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We numerically study the impact of a droplet on superhydrophobic flexible plates, aiming
to understand how the flexible substrate influences the maximum spreading of the droplet.
Compared with the rigid case, the vertical movement of the flexible substrate due to
droplet impact reduces the maximum spreading. Besides, the average acceleration a
during droplet spreading changes significantly. Arising from energy conservation, we
rescale the acceleration a for cases with different bending stiffness KB and mass ratio Mr.
Moreover, through theoretical analysis, we propose a scaling for the droplet’s maximum
spreading diameter ratio βmax. In the scaling, based on the derived a, an effective Weber
number Wem is well defined, which accounts for the substrate properties without any
adjustable parameters. In the (βmax, Wem) plane, the two-dimensional numerical results of
different KB, Mr and rigid cases all collapse into a single curve, as do the experimental
and three-dimensional (3-D) results. In particular, the collapsed 3-D data can be well
represented by the universal rescaling of βmax proposed by Lee et al. (J. Fluid Mech.,
vol. 786, 2016, R4). Furthermore, an a posteriori energy analysis confirms the validation
of our a priori scaling law.
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1. Introduction

The impact of a liquid droplet on a solid surface is ubiquitous. It occurs in nature, industry
and agriculture, such as raindrop impact on soil (Joung & Buie 2015), inkjet printing
(Derby 2010) and pesticide deposition on plant leaves (Bergeron et al. 2000). During
the impacting, droplets can spread, rebound or splash, depending on viscosity, surface
tension, impact velocity and the properties of the solid surface (Josserand & Thoroddsen
2016). The maximum spreading of droplets is relevant to the inertia, surface tension and
viscosity and, thus, involves two important dimensionless parameters: the Weber number
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We = ρHU2
0D0/σ and the Reynolds number Re = ρHU0D0/μH , where U0 is the initial

impact velocity, D0 is the initial droplet diameter, σ is the surface tension coefficient, ρH
is the liquid density and μH is the dynamic viscosity.

At present, many theoretical models based on energy or momentum conservation
have been proposed to predict the maximum spreading diameter ratio βmax = Dmax/D0
of droplets impacting on a solid surface. In the literature, four scalings have been
proposed to balance capillary, viscous and inertial forces. These include βmax ∼ Re1/4

(Pasandideh-Fard et al. 1996) and βmax ∼ Re1/5 (Roisman 2009; Wildeman et al. 2016)
to balance viscous and inertial forces, and βmax ∼ We1/2 (Eggers et al. 2010) and βmax ∼
We1/4 (Clanet et al. 2004) to balance capillary and inertial forces. However, the We1/4

scaling may not be correct (Laan et al. 2014) due to the balance being performed in
a non-Galilean frame of reference in Clanet et al. (2004). Laan et al. (2014) believed
that all three forces play an important role when We and Re have similar values. They
proposed a new scaling combining Re1/5 and We1/2, which is in good agreement with
the experimental results. Besides, they found that the data points could not be collapsed
onto one single curve using the scaling of We1/4, suggesting that We1/4 is not correct.
Later, Lee et al. (2016) further took the wettability and roughness of solid surfaces into
account, and proposed a universal rescaling of the βmax for different liquids and surfaces.
As for nanodroplets, the scaling laws of βmax ∼ We1/5 and We2/3Re−1/3 in low and high
We regimes, respectively, was proposed by Wang et al. (2022).

The studies above are all about a droplet impacting on the rigid substrate, while there
are few studies considering flexible substrates. According to previous studies, the flexible
substrate also has a great influence on droplet impact. For superhydrophobic flexible
substrates, Weisensee et al. (2016) experimentally found that part of the momentum is
returned to the droplet through the substrate’s vertical vibration, resulting in a reduction of
the contact time. Howland et al. (2016) experimentally found that the energy consumption
due to the deformation of the flexible substrate can reduce or suppress the splashing of
droplets. While Pegg, Purvis & Korobkin (2018) found that the vibration of the flexible
substrate is one of the key factors leading to splash through theoretical and numerical
analysis. Vasileiou et al. (2016) experimentally found that the flexible substrate can
enhance the superhydrophobicity of the solid surface, which is characterized by larger
impalement resistance, smaller βmax and shorter contact time of droplet impact. Besides,
this problem has been widely studied involving the raindrop impacting on biological
surfaces (Gart et al. 2015; Kim et al. 2020).

Although there are some qualitative experimental investigations, there are few
quantitative analyses on the maximum spreading of droplets impacting flexible substrates.
As far as we know, only Vasileiou et al. (2016) and Xiong, Huang & Lu (2020) tried
to perform quantitative analyses. However, Vasileiou et al. (2016) only considered the
influence of the mass ratio of the droplet to the flexible plate, and the effect of the
bending stiffness for plates was ignored. Xiong et al. (2020) used the same methods as
this work to perform relevant simulations. However, Xiong et al. (2020) only focused on
the two-dimensional (2-D) spreading dynamics in a very limited We range at a fixed mass
ratio Mr. Furthermore, the final results were not normalized well.

In this paper a droplet impacting flexible plates over a wide range of We (0.1–100) in
both two and three dimensions is simulated and quantitative analyses are carried out.
Not only the effect of the stiffness KB of the flexible plate but also that of the mass
ratio Mr on the maximum spreading are investigated. Besides, the corresponding inherent
mechanism is explored. We aim to seek a universal scaling law of βmax in this flow
problem.
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Figure 1. (a) The physical problem (two dimensional). (b) The three-dimensional (3-D) case. Here, W is the
width of the plate.

2. Methodology and validation

A schematic diagram about a droplet impacting on a flexible plate is shown in figure 1(a).
The droplet with a diameter D0 has a downwards impact velocity U0. It is initially set
above the centre of the flexible plate. The initial length of the plate is L and the two ends of
the plate are simply supported. Figure 1(b) shows the three-dimensional (3-D) viewpoint.
Here, in our simulations, the phase-field lattice Boltzmann method (LBM) (Liang et al.
2018) and the finite element method (Doyle 2001) are adopted for solving the fluid flow and
the solid deformation, respectively. The conservative phase-field equation (Allen–Cahn
equation) is used to track the fluid interface (Xiong et al. 2020)

∂φ

∂t
+ ∇ · (φu) = ∇ ·

[
M(∇φ − 4

ξ
φ(1 − φ)n̂)

]
, (2.1)

where φ is the component variable varying from 0 to 1, corresponding to light (vapour)
and heavy (liquid) fluids, respectively. The densities of light and heavy fluids are ρL and
ρH , respectively. Here, u is the macroscopic velocity vector, M is the mobility, ξ is the
interface thickness and n̂ is the unit vector normal to the fluid interface as ∇φ/|∇φ|,
pointing to the liquid. The isothermal, incompressible Navier–Stokes equation is solved
by the LBM. The motion and deformation of the flexible plate for 2-D and 3-D cases are
described by the structural equations (2.2) and (2.3), respectively (Hua, Zhu & Lu 2014;
Xiong et al. 2020), i.e.

ρshs
∂2X
∂t2

− ∂

∂s

[
Ehs

(
1 −

∣∣∣∣∂X
∂s

∣∣∣∣
−1
)

∂X
∂s

]
+ EI

∂4X
∂4s

= F ext, 2D, (2.2)

ρshs
∂2X
∂t2

−
2∑

i,j=1

[
∂

∂si

(
Ehsϕij

[
δij −

(
∂X
∂si

· ∂X
∂sj

)−1/2
]

∂X
∂sj

− ∂

∂sj

(
EIγij

∂2X
∂si∂sj

))]

= F ext, 3D, (2.3)

where s is the Lagrangian coordinate along the plate direction, X is the position vector of
the plate, ρs is the plate density, hs is the plate thickness, EI and Ehs are the bending
and stretching stiffnesses, respectively, where I = h3

s /12 and E is Young’s modulus.
Here, ϕij and γij are the in-plane and out-of-plane effect matrices, respectively, and
their components are ϕ11 = ϕ22 = 1, ϕ12 = ϕ21 = 1/(2 + 2ν), γ11 = γ22 = 1 and γ12 =
γ21 = 0, where ν is Poisson’s ratio. We denote by δij the Kronecker delta function
and F ext the external force exerted by the fluid on the plate. The initial plate is
straight, i.e. (∂2X 0/∂s2

i · ∂2X 0/∂s2
j )

1/2 = 0 and the initial tension is zero, i.e. (∂X 0/∂si ·
∂X 0/∂sj)

1/2 = δij, where X 0 is the initial position vector.
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Figure 2. Snapshots of impacting droplets at the maximum spreading with We = 60 for rigid (blue) and
flexible (red, KB = 1.0 and Mr = 0.01) cases. In (a) the 2-D and (b) the 3-D cases, half and a quarter of
the droplets are shown, respectively. Here, d is the deflection of the plate at the centre. For the 3-D flexible
case, on the plate, the contours of deflection in the z direction are shown.

Due to the symmetry of this problem, the following techniques are applied to save CPU
time. In the 2-D cases, by applying a symmetric boundary condition, our computational
domain is only half of the entire domain of the physical problem (see figure 2a). Similarly,
for the 3-D cases, by applying the symmetric boundary conditions, our computational
domain is only a quarter of the entire domain of the physical problem (see figure 2b).
Here, the momentum exchange method is adopted for the moving boundary. Except for
the symmetric boundaries, the outflow boundary conditions are applied for the other
boundaries. As for the wettability of the substrate, the following Neumann boundary
condition (Shao, Shu & Chew 2013; Fakhari & Bolster 2017) is applied to impose the
static contact angle:

n̂w · ∇φ|w = Θφw(1 − φw). (2.4)

Here, n̂w is the unit vector normal to the solid boundary and φw is the component
variable at the boundary point; Θ is related to the equilibrium contact angle θ , i.e. Θ =
−√

2α/κcosθ , where α and κ are related to the surface tension σ and the interfacial
thickness ξ by α = 12σ/ξ and κ = 3σξ/2; φw and ∇φ|w can be calculated from the values
of φ in the surrounding nodes. To improve the accuracy, a weighted least squares method is
adopted (Pan, Ni & Zhang 2018). More details about the implementation of this numerical
method can be found in Xiong et al. (2020).

To make the above equations dimensionless, we choose ρH , D0 and σ as characteristic
quantities. The corresponding reference speed and time are Uref = √

σ/(ρHD0) and

Tref =
√

ρHD3
0/σ , respectively. The key dimensionless parameters in the problem are

the Weber number We = ρHU2
0D0/σ , the bending stiffness KB = EI/(ρHU2

ref L3) and the
mass ratio Mr = ρshs/(ρHL). Here, in our simulations, the density ratio is ρH/ρL = 1000,
the dynamic viscosity ratio μH/μL = 50, the Ohnesorge number Oh = √

We/Re = 0.01,
the contact angle θ = 170◦, the stretching stiffness KS = Ehs/(ρHU2

ref L) = 100, the length
ratio L/D0 = 20 in 2-D cases, and L/D0 = 8, the width ratio W/D0 = 3 in 3-D cases.
Because our numerical methods have been quantitatively validated in our previous work
for the 2-D case (Xiong et al. 2020), here we mainly carried out validations for 3-D
cases. The cases for droplets impacting on rigid substrates were simulated. Through the
grid-independence study with different resolutions (D0 = 150�x, 300�x and 600�x),
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Figure 3. The βmax as a function of We for (a) a rigid substrate, where the black squares represent our 3-D
simulation results, and the solid line denotes the scaling of Lee et al. (2016). (b) Results for a flexible substrate,
where the red and black symbols denote our results and those from Dorschner, Chikatamarla & Karlin (2018),
respectively.

we found that D0 = 300�x is sufficient to obtain accurate results (not shown) and in the
following simulations the resolution is adopted. In all of our 2-D and 3-D calculations,
the computational domains are 10D0 × 3D0 and 4D0 × 1.5D0 × 3D0 with a uniform
Cartesian mesh, respectively.

Our numerical results, shown in figure 3(a), demonstrate good agreement with the
universal rescaling of βmax proposed by Lee et al. (2016) for rigid cases. It is important
to note that this rescaling depends not only on We but also on Re. In line with this, all of
our simulations were conducted with Oh = √

We/Re = 0.01, which means that Re varied
with We. Furthermore, our results for flexible cases also agree well with the numerical
results of Dorschner et al. (2018) in figure 3(b). Therefore, our numerical method for the
simulations of a droplet impacting flexible plates is validated.

