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Summary

Preantral to early antral follicles transition is a complex process regulated by endocrine and
paracrine factors, as well as by a precise interaction among oocyte, granulosa cells and theca
cells. Understanding the mechanisms that regulate this step of folliculogenesis is important to
improve in vitro culture systems, and opens new perspectives to use oocytes from preantral
follicles for assisted reproductive technologies. Therefore, this review aims to discuss the
endocrine and paracrine mechanisms that control granulosa cell proliferation and differ-
entiation, formation of the antral cavity, estradiol production, atresia, and follicular fluid
production during the transition from preantral to early antral follicles. The strategies that
promote in vitro growth of preantral follicles are also discussed.

Introduction

The transition from preantral (multilaminar follicles) to early antral follicles requires the action
of local factors, hormones, and efficient bidirectional communication between granulosa cells
and oocytes. Several attempts to promote in vitro growth of preantral follicles up to maturation
have been reported in various domestic species (bovine: Paulino et al., 2018; Antonino et al.,
2019; Bezerra et al., 2019a; Paulino et al., 2020; Vasconcelos et al., 2021; caprine: Ferreira et al.,
2018; Soares-Costa et al., 2018; Pontes et al., 2019; ovine: Macedo et al., 2019; Mbemya et al.,
2019; Barros et al., 2020; Silva et al., 2021; Gomes et al., 2022; and swine: de Lima et al., 2017;
Kere et al., 2020). Different from mice (Eppig and O’Brien, 1996; O’Brien et al., 2003), embryo
production from in vitro cultured preantral follicles from human and domestic animals has not
yet, however, been reported in the literature (Wu and Tian, 2007; Arunakumari et al., 2010; de
Figueiredo et al., 2018, 2020; Paulino et al., 2022). The maintenance of bidirectional
communication between the oocyte and the granulosa cells in cultured follicles, as well as the
large quantity of messenger RNA (mRNA) and proteins that the oocyte needs to synthesize
during its growth make it difficult the complete their development in vitro (Alam and Miyano,
2020; de Figueiredo et al., 2020; Paulino et al., 2022).

The endocrine and paracrine control that regulates the transition from preantral to antral
follicles is complex and involves a precise interaction of several factors (Araújo et al., 2014; de
Figueiredo et al., 2018, 2020). Any interference with this control can lead to ovarian disorders
such as polycystic ovary syndrome (Abdel Aziz et al., 2021; Asghari et al., 2021). The present
review highlights the mechanisms involved in endocrine and paracrine control during the
transition from preantral to early antral follicles, as well as the importance of granulosa cell
proliferation, antral cavity formation, and estradiol production. The strategies to promote in
vitro growth of preantral follicles are also discussed.

Endocrine and paracrine control during the transition from preantral to early
antral follicles

The transition from preantral to early antral follicles is a step in which follicle development is
regulated by intraovarian factors, but the follicles are responsive to gonadotropins. The slow
growth of preantral and early antral follicles is gonadotropin independent, but progression to a
late antral follicular state requires follicle-stimulating hormone (FSH; Iber and Geyter, 2013).
FSH is the main endocrine regulator of follicle development (Paulino et al., 2018, 2020;
Vasconcelos et al., 2021) and its receptors are detectable in granulosa cells of preantral follicles in
various species (murine: Camp et al., 1991; human: Oktay et al., 1997; Méduri et al., 2002;
porcine: Durlej et al., 2011; bubaline: Sharma et al., 2011; caprine: Saraiva et al., 2011; Barros
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et al., 2013; Ferreira et al., 2018). This hormone stimulates
granulosa cell proliferation and promotes follicular growth and
antrum formation (Ferreira et al., 2018; de Figueiredo et al., 2020;
Fushii et al., 2021). Other endocrine factors, such as melatonin
have a functional role in preantral follicles by influencing their
development, increasing the production of active mitochondria in
oocytes and steroidogenesis in granulosa cells (Barros et al., 2013;
Riaz et al., 2019; Barros et al., 2020). It is well established that FSH
stimulates the production of aromatase (Cyp19a1), which
synthesizes 17β-estradiol, an important hormone for granulosa
cell proliferation (Fitzpatrick and Richards, 1994; Bishonga et al.,
2001). Anti-Müllerian hormone (AMH) is also produced by
granulosa cells of preantral and antral follicles (Umer et al., 2019;
Gautam et al., 2021). It is already well established that this
hormone prevents early depletion of follicles, but there is still much
to elucidate in the role of this hormone during folliculogenesis.
Rocha et al. (2021) have shown that there is an interaction between
AMH and FSH, in whichAMH reduces FSH-induced estradiol and
progesterone production. Tanimoto et al. (2021) showed that, for
the development of a viable follicle, blockage of AMH production
by oestrogen is needed.

Oocyte-derived factors, such as growth differentiation factor-9
(GDF-9), bone morphogenetic protein 15 (BMP-15), and
fibroblast growth factor-2 (FGF-2) are important regulators of
preantral follicle growth by inducing granulosa cell proliferation
and differentiation, and antral cavity formation (Reineri et al.,
2018; Monte et al., 2019). Other factors, such as epidermal growth
factor (EGF) and insulin-like growth factor 1 (IGF-1), influence the
development of preantral follicles by expanding oocyte diameter
and inducing granulosa cell proliferation (Bezerra et al., 2019b;
Paulino et al., 2020). Vascular endothelial growth factor (VEGF) is
an important angiogenic factor that induces granulosa cell
proliferation, an essential characteristic for the transition from
preantral to antral follicles, and improves oocyte maturation
(Araújo et al., 2011; da Silva et al., 2015; Cadenas et al., 2017).
Activin is another intraovarian factor that accelerates the growth of
preantral follicles, estradiol synthesis, and mRNA expression for
FSH receptor in rat granulosa cells (Tanaka et al., 2019).
Conversely, in bovine species, activin decreases the FSH
stimulating action in the bovine preantral follicle cultured in
vitro, which was associated with decreased levels of transcripts for
hyaluronan synthases (HAS-1, HAS-2) and proliferating cell
nuclear antigen (PCNA; Silva et al., 2014).

Granulosa cell proliferation and oocyte–granulosa cell
interaction during the transition from preantral to early
antral follicles

Granulosa cells form a favourable metabolic and hormