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High-power-density tokamaks offer a potential solution to design cost-effective fusion
devices. One way to achieve high power density is to operate at a high β value
(the ratio of thermal to magnetic pressure), i.e. β ∼ 1. However, a β ∼ 1 state may
be unstable to various pressure- and current-driven instabilities or have unfavourable
microstability properties. To explore these possibilities, we generate β ∼ 1 equilibria and
investigate their stability. First, we demonstrate the generation of high-β equilibria with
the computer code VMEC. We then analyse these equilibria to determine their stability
against the infinite-n ideal-ballooning mode. We follow that by engaging in a detailed
microstability study using the GS2 code, beginning with assessments of electrostatic
ion-temperature-gradient and trapped election mode instabilities. We observe interesting
behaviour for the high-β equilibria – stabilization of these modes through two distinct
mechanisms – large negative local shear and reversal of electron precession drift. Finally,
we perform electromagnetic gyrokinetic simulations and observe enhanced stability in
the outer core of high-β equilibria and absence of kinetic ballooning modes in the
negative-triangularity, high-β equilibria. The enhanced outer-core stability of high-β
equilibria is different from their lower-β counterparts and offers an alternative, potentially
favourable regime of tokamak operation.

Key words: fusion plasma, plasma simulation, plasma instabilities

1. Introduction

The most advanced fusion reactor designs are currently based on the tokamak concept.
These tokamak designs have historically led to large volume, large capital cost, plants such
as ITER (Shimada et al. 2007) and EU-DEMO (Federici et al. 2014). Improvements in
these designs could be achieved by operating at high power density, with reduced plasma
volume (Menard et al. 2022).

For a fixed magnetic field strength, the power density of a tokamak P scales as β2, where
β is the ratio of the plasma pressure to the magnetic pressure. Present-day tokamaks are
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2 R. Gaur and others

low-β devices. The achievable β is typically limited by plasma instabilities. These can
lead to disruptions or large turbulent transport. The higher β is, the higher the pressure and
current are, and therefore the larger the free energy available to drive these instabilities is.
If these problems could be overcome, high-β operation could be an attractive choice for
future high-power-density (Menard et al. 2022) devices.

The high-beta, β ∼ 1, regime has been explored previously in the context of asymptotic
magnetohydrodynamic (MHD) equilibria by solving the Grad–Shafranov equation in the
limit ε/(βq2) � 1 (Hsu, Artun & Cowley 1996) where ε is the aspect ratio of the tokamak
and q is the safety factor defined in (??):. There have also been experimental explorations
(Sykes et al. 2000; Gates & NSTX National Research Team 2003) of high-β operation
of the MAST and START tokamaks. There have only been a few studies (Chance et al.
1990; Hurricane, Chandran & Cowley 2000) that investigated the process of accessing
these states while maintaining ideal-MHD stability; even fewer studies that study the
microstability properties of β ∼ 1 equilibria in detail (Wilson et al. 2004). Therefore, a
detailed numerical analysis of these types of equilibria is required.

To that end, we generate a set of high-β equilibria and study their susceptibility to local
MHD and gyrokinetic instabilities. In context of local MHD, we study stability of these
equilibria to the infinite-n, ideal-ballooning mode. Then we perform linear gyrokinetic
analyses against various electrostatic and electromagnetic modes of instability in these
equilibria. These modes are known to cause significant heat and particle transport in
existing devices (White et al. 2013; Creely et al. 2017)

The remainder of this paper is divided as follows: in § 2, we briefly describe the
fundamentals of an axisymmetric equilibrium. In § 2.1, we obtain numerical equilibria
using the VMEC code (Hirshman & Whitson 1983). We describe and plot the equilibria
for three different beta values: low-β (β ∼ 0.01), intermediate-β (β ∼ 0.1) and high-β
(β ∼ 1) and two different triangularity values. In § 3, we introduce the technique devised
by Greene & Chance (1981) to vary gradients of a local equilibria. We then use this to
analyse the susceptibility of the chosen local equilibria to the ideal-ballooning instability
and explain our observations. After ensuring ideal-ballooning stability for our high-β
equilibria, in § 4, we briefly explain the linear, collisionless, gyrokinetic model and
process for analysing kinetic stability of local equilibria using the gyrokinetic code
GS2. In § 5, we solve the gyrokinetic model for electrostatic fluctuations with adiabatic
electrons and use the same techniques that we used in § 3 to scan the growth rates of
all the local equilibria with respect to the temperature gradient. In § 6, we solve the
gyrokinetic model for electrostatic fluctuations after relaxing the assumption of adiabatic
electrons and use the same techniques as § 3 to scan the growth rates of all the local
equilibria with respect to the density gradient. In § 7, we study the stability of local
equilibria at their nominal gradients to electromagnetic fluctuations by solving the full
gyrokinetic model and explain the advantages of negative-triangularity, high-β equilibria.
Finally in § 8, we summarize our work and discuss the directions in which it can be
extended.

2. Generating axisymmetric β ∼ 1 equilibria

In this section, we will start with the general form of a divergence-free magnetic field,
simplify it for an axisymmetric configuration and using the simplified form, obtain an
explicit form of the steady-state momentum equation – the Grad–Shafranov equation.
In § 2.1, we briefly explain how VMEC works and provide details for the equilibria
generated for this work.
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Microstability of β ∼ 1 tokamak equilibria 3

A divergence-free magnetic field B can be written in the Clebsch form (D’haeseleer
et al. 2012)

B = ∇α × ∇ψ. (2.1)

We shall restrict our attention to solutions whose magnetic field lines lie on closed nested
toroidal surfaces, known as flux surfaces. We label the flux surfaces by their enclosed
poloidal flux ψ . On each flux surface, the line of constant α, the field-line label, gives us
the path of the magnetic field line.

We will use the right-handed, cylindrical coordinate system (R, φ,Z) where R and Z
are the radial and vertical distance from the origin and φ is the azimuthal angle about
the symmetry axis. We also define a curvilinear coordinate system (ψ, φ, θ) with ψ
being the flux surface label, φ being the cylindrical azimuthal angle and θ being the
‘straight-field-line’ poloidal angle (D’haeseleer et al. 2012) such that α = φ − q(ψ)θ
where

q(ψ) ≡ dχ
dψ

= 1
2π

∮
dθ

B · ∇φ
B · ∇θ = B · ∇φ

B · ∇θ , (2.2)

is the safety factor, χ is the enclosed toroidal flux, and the line integral is over θ ∈ [0, 2π].
The relation for q(ψ) is consistent with the definition of α = φ − qθ as can be seen by
substituting α into (2.1), obtaining

B = ∇φ × ∇ψ − q∇θ × ∇ψ, (2.3)

and noting that (2.3) satisfies (2.2). For an axisymmetric B, (2.3) can be reduced further,
to

B = ∇φ × ∇ψ + F∇φ. (2.4)

Here, F = F(ψ, θ). To generate an MHD equilibrium one has to solve the steady-state,
ideal-MHD force balance equation (Freidberg 2014) which, in SI units, is

∇p = (∇ × B)× B
μ0

= B · ∇B
μ0

− ∇
(

B2

2μ0

)
, (2.5)

where p is the plasma pressure and μ0 is the vacuum magnetic permeability. For an
axisymmetric system, we can substitute the form of B from (2.4) and choose the toroidal
component of (2.5) to get B · ∇F = 0 which implies F = F(ψ). Upon choosing the radial
component, we obtain the Grad–Shafranov (Shafranov 1957; Grad & Rubin 1958) equation

Δ∗ψ ≡ R2∇ ·
(∇ψ

R2

)
= −μ0R2 dp

dψ
− F

dF
dψ
. (2.6)

The Grad–Shafranov equation is a nonlinear equation for the poloidal flux ψ(R,Z) that
depends on the pressure p(ψ) and current F(ψ) profiles. As discussed in the introduction,
for a fixed field strength B, the fusion power output P of a tokamak scales as β2 –
β ≡ p/(B2/(2μ0)) is the ratio of plasma pressure to magnetic pressure – which makes
high-β operation an attractive concept. Therefore, our objective is to analyse the stability
of equilibria that have β ∼ 1.

To create high-β equilibria, one may start with analytical solutions of the Grad–
Shafranov equation. The most general analytical solution in the β ∼ 1 limit was obtained
by Hsu, Artun and Cowley (Hsu et al. 1996). However, these analytical β ∼ 1 equilibria
are unfit for our study as the geometric quantities required for a local stability analysis can
be discontinuous and deviate significantly from the exact numerical solution. We briefly
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explain the analytical procedure used to calculate such equilibria and their limitations in
Appendix A. To avoid these issues, we will use the equilibrium solver VMEC to generate
high-β, axisymmetric equilibria in the next section.

2.1. Numerical equilibria
We generate equilibria numerically using the three-dimensional (3-D) equilibrium code
VMEC (Hirshman & Whitson 1983). VMEC works by minimizing the integral

W =
∫ (

p
γ − 1

+ B2

2μ0

)
dV, (2.7)

subject to multiple constraints, which for axisymmetric equilibria is equivalent to solving
the Grad–Shafranov equation (Kruskal & Kulsrud 1958). For our study, VMEC takes the
shape of the boundary surface along with the global radial pressure p(s) and safety factor
q(s) or enclosed toroidal current G(s) as a function of the normalized toroidal flux s. It
then creates flux surfaces to minimize the integral in (2.7) on each surface for a fixed p
and q (or G) subject to various constraints. We choose the safety factor instead of toroidal
current as it varies slowly (Abel & Cowley 2013) compared with the plasma currents in
the limit of small electron-to-ion mass ratio.

In the following paragraphs, we will explain the process of generating the data for
this study using VMEC. For each VMEC equilibrium, we pick two different radially
local regions – equilibria that satisfy (2.6) and are localized to a flux surface. It is
important to point out that for most of this paper, we will only investigate modes that
have small wavelengths perpendicular to the field line, i.e. modes that are localized
to a flux surface, henceforth referring to our study as a local stability analysis. Since
our aim is to have ample variability in our input data, at the end of this section we
justify our choices by looking at the chosen flux surfaces and their corresponding β
values.

We produce high-radial-resolution equilibria using the fixed-boundary solver in VMEC
after providing it with an L-mode-like pressure profile p = p(s) – a profile that does not
have a sudden drop in pressure over a short radial distance, a monotonic safety factor
q = q(s) profile as a function of the normalized toroidal flux s = χ/χLCFS and the Last
Closed Flux Surface (LCFS) shape. We choose a simple form for the profiles p = p(s) and
q = q(s) given by

p = nT, p0 = p̃0n0T0

n(s) = n0(1 + νn)(1 − s2)νn, T(s) = T0(1 + νT)(1 − s2)νT

q = q0(1 + s2νq)1/(2νq)

⎫⎬
⎭ . (2.8)

The different parameters are given in table 1. The parameter p̃0 ∈ [1, 10, 70] for the low,
intermediate and high-beta equilibria, respectively. For each triangularity value, we choose
a different LCFS shape described by a Miller parameterization (Miller et al. 1998)

R = R0 + a cos(t + (sin−1 δ) sin t),
Z = aκ sin(t).

}
(2.9)

The parameter t varies in the range [−π,π). The values of the rest of the parameters
in (2.9) are given in table 2. The radial coordinate that we will use for all the stability
analyses is ρ = √

s = √
χ/χLCFS since it is a better measure of the radial distance from the

magnetic axis than the normalized poloidal flux ψ/ψLCFS. The safety factor and pressure
profiles as a function of ρ are given in figure 1. For all our studies, we use the same
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Microstability of β ∼ 1 tokamak equilibria 5

FIGURE 1. This figure shows the safety factor and normalized pressure profiles used for creating
the equilibria. The two red lines correspond to the values of the normalized radius ρ at which
the local equilibria will be analysed for their stability.

n0 (m−3) νn T0 (eV) νT q0 νq χLCFS (T m2)

5 × 1020 0.4 10 1.1 1.6 1.2 1.0

TABLE 1. VMEC equilibria input parameters. Throughout this study, in this table, every
parameter remains fixed.

R0 (m) a (m) δ κ

1.6 0.6 ±0.4 1.3

TABLE 2. Miller parameters for the outer boundary.

safety factor q and the normalized pressure profile p with different values of p̃0. In this
way, we are able to create three different pressure profiles with on-axis β ∼ 0.01, 0.1, 1
corresponding to p̃0 = 1, 10, 70, respectively. Henceforth, we will refer to the equilibria
with p̃0 = 1, 10, 70 as low, intermediate and high-β or β ∼ 0.01, β ∼ 0.1 and β ∼ 1,
respectively. We need to pick flux surfaces for our local stability analyses. In this study,
we choose surfaces at normalized radii ρ = 0.5 and 0.8. In total, there are twelve local
equilibria in our study: 3β values ×2 boundary shapes ×2ρ values. Because β varies over
a flux surface, it will be convenient to introduce a reference magnetic field for each global
equilibrium and redefine

β(ρ) = 2μ0p(ρ)/B2
N, (2.10)

BN = χLCFS/(πa2
N), (2.11)

where BN is a reference magnetic field and aN is the effective minor radius such that πa2
N

is equal to the area enclosed by the boundary and χLCFS is the toroidal flux enclosed by the
LCFS. For this study, aN = 0.684 m,BN = 0.681 T. The values of β obtained from VMEC
are given in table 3.

Each equilibrium has 512 surfaces with each surface represented by 40 poloidal modes.
We found that the equilibria were converged with this choice of resolution. All the
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δ ρ Low-β Intermediate-β High-β

0.4 0.5 0.011 0.11 0.77
0.4 0.8 0.006 0.064 0.45
−0.4 0.5 0.011 0.11 0.77
−0.4 0.8 0.006 0.064 0.45

TABLE 3. Reference β values for selected surfaces.

ρ aN/Lnom
Ti

aN/Lnom
ni

aN/Lnom
pi

aN/Lnom
Te

aN/Lnom
ne

aN/Lnom
pe

0.5 0.59 0.21 0.80 0.59 0.21 0.80
0.8 3.00 1.09 4.09 3.09 1.09 4.09

TABLE 4. Nominal gradient scale length values.

(a) (b) (c)

(d) (e) ( f )

FIGURE 2. This figure shows the flux surfaces for all the equilibria generated using VMEC. The
local equilibria that will be studied in this paper are highlighted in red. The magnetic axis in each
figure is the black cross.

equilibria that we investigate in this study are up–down symmetric which is why we only
show the upper half. The flux surface contours for the twelve equilibria are shown in
figure 2.

The numerical high-β equilibria show qualitative features like the vertical ‘core’ on
the inboard side and thin boundary layer on the outboard side as shown by Hsu et al. It
is interesting to see that the negative-triangularity equilibria high-β equilibria are more
strongly shaped than the positive-triangularity ones – the vertical inboard solution causes
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(a) (b)

FIGURE 3. This figure shows two high-β equilibria and their corresponding best-Miller fit. We
can see that the fit for the negative triangularity is worse due to the ‘squareness’ of the flux
surface on the inboard side. The agreement between gradients of various physical quantities will
be even worse.

the flux surface to develop a ‘squareness’. We illustrate the ‘squareness’ in figure 3.1 Most
importantly, these numerical equilibria do not suffer from any of the issues observed in
Hsu et al. Therefore, all the resulting geometric coefficients are smooth which allows the
local stability analyses in the following sections.

3. Infinite-n ideal-ballooning stability

In this section, we will investigate the equilibria generated in the previous sections
for their stability to ideal-ballooning modes. In § 3.1, we describe the physics basis and
mathematical formulation of the ideal-ballooning problem. In § 3.2, we review the tools
for locally varying equilibria and introduce the concept of an ŝ − αMHD analysis. In the
final section, we present the results from our study and discuss their implications.

3.1. Physical and mathematical description
One of the most important MHD instability for us to investigate is the ideal-ballooning
instability (Connor, Hastie & Taylor 1979) – a field-aligned, pressure-driven Alfvén wave
that grows when the destabilizing pressure gradient in the region of ‘bad’ curvature
exceeds the stabilizing effect of field-line bending. The region of ‘bad’ curvature is a
region of a flux surface where κ · ∇p > 0, such that the field-line curvature is in the same
direction as the plasma pressure gradient. For most tokamak equilibria, this region lies on
the outboard side.

The equation governing the ideal-ballooning mode can be obtained by minimizing the
ideal-MHD energy integral (Bernstein et al. 1958) for incompressible modes in the limit
of large toroidal mode number. Doing so gives us a differential equation that determines
X, the radial displacement of said mode along a field line. To ensure that the displacement
X satisfies the periodicity condition on the surface of interest and nearby surfaces, one
uses the ballooning transformation

X =
∞∑

N=−∞
X̂(θ − 2πN) ein(φ−q(θ−θ0−2πN))), N ∈ Z, (3.1)

1Note that we use Miller fit in figure 3 to demonstrate the strong shaping of high-β equilibria. We do not use Miller
parametrization to calculate geometric coefficients in this work.
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subject to the condition

lim
θ→±∞

X̂(θ;ψ, θ0) = 0, (3.2)

and solves for X̂. The variable n is the toroidal mode number, θ0 is the ballooning
parameter2 and the rest of the terms are defined in § 2. Upon minimizing the ideal-MHD
energy integral and using the ballooning transformation, one obtains the ideal ballooning
equation (Connor et al. 1979; Dewar & Glasser 1983)

1
J
∂

∂θ

(
|∇α|2
J B2

∂X̂
∂θ

)
+ 2

dp
dψ

[
B × ∇

(
μ0p + B2

2

)
· ∇α

]
X̂ = ρω2 |∇α|2

B2
X̂, (3.3)

where ρ is the plasma mass density and X̂ = X̂(θ;ψ, θ0) is the eigenfunction in ballooning
space and ω2 is the eigenvalue. The ballooning equation balances the stabilizing field-line
bending term and destabilizing pressure gradient with the inertia of the resulting Alfvén
wave, oscillating with a frequency ω. Note that (3.3) depends onψ only as a parameter and
we can compute the coefficients from the on-surface equilibrium quantities and their first
derivatives. Therefore, it is possible to study the ballooning stability of the local equilibria
that we chose in the previous section.

Due to the self-adjoint nature of ideal-MHD, all the eigenvalues (ω2) of (3.3) will be real
numbers. Hence, ω will either be purely real, an oscillating mode or purely imaginary, a
growing mode. We refer to the oscillating modes as stable and growing modes as unstable.
Since unstable modes are of more significance to us, we will plot the normalized growth
rate when plotting the results in § 3.3. We define the normalized growth rate as follows:

γ = −iωaN/vth,i, (3.4)

where vth,i = √
2Ti/mi is the ion-thermal velocity and Ti and mi are the temperature and

mass of the ions, respectively. We do this to establish a common normalization scheme
throughout the paper.

3.2. The Greene–Chance analysis
To better understand the stability of a local equilibrium, we need the ability to vary that
equilibrium. This can be done by changing the magnetic shear and pressure gradient
independently about their nominal values – equivalent to varying the gradients of both the
local current and plasma pressure – quantities that determine the solution to (2.6). This
gives us the ability to generate multiple local equilibria satisfying the Grad–Shafranov
equation and do a stability analysis without recalculating the global equilibrium. We define

ŝ = ρ

q
dq
dρ
, (3.5)

αMHD = −2μ0ρq2

εB2
N

dp
dρ
, (3.6)

as the magnetic shear and pressure gradient, respectively. This method of varying a local
equilibrium through ŝ and αMHD is known as an ŝ − αMHD analysis. This technique was
developed by Greene & Chance (1981) and has been used extensively to study local

2In the context of infinite-n ideal-ballooning mode analyses, there is a value of the ballooning parameter θ0 at which
the ballooning mode is the least stable. To find this value, one treats θ0 as a parameter and scans over its values to find
the θ0 for which ω2 is the smallest.
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FIGURE 4. This figure summarizes the idea of Greene and Chance. The new pressure profile
(black) with localized variation over the flux surface ψ = ψ0 lies over the equilibrium profile
(dashed red). Even though the variation in pressure atψ = ψ0 is small, the change in the pressure
gradient can be large.

stability of different axisymmetric equilibria (Connor, Hastie & Taylor 1978; Connor
et al. 1979; Bishop 1985; Miller et al. 1998). Figure 4 illustrates the main point – we
can change the gradient of the pressure and the safety factor locally by a finite amount
without significantly changing their respective values. We will use this idea again in §§ 5
and 6 to vary the pressure gradient at the nominal magnetic shear when we examine the
microstability of different equilibria. Details explaining the Greene–Chance analysis are
given in Appendix C.

To obtain useful maximum growth rate scans it is computationally advantageous to
know where the equilibrium transitions from being stable to unstable, i.e. the region of
marginal stability. This is because stable modes are extended and require many more points
and a wider range in θ than unstable modes, leading to a longer computation time. To that
end, we first integrate the marginally stable ballooning equation

1
J
∂

∂θ

(
|∇α|2
J B2

∂X̂
∂θ

)
+ 2

dp
dψ

[
B × ∇

(
μ0p + B2

2

)
· ∇α

]
X̂ = 0, (3.7)

along the field and count the zeros of the function X̂(θ) – if X̂ has at least one zero, the
mode is unstable, else it is stable. This criterion was originally developed by Newcomb
(1960) for a screw pinch. He used it as a method to asses the stability of a screw pinch
without explicitly finding the growth rates or the eigenfunctions. It is briefly explained
in Appendix D. Using this criterion, one can obtain the sign of γ 2 and infer the stability
significantly more rapidly than by exactly solving (3.3). Coupling Newcomb’s criterion
with the Greene–Chance analysis gives us the ability to scan the ŝ − αMHD space and plot
the marginal stability contour (γ = 0) cheaply. For axisymmetric equilibria, the marginal
stability contour is a single continuous line. Upon obtaining the contour, we choose a
region around it where we solve (3.3).

To solve (3.3) we use the procedure described by Sanchez et al. (2000). Our two-part
code3 first finds the contour of marginal stability, then takes a region around the contour
in the ŝ − αMHD space and implements the algorithm given in Sanchez et al. (2000). It
outputs the maximum eigenvalue and the corresponding eigenfunction for each value of ŝ
and αMHD. The plots of the maximum eigenvalue along with the curve of marginal stability
are shown in the next section.4

3Our Python code is freely available at https://github.com/rahulgaur104/ideal-ballooning-solver.
4All the calculations in this work are done for θ0 = 0. A more complete picture would require one to scan over

multiple values of θ0 and take the union of the resulting marginal stability curves and growth rate plots. Finite θ0 effects
may modify the second-stability boundary.
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(a) (b) (c)

(d) (e) ( f )

FIGURE 5. This figure shows the normalized growth rate γ aN/vth,i contours along with
the curve of marginal stability (white line) for the positive-triangularity equilibria. Columns
correspond to the low, intermediate and high-β regimes, respectively. The nominal equilibrium
value is given by the green cross. The difference between the growth rates from the low and
high-β equilibria is due to our choice of normalization in (3.4).

3.3. Ideal-ballooning analysis results
This section contains the results of the ŝ − αMHD analyses of the twelve local equilibria
that we chose in § 2.1. We plot a 2-D contour plot of the magnitude of the growth rate as
defined by (3.4). We begin by discussing the positive-triangularity equilibria in figure 5.

All the positive-triangularity equilibria studied here are stable at their nominal values.
The low-β equilibria lie below the marginal stability contour whereas the high-β equilibria
lie above it. For low-β equilibria the ballooning threshold is well known to be αMHD ∼ 1
but for the high-β equilibria, using (3.6), αMHD ∼ 1/δ2

Hsu 
 1 which pushes these
equilibria into the region of ‘second’ stability, first discovered by Greene & Chance
(1981). Note that the high-β equilibrium in figure 5( f ) is close to marginally stable. Also,
since ballooning modes are Alfvén waves and we use ion-thermal speed in (3.4), we see
that the maximum growth rate decreases as vth,i/vA = √

β/2 –high-β equilibria having
the smallest maximum growth rates. This non-conventional choice of normalization will
help us quantitatively compare ideal-ballooning growth rates with the ones obtained from
various microstability studies in §§ 5–7. In the next paragraph, we discuss the results from
the ideal-ballooning scans of the negative-triangularity equilibria.

In figure 6, we can see the nominal equilibria for the negative triangularity are stable
for all cases except figure 6(e). The trends follow those of the positive-triangularity
equilibria with one important exception. Unlike the positive-triangularity equilibria, the
high-β negative-triangularity equilibria move closer to the marginal stability boundary
in the inner core region as seen in figure 6(c). This is different from the usual result –
ballooning-stable equilibria with peaked pressure profiles approach marginal stability as
we move towards the boundary and pressure gradient gets steeper (as seen in figures 5, 6a,
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(a) (b) (c)

(d) (e) ( f )

FIGURE 6. This figure shows the normalized growth rate contours along with the curve of
marginal stability for the negative-triangularity equilibria. The nominal equilibrium value is
denoted by the green cross; (a) ρ = 0.5, β ∼ 0.01, (b) ρ = 0.5, β ∼ 0.1, (c) ρ = 0.5, β ∼ 1,
(d) ρ = 0.8, β ∼ 0.01, (e) ρ = 0.8, β ∼ 0.1 and ( f ) ρ = 0.8, β ∼ 1.

6b, 6d and 6e) – indicating that negative-triangularity, high-β equilibria have enhanced
ballooning stability in the outer core. We will observe a similar trend when we present
results from the electromagnetic microstability analyses in § 7.

Recently, Davies, Dickinson & Wilson (2022) have published a study investigating
access to high-β spherical tokamak equilibria where they find that high-β,
negative-triangularity equilibria are more unstable and less accessible than their
positive-triangularity counterparts. At first, this may seem to contradict our results.
However, looking at the plasma β values in Davies et al., we realize that
their high-β equilibria correspond to intermediate-β in our work. Indeed, the
negative-triangularity intermediate-β equilibrium in figure 6(e) is ballooning unstable
whereas the positive-triangularity equilibrium in figure 5(e) is ballooning stable.
Furthermore, Davies et al. define accessibility as the ability to reach the nominal αMHD
from αMHD = 0 at the nominal ŝ – a straight line in ŝ − αMHD space – the actual path of an
equilibrium from startup to a steady-state operation in the ŝ − αMHD space is a 2-D curve,
similar to figures 2(a) and 2(b) in Chance et al. (1990). Therefore, our results corroborate
rather than contradict the findings in Davies et al.

The most important takeaway from this study is that all low- and high-β equilibria are
stable to ideal-ballooning mode. This indicates that it might be possible to generate high-β
equilibria that are ballooning stable.5 Even though one of the intermediate-β equilibria
is unstable, we will use it in our study as it will help us understand the behaviour of
microstability with changing β.

5Note that we do not prove the experimental accessibility of these high-β equilibria. We show that if these
equilibria were to exist, they will be stable to the ideal-ballooning mode. The problem of accessibility in the context
of ideal-ballooning stability was studied by Chance et al. (1990).
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4. Microstability analysis

This section contains the general theoretical and numerical details of our microstability
analysis. In § 4.1, we will explain the physical basis and theoretical details of the
gyrokinetic model. In the next section, we will explain how the model is implemented
numerically using the GS2 code and provide the general details of our numerical study.

4.1. The gyrokinetic model
The electromagnetic gyrokinetic model is a simplification of the 6D Vlasov–Maxwell
system of equations to a 5D system that predicts the self-consistent evolution of
a distribution of charged particles and its electromagnetic fields in the presence of
low-frequency, small-scale fluctuations. We define the distribution and fields as

fs = F0s + δfs,
E = E0 + δE,
B = B0 + δB,

⎫⎬
⎭ (4.1)

where the fields comprise their equilibrium components (with a subscript 0) plus small
fluctuations. The fluctuations δfs, δE and δB are defined such that they vanish when
averaged over length and time scales much larger than the particle gyroradius ρs and
turbulence frequency ω, respectively. The gyrokinetic model is derived in the limit

ε̃ ≡ ω

Ωs
∼ ρs

aN
∼ k‖

k⊥
∼ δfs

F0s
∼ Zseϕ

Ts
∼ |δB|

|B0| � 1, (4.2)

where Ωs = (ZseB)/(msc) is the cyclotron frequency and subscript s denotes the species.
The variable ϕ is the perturbed electrostatic potential. The particle gyroradius ρs, given by

ρs ≡ vth,s

Ωs
, (4.3)

is the perpendicular length scale of the turbulent fluctuations and vth,s = √
(2Ts)/ms is the

thermal velocity. The length scale aN is the effective minor radius, defined in § 2.1. The
wavenumbers of the mode perpendicular and parallel to the equilibrium magnetic field are
denoted by k⊥ and k‖, respectively.

In the small ε̃ limit, one can reduce the dimensionality of the problem from
6D(r,w⊥,w‖, ϑ) to 5D(r,w⊥,w‖) by averaging over the gyrophase ϑ . For this 5D
coordinate system, we will transform back and forth between two different coordinates, the
particle position and velocity coordinates (r,w⊥,w‖, t) and the guiding-centre coordinates
(Rs,Es, μs, t) where

Es = 1
2

msw2, (4.4)

μs = msw2
⊥

2B
, (4.5)

are the total kinetic energy and the magnetic moment of the particle. The guiding centre is
given in terms of the particle position by the Catto transformation (Catto & Tsang 1977)

Rs = r − b × w⊥
Ωs

. (4.6)
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The gyroaveraging operators 〈〉Rs and 〈〉r

〈X〉Rs = 1
2π

∫ 2π

0
X(r) dϑ, (4.7)

〈X〉r = 1
2π

∫ 2π

0
X(Rs) dϑ, (4.8)

denote the average of X over a gyration period at fixed guiding centre Rs and at fixed
position r, respectively. It is convenient to define the gyrokinetic model in terms of
the parallel component δA‖ of the magnetic vector potential, the magnetic field strength
fluctuation δB‖

δB‖ = b · (∇ × δA⊥), (4.9)

the electrostatic potential

δE = −∇ϕ − 1
c
∂A
∂t
, (4.10)

and the gyrokinetic distribution function in the guiding-centre coordinate system
(Rs,Es, μs, t)

hs(Rs,Es, μs, t) = Zseϕ(r, t)F0s

Ts
+ δfs(Rs,Es, μs, t). (4.11)

Using these new fields we can now introduce the δf gyrokinetic theory that was first
derived for the linear electromagnetic case by Antonsen & Lane (1980) and nonlinear case
by Frieman & Chen (1982). For a collisionless, linear electromagnetic model, following
the notation of Abel et al. (2013), the governing equations are

∂hs

∂t
+ (w‖b + vDs) · ∂hs

∂Rs
= ZseF0s

Ts

∂〈ϕ − w · δA/c〉Rs

∂t
− V E · ∇F0s, (4.12)

∑
s

(Zse)2ϕ
Ts

=
∑

s

Zse
∫

d3w 〈hs〉r, τ = Te

Ti
, (4.13)

−∇2
⊥δA‖ = 4π

c

∑
s

Zse
∫

d3w w‖〈hs〉r, (4.14)

∇2
⊥
δB‖B
4π

= −∇⊥∇⊥ :
∑

s

∫
d3w 〈msw⊥w⊥hs〉r, (4.15)

where the velocity integrals in (4.13) are taken at fixed r. The velocities V E and vDs are the
E × B and the magnetic drift velocities, respectively,

V E = c
B

b × 〈∇ϕ〉Rs − 1
B

b × 〈∇(w · δA)〉Rs, (4.16)

vDs = w2
‖

Ωs
b × (b · ∇b)+ w2

⊥
2Ωs

b × ∇B
B

. (4.17)

This completely defines the linear gyrokinetic system. The gyrokinetic model is a good
approximation for the core region of a tokamak plasma where our study is being conducted
(White et al. 2013; Creely et al. 2017). We solve the gyrokinetic model in a 3-D flux tube
– a tube with a rhombus-shaped cross-section following the field line. The appropriate
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length of the flux tube and the boundary conditions at the ends are determined using the
ideas developed by Beer, Cowley & Hammett (1995). All the variables are assumed to be
periodic perpendicular to the field line. This allows us to further simplify (4.12) by writing
the fluctuating fields as a Fourier series

hs =
∑

k

hk⊥,s(θ,E, μ, t) exp(ik⊥ · Rs),

ϕ =
∑

k

ϕk⊥(θ, t) exp(ik⊥ · r),

δA‖ =
∑

k

δA‖,k⊥(θ, t) exp(ik⊥ · r),

δB‖ =
∑

k

δB‖,k⊥(θ, t) exp(ik⊥ · r).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.18)

Applying this ansatz to (4.12), we obtain

(
∂

∂t
− iωDs

)
hk⊥,s + (b · ∇θ)w‖

∂hk⊥,s

∂θ
=
{
∂

∂t
− iω∗,s

[
1 + ηs

(
Es

Ts
− 3

2

)]}

×
[

J0

(
k⊥w⊥
Ωs

)(
ϕk⊥ − w‖δA‖

c

)
+ J1

(
k⊥w⊥
Ωs

)
w⊥
k⊥

δB‖
c

]
F0s, (4.19)

where

ωDs = k⊥ · vDs, (4.20)

is the magnetic drift frequency, J0(k⊥ρs) and J1(k⊥ρs) are the zeroth- and first-order
cylindrical Bessel functions, respectively,

aN

LTs
= −d log(Ts)

dρ
,

aN

Lns

= −d log(ns)

dρ
, ηs = Lns

LTs

, (4.21)

and

ω∗,s = Ts

ZseB
[(b × k⊥) · ∇ log ns]. (4.22)

For this study, we choose a hydrogen plasma, i.e. Zi = 1,Ze = −1. The variables Lns
and LTs are the density and temperature-gradient scale lengths. The quantity ω∗,s, the
diamagnetic drift frequency, is the typical frequency of a drift wave – waves caused due to
gradients in temperature or density. For these modes

∂

∂t
∼ ω ∼ ω∗,s. (4.23)

In §§ 5 and 6, we will investigate two types of electrostatic drift wave instabilities, the
ion-temperature-gradient (ITG) mode and the trapped electron mode (TEM). For purely
electrostatic modes, we solve (4.12)–(4.13) only and assume the magnetic fluctuations, δA‖
and δB‖ to be absent. In § 7, we investigate the effect of magnetic fluctuations by solving
the full set of (4.12)–(4.15). The procedure for numerically solving the gyrokinetic model
is explained in the following section.
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(a) (b)

FIGURE 7. This figure shows (a) the output from a typical electrostatic GS2 run showing the
normalized frequency and growth rate spectrum with both electron-gradient- (ωaN/vth,i < 0)
and ion-gradient-driven (ωaN/vth,i > 0) instabilities and (b) showing the variation along the field
line of the square of the normalized electrostatic potential |ϕ|2. We can see that the potential is
well resolved and decays sufficiently before reaching the boundaries.

4.2. Using the GS2 code
GS26 (Kotschenreuther, Rewoldt & Tang 1995b; Dorland et al. 2000; Jenko & Dorland
2001; Highcock 2012) is a parallel code that solves the gyrokinetic model as an
initial-value problem. It solves (4.12)–(4.15) numerically by calculating the evolution of
an initial perturbation inside a flux tube.

Before each run, one has to specify the value of the gradient scale lengths
aN/Lns, aN/LTs , the range of normalized wavenumbers k⊥ρi and various geometric
coefficients as a function of θ . The values of these inputs are specific to the linear mode
under consideration and will be provided in the following sections. Since we are only
studying stability against fluctuations that vary on a small perpendicular scale k⊥ρi ∼ 1,
we can get the geometric coefficients from the local equilibria just like we did for the
ideal-ballooning stability analysis.7

The perpendicular structure of different fluctuations is defined by defining the
wavevector k⊥ that can be written as

k⊥ = ky∇y + kx∇x, (4.24)

where x and y are normalized forms of the coordinatesψ and α, respectively. For our study,
we assume kx = 0, i.e. modes with no variation in the radial direction at θ = 0.8 We choose
around 15−25 values of kyρi in the range kyρi = 0.05−6. All of our simulations are well
resolved in θ and well converged as can be seen in figure 7. For this study, θ ∈ [−19π, 19π]
and more than 450 points along the θ grid unless stated otherwise.

For the velocity space structure GS2 uses an (E, λ) grid instead of the (w‖,w⊥) grid.
Defining the pitch angle as

λ(θb) = μ

E
, (4.25)

6The GS2 version used for this study is freely available at https://zenodo.org/record/4461680.
7Our VMEC to GS2 interface for calculating the geometric coefficients is freely available at https://github.com/

rahulgaur104/VMEC2GK.
8This is equivalent to choosing θ0 = 0 in the ideal-ballooning study. The parameter θ0 ∼ kx/ky denotes the tilt of

a turbulent eddy with respect to the ∇ψ direction. In axisymmetric, up–down symmetric equilibria, the most unstable
modes almost always lie at θ0 = 0.

https://doi.org/10.1017/S0022377823000107 Published online by Cambridge University Press

https://zenodo.org/record/4461680
https://github.com/rahulgaur104/VMEC2GK
https://github.com/rahulgaur104/VMEC2GK
https://doi.org/10.1017/S0022377823000107


16 R. Gaur and others

where θb is the bounce angle – the value of θ at which a trapped particle with a pitch
angle λ reflects back from a region of high magnetic field. For a given pitch angle λ, the
bounce angle is defined such that B(θb) = 1/λ. In GS2, resolution of the passing particle
distribution function in the coordinate λ is set by the variable nlambda. We set nlambda =
12. For the trapped particle distribution, we choose 11 bounce points. Similarly, for the
energy-space resolution, we set the value of the GS2 variable negrid = 10.9 We choose 27
points along the flux tube for every 2π interval to ensure sufficient resolution along the
field line. This completely defines the resolution in GS2.

In figure 7, we show the results from a typical GS2 run. After each run, one obtains
the normalized growth rate γ aN/vth,i, the wave frequency ωaN/vth,i, the electrostatic
potential eigenfunction ϕ(θ, t) for electrostatic runs and ϕ(θ, t), δA‖(θ, t) and δB‖(θ, t)
for electromagnetic runs. We also obtain the quasilinear particle and heat fluxes for each
mode

Γs,ky =
∫

dθ
B · ∇θ

∫
d3w(V E,ky · ∇ψ)hs,ky, (4.26)

Qs,ky =
∫

dθ
B · ∇θ

∫
d3w(V E,ky · ∇ψ)Eshs,ky, (4.27)

where the subscript ky denotes the mode ky in the Fourier space. These quantities can be
used to extract information about an unstable mode (Kotschenreuther et al. 2019). Since
this is a linear study, the absolute values of the fluxes do not contain any useful information
but their ratio Γs,ky/Qs,ky can still be used to characterize the type of instability. We will
use this ratio for the TEM study in § 6.

5. The ITG study

This section contains the results and analysis of the ITG study of the equilibria that
we obtained in § 2. In § 5.1, we will present the specific details, including the values of
different parameters used for the simulation and the reasoning behind our choices. In § 5.2,
we will introduce the local magnetic shear, a quantity that characterizes the stability of an
equilibrium to the ITG mode. In the final section, we will plot and compare the results of
all the different local equilibria and explain the stability of the high-β equilibria.

5.1. Details of the study
The most important form of electrostatic instability that arises at low wavenumbers, the
ITG (Cowley, Kulsrud & Sudan 1991), occurs when a drift wave becomes unstable due to a
large ion temperature gradient, i.e. large aN/LTi . Therefore, our objective is to understand
this mode by doing a scan in the temperature-gradient scale length, aN/LTi . Using the
definition of the pressure ps = nsTs, we can write

aN

Lps

≡ −d log( p)
dρ

= −d log(Ts)

dρ
− d log(ns)

dρ
= aN

(
1

Lns

+ 1
LTs

)
. (5.1)

Using the equation above along with (3.6), we can write

αMHD = β

2

∑
s

aN

Lps

ρq2

2μ0ε
. (5.2)

9For the sake of brevity, we have avoided explaining the details of the velocity grid. These details and resolution
requirements can be found in Highcock (2012).
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aN/Lni aN/LTi

0.21 0.19 0.59 1.39 2.98 6.19
0.10 0.29 0.69 1.49 3.08 6.29

TABLE 5. Values of a/LTi at ρ = 0.5 for the ITG study.

aN/Lni aN/LTi

1.09 0.95 3.00 7.10 15.27
0.54 1.50 3.55 7.64 15.82

TABLE 6. Values of a/LTi at ρ = 0.8 for the ITG study.

Furthermore, recall that we can vary the normalized pressure gradient αMHD for a
local equilibrium using the idea of Greene and Chance without recalculating the global
equilibrium. This gives us the ability to self-consistently vary the temperature and density
gradient scale lengths for a fixed β as long as we recalculate the local equilibrium for the
resulting value of αMHD.10 Table 3 contains the nominal density, temperature and pressure
gradient scale lengths, denoted aN/Lnom

ni
, aN/Lnom

Ti
and aN/Lnom

pi
, respectively.

These are the values obtained from the original local equilibrium generated by VMEC
and are exactly the same for all the different beta and triangularity values. For the ITG
mode study, we define

fac = dP
dρ

/(
dP
dρ

)
nom
, (5.3)

as the ratio of actual pressure to the nominal pressure. We choose fac = (0.5, 1, 2, 4, 8)
times the nominal pressure gradient for ρ = 0.5 and fac = (0.5, 1, 2, 4) times the nominal
pressure gradient for ρ = 0.8. For each pressure gradient, we choose two density gradient
scale lengths – the nominal and half of the nominal value from the local VMEC
equilibrium while varying the temperature gradient scale length consistently for each
gradient scale length. Tables 5 and 6 contain the resulting values.

These 18 values of various scale lengths are exactly the same for all the triangularities
as well as for all the different beta values due to the way we have defined ρ. From previous
observations and studies, we know that the typical peak ITG growth rate lies around kyρi =
1. To capture the maximum growth rate, we calculate the growth rates in the range kyρi ∈
[0.05, 2]. For ITG, we have made the common assumption of adiabatic electrons to exclude
the effect of kinetic electrons on the ITG mode and avoid other modes like the TEM.
Mathematically, this means one assumes he,ky = 0 when solving (4.19) for the electrons.

Using the values in tables 5 and 6, we run GS2 in the electrostatic limit (δA‖ = 0, δB‖ =
0) and obtain the maximum normalized growth rate γ aN/vth,i for each of the 108 cases,
18 for each beta and each triangularity value. The results showing comparison between
different beta values, boundary shapes and normalized radii will be shown in § 5.3.
We expect the equilibria to become more stable to the ITG mode as we increase β.
This behaviour is well-known (Jarmén, Malinov & Nordman 1998; Hirose 2000) in the

10Maintaining self-consistency is crucial to all local analyses. Violating (5.1) can give rise to specious, non-physical
instabilities (Zhu et al. 2020).
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literature for low and intermediate-β equilibria. To try and explain this trend, in the next
section we look as the local shear as a characteristic quantity that explains stabilization of
the ITG mode with increasing β.

5.2. Characterizing stability to the ITG mode
In this section, we define and plot an important quantity, the local magnetic shear (Greene
& Chance 1981), which will help us understand the response of a local equilibrium to the
ITG mode. We use the local shear since negative global shear ŝ is known to stabilize ITG
(Uchida et al. 2003). In the following section, we will plot the local shear as a function
of θgeo at the nominal ŝ and αMHD for the high-β equilibria and compare it with the low,
intermediate and a low-β shifted-circle equilibrium (abbreviated as SC in the plots). We
will show that the behaviour of ITG is directly related to the local shear and argue that a
large negative local shear over a wide range along the field lines stabilizes the ITG mode.
Mathematically, the local shear ν is given by (Greene & Chance 1981; Dewar & Glasser
1983)

ν = −B · ∇N

(∇Nα · ∇Nψ

|∇Nψ |2
)
, (5.4)

where ∇N = aN∇ is used to non-dimensionalize ν. We will plot the local shear as a
function of the geometric poloidal angle defined in the figure 8. The coordinate θgeo is
advantageous as it, unlike θ , is a physically intuitive poloidal angle. Mathematically, θgeo
is a monotonic function of θ – ν can always be transformed to κ̂(θ) and vice versa. To plot
ν with respect to θgeo, we further simplify (5.4)

ν = − F
qR2

[(
qF′

F
+ F′F

q
(RsBps)2

)
+ q p′

B2
ps

+ 2q
RsBps

(
sin(u)

Rs
− 1

Rc

)]
. (5.5)

The symbols used and formalism needed to derive (5.5) is given in Appendix C. It is
important to point out that

ŝ = ρ|∇Nψ |
2πqa2

N

∫ 2π

0

dθ dφ
B · ∇Nθ

ν. (5.6)

Thus, the appropriately weighted average of the local shear over a flux surface gives us
the global magnetic shear ŝ. The global shear is held fixed for all the local equilibria at a
given ρ. This relation implies that the local shear can be negative for a given range in θ
for a positive global shear ŝ. Finally, we plot local shear at nominal ŝ and αMHD in figure 9
for different beta values.

The local shear depends on the pressure gradient αMHD which further depends on
β as well as the gradient scale lengths Ln and LT . The beta value increases the local
negative shear through the Shafranov shift. The gradient scale length does so by increasing
the poloidal current gradient dF/dρ required to balance the pressure gradient which
consequently increases the toroidal magnetic field. A plot showing the effect of pressure
gradient on the local shear is shown in figure 13(a). Note that in our scans decreasing the
pressure gradient scale length increases the driving term η = Ln/LT . In fact, in this study,
for a given β, η increases faster than aN/Lp. A plot of η versus the pressure gradient scaling
factor is shown in figure 10.

The dominant mechanism for generating negative local shear is the β-induced
Shafranov shift. The local shear may also depend on the shaping, especially for negative
triangularities. However, we find that shaping does not have a significant effect on the ITG
stability of the high-β equilibria.
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FIGURE 8. This figure illustrates the definition of θgeo. The coordinates of the magnetic axis,
marked with a cross, are (Rax,Zax).

(a) (b)

FIGURE 9. This figure explains the physical meaning of the local magnetic shear with (a)
showing a typical local shear plot of negative triangularity equilibria at the nominal ŝ = 0.45
and nominal αMHD values at ρ = 0.8 for different beta values and a low-β shifted-circle model
(abbreviated SC). (b) Illustrates a modified interpretation from Antonsen et al. (1996) explaining
the concept of local magnetic shear. Negative local shear twists the turbulent eddies more than
positive or zero local shear in the region of bad curvature, stabilizing the ITG mode.

(a) (b)

FIGURE 10. This shows (a) the change in the local shear for fac = 4 (increased pressure
gradient). The local shear is much more negative with an approximately linear dependence with
fac on outboard side. On the other hand, (b) shows the comparison between the ITG driving term
η and the pressure gradient scaling factor fac. The term η is calculated using the values given
in table 5. We can see that η grows linearly, but with a larger pre-factor. These figures illustrate
how the ITG driving term grows more rapidly than the stabilizing local shear as we increase the
pressure gradient.
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(a) (b)

FIGURE 11. These plots show the ITG max(γ aN/vth,i) (over kyρi ∈ [0.05, 2]) vs the typical β
for nominal equilibria at different radial locations.

5.3. The ITG results
Since GS2 is an initial-value code, resolving a growth rate γ ≤ γthresh would require us
to run the simulation for at least t ∼ 1/γthresh. For large wavenumbers and a semi-implicit
time-stepping scheme, it leads to a relatively high runtime cost. Hence, we define a small
positive ‘threshold’ growth rate γthresh which we will use to separate stable and unstable
modes. If the maximum ITG growth max(γ aN/vth,i) < γthresh, we classify it as stable. For
this study, we choose γthresh = 0.005.

We find that all the nominal equilibria stabilize as we increase β as first noted by
Candy & Waltz (2003a) – the high-β equilibria are stable to the ITG mode, as shown
in figure 11 below. To better understand what causes this effect, we do a scan in gradient
scale length scales given in tables 5 and 6. Each group of plots contains maximum growth
rate for a range of a/LTi at a fixed a/Lni for the three beta values. Plots are grouped
by the triangularity of the equilibria. For each group, there are subgroups based on the
normalized radius ρ. The results corresponding to the positive-triangularity boundary
shape are shown in figure 12.

In figure 11, one observes that, for the high-β cases, the ITG mode is stable (that is,
γ < γthresh). For the intermediate and low-β cases, figure 12 shows destabilization with
increasing temperature gradient. We believe that the stabilization of high-β equilibria
is a result of large local negative shear (rightmost panels) that spans over a wide range
in θ . The local shear becomes positive only after θgeo > π/2 – the whole outboard side
has a large local negative shear. These large negative values are predominantly due to a
large Shafranov shift but could have sub-dominant effects resulting from strong shaping,
especially for the negative triangularity high-β equilibria. For the shifted-circle equilibria,
the local shear is small as compared with the rest of the equilibria even though it is
negative over the outboard side. This is because the low-β shifted-circle equilibria are
neither strongly shaped nor have a large beta. The trend remains the same even for
the equilibria with half-nominal density gradients. Next, we plot results for negative
triangularity equilibria in figure 13.

We see that the high-β equilibria with a negative-triangularity boundary shape are
stabilized as well. The local magnetic shear shows the same trend with beta but is
even more negative and spans an even wider range in θgeo as compared with the
positive-triangularity equilibria. We believe this extended range in negative local shear
is due to the ‘squareness’ of the high-β profiles, which is a stronger shaping than the
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(a) (b) (c)

(d) (e) ( f )

FIGURE 12. This figure shows the ITG max(γ aN/vth,i) plots for positive-triangularity
equilibria against the temperature gradient length scale. For the high-β equilibria, ITG is
stabilized at both ρ = 0.5 and ρ = 0.8. The rightmost figures in each row are the local magnetic
shear vs the geometric theta θgeo at the nominal dp/dρ and ŝ. The grey line corresponds to the
local shear for a low-β shifted-circle equilibrium (abbreviated SC). The magnetic shear ŝ is the
same for all the equilibria at every ρ.

positive triangularity cases. Since all the high-β equilibria are stabilized and the growth
rates are small, it is hard to find a clear difference in growth rates based on triangularity.

In the next section, we will study the stability of different equilibria to an electron-driven
electrostatic mode, the TEM.

6. The TEM study

In this section, we will present our analysis of the TEM instability. In § 6.1, we explain
the TEM and tabulate the parameters for which we perform our study. After that, we
define the maximum TEM growth rate. In § 6.2, we present the electron precession drift
as a characteristic of TEM stability of a local equilibrium. In the final section, we plot the
results in a fashion similar to the previous section.

6.1. Details of the study
The second type of electrostatic instability that we investigate, the collisionless TEM,
becomes unstable when drift waves resonate with the precession of the electrons. This
can cause significant transport loss through the electron channel that degrades plasma
confinement (Adam, Tang & Rutherford 1976). For the TEM, we choose five values of
pressure gradient, corresponding to fac = (0.5, 1, 2, 4, 8) for ρ = 0.5 and five values
corresponding to fac = (0.5, 0.75, 1, 2, 4) for ρ = 0.8. For each pressure gradient, we
choose two temperature-gradient scale lengths – nominal and 30 % of the nominal, while
scanning the growth rates in the density gradient scale lengths. We do this since TEM,
unlike ITG, is primarily a density gradient-driven instability. Tables 7 and 8 contain the
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(a) (b) (c)

(d) (e) ( f )

FIGURE 13. Shows the ITG max(γ aN/vth,i) plots for negative-triangularity equilibria. For the
high-β equilibria, ITG is stabilized at both ρ = 0.5 and ρ = 0.8. The local shear for the high-β
equilibria is negative over the whole outboard side. The grey line corresponds to the local shear
for a low-β shifted-circle equilibrium (abbreviated SC).

aN/LTe = aN/LTi aN/Lne = aN/Lni

0.186 0.21 0.61 1.41 3.01 6.22
0.296 0.10 0.51 1.31 2.91 6.11

TABLE 7. Values of gradient scale lengths at ρ = 0.5 used for the TEM study.

aN/LTe = aN/LTi aN/Lne = aN/Lni

0.95 1.09 2.11 3.13 7.22 15.45
1.50 0.54 1.57 2.59 6.68 14.86

TABLE 8. Values of gradient scale lengths at ρ = 0.8 used for the TEM study.

values for which we have solved the gyrokinetic model. Note that the temperature and
density scale lengths are the same for the ions and electrons.

These 20 values of gradients are the same for ions and electrons as well as both positive-
and negative-triangularity equilibria at all the different beta values. Unlike the ITG study,
we turn on the kinetic effects of electrons since TEM is an electron-driven instability.
The TEM growth rate peak occurs over a wide range kyρi ∈ [0.5, 6]. Since there is an
overlap with the ITG and the electron-temperature-gradient (ETG) mode, having two
species makes it difficult to separate modes with purely ITG and ETG-related effects from
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modes with purely TEM-related effects. Therefore, to calculate the TEM growth rate, we
choose the growth rate corresponding to the wavenumber kyρi at which the ratio of the
quasilinear electron flux to electron heat flux is the maximum, i.e.

γTEM(kyρi) = γ

∣∣∣
max(Γe,ky/Qe,ky)

, (6.1)

where the definition of quasilinear fluxes is given in equations (4.26) and (4.27).
We run GS2 for the wavenumbers in the range kyρi ∈ [0.2, 6.5]. Just like the ITG study,

we run GS2 and obtain the maximum growth rate γ aN/vth,i for each of the 120 cases:
10 values of (aN/LT, aN/Ln)× 2 surfaces ×3β values ×2 boundary shapes. The results
showing the comparison between different beta values, triangularities, and normalized
radius will be shown in § 6.3.

Curvature-driven TEMs are associated with the precession of trapped electrons in a flux
surface. To that end, we elucidate the definition and role of the electron precession drift
frequency in the next section and how it characterizes the stability of an equilibrium to the
TEM.

6.2. Characterizing stability to the TEM
The collisionless curvature-driven TEM is a drift wave that becomes unstable when it
resonates with the bounce precession of trapped electrons. The precession of electrons is
characterized by their precession frequency

〈ωDe〉 =
(∫ θb

−θb

dθ
w‖

B
(B · ∇θ)

)−1 ∫ θb

−θb

dθ
w‖

B
(B · ∇θ)ωDe, (6.2)

where the integral operator is the bounce-average operator. The precession frequency is a
function of the bounce angle θb. Depending on the convention, one usually takes sign(ω) =
sign(ω∗,e) for trapped electron modes since the TEM is a drift wave. Therefore, if

sign(〈ωDe〉)sign(ω∗,e) < 0, (6.3)

the drift wave will not be able to resonate with the precession of electrons. If the precession
drift satisfies (6.3) at all the different pitch angles, the curvature-driven TEM will be
stabilized (Connor, Hastie & Martin 1983; Roach, Connor & Janjua 1995). The expression
for ωD, given by (4.20) can be alternatively written as

ωDe = kyρe

2
vth,e

aN
Ee[2(1 − λB)ωκ + λBωB], (6.4)

where ωκ(θ) and ωB(θ) are geometric factors independent of the electron energy Ee and
the pitch angle λ. A semi-analytical formula for calculating ωκ is given in (C29). As a
characteristic of TEM stability, we define the quantity

〈ω̄De〉 = 〈ωDe〉sign(ω∗,e)/Ee, (6.5)

as the precession drift per energy in the electron diamagnetic direction. A typical plot of
the 〈ω̄De〉 is shown at nominal ŝ and αMHD for different β values in figure 14. We see that
the precession drift is negative everywhere only for high-β case. This will form the basis
for our understanding of the growth rate trends in the following section.
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(a) (b)

FIGURE 14. This figure shows the precession drift in (a) and the corresponding magnetic field
magnitude in (b) for negative-triangularity equilibria at ŝ = 0.45 and nominal αMHD values at
ρ = 0.8 for different beta values. Note the atypical magnetic field for the high-β equilibria where
min(B) is located at a finite θ .

(a) (b)

FIGURE 15. This figure shows the TEM γTEM(aN/vth,i) vs the typical β plots for nominal
equilibria at different radial locations.

6.3. The TEM results
Just like the ITG study, we choose a value of a growth rate γthresh such that if
γTEM(aN/vth,i) < γthresh, we classify an equilibrium as stable. The reasoning behind setting
a threshold is described in the first paragraph of § 5.3. For this study, we choose γthresh =
0.005. First, we plot the maximum TEM growth rates for the nominal equilibria in
figure 15. We find that increasing the beta stabilizes the TEM and the high-β equilibria
are stable to the TEM.

To understand this effect further, we plot the result from scans in the density gradients
in two groups, each group containing the maximum TEM growth rate for a range of a/Ln
at a fixed a/LT , given in tables 7 and 8 for different equilibria. Just like the ITG study, we
group the plots by triangularity and arrange them in rows based on the normalized radius
ρ. For positive triangularity equilibria, the results are shown in figure 16

We observe that the TEM is completely suppressed for the high-β, positive-triangularity
equilibria. The frequency 〈ω̄De〉 is negative everywhere which means that all the trapped
electrons precess in a direction opposite to the electron diamagnetic direction. They cannot
destabilize the drift wave by exchanging energy with them.
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(a) (b) (c)

(d) (e) ( f )

FIGURE 16. This figure presents γTEM(aN/vth,i) plots for positive-triangularity equilibria. For
the high-β equilibria, TEM is stabilized at both ρ = 0.5 and ρ = 0.8. As you can see in
figures 19(c) and 19( f ), the precession drift for the high-β equilibria is negative for all values of
the bounce angle θb.

The TEMs we seek are curvature driven. A large pressure gradient causes the electron
precession drift to become negative for all pitch angles (Roach et al. 1995). This suppresses
the curvature-driven mode and causes the slab-like branch of the TEM called the universal
mode to appear. We can see that the universal mode dominates in figures 16(b) and 17(b)
for the intermediate-β equilibria at large density gradients. However, for high-β equilibria,
the universal mode is suppressed as well since the large local shear

Lν = aN

ν
, (6.6)

combined with strong shaping reduces the shearing length scale (Landreman, Antonsen &
Dorland 2015) which makes it harder for fluctuations to grow and persist along the field
line.

Next, now look at the TEM growth rate trends for the negative triangularity equilibria,
shown in figure 17. The negative-triangularity TEM growth rates follow the same trend
as the positive-triangularity ones. The TEM is suppressed for the high-beta equilibria
due to the negative precession drift. The intermediate and low beta are more unstable for
thenegative-triangularity equilibria at ρ = 0.5 and as unstable as the positive-triangularity
ones at ρ = 0.8.

The result of our local analyses are only strictly valid for perturbations localized to a
field line on a flux surface. Alternatively, one can say that for all the fluctuations, the
toroidal mode number n 
 1. Therefore, we must ensure that all modes in this study meet
the local approximation in order to ensure that they are self-consistent. In both § 5 and § 6,
the lowest wavenumber in our analyses is kyρi = 0.05. The largest ion gyroradius arises
in the outer-core high-β equilibria where ρi ≈ 0.005 m. This corresponds to a wavelength
λ = 0.628 m. Assuming an n = 1 mode has a wavelength equal to the normalized minor
radius aN = 0.68 m, kyρi = 0.05 corresponds to n ≈ 1 – the longest modes are not
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(a) (b) (c)

(d) (e) ( f )

FIGURE 17. This figure presents γTEM(aN/vth,i) plots for negative-triangularity equilibria. For
the high-β equilibria, TEM is stabilized at both ρ = 0.5 and ρ = 0.8. The rightmost plot on each
row is the electron precession drift frequency.

localized. Hence, to accurately capture these modes at low wavenumbers, we must include
non-local effects. However, for all the electrostatic studies, the growth rates γ aN/vth,i → 0
as kyρi → 0 and the most unstable modes always arise at ky,peakρi ≥ 0.5 which corresponds
to n ≥ 10 implying that the local approximation is a fair assumption since we are only
concerned with peak growth rates in §§ 5 and 6.

We have demonstrated the stability of high-β equilibria against two major sources
of electrostatic instabilities. However, when β ∼ 1, magnetic fluctuations may play an
important role in deciding the stability of an equilibrium. Therefore, in the next section,
we study the effect of electromagnetic modes on the high-β equilibria.

7. Linear electromagnetic study

To see if the stability trend seen in the electrostatic study holds when we include
electromagnetic effects, we perform an electromagnetic microstability analysis for all the
nominal local equilibria. This analysis is similar to the work done by Belli & Candy
(2010), albeit we are testing β ∼ 1 equilibria using an initial-value solver. We solve the
linear, collisionless, gyrokinetic model allowing for non-zero magnetic field perturbations
δA‖ and δB‖ using the GS2 code. We use the nominal gradient scale lengths for this
study (given in table 4). First, we plot the growth rate spectrum with kyρi for the
positive-triangularity cases in figure 18.

Since GS2 only calculates the maximum growth rate, in the inner core, we observe
the finite-β stabilization of ITG (Candy & Waltz 2003b) until the emergence of
collisionless-microtearing (MTM) (Kotschenreuther et al. 1995a; Guttenfelder et al. 2011;
Dickinson et al. 2013) and electromagnetic-ETG (EM-ETG) modes (Kim & Horton 1991;
Joiner & Hirose 2007) in figure 18(c)11 . These modes arise on small scales radially

11Note that the purpose of this work is to look for the most unstable modes destabilizing a local equilibrium. The
distinction and correct classification of the type of mode is orthogonal to our objectives.

https://doi.org/10.1017/S0022377823000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000107


Microstability of β ∼ 1 tokamak equilibria 27

(a) (b) (c)

(d) (e) ( f )

FIGURE 18. This figure shows comparison between the electrostatic (abbreviated ES) and
electromagnetic (abbreviated EM) growth rates for all the nominal positive-triangularity
equilibria. Some of the branches have been labelled by their corresponding mode names. Notice
the KBM in the intermediate and high-β equilibria in figures 21(e) and 21( f ), respectively and
the emergence of the collisionless-microtearing and electromagnetic-ETG modes in figure 21(c)
for all values of kyρi and figures 21(e) and 21( f ) for kyρi > 1.

(O(ρe)) and are extended in the ballooning angle θ . To accurately capture the extended
eigenfunctions corresponding to these modes, we have to choose a wide range in the
field-line-following coordinate (θ ∈ [−119π, 119π]) with 21 points over a 2π interval. The
eigenfunctions for two values of kyρi in figure 19(c) are shown in figure 24 in Appendix E.

In the outer core, we observe finite-β stabilization only for the low-β equilibrium.
For the intermediate and high-β cases, the electrostatic modes are replaced by kinetic
ballooning modes (KBMs) at low wavenumbers and collisionless-MTM and EM-ETG
at high wavenumbers. Overall, positive-triangularity high-β equilibria are more unstable
than the low or intermediate ones in the inner core due to the collisionless-MTM and the
EM-ETG mode. As we move towards the outer core, high-β equilibria become much more
stable – exactly the opposite trend compared with the inner core. This means that the outer
core is more stable for the high-β equilibria.

Next, we plot the growth rates for the negative-triangularity equilibria in figure 19. The
negative-triangularity, inner-core equilibria are also stabilized due to finite-β effects. This
effect is also visible for the intermediate-β case for kyρi > 0.5 but absent for the high-β
cases as the ITG and TEM are superseded by electromagnetic modes: collisionless-MTM
and the EM-ETG mode. For the outer-core cases, we see the exact same pattern as
the inner core – finite-β stabilization for the low-β, KBM and collisionless-MTMs
for the intermediate-β and collisionless-MTMs and EM-ETG modes for the high-β.
Note that unlike the positive-triangularity case, we do not observe the KBM in the
negative-triangularity, high-β equilibria. Moreover, the growth rates are also smaller than
the positive triangularity cases for a wide range of wavenumbers (kyρi ∈ [0.01, 4.5]). Since

https://doi.org/10.1017/S0022377823000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000107


28 R. Gaur and others

(a) (b) (c)

(d) (e) ( f )

FIGURE 19. This figure shows comparison between the electrostatic (ES) electromagnetic (EM)
growth rates for all the nominal negative triangularity equilibria. The sudden jump in figure 19( f )
around kyρi = 4.5 is a different branch of the collisionless MTM. Note also that the growth rate
around kyρi = 0 in figure 19(e) goes to fixed value of γ aN/vth,i = 0.152 since the equilibrium is
unstable to the ideal-ballooning mode.

turbulence is most likely to peak at lower wavenumbers, the growth rate characteristics of
negative-triangularity, high-β are the most favourable.12

In summary, we find that turning on the electromagnetic effects destabilizes the high-β
equilibria. Figures 18(c), 19(c) and 19( f ) show the emergence of collisionless-MTMs
and EM-ETG modes whereas figure 18(c) also shows instability to the KBM in the
range kyρi ∈ [0.01, 0.5]. These equilibria are much more unstable than the low-β ones
in the inner core but they are much more stable as we move towards the outer core,
with negative-triangularity high-β equilibria showing the best characteristics. We believe
that the outer-core stability is due to a large Shafranov shift and strong shaping. We also
argue that negative triangularity has better characteristics than positive triangularity due
to stronger shaping, i.e. ‘squareness’ that we discussed in figure 3. It is also interesting to
note that for the negative-triangularity equilibria, the growth rate trend matches that of the
ideal-ballooning stability in figure 6 – less stable towards the core, more stable towards the
edge. Since outer-core or edge transport is usually a limiting factor in experimental low-β
equilibria, these equilibria may be a novel alternative to realize higher-power devices.

In this section, the lowest wavenumber that we have scanned is kyρi = 0.01. Using the
same analyses as presented at the end of § 6, the longest wavelength λ ≈ 3.1m. Assuming
n = 1 corresponds to λ = aN = 0.68 m, the longest mode would require n < 1. Modes
with such long wavelengths violate the local assumption of flux tube codes. However, the

12Some of the β ∼ 1 equilibria have small but finite TEM growth rates which are larger than the growth rates from
our electrostatic TEM study. This is consistent with the electrostatic study since we chose the TEM growth rate at a value
of kyρi for which the ratio of Γe/Q was maximized. This almost always happens at a low kyρi – TEM growth rates are
small at low kyρi values for β ∼ 1. Moreover, the values of the gradient scale lengths (tables 7 and 8) were different for
the electrostatic study.
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growth rates go to zero at low wavenumbers (with the exception of figure 19e) and peak at
ky,peakρi 
 0.01. Calculating the value of n at the wavenumber kpeakρi, we obtain the lowest
n in figures 19(e) and 18( f ) as n = 0 and n = 5, respectively. Therefore, the reader must
take the low-wavenumber results shown in figures 19(e) and 18( f ) with a grain of salt.