3. Results and discussion

The droplet impacting on the flexible substrate would lead to a vertical movement of the
substrate, which may affect the spreading of the droplet in turn. During this coupling
process, the parameters, such as We, KB and Mr, are all important. Here, we focus on
their influences on the maximum spreading. A series of simulations in a wide range
of parameters were performed, specifically, We ∈ [0.1, 100], KB ∈ [0.01, ∞) and Mr ∈
[0.006, ∞). It is noted that the cases of KB = ∞ and Mr = ∞ correspond to the rigid
case.

The results of the maximum spreading diameter ratio βmax as a function of We are shown
in figure 4. It can be seen from figure 4(a,c) that when Mr is fixed, the maximum spreading
Dmax is reduced as KB decreases at a specific We in both 2-D and 3-D simulations. It can
be simply described as ‘flexibility reduces spreading’. Similarly, when KB is fixed, the
spreading is enhanced as Mr increases. It can be understood as follows. When the inertia
of the plate is relatively large (large Mr), it is hard to move and oscillate even if there is
an impact from the droplet. The situation is similar to the rigid case. Therefore, the trend
can be simply described as ‘inertia of plate enhances spreading’. A more detailed analysis
about these can be seen in § 3.1.

From figure 4 we can see that the trends of the simulation results for the 2-D and 3-D
cases are similar. It can be understood in the following way. First, there is an inherent
connection between the 2-D and 3-D substrate equations. The substrate equation for 3-D
cases, i.e. (2.3), can degenerate into the 2-D equation, i.e. (2.2), if the spanwise length
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RigidLee et al. (2016) Lee et al. (2016)
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Figure 4. The maximum spreading ratio βmax as a function of We for cases with different KB but
identical Mr = 0.01 (a,c), and different Mr but identical KB = 0.6 (b,d). (a,b) Two-dimensional cases. (c,d)
Three-dimensional cases. The solid curves represent the universal rescalings of Lee et al. (2016) for rigid
cases.

is infinite. Second, in both 2-D and 3-D cases, chordwise bending is dominant because
only two chordwise ends of the plate are supported in the 3-D cases. Third, there is no
spanwise bending and stretching of the plate in 2-D cases. The spanwise bending and
stretching are also very minor in 3-D simulations because in the spanwise direction, i.e. the
y direction in figure 1(b), both sides of the plate are free.

3.1. Evolutions of droplet spreading and energies
In order to understand the effect of the flexible substrate on droplet spreading, figure 5
shows snapshots of the impacting droplet at We = 30 and Mr = 0.01 with four different
KB values of 0.05, 0.6, 4.0 and ∞ (the rigid case). Once the droplet contacts the substrate
(t = 0.04), the flexible plate begins to move downwards. In all cases, all lamellas begin to
move outwards. At t = 0.15, we can see that there are rims in all cases. Besides, the more
flexible the plate is, the smaller the spreading diameter. This indicates a lower averaged
spreading speed in the case with a more flexible plate. However, in all cases the spreading
diameters reach their peaks Dmax at approximately t = 0.45. Hence, the flexible substrate
has little effect on the maximum spreading time tmax (t ≈ 0.45), which is consistent with
the observation in the experimental study of Vasileiou et al. (2016).

Here, we would like to discuss some details at t = tmax. Figure 5 shows that at t = tmax
spreading reaches Dmax when the plate is moving downwards to its maximum deflection
dmax for small KB, e.g. cases (c,d). These cases are referred to as ‘early spreading cases’.
However, if KB is relatively large, e.g. case (b) with KB = 4.0, the oscillation frequency
of the substrate is high enough, and upwards deflection of the substrate before tmax may
appear. It is referred to as the ‘delayed spreading case’ (see the caption of figure 5). In
the delayed spreading case (figure 5b), a part of momentum or energy is returned to the
droplet through the substrate’s upwards motion, which results in a slight lifting up of the
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t = 0.7
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Flexible plate

d

(a)

(b)

(c)
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1.0

Figure 5. Snapshots of an impacting droplet for rigid and flexible cases (two dimensional) at We = 30,
Mr = 0.01 with different KB: (a) rigid (KB = ∞), (b) KB = 4.0, (c) KB = 0.6 and (d) KB = 0.05. Four typical
moments (four columns) t = 0.04, 0.15, tmax and 0.7 are chosen. Here, tmax is the moment when the maximum
spreading occurs. The blue dotted lines denote the initial locations of the flexible plate. (d) Vertical deflection
of the plate. In case (b), the spreading reaches Dmax after the plate’s maximum deflection is achieved, namely,
the delayed spreading case. In cases (c,d), the spreading reaches Dmax before that, namely, early spreading
cases.

rim at the maximum spreading. This rising at t = 0.7 is more obvious because the flexible
substrate begins to move downwards again at this moment. The attached droplet also moves
downwards, while the edge of the droplet still moves upwards, thus intensifying the rise of
the rim. For cases (c,d) (KB = 0.6 and 0.05), because the flexible plate keeps a downwards
movement during the droplet spreading, there is no rising rim.

