equals 6N dt, where
@ is a known parameter expressing the propensity of accidents’ occurrences for
each contract. Claim sizes are assumed to be randomly distributed with mean
m, so that the mean claim in dt equals Nm dt. Next, let the firm use a loading
factor 7 such that its average, deterministic cash income equals (1 +7)0Nm dt.
At times 1, i =1, 2,...claims occur each with size ¢&,i=1,2, =0, where as
pointed out earlier m = E(§;) and with known distribution function F(-). If x
denotes the cash accumulation process over time, then

(1 dx =(1+m7)0Nm dt
x(t)=x(r7)—=&, i=1,2,...
x(8) = x,.

To characterize the stochastic process {x(¢), ¢ =0} formally, we define first the
probability of jumps and jump occurrences. To do so denote a family of measures
on R" by M(x, t, dz) and assume that

@) J' M@, t,d2)<C,  M(x, t,dz)=0
r"
M(x,t,{0h)=0.
Set
(3) M(x,t)= J M(x,t,dz)
Ry

and

o1 ey MUt d2)
4) M (x,t,dz)= MGE D)

Hence M '(x, t, dz) is a family of probability measures on R" — {0} and M (x, ¢, dz)
characterizes completely the jump process (7, &), i =1, 2, ... as follows.

s

(5) Prob [7+1=s|m]=exp [—I M(x(u),u)du]
TiAs
and
(6) Prob [éeAlr, x(rD)= [ M'(x(r7, 7, d2)
A
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where A is any set of R". It is convenient to rewrite equation (1) as follows;
(7N x(t)=x(0)+J (1+7)0Nm dv—J I zu (dv, dz)
0 0 "

where u (¢, A) is a function denoting the number of jumps of the process x(t)
in the time interval (0, t] and w(dv, dz) is a measure on R* X R" defined as
follows; (A= (¢, t + A?));

and A is a Borel subset on R". The measure w1 (A, A) is called the jump measure
of the process {x (t), ¢ =0}. Next, assume that the firm incurs fixed administration
costs proportional to the number of contracts cN dt and that the firm can request
from insurance contract holders contingent payments to meet extraordinary
claims; in this case u >0 and u is a controlled quantity. Alternatively, the firm
can reimburse contract holders by distributing dividends, or plainly give back
moneys (or reduce the premium payments equivalently) whenever cash levels
reach the high levels. In this case ¥ <0 and the firm cash-state equation (7) is
reduced to

9 x(t)=x(0)+ J:: [(A+m7)6Nm —cN +uldt+ Lt J K (dv,dz)

Evidently, u may be of a feedback form u(x), or be defined by an impulsive
control structure, reflecting the fixed costs whenever extra-cash transactions
(contingent payments or refunding) are incurred (e.g., see BENSOUSSAN and
LioNs (1980), BENsoussaN and TAPIERO (1982)).

To demonstrate the type of probability processes considered here, assume as
a special case that

M(x,t,dx)=8(z—1)q(¢t)

where §(-) is a Dirac-Delta function and g(¢) a known function. Then, from (3)

M(0=] 8G-1q0=q0)

and from (4)

Mix, 1, dz)=%=5(z—l).

Hence from (5)

s

Prob [7+1=s|r]=exp {— J‘

TiAs

q(v) dv}

also

pldv, dz) = u(dv)é(z —1)
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where w (¢) is a point process whose jump equals one or such that

Prob (i (dv) =1)=q dt +0(dt)
Prob (u(dv) =0)=1—q dt +0(d?)
Prob (u (dv) = 2) = 0(d?).

Hence, u(t) is a random variable distributed according to a Poisson law whose
parameters is

t
AQ®) =J q(v) dv.

0
Of course, other point probability processes can be considered in this manner.
Given the probability process (9), the firm’s policies consist in selecting in some
optimal manner the loading factor = and the contingent payments (or dividend)
u of the firm. Next we define the firm’s objective function which will subsequently
be optimized. To obtain analytical (or numerical) results, it will be necessary to
use some special assumptions regarding the firm objective function, which need
not always reflect reality. Specifically, we assume linear costs consisting of cash
carrying expenses hx, per unit time, a cost g() associated to higher levels of
loading factors, or g(s) >0, dg/dm > 0. Throughout our optimization, = will be
assumed constant reflecting the firm’s needs for constant income (from pre-
miums). An additional cost associated to payments u is given by w|u|, meaning
that the firm seeks to avoid as much as possible extra contingent payments or
refunding. Finally, a bankruptcy cost K is incurred whenever the firm cash level
reaches negative or zero states. At this time which we denote by 7, the process
terminates. In other words, the firm minimizes costs over a planning time [0, 7),
where