Note that this is a collisionless electromagnetic analysis. It is possible that in the
presence of collisions, more modes like collisional-MTMs (Applegate et al. 2007; Patel
et al. 2021), collisional EM-ETG etc. arise and supersede their collisionless variants
(Dickinson et al. 2013) as the most dominant mode. On the other hand, it is also possible
to achieve lower growth rates if we include the stabilizing effect of velocity shear (Patel
et al. 2021).

8. Summary and conclusions

We began this work by deriving the Grad–Shafranov equation and briefly discussed
existing approaches used to obtain β ∼ 1 axisymmetric equilibria in § 2. In § 2.1,
we generated numerical high-β equilibria using the 3-D equilibrium code VMEC. We
produced different equilibria based for three beta values: low, intermediate and high
(β ∼ 1), each differing from the rest by at least an order or magnitude. We also chose
two different boundary shapes with negative and positive triangularity. For each global
equilibrium, we picked two local equilibria: one in the inner core and the other in the
outer core. This gave us a total of 12 local equilibria.

Upon ensuring that these equilibria are smooth and well resolved, we first tested their
stability against the infinite-n ideal-ballooning mode in § 3. Since the ideal-ballooning
mode is an MHD instability, we chose the local equilibria such that all the high and low-β
equilibria are ideal-ballooning stable. We also elucidated the idea of varying the magnetic
shear and pressure gradient self-consistently, the Greene–Chance analysis in § 3.2. This
powerful technique enabled us to know how far the local equilibria are from the region of
marginal stability.

In § 4, we briefly explained the linear, collisionless, gyrokinetic model. In §§ 5 and 6, we
use this to study the stability of all the local equilibria to the two most virulent electrostatic
modes of turbulence: ITG and TEM. We found a clear inverse relationship between the
beta value and the growth rates – increasing the beta value stabilized both the ITG mode
and the TEM. Using a Greene–Chance analysis, we also scanned the maximum ITG, TEM
growth rates vs the temperature and density gradient scale lengths, respectively. This was
important to ensure that these equilibria are not ‘stiff’, i.e. the growth rates do not increase
sharply as the gradients exceed some threshold. In § 5.2, we explained how a large negative
local shear resulting from a large Shafranov shift stabilizes the ITG mode and in § 6.2 we
showed how the reversal of the precession of the trapped electrons stabilizes the TEM
throughout the whole range of gradient scale lengths.

The effect of electromagnetic fluctuations can be important for all equilibria, especially
the intermediate and high-β ones. To that end, in § 7 we performed an electromagnetic
study of all the nominal equilibria. We found that the stability trend seen for the
electrostatic case did not hold after turning on electromagnetic effects. However,
even though the high-β equilibria were more unstable than the low-β ones due to
collisionless-MTMs and EM-ETGs in the inner core, they were much more stable than
low-β in the outer core. We found that negative-triangularity, high-β equilibria were
stable to the KBM. We believe that this is due to the strong shaping (‘squareness’) of the
negative-triangularity high-β equilibria. This indicates that turbulent transport may flatten
the pressure gradient in the core but may not significantly affect the pressure gradient
toward the edge for high-β equilibria.
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This work suggests many promising avenues for future research. One could repeat the
same study with a wider range of input parameters to determine whether the microstability
trends we have found are not strongly dependent on the input parameters. An important
path to explore would be to map the trajectory of these high-β equilibria, starting from a
low-beta equilibrium in the ŝ − αMHD space such that it is always stable to major sources of
disruption. This would guarantee a high-β operation free from any ideal-MHD instability.
Once such a path is found, the final step would be to do a microstability calculation scan
for different values of collisionalities followed by a transport calculation to obtain the
evolution of the density and temperature profiles.
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Appendix A. Hsu, Artun and Cowley’s analytical (β ∼ 1) equilibrium

In this appendix, we provide a brief overview of the analytical, high-β equilibrium
derived by Hsu, Artun and Cowley. In § A.1, we describe the asymptotic ordering and the
procedure used to analytically solve the Grad–Shafranov equation for β ∼ 1. In § A.2, we
discuss two major limitations of these analytical solutions in the context of local stability
analyses.

A.1. Generating analytical β ∼ 1 equilibria
The most general analytical theory for generating β ∼ 1 equilibria was first developed by
Hsu, Artun, and Cowley (Hsu et al. 1996). In that work, the Grad–Shafranov equation is
solved analytically in the limit

δHsu ≡
√
ε/(βq2) � 1, (A1)
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where ε = a/R0 is the aspect ratio of the flux surface – a being the minor radius of a flux
surface and R0 being the major radius. For these equilibria, it is assumed Bt/Bp ∼ q/ε
where Bt = B · ∇φ/|∇φ|,Bp = B · ∇θ/|∇θ | are the toroidal and poloidal components of
the magnetic field, respectively, and ε ∼ β ∼ 1 on all surfaces of interest.

Given these assumptions, Hsu et al. solve the Grad–Shafranov equation to calculate the
perpendicular distance from the boundary to a point on the flux surface labelled ψ

ξ =
∫ R̂′

Rmin

(dψ/dR̂′) dR̂′√∫ R̂′

R
μ0(R̂′′2 − R2)

dp

dR̂′′
dR̂′′

, (A2)

where R̂(ψ) is the value of R on the line Z = 0 and p is the plasma pressure. Using ξ , they
formulate the ‘core’ solution, i.e. the solution on the inboard side where the surfaces are
nearly vertical

Z(R̂,R) = l(R)− ξ(R̂,R)
cos(θs)

, θs = arctan
(

dl
dZ

)
, (A3)

and the ‘boundary layer’ solution, i.e. the solution in the region of closely spaced surfaces
on the outboard side

Rboundary(Z) = R(R̂,Z)+ ξ(R̂,Rboundary)

sin(θs)
, (A4)

where l = l(R) in (A3) is the value of Z on a point on the boundary. To construct a β ∼ 1
equilibrium, one needs an analytical pressure, boundary shape profiles and the value of
the poloidal field at Z = 0. Hsu et al. used the following profiles:

p(R̂(ψ)) = p1

(
1 − p2(Rmax − R̂)2 + p3(Rmax − R̂)3 + p4(Rmax − R̂)4

p2(Rmax − Rmin)2 + p3(Rmax − Rmin)3 + p4(Rmax − Rmin)4

)
,

lδ<0(R̂) = (R̂ − Rmin)
0.5(Rmax − R̂)0.5

(
al

[Rmax − R + bl(Rmax − Rmin)]cl

)0.5

,

1

R̂

dψ

dR̂
= l(R̂)

R̂
[aψ + bψ(R̂ − Rmin)+ cψ(R̂ − Rmin)

2],

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
,

(A5)

where lδ<0 is a function used to generate the boundary shapes corresponding to a
negative-triangularity equilibria. After fixing the various input profiles, one solves (A2)
to obtain the perpendicular distance ξ as a function of R̂ and R. Substituting ξ in (A3) and
(A4), one gets the core and boundary layer segments, respectively. Taking union of the
two segments yields the flux surface contour ψ(R, R̂). Figure 20 illustrates this process.

A.2. Limitations of the Hsu et al. equilibria
We find that the equilibria of Hsu et al. has two major limitations that can significantly
affect the accuracy of our analyses. First, as we move closer to the magnetic axis, the
accuracy of both the core and boundary layer solution degrades as the ordering ε ∼ 1 fails
and dp/dψ approaches zero. We demonstrate this by plotting figure 21 which is figure 6
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(a) (b)

FIGURE 20. This figure illustrates the process of creating the two regions of the β ∼ 1 solution
in Hsu et al. The bold black line is the LCFS and red line is the flux surface contour – (a) shows
the core solution (A3) which is only a good approximation on the inboard side of the device and
(b) shows the boundary layer solution (A4) which is only valid in the boundary layer region.
The inset in the right figure highlights the approximation ξ(R̂,R) = ξ(R̂,Rboundary) which is
necessary to construction the boundary layer solution (A4).

(a) (b)

FIGURE 21. This figure shows (a) the numerical equilibrium solution and (b) a comparison
between the analytical equilibrium from figure 6 in the paper by Hsu et al. and the same
equilibrium generated using VMEC. We can clearly see the significant deviation of the analytical
solution and how it develops a kink near the outboard side as we approach the magnetic axis.

in Hsu et al. To generate the analytical solution in figure 21, we start with (A5) using the
following values of coefficients:

( p1, p2, p3, p4) = (0.5, 1.5, 0, 0),
(al, bl, cl) = (0.8, 0.05, 0.85),
(aψ, bψ, cψ) = (0.152, 0.022, 0).

⎫⎬
⎭ (A6)

Secondly, the inaccuracy and non-smoothness of flux surfaces leads to discontinuous
and incorrect trends in the geometric quantities needed for a local stability analysis.
To demonstrate this, we plot a physical quantity that arises in both the ballooning and
gyrokinetic equation that can be seen in (3.3) and (4.17) in §§ 3 and 4, respectively – as a
curvature drive in the former and as a component of the curvature drift in the latter. We
chose to plot the scalar

κ̂ = 1
B3
(b × κ) · ∇α, κ = (b · ∇b), (A7)
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(a) (b)

FIGURE 22. In this figure (a) compares κ̂ vs. θgeo obtained using the analytical equilibrium(in
figure 6) in Hsu et al. with the corresponding VMEC equilibrium for a common flux
surface(shown in (b)). The inset in (a) shows a zoomed-in version of the same plot near the
discontinuity at θgeo = 1.46. Panel (b) shows the difference in slopes of the tangents at the point
of discontinuity, with a zoomed-in version in the inset. Notice also the deviation of κ̂ in (a) for
θgeo > 1.5. There are other issues like the small sharp feature near θgeo = 1.3 that we will not
delve into.

where κ is the field-line curvature. To better understand the discontinuity problem, we plot
κ̂ as a function of θgeo in figure 22. To emphasize the importance of smoothness, we also
plot the tangents on the flux surface on either side of the point at which κ̂ is discontinuous.
The kink in ψ seen in figure 4(b) manifests itself as a discontinuity in quantities like b,
∇ψ and ∇α. This causes the geometric factors, and hence the physical quantities needed
for a local stability analysis to become discontinuous. Furthermore, in the regions where
the gradients are continuous, for reasons mentioned at the beginning of this section, the
distances between the surfaces deviate from the exact equilibrium, especially as θgeo > 1.5.
To alleviate these problems, we use the numerical solver VMEC to create the equilibria
used in this study.

Appendix B. Straight-field-line θ calculation

We briefly describe the process of calculating the straight-field-line θ . We start with
the angle θgeo which is be the geometric angle of a point on a flux surface measured
about the magnetic axis and perform this analysis at a fixed toroidal angle φ. We also
assume that we know the various Jacobians Jgeo = (B · ∇θgeo)

−1 and J = (B · ∇θ)−1.
The transformation relation will then be

θ = θgeo − ν̃(ψ, θgeo), (B1)

where ν̃ is a periodic function of θgeo and θ and ν̃(ψ,±π) = 0 for consistency. Applying
the B · ∇ operator

B · ∇θ = B · ∇θgeo − B · ∇ν̃. (B2)

A special property of the straight-field-line theta is that q(ψ) = B · ∇φ/B · ∇θ . This
implies B · ∇θ = F/qR2. Using this and dividing (B2) by B · ∇θ and integrating in θgeo
from −π to θgeo

ν̃(θgeo) = θgeo −
∫ θgeo

−π

qR2

FJgeo
dθ,

θ =
∫ θgeo

−π

qR2

FJgeo
dθ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B3)
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Since all the equilibria we are studying are up–down symmetric, we can also assert
ν̃(ψ,−θgeo) = −ν̃(ψ, θgeo) which means ν̃(ψ, 0) = 0 and

θ =
∫ θgeo

0

qR2

FJgeo
dθ. (B4)

Appendix C. Greene–Chance’s method

This appendix explains the Greene–Chance method, a powerful technique that allows
one to vary the pressure and current gradients for a local equilibrium. We will start by
defining the local coordinate system first developed by Mercier & Luc (1974). After that,
we will expand the Grad–Shafranov equation in those coordinates and use it to obtain
other important relations, namely the gradients of q,B and α around a surface. Finally, we
explain how the derived relations can be used to vary a local equilibrium. All the lengths
in the following calculations are normalized using aN and the magnetic fields using BN .
In Appendices C.1 and C.2, we define ρ to be the normalized radial distance from a flux
surface whereas in Appendix C.3 ρ is a normalized flux surface label – exactly the same
quantity as used in the main body of this work.