Here, by the way, we would like to justify the parameter ranges in our study. From
figure 5 we can see that in all cases any local segment of the plate is almost flat. This is
the main characteristic of the cases that we investigated, i.e. the spreading of the droplet
is not confined by the curvature effect of the plate. In this study we only focus on cases
of this kind. On the other hand, when KB and Mr are small enough or We is large enough,
the impact on the flexible plate is more prominent. Furthermore, the local segment of the
plate contacting the droplet may deform severely, which looks like a shallow well (see
figure 6). Figure 6 shows a 2-D example with KB = 0.01, Mr = 0.01 and We = 100. In
this case the rim of the well significantly confines the spreading of the droplet. Therefore,
the flow regime would be significantly different from that in the present study. Since we
are only interested in cases without confinement due to curvature, here we do not consider
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Figure 6. Local zoom-in view of a droplet impacting on the flexible plate with We = 100, KB = 0.01 and
Mr = 0.01 at t = 0.2. The blue dotted line denotes the initial location of the flexible plate.
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Figure 7. The time evolution of β (solid lines) and the total energy of plates Et (dotted lines) for rigid and
flexible cases at We = 30 with (a) different KB (Mr = 0.01 is fixed), (b) different Mr (KB = 0.6 is fixed). The
arrows point in the direction that KB or Mr decreases. Here, Et contains the elastic and kinetic energies of the
plate, which is zero for rigid cases.

the cases with higher Weber numbers, i.e. We > 100. For the same reason, KB < 0.01 and
Mr < 0.006 are not taken into account.

In the following, from the energy viewpoint, we explain why βmax decreases as KB or
Mr decreases as shown in figure 7. For the rigid case, the initial kinetic energy Ek of the
droplet is mainly converted into the surface energy at the maximum spreading. While, for
flexible cases, part of the initial kinetic energy is converted into the elastic and kinetic
energies of the plate, therefore, less energy is available for spreading, which results in
a smaller Dmax. Figure 7(a) shows the evolution of the spreading ratio β and the total
energy Et of the plate for cases in figure 5. We can see that at tmax (t ≈ 0.45), Et increases
as KB decreases. Therefore, at tmax, more initial energy is transferred to the plate if it is
more flexible. Besides, in the cases of different Mr but fixed KB (see figure 7b), at tmax
(t ≈ 0.45), Et increases as Mr decreases. It is reasonable because if the plate is lighter
(smaller Mr), the impact seems more significant, and more kinetic energy would pass to
the plate. Therefore, βmax decreases as KB or Mr decreases, and is always smaller than
rigid cases with the same We.

In the analysis of energy conversion, the role of viscous dissipation should also be
discussed. On the one hand, a more flexible substrate implies that more initial kinetic
energy of the drop goes into the substrate. On the other hand, a more flexible substrate
also suggests that the inertial shock during impact is mitigated. Consequently, the viscous
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Figure 8. The time evolution of viscous dissipation (solid lines) and the total energy of substrates (dotted lines
are identical to those in figure 7a) in cases of We = 30, Mr = 0.01 but different KB (two dimensional). The
viscous dissipation is calculated as μH(∂u/∂y)2 (Wildeman et al. 2016). The droplet reaches the maximum
spreading at tmax = 0.45.

dissipation inside the drop would decrease (due to smaller velocity gradients). This point is
confirmed through our following tests. We carried out several simulations with We = 30,
Mr = 0.01 but different KB. The evolution of viscous dissipation and the total energy of
substrates are shown in figure 8. We can see that the viscous dissipation decreases as the
stiffness KB decreases.

Generally speaking, less viscous dissipation implies more surface energy of the droplet,
which is favourable for droplet spreading. However, we can also see that when KB changes,
compared with the energy of the substrate, the viscous dissipation only changes in a very
limited range and is minor. Therefore, the effect of viscous dissipation is very minor
compared with the energy loss (absorbed by the substrates). Therefore, a more flexible
substrate still leads to less surface energy (at tmax). The viscous dissipation does not affect
the conclusion that the βmax decreases as KB or Mr decreases.

3.2. Rescaling the acceleration during impact
During impact, the droplet experiences a force exerted by the solid wall, which decelerates
the droplet. According to Clanet et al. (2004), the initial velocity U0 of the droplet
decreases to 0 at the maximum spreading along with a displacement of D0 (rigid case
in figure 2a) and, thus, the average acceleration a during this process can be scaled as
a ∼ U2

0/D0. It is noted that Ye & Van Der Meer (2021) also got the same acceleration
from the viewpoint of energy, considering this force being equal to the impact kinetic
energy divided by the displacement. However, when the same droplet impacts the flexible
substrate, its downwards movement leads to a larger displacement during the decelerating
process as shown in figure 2. As a consequence, the average acceleration a is reduced. It
can be regarded that the droplet impacts the rigid surface with a lower initial velocity (Ye
& Van Der Meer 2021). We can understand this from figure 2 in which, for the flexible
case, the droplet impacts the same surface as the rigid cases in a lower We, leading to a
reduction of the maximum spreading diameter.
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Vasileiou et al. (2016) scaled the average acceleration of droplets impacting on flexible
substrates as

a ≈ U2
0/[D0(1 + md/mb)], (3.1)

considering the momentum conservation between the droplet and the substrate, where md
and mb are their masses, respectively. It can only characterize the cases of different mass
ratios but the stiffness effect is not considered. In other words, it is no longer applicable
when KB changes.

However, as we have seen from our simulation results, the stiffness KB can also
significantly affect the maximum spreading. Moreover, Vasileiou et al. (2016) only
considered the early spreading cases (small KB, low vibration frequency) instead of the
delayed spreading cases (large KB), i.e. the spreading reaches Dmax after the plate’s
maximum deflection is achieved (see figure 5). Therefore, (3.1) is no longer applicable
with a high KB or low Mr, which leads to a high vibration frequency in our simulation.

Here, we propose to rescale the average acceleration a for flexible substrates in the
following way. As mentioned above, compared with the rigid case, the droplet impacting
on flexible substrates travels a larger displacement during the deceleration process (see
figure 2). Here, the total displacement scales as the sum of the initial droplet diameter
and the maximum deflection of the flexible substrate, namely D0 + dmax. So the average
acceleration can be rescaled as

a ∼ U2
0/(D0 + dmax), (3.2)

where dmax contains the effects of both KB and Mr, as can be seen in (3.4).
In the following we would like to verify the rescaled average acceleration from the

point of view of the energy. From the analysis above, we can see that compared with
a ∼ U2

0/D0 for rigid cases, there is a smaller acceleration a ∼ U2
0/(D0 + dmax) in the

flexible cases. We can imagine in terms of acceleration that the flexible case with velocity
U0 is equivalent to the rigid case with velocity U0

√
D0/(D0 + dmax). Therefore, in

the flexible case with U0, the actual kinetic energy that is used for spreading to the
maximum diameter is Es,max ≈ EkD0/(D0 + dmax), where Ek is the initial kinetic energy.
The remaining energy is supposed to be used for the deformation and motion of substrates,
i.e. Et,max = Ek − Es,max ≈ Ekdmax/(D0 + dmax), as discussed in § 3.1.

Figure 9(a) shows the total energy of the substrate at the maximum spreading Et,max
as a function of the initial kinetic energy Ek for the cases with different KB or Mr.
We can see that all the numerical data are below the black line Et,max = Ek. This
indicates that Et,max < Ek, i.e. only part of Ek is converted into Et,max. To verify Et,max ≈
Ekdmax/(D0 + dmax), we change the coordinate of Ek to Ekdmax/(D0 + dmax). The result
is shown in figure 9(b), in which all the data points are around the black line, i.e. Et,max =
Ekdmax/(D0 + dmax). It is noted that even for the delayed spreading cases (KB = 4.0 and
1.0 in figure 9), the results also agree well. Therefore, all of our data that come from
cases with different KB or Mr support the formula Et,max ≈ Ekdmax/(D0 + dmax). Since
the formula is derived from (3.2), we confirm that all of our data support the rescaled
acceleration.

3.3. Scaling law
In this section we aim to seek a nice data collapse by introducing an effective
Weber number Wem, which accounts for the substrate properties without any
adjustable parameters. The aim is achieved by the energy analysis discussed in § 3.2.
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Figure 9. The total energy of plates at the maximum spreading Et,max as a function of (a) the initial
kinetic energy Ek; and (b) dmaxEk/(D0 + dmax) for cases with different KB but a fixed Mr = 0.01 (filled
symbols), and those with different Mr but a fixed KB = 0.6 (open symbols). The solid black lines denote
Et,max = Ek and Et,max = dmaxEk/(D0 + dmax) in (a,b), respectively. The colour of the symbols indicates the
dimensionless maximum deflection of the plate dmax/D0. Here, Et,max and dmax are obtained through our
numerical simulations (see the details of Et,max in figure 7).

Furthermore, another effective Weber number Wee directly derived from energy
conservation confirms the validation of the scaling law.

From the above analysis, we know that in the flexible cases only a part of the kinetic
energy (characterized by U2

0 or We) contributes to the spreading of the droplet. Here, an
effective Weber number Wem is defined to characterize the contribution. Since part of
the initial kinetic energy, EkD0/(D0 + dmax) is available for spreading, we can define the
effective Weber number as

Wem = WeD0

D0 + dmax
= We

1 + δmax
, (3.3)

where δmax = dmax/D0. To get the theoretical Wem, we have to theoretically determine
dmax first. Actually, the dmax can also be obtained by the momentum conservation (Soto
et al. 2014) as follows. The initial momentum p0 of the droplet is mU0, where m is the
mass of the droplet. After impact, the droplet and the flexible substrate vibrate together.
According to Soto et al. (2014), when the droplet impacts the flexible substrate, the centre
of the substrate obtains a velocity UM = 2πfdmax, where f = f0[Ms/(m + Ms)]1/2 is the
vibration frequency of the system, Ms the mass of the flexible substrate and f0 the natural
vibration frequency of the flexible substrate. For a simple-support plate on both ends, we
have f0 = π

√
EIM/MsL3/2 by the Euler–Bernoulli beam theory, where IM = h3

s W/12 is
the second moment of inertia (W is the width of the plate and is set to unity in 2-D cases).
Furthermore, according to Soto et al. (2014), the plate vibrates with a parabolic shape and
its momentum can be written as pM = 2

∫ L/2
0 ρsWhsUMx2/L2 dx = MsUM/3. Meanwhile,

the momentum of the droplet vibrating at the centre of the substrate is pm = mUM . Due to
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Figure 10. The δmax as a function of We for the (a) 2-D and (b) 3-D cases of different KB (Mr = 0.01). The
symbols represent the numerical results. The solid curve denotes the prediction of (3.4).

momentum conservation, we have p0 = pM + pm. Therefore, dmax can be predicted as

dmax = 1
2π

m
m + Ms/3

U0

f
. (3.4)

Figure 10 shows that the numerical results of δmax as a function of We are in good
agreement with the prediction of (3.4) for both 2-D and 3-D cases, which supports the
above derivation.

In the above, we can see that the effective Weber number Wem takes all the factors (We,
KB and Mr) affecting βmax into account. When KB or Mr is large enough (close to the rigid
case), δmax → 0, we have Wem → We. The theoretical Wem values for all cases in figure 4
can be obtained through (3.3) and (3.4). Figure 11(a,b) shows the numerical 2-D and 3-D
results of βmax as a function of Wem, respectively. We can see that through Wem all 2-D and
3-D data almost collapse onto a single curve, respectively. Furthermore, the single curve
for 3-D cases can be well represented by the universal rescaling proposed by Lee et al.
(2016).

Besides our proposed scaling of (3.3), another similar scaling based on momentum
conservation is available for different situations in the literature, i.e. Wem = We/(1 +
md/mb) (Vasileiou et al. 2016), where md and mb are the masses of the droplet and plate,
respectively. Figure 11(d) shows a comparison between different scalings. The blue and
red symbols in figure 11(d) represent normalized data for flexible cases using our scaling
of (3.3) and Vasileiou et al. (2016), respectively. The black symbols are normalized data
for rigid cases, in which Wem = We. It is noted that the original data (Vasileiou et al. 2016)
are shown in figure 11(c). It is seen that through our scaling, all data collapse onto a single
curve.