(10) r=Inf{t>0;x <0}
and for a given discount rate r, the firm objective is to:
(11) Minimize J = E { j [hx +g(m)+wlu|)e ™ dt +Ke*"}.
mu 0
Minimization of (11) subject to (9), (10) and a constraint on the size of possible
extra payments (or refunding),
(12) lu|<U

defines a stochastic control problem which we solve by dynamic programming.
Throughout our solution we shall assume that the initial state x (0) = x, is given
and that all parameters are constants, unless stated otherwise. These are
simplifications made to obtain tractable results, although non-stationarity of
parameters does not necessarily change the validity of our equations.
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3. THE OPTIMAL CONTROLS: LINEAR COSTS

Next we consider problem (11) without reinsurance and apply stochastic
dynamic programming arguments to obtain for equation (11), the following
integro-differential equation

o0

(13) -+ | [~ &)~ TG (@d — (e +1) T+ Thx + () + wlul] =0

(v

where a = (1+ 7)0Nm —cN. Minimization of (13) with respect to u, and (12), or
aJ
(14) min{—u—+w|u|}
u dx

leads to the following Bang-off-Bang control;

U ifdJ/dx<-w
(15) u=<0 if—w=sdl/dxsw
+U if w<dJ/dx.

This is found by noting that for u >0, we require for minimization that if
dJ/dx <w, then u =0 and if dJ/dx > w then u = U. By the same token, if u <0,
then when dJ/dx <—w. u = —U minimizes (14) and when dJ/dx > —-w, u=0is
the minimum ‘of (14). The Bang-off-Bang control given by (15) and Figure 1
below is of course practical as it allows a two modes policy of doing or not doing
anything. The actual action chosen is a function of the marginal costs of J(x),
dJ/dx, such that when the cost is too high we can reduce costs by increasing the
income (u = U) and when the original cost is too low we reduce the cost by
reducing our cash holdings. Whenever —w < dJ/dx <w, we do nothing. Inserting
(15) into (13) we obtain an integro-differential equation which is given as follows
(where subscripts are for convenience dropped).

dJ/dx >w
u=U —— e e p——— . — = - — — e e m o
u=0
u=—Ul» —————————————————
dl/dx <-w

FIGURE 1. Bang-off-Bang control.

0

0 +q [ U= &)~TCI(@) de +hx +g(m)+

0
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,

—(a+U)(;ﬂ+wU=0 ifdl/dx >w
X

—_ —_——= —_ —<
(16) ¢ a— 0 if w<dx w

—(a—U)‘;i’+wU=0 ifdJ/dx <—w.
x

To resolve equation (16), we can proceed by an application of Laplace
transforms LT (MILLER (1956)). Say that “$” denotes a LT operator where

0

Lp)= j e 7T (x) dx = LU ()},

0

Also

(7 AL}~ pLip) - =pL(p)-K

LU x—&)=e *L(p).
Inserting into (16) where u = (U, 0, —U), we have a LT of J(x) given by

(@ +w)K +[g(m)+wlull/p +h/p*
(r+q)+(a+u)p—qE(e™*)

(18) L(p)=

where u is, as pointed out earlier, a function taking on any one of three constant
values U, zero and —U, and E(-) is an expectation operator. By the limit
theorems for Laplace transforms,

(19) limJ(x)=lim pL(p)=K
x>0 p—>00
and also
lim J(x)=1lim pL(p)
X-»00 p->0

we can obtain the boundary values for J. A solution for (18) can be expressed
however if only we can give an explicit expression to E (exp—£p). For example,
say that £ is a gamma probability distribution given by

£ @B

P(x)="-——%
(20 W=

; v>0, B>0, ¢£=0
then

E(e™)=(1+pp)”
which we insert into (18) to obtain

(1+8p)"[p (e +w)K +p(g(m) + wlu) +h]
@1 O == e+ @) +p @ + )] —ap

for v, an integer, the order of the denominator is y + 3 while that of the numerator
equals y +2. Thus, if we write L{p) = Q:(p)/ Q.(p), and solve for the y + 3 roots
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of Q2(p)=0,p1,P2, . . ., Py+1, Py+2 = Py+3 =0, then (18) can be written as follows:

22) L(p)=%, A/(p=p)+ AyeafP+ A0/ PP
and the inverse transform of L(p) is the sum of exponentials, or
(23) J(x)= yil Are® £ A+ A, o

also

(24) 4 ): DAL + A, s,

Thus, a complete solution for J is found since from (16),
(25) J(x)=k(x, U) ifk'(x, U)>w
=k(w, 0) ifk'(x,0)<w
=k(x,-U) ifk'lx,-U)<-w
where

y+1

k(x,u)= z Aiw) e ™  + AL o)+ Ay a(u)x

k'(x, u)= Yil Ai(u) ePp(u)+ Ay as(u).
i=1

Thus, if we begin a x = x, at the initial state, we compute first in which mode
(u =0, U, -U) we are, according to (24) and then apply (25) to compute J(x).
Such computations are repeated for J and dJ/dx as a function of x and as soon
as dJ/dx indicates a switching of mode, so is our computation of J altered.