C.1. Mercier–Luc local coordinate system
The Mercier–Luc (ML) coordinate system is a local orthogonal coordinate system
(ρ, φ, lp) where ρ is the normalized perpendicular distance from a point on the flux
surface, φ is the cylindrical azimuthal angle, and lp is the normalized poloidal arc-length.
In these local coordinates we can write, the cylindrical (R, φ,Z) coordinates as

R = R0 + ρ sin(u(lp))+
∫ lp

0
cos(u) dl′p,

Z = Z0 + ρ cos(u(lp))+
∫ lp

0
sin(u) dl′p,

⎫⎪⎪⎬
⎪⎪⎭ (C1)

where R0,Z0 are the normalized R,Z values on the outboard mid-plane of the flux surface
of interest and the angle u is defined as shown in figure 23. We also define

Rs ≡ R(ρ = 0, lp) = R0 +
∫ lp

0
cos(u)dl′p,

Zs ≡ Z(ρ = 0, lp) = Z0 +
∫ lp

0
sin(u)dl′p,

⎫⎪⎪⎬
⎪⎪⎭ (C2)

as the on-surface cylindrical coordinates. The azimuthal angle φ is the same for both
cylindrical and ML coordinates. Using (C1) and after choosing a sign for the curvature,
we can define the curvature

1
Rc

= du
dlp
, (C3)

where Rc is the radius of curvature. Using the coordinate transformation relation (C1), we
can write

⎡
⎣dR

dφ
dZ

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

sin(u) 0
(

1 + ρ

Rc

)
cos(u)

0 1 0

− cos(u) 0
(

1 + ρ

Rc

)
sin(u)

⎤
⎥⎥⎥⎥⎥⎦
⎡
⎣dρ

dφ
dlp

⎤
⎦ . (C4)
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FIGURE 23. This figure illustrates the local orthogonal coordinate system (ρ, φ, lp). The radial
distance ρ is measured in the direction normal to a flux surface and poloidal arc length lp is
measured in a counter-clockwise sense from the outboard side. We choose ∇ψ to point in the
direction opposite to ∇ρ.

(a) (b) (c)

(d) (e) ( f )

FIGURE 24. This figure shows the eigenfunctions at two different kyρi values from figure 22(c).
The values in each row have been normalized with max(ϕ). Notice the opposite parities of the
eigenfunctions in the two rows and the extended and highly oscillatory structure along θ . The
eigenfunctions in the upper row correspond to a non-tearing-parity EM-ETG mode whereas the
lower row corresponds to a tearing-parity EM-ETG mode. Classifying modes becomes harder
for up–down asymmetric equilibria and virtually impossible for nonlinear analyses.

This matrix can be inverted to obtain the transformation from ML to cylindrical
coordinates. Using this transformation, we can write the transformation Jacobian

J̃ = ((∇ρ × ∇φ) · ∇lp)
−1 = R

(
1 + ρ

Rc

)
. (C5)
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C.2. Expanding the Grad–Shafranov equation locally
The Grad–Shafranov equation

R2∇ ·
(∇ψ

R2

)
= −R2 dp

dψ
− F

dF
dψ
, (C6)

can be written in the ML coordinate system as

R
(1 + ρ/Rc)

[
∂

∂lp

(
(1 + ρ/Rc)

R
∂ψ

∂lp

)
+ ∂

∂ρ

(
(1 + ρ/Rc)

R
∂ψ

∂ρ

)]
= −R2 dp

dψ
− F

dF
dψ
.

(C7)

To obtain the local dependence of ψ on various gradients like dF/dψ and dp/dψ , we
write ψ as an asymptotic series in terms of the normalized radial distance ρ

ψ = ψ0 + ρψ1(lp)+ ρ2ψ2(lp)+ O(ρ3), (C8)

and define

ψ1 = lim
ρ→0

(
ψ − ψ0

ρ

)
= −RsBps, ψ1 < 0, Bps > 0, (C9)

where Bps is the on-surface poloidal magnetic field. Another way to write the above
relation is to say ∇ψ |ρ=0= ψ1∇ρ. Using this asymptotic expansion, we can also write
the following Taylor series expansions:

F(ψ) = F(ψ0)+ ψ − ψ0

1!
dF
dψ

∣∣∣∣
ψ0

+ · · · = F(ψ0)− ρRsBps
dF
dψ

∣∣∣∣
ψ0

+ · · · ,

F′(ψ) = F′(ψ0)+ ψ − ψ0

1!
dF′

dψ

∣∣∣∣
ψ0

+ · · · = F′(ψ0)− ρRsBps
dF′

dψ

∣∣∣∣
ψ0

+ · · · ,

p(ψ) = p(ψ0)+ ψ − ψ0

1!
dp
dψ

∣∣∣∣
ψ0

+ · · · = p(ψ0)− ρRsBps
dp
dψ

∣∣∣∣
ψ0

+ · · · ,

q(ψ) = q(ψ0)+ ψ − ψ0

1!
dq
dψ

∣∣∣∣
ψ0

+ · · · = q(ψ0)− ρRsBps
dq
dψ

∣∣∣∣
ψ0

+ · · · ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C10)

where the prime denotes a derivative with respect to ψ . After substituting the Taylor series
expansions into the local Grad–Shafranov equation (C7), we get

ψ2 = −1
2

[
RsBps

(
sin(u)

Rs
− 1

Rc

)
+ R2

s p′(ψ0)+ F(ψ0)F′(ψ0)

]
. (C11)

Next, we expand the relation (2.2) about a flux surface to get

dq
dψ

= F′
(

q
F

+ qF
2π

∮
1

(RsBps)2
dθ
)

+ p′q
2π

∮
dθ
B2

ps

+ q
2π

∮
2 dθ
RsBps

(
sin(u)

Rs
− 1

Rc

)
. (C12)
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This gives us an algebraic equation defining q′ in terms of F′ and p′

1
q

dq
dψ

= F′
(

1
F

+ F
2π

∮
dθ

1
(RsBps)2

)
+ p′

2π

∮
dθ
B2

ps

+ 1
2π

∮
2 dθ
RsBps

(
sin(u)

Rs
− 1

Rc

)
, (C13)

written more compactly as

1
q

dq
dψ

= F′as,full + p′bs,full + cs,full, (C14)

where as,full, bs,full and cs,full are three constants obtained from doing the respective integrals
in (C13). Using the ML coordinates, we can also expand the magnetic field strength around
a flux surface

B2 = F2

R2
+
(

1
R

dψ
dρ

)2

,

= B2
s

[
1 + 2ρ

B2
s

(
−B2

ps

Rc
+ RsBpsp′ − F2

R3
s

sin(u)

)]
, (C15)

which gives us the local, radial gradient of the magnetic field

∂B
∂ρ

= 1
Bs

(
−B2

ps

Rc
+ RsBpsp′ − F2

R3
s

sin(u)

)
. (C16)

To obtain all the geometric coefficients, we also need various gradients of the field-line
label α. To that end, we can write the field line label in ML coordinates as

α = φ + S(ρ, lp) = φ − q θ, (C17)

and find S = S(ρ, lp) by solving the equation

B · ∇α = 0. (C18)

To solve (C18), we write S(ρ, lp) as an asymptotic series in ρ

S = S0(lp)+ ρS1(lp)+ O(ρ2), (C19)

and (C18) becomes

F
R2

+ 1
R(1 + ρ/Rc)

∂ψ

∂ρ

∂α

∂lp
− 1

R(1 + ρ/Rc)

∂ψ

∂lp

∂α

∂ρ
= 0. (C20)

The lowest-order solution yields

S0 =
∫

dlp
F(ψ0)

R2
s Bps

+ f (ρ). (C21)
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For axisymmetric equilibria, all the field lines are identical which means we can choose
f (ρ) = 0 without loss of generality. The next-order solution gives us

S1 = −RsBps

[
F′
(

qθ
F

+ F
∫ θ

0
dθ

q
(RsBps)2

)

+p′
∫ θ

0
dθ

q
B2

ps

+
∫ θ

0
dθ

2q
RsBps

(
sin(u)

Rs
− 1

Rc

)]
, (C22)

∂α

∂ρ
= S1 = −RsBps(F′as + p′bs + cs). (C23)

This completely defines the quantity ∇α. Using (C14), (C16), (C23) we can calculate all
the geometric coefficients13 needed for a local stability analysis. As an example, we obtain
an analytical formula for the normalized local magnetic shear along the field line in a flux
surface

ν = −B · ∇
(∇α · ∇ψ

|∇ψ |2
)
. (C24)

Using the following equation:

B · ∇
(∇α · ∇ψ

|∇ψ |2
)

= (B · ∇θ) ∂
∂θ

(
dρ
dψ

∂α

∂ρ

)
, (C25)

we obtain the local shear

ν = − F
qR2

[(
qF′

F
+ F′F

q
(RsBps)2

)
+ qp′

B2
ps

+ 2q
RsBps

(
sin(u)

Rs
− 1

Rc

)]
. (C26)

One can verify that dq/dψ = ∫ 2π

0 dθ/(B · ∇θ)ν.
As another example, we calculate the geometric factor in the curvature drift

ω̃κ = 1
B3

b × (b · ∇b) · ∇α. (C27)

After using (2.5), (2.1)

ω̃κ = 1
B2

b × ∇(2μ0p + B2) · ∇α, (C28)

and writing all the terms in the ML coordinate system,

ω̃κ = − 1
B2

[(
d(2μ0p)

dψ
+ ∂B2

∂ψ

)]
+ 1

B3

F
R
∂α

∂ρ

∂B
∂lp
, (C29)

where the radial derivatives are calculated using (C16) and (C23) analytically and ∂B/∂lp
are calculated numerically using a finite-difference scheme.

13For up–down asymmetric equilibria the lower limit in all the integrals should be some non-zero value θlow. To
include the effect of θ0, change the lower limit of integration in (C23) from θlow to θlow + θ0.
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C.3. Variation of a local axisymmetric equilibrium
After redefining ρ = √

χ/χLCFS, (C14) can be written as

ŝ
ρ

≡ 1
q

dq
dρ

= dF
dρ

as,full + dp
dρ

bs,full + cs,full, (C30)

where as,full, bs,full, cs,full are constants. This equation implies that on a given surface, we
can vary the pressure gradient dp/dρ and the shear ŝ of a local equilibrium independently
by a finite amount as long as we adjust dF/dρ such that the (C30) is satisfied. Once
dp/dρ, dq/dρ, dF/dρ, and the shape of the surface is fixed, we have fully defined a local
equilibrium. Greene and Chance first used this idea to perform an ŝ − αMHD analysis. We
are going to use this for the ballooning and gyrokinetic stability analyses.

Appendix D. Newcomb’s criterion

Newcomb (1960), in his analysis of a diffuse screw pinch, described a method to infer
the stability of a system to incompressible ideal-MHD modes. He reduced the ideal-MHD
energy principle to

W = π

2

∫ r2

r1

dr

[
f
(

dξ
dr

)2

+ gξ 2

]
, (D1)

where r is the distance from the centre, ξ(r) is the radial perturbation and f (r), g(r) are
functions dependent on the equilibrium. One can write the kinetic energy associated with
the perturbation as

T = πω2

2

∫ r2

r1

drξ 2. (D2)

Combining the potential and the kinetic energy, we can write the Lagrangian L = T − U
and get the Euler–Lagrange equation corresponding to δL = 0

( f ξ ′)′ − gξ = ω2ξ. (D3)

This equation a self-adjoint, second-order, eigenvalue ordinary differential equation
(ODE). In his paper, Newcomb explored the marginally stable ODE,

( f ξ ′)′ − gξ = 0. (D4)

For the marginally stable equation of this form, Newcomb’s theorem and the associated
corollary is given below:

THEOREM D.1. If r1 and r2 are non-singular points of the same independent sub-interval,
and if the non-trivial Euler–Lagrange solutions that vanish at r1 also vanish at some point
r0 between r1 and r2 , then for any Euler–Lagrange solution ξ0(r) there exist functions ξ(r)
with the same boundary values and with W(r1, r2; ξ) < W(r1, r2; ξ0)

COROLLARY D.2. There exists a ξ(r) that makes W(r1, r2; ξ) negative and satisfies the
boundary conditions ξ(r1) = ξ(r2) = 0

This means that upon integrating equation (D4) with a test function ξ , such that ξ(r1) =
0, if ξ crosses the zero line at any other point, then there must exist an eigenfunction ξ̃
satisfying (D3) such that W < 0, implying that ω2 < 0. In other words, the system will
have a growing eigenvalue and will become unstable.
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Even though Newcomb derived this theorem for an ODE that is integrated in the radial
direction, the principle can be extended to any second-order, self-adjoint, eigenvalue ODE.
Hence, we can use it here for ideal ballooning, (3.3).

Appendix E. Electromagnetic eigenfunctions at β ∼ 1

In this appendix, we present two sets of eigenfunctions from the electromagnetic,
negative-triangularity, inner-core, high-β growth rate spectrum shown in figure 22(c).

REFERENCES

ABEL, I.G. & COWLEY, S.C. 2013 Multiscale gyrokinetics for rotating tokamak plasmas II: reduced
models for electron dynamics. New J. Phys. 15, 023041.

ABEL, I.G., PLUNK, G.G., WANG, E., BARNES, M., COWLEY, S.C., DORLAND, W. &
SCHEKOCHIHIN, A.A. 2013 Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations,
transport and energy flows. Rep. Prog. Phys. 76, 116201.

ADAM, J.C., TANG, W.M. & RUTHERFORD, P.H. 1976 Destabilization of the trapped-electron mode by
magnetic curvature drift resonances. Phys. Fluids 19, 561.

ANTONSEN, T.M. JR., DRAKE, J.F., GUZDAR, P.N., HASSAM, A.B., LAU, Y.T., LIU, C.S. &
NOVAKOVSKII, S.V. 1996 Physical mechanism of enhanced stability from negative shear in
tokamaks: implications for edge transport and the L-H transition. Phys. Plasmas 3, 2221.

ANTONSEN, T.M. JR. & LANE, B. 1980 Kinetic equations for low frequency instabilities in
inhomogeneous plasmas. Phys. Fluids 23, 1205.