From figure 11(d) it can be seen that Vasileiou et al. (2016) can indeed correctly predict
the maximum spreading diameter of the droplet impacting flexible substrates with the
acceleration term of (3.1), even neglecting the change of the stiffness. However, this is
attributed to the low natural frequency of flexible substrates, i.e. very flexible substrates.
Since their substrates are very flexible, the assumption of a perfectly inelastic collision
between the droplet and the substrates is valid. Under this assumption, they accurately
obtained the initial velocity of the plate after impacting, then got the acceleration term
correctly. Therefore, in their cases, they can neglect stiffness. However, when the stiffness
is relatively large, the assumption of perfectly inelastic collision is no longer valid, and
the acceleration term of (3.1) obtained by them is not applicable. While our derived
acceleration is suitable for both large and small stiffnesses (figure 11a,b). Moreover, we
can also get accurate theoretical predictions with the same stiffness as Vasileiou et al.
(2016) (figure 11d).
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Figure 11. The maximum spreading ratio βmax as a function of Wem in the (a) 2-D and (b) 3-D cases, where
all symbols come from figure 4. The solid line is the scaling of Lee et al. (2016) for rigid cases. (c) Original
experimental data (βmax as a function of We) for rigid and flexible cases in Vasileiou et al. (2016). (d) Plot of
βmax vs Wem (data are identical to those in c). For black squares (rigid cases), Wem = We. For the red disks,
Wem = We/(1 + md/mb) (Vasileiou et al. 2016). For the blue disks, Wem is obtained through (3.3) and (3.4).

In the following, we validate the scaling (3.3) through another effective Weber number
Wee, which is directly derived from energy conservation. From the analysis above, we
know that for flexible substrates, the initial kinetic energy Ek is converted into Es and Et,
i.e. Ek = Es + Et, and only Es contributes to the spreading. Suppose Wee is proportional
to the energy used for maximum spreading Es,max, we have

Wee = We
Es,max

Ek
= We

(
1 − Et,max

Ek

)
. (3.5)

On the other hand, from § 3.2 we know that Es,max ≈ EkD0/(D0 + dmax). Substituting it
into (3.5), we have Wee ≈ WeD0/(D0 + dmax), which is almost identical to Wem. Although
Wee ≈ Wem, here Wee (3.5) is a posteriori since Et,max has to be determined by numerical
results, e.g. the data in figure 9. After Wee’s for all the cases in figure 4 are obtained, we can
plot the maximum spreading ratio βmax as a function of Wee for all cases (see figure 12).
We can see that all 2-D data almost collapse onto a single curve (figure 12a), so do the
3-D data (figure 12b). Furthermore, the single curve can also be well represented by the
scaling of Lee et al. (2016).

In summary, figures 11(b) and 12(b) show that Wem and Wee formulas all lead to nice
data collapses, which are all consistent with the scaling of Lee et al. (2016). It is noted that
our proposed theoretical Wem is a priori, and there are no adjustable parameters, while
Wee is a posteriori energy analysis that does confirm the validation of our a priori scaling
law.

4. Conclusion

We have numerically simulated the droplet impacting on the flexible plate, and investigated
the effect of the flexible substrate on the maximum spreading ratio βmax for different KB
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Figure 12. The maximum spreading ratio βmax as a function of Wee in the (a) 2-D and (b) 3-D cases, where
all symbols come from figure 4. The solid line denotes the scaling of Lee et al. (2016) for rigid cases.

(KB ∈ [0.01, ∞)) and Mr (Mr ∈ [0.006, ∞)) in a wide range of We (We ∈ [0.1, 100]). Our
study is limited to the cases in which droplet spreading is not affected by the substrate
curvature. We observed that βmax is reduced compared with the rigid case because partial
initial energy is passed to the flexible plate, and less energy is available for spreading.
Based on the energy analysis, we demonstrated that the vertical movement of the flexible
substrate reduces the average acceleration a during spreading, which can be regarded
as the droplet impacting with less initial kinetic energy, leading to a decrease of the
Dmax. Furthermore, we theoretically derived an effective Wem, through which nice data
collapses can be achieved. The scaling is also supported by an a posteriori energy analysis.
Therefore, we successfully proposed a scaling of βmax for droplets impacting flexible
substrates (including the rigid cases) over a wide range of We.
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