In the exponential claims case, y = 1 and equation (21) is given by;

h+p(Bh+g(m)+wlul)+p* (K(a+u)+3(g(7r)+WIu|))+p BK(a+u)
2p [r+p a+u+B(r+q))+p (a+u)]

26) LO=

The denominator in (26) has clearly a twice repeated root p;=p,=0 and two
other roots given by

27) pra=—Ha+u+Br+q)xi{la+u+Br+q) P-4 +u)}’%
This means that J(x) is of the form;
(28) Jx)=A,e" +A, e’ + A3+ Aux.

As a result, we can compute each of the parameters in (28) and provide a
complete solution to the linear cost stochastic mutual insurance problem.
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4. MUTUAL INSURANCE WITH REINSURANCE

The mutual insurance process defined earlier can be extended further, and
without difficulty, to include problems of reinsurance (see also TAPIERO and
ZUCKERMAN (1982), DAYANANDA (1970), VAipA (1955), BorcH (1974)).
Specifically, let f(£) be the claims size distribution and let R be a level above
which the direct underwriter passes on the excess expense £ -R (£>R) to a
reinsurer. As a result, the direct underwriter limits his actual claim expense to
levels of at most R. To do so, the underwriter foregoes part of his income by
paying a constant premium y, (as we shall see, function of R the cut-off level)
to the reinsurer. As a result, the direct underwriter’s objective cost is given by
(29) rather than (13);

R

Ue-O-TF@ dé+q | Ux—R)-J@ () de

R

(29) —rJ(x)+qI

0
—(a—y +u)%+[hx +g(m)+wlul]=0

and the objective cost J(x), Laplace transform is (30) instead of (18);
[a—y+ulK +[g(m)+wlull/p+h/p®
(r+q)+(@—y+up—qlfg e f(&) dé +e ™ (1-F(R))]

where F(R) is the cumulative distribution of f(¢) from £ =0 to £ = R. Say that
f(&)=u exp (—ué), then

[ eere e vema-rpuy =Lt oy 122 )

which when introduced into (30) provides a Laplace transform for J(x) still to
be solved, either by approximation or by analytic inversion. Now assume for
simplicity that the reinsurer seeks to maximize his expected cash holdings. We
assume that r = discount rate and z = cash on hand, where

(31) dz = ydt
2(r)=z(r7)—p, p=0 and p=¢(—-R

30) L=

and the objective is;
(32) Max ®(z) = EU ez dt+Q e‘"}
y 0

where Q is the reinsurer bankruptcy cost. Without difficulty, it can be shown
that ¢ is given by

(33) —r<1><z>+qL [@(z +R ~£) - ®() ) dé —y 2~z =0

®(0)-Q
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which can be solved as pointed out earlier. The direct (mutual) underwriter and
the reinsurer proceed then to solve the following game;

(34) MinJ(x|m u, R, y)

,u,R
Maximize P(z|y).
y

Clearly, (34) defines a non-zero sum game. In this case, it is necessary to point
out both the rules of the game, the informational assumptions available to each
player and of course the market structure. For example, a leader-led market
structure points out to a Stackelberg strategy (e.g., TAPIERO and ZUCKERMAN
(1982), STACKELBERG (1952), StiMMaN and CrRuz (1973)). Specifically, say that
the reinsurer is a “leader” and dominates the game by imposing a solution which
is favorable to itself. Then, for every y, the direct mutual underwriter minimizes
the cost J with respect to 7, u and R. This leads to solutions 7* = r*(y),
u*=u*(y) and R*=R(y). Insert the latter expression of R(y) into (33) and
then maximize & for y, or y*. Then, the optimal direct mutual underwriter
policies are given by R** =R (y*), u** =u*(y*) and »** = #*(y*). Inversely,
if the direct mutual underwriter is the leader then we first determine y(R) which
is introduced in the objective J to yield optimal 7 = 7 (y(R)), u = u(y(R)) and
R =R(y(R)).
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