APPLEGATE, D.J., ROACH, C.M., CONNOR, J.W., COWLEY, S.C., DORLAND, W., HASTIE, R.J. &
JOINER, N. 2007 Micro-tearing modes in the mega ampere spherical tokamak. Plasma Phys.
Control. Fusion 49, 1113.

BEER, M.A., COWLEY, S.C. & HAMMETT, G.W. 1995 Field-aligned coordinates for nonlinear
simulations of tokamak turbulence. Phys. Plasmas 2, 2687.

BELLI, E.A. & CANDY, J. 2010 Fully electromagnetic gyrokinetic eigenmode analysis of high-beta shaped
plasmas. Phys. Plasmas 17 (11), 112314.

BERNSTEIN, I.B., FRIEMAN, E.A., KRUSKAL, M.D. & KULSRUD, R.M. 1958 An energy principle for
hydromagnetic stability problems. Proc. R. Soc. A 244, 17.

BISHOP, C.M. 1985 Construction of local axisymmetric MHD equilibria. Tech. Rep. UKAEA Culham Lab.
CANDY, J. & WALTZ, R.E. 2003a An Eulerian gyrokinetic-Maxwell solver. J. Comput. Phys. 186, 545.
CANDY, J. & WALTZ, R.E. 2003b An Eulerian gyrokinetic-Maxwell solver. J. Comput. Phys. 186, 545.
CATTO, P.J. & TSANG, K.T. 1977 Linearized gyrokinetic equation with collisions. Phys. Fluids 20, 396.
CHANCE, M.S., JARDIN, S.C., KESSEL, C., MANICKAM, J., MONTICELLO, D., PENG, Y.K.M.,

HOLMES, J.A., STRICKLER, D.J., WHITSON, J.C., GLASSER, A.H., et al. 1990 Ideal MHD
stability of very high beta tokamaks. Tech. Rep. Princeton University, Plasma Physics Lab.

CONNOR, J.W., HASTIE, R.J. & MARTIN, T.J. 1983 Effect of pressure gradients on the bounce-averaged
particle drifts in a tokamak. Nucl. Fusion 23, 1702.

CONNOR, J.W., HASTIE, R.J. & TAYLOR, J.B. 1978 Shear, periodicity, and plasma ballooning modes.
Phys. Rev. Lett. 40, 396.

CONNOR, J.W., HASTIE, R.J. & TAYLOR, J.B. 1979 High mode number stability of an axisymmetric
toroidal plasma. Proc. R. Soc. Lond. Ser. A 365, 1.

COWLEY, S.C., KULSRUD, R.M. & SUDAN, R. 1991 Considerations of ion-temperature-gradient-driven
turbulence. Phys. Fluids B 3, 2767.

CREELY, A.J., HOWARD, N.T., RODRIGUEZ-FERNANDEZ, P., CAO, N., HUBBARD, A.E., HUGHES,
J.W., RICE, J.E., WHITE, A.E., CANDY, J., STAEBLER, G.M., et al. 2017 Validation of nonlinear
gyrokinetic simulations of L-and I-mode plasmas on Alcator C-Mod. Phys. Plasmas 24, 056104.

DAVIES, R., DICKINSON, D. & WILSON, H.R. 2022 Kinetic ballooning modes as a constraint on plasma
triangularity in commercial spherical tokamaks. Plasma Phys. Control. Fusion 10, 105001.

DEWAR, R.L. & GLASSER, A.H. 1983 Ballooning mode spectrum in general toroidal systems. Phys.
Fluids 26, 3038.

https://doi.org/10.1017/S0022377823000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000107


Microstability of β ∼ 1 tokamak equilibria 41

D’HAESELEER, W.D., HITCHON, W.N.G., CALLEN, J.D. & SHOHET, J.L. 2012 Flux Coordinates and
Magnetic Field Structure: A Guide to a Fundamental Tool of Plasma Theory. Springer Science &
Business Media.

DICKINSON, D., ROACH, C.M., CASSON, F.J., KIRK, A., SAARELMA, S. & SCANNELL, R. 2013
Microtearing modes and the pedestal. In 40th EPS Conference on Plasma Physics. European
Physical Society.

DORLAND, W., JENKO, F., KOTSCHENREUTHER, M. & ROGERS, B.N. 2000 Electron temperature
gradient turbulence. Phys. Rev. Lett. 85, 5579.

FEDERICI, G., KEMP, R., WARD, D., BACHMANN, C., FRANKE, T., GONZALEZ, S., LOWRY,
C., GADOMSKA, M., HARMAN, J., MESZAROS, B., MORLOCK, C., ROMANELLI, F. &
WENNINGER, R. 2014 Overview of EU DEMO design and R&D activities. Fusion Engng Des.
89, 882.

FREIDBERG, J.P. 2014 Ideal MHD. Cambridge University Press.
FRIEMAN, E.A. & CHEN, L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic

waves in general plasma equilibria. Phys. Fluids 25, 502.
GATES, D.A. & NSTX NATIONAL RESEARCH TEAM 2003 High-β, long-pulse, bootstrap-sustained

scenarios on the National Spherical Torus Experiment (NSTX). Phys. Plasmas 10, 1659.
GRAD, H. & RUBIN, H. 1958 Proceedings of the Second United Nations International Conference on the

Peaceful uses of Atomic Energy, p. 400. UN.
GREENE, J.M. & CHANCE, M.S. 1981 The second region of stability against ballooning modes. Nucl.

Fusion 21, 453.
GUTTENFELDER, W., CANDY, J., KAYE, S.M., NEVINS, W.M., WANG, E., BELL, R.E., HAMMETT,

G.W., LEBLANC, B.P., MIKKELSEN, D.R. & YUH, H. 2011 Electromagnetic transport from
microtearing mode turbulence. Phys. Rev. Lett. 106, 155004.

HIGHCOCK, E.G. 2012 The zero turbulence manifold in fusion plasmas. PhD thesis, Oxford University.
HIROSE, A. 2000 On finite β stabilization of the toroidal ion temperature gradient mode. Phys. Plasmas

7, 433.
HIRSHMAN, S.P. & WHITSON, J.C. 1983 Steepest-descent moment method for three-dimensional

magnetohydrodynamic equilibria. Phys. Fluids 26, 3553.
HSU, S.C., ARTUN, M. & COWLEY, S.C. 1996 Calculation and interpretation of analytic high-beta

poloidal equilibria in finite aspect ratio tokamaks. Phys. Plasmas 3, 266.
HURRICANE, O.A., CHANDRAN, B.D.G. & COWLEY, S.C. 2000 Internal kink stability of large aspect

ratio high-β tokamaks. Phys. Plasmas 7, 4043.
JARMÉN, A., MALINOV, P. & NORDMAN, H. 1998 ITG modes with finite-β effects and the upper ηi

stability regime. Plasma Phys. Control. Fusion 40, 2041.
JENKO, F. & DORLAND, W. 2001 Nonlinear electromagnetic gyrokinetic simulations of tokamak plasmas.

Plasma Phys. Control. Fusion 43, A141.
JOINER, N. & HIROSE, A. 2007 Effects of magnetosonic perturbations on electron temperature gradient

driven modes and the stability of skin depth sized electron ballooning modes. Phys. Plasmas
14, 112111.

KIM, J.Y. & HORTON, W. 1991 Electromagnetic effect on the toroidal electron temperature gradient mode.
Phys. Fluids B: Plasma Phys. 3, 3194–3197.

KOTSCHENREUTHER, M., DORLAND, W., BEER, M.A. & HAMMETT, G.W. 1995a Quantitative
predictions of tokamak energy confinement from first-principles simulations with kinetic effects.
Phys. Plasmas 2, 2381.

KOTSCHENREUTHER, M., LIU, X., HATCH, D.R., MAHAJAN, S., ZHENG, L., DIALLO, A.,
GROEBNER, R., HILLESHEIM, J.C., MAGGI, C.F., GIROUD, C., et al. 2019 Gyrokinetic analysis
and simulation of pedestals to identify the culprits for energy losses using ‘fingerprints’. Nucl.
Fusion 59, 096001.

KOTSCHENREUTHER, M., REWOLDT, G.W. & TANG, W.M. 1995b Comparison of initial value and
eigenvalue codes for kinetic toroidal plasma instabilities. Comput. Phys. Commun. 88, 128.

KRUSKAL, M.D. & KULSRUD, R.M. 1958 Equilibrium of a magnetically confined plasma in a toroid.
Phys. Fluids 1, 265.

https://doi.org/10.1017/S0022377823000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000107


42 R. Gaur and others

LANDREMAN, M., ANTONSEN, T.M. JR. & DORLAND, W. 2015 Universal instability for wavelengths
below the ion larmor scale. Phys. Rev. Lett. 114, 095003.

MENARD, J.E., GRIERSON, B.A., BROWN, T.G., RANA, C., ZHAI, Y., POLI, F.M., MAINGI, R.,
GUTTENFELDER, W. & SNYDER, P.B. 2022 Fusion pilot plant performance and the role of a
sustained high power density tokamak. Nucl. Fusion 23, 036026.

MERCIER, C. & LUC, H. 1974 Lectures in plasma physics. Tech. Rep. Commission of the European
Communities.

MILLER, R.L., CHU, M.S., GREENE, J.M., LIN-LIU, Y.R. & WALTZ, R.E. 1998 Noncircular, finite
aspect ratio, local equilibrium model. Phys. Plasmas 5, 973.

NEWCOMB, W.A. 1960 Hydromagnetic stability of a diffuse linear pinch. Ann. Phys. 10, 232.
PATEL, B.S., DICKINSON, D., ROACH, C.M. & WILSON, H.R. 2021 Linear gyrokinetic stability of a

high β non-inductive spherical tokamak. Nucl. Fusion 62, 016009.
ROACH, C.M., CONNOR, J.W. & JANJUA, S. 1995 Trapped particle precession in advanced tokamaks.

Plasma Phys. Control. Fusion 37 (6), 679.
SANCHEZ, R., HIRSHMAN, S.P., WHITSON, J.C. & WARE, A.S. 2000 COBRA: an optimized code for

fast analysis of ideal ballooning stability of three-dimensional magnetic equilibria. J. Comput. Phys.
161, 576.

SHAFRANOV, V.D. 1957 On equilibrium magnetohydrodynamic configurations. Zh. Eksp. Teor. Fiz.
33, 710.

SHIMADA, M., CAMPBELL, D.J., MUKHOVATOV, V., FUJIWARA, M., KIRNEVA, N., LACKNER, K.,
NAGAMI, M., PUSTOVITOV, V.D., UCKAN, N. & WESLEY, J. 2007 Progress in the ITER physics
basis chapter 1: overview and summary. Nucl. Fusion 47, S1.

SYKES, A., AKERS, R.J., APPEL, L.C., CAROLAN, P.G., CONNOR, J.W., CONWAY, N.J., COUNSELL,
G.F., DNESTROVSKIJ, A., DNESTROVSKIJ, Y.N., GRYAZNEVICH, M., et al. 2000 H-mode
operation in the START spherical tokamak. Phys. Rev. Lett. 84, 495.

UCHIDA, M., SEN, S., FUKUYAMA, A. & MCCARTHY, D.R. 2003 Stability of the ion-temperature-
gradient-driven mode with negative magnetic shear. Phys. Plasmas 10, 4758.

WHITE, A.E., HOWARD, N.T., GREENWALD, M., REINKE, M.L., SUNG, C., BAEK, S., BARNES,
M., CANDY, J., DOMINGUEZ, A., ERNST, D., et al. 2013 Multi-channel transport experiments
at Alcator C-Mod and comparison with gyrokinetic simulations. Phys. Plasmas 20, 056106.

WILSON, H.R., AHN, J.W., AKERS, R.J., APPLEGATE, D., CAIRNS, R.A., CHRISTIANSEN, J.P.,
CONNOR, J.W., COUNSELL, G., DNESTROVSKIJ, A., DORLAND, W.D., et al. 2004 Integrated
plasma physics modelling for the culham steady state spherical tokamak fusion power plant. Nucl.
Fusion 44 (8), 917.

ZHU, B., FRANCISQUEZ, M., ROGERS, B.N. & XU, X.-Q. 2020 Generalized slab universal instability
and its appearance in pair plasma. Phys. Plasmas 27, 102104.

https://doi.org/10.1017/S0022377823000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000107

	1 Introduction
	2 Generating axisymmetric 1 equilibria
	2.1 Numerical equilibria

	3 Infinite-n ideal-ballooning stability
	3.1 Physical and mathematical description
	3.2 The Greene--Chance analysis
	3.3 Ideal-ballooning analysis results

	4 Microstability analysis
	4.1 The gyrokinetic model
	4.2 Using the GS2 code

	5 The ITG study
	5.1 Details of the study
	5.2 Characterizing stability to the ITG mode
	5.3 The ITG results

	6 The TEM study
	6.1 Details of the study
	6.2 Characterizing stability to the TEM
	6.3 The TEM results

	7 Linear electromagnetic study
	8 Summary and conclusions
	A Appendix A. Hsu, Artun and Cowley's analytical (1) equilibrium
	A.1 Generating analytical 1 equilibria
	A.2 Limitations of the Hsu et al. equilibria

	B Appendix B. Straight-field-line  calculation
	C Appendix C. Greene--Chance's method
	C.1 Mercier--Luc local coordinate system
	C.2 Expanding the Grad--Shafranov equation locally
	C.3 Variation of a local axisymmetric equilibrium

	D Appendix D. Newcomb's criterion
	E Appendix E. Electromagnetic eigenfunctions at 1
	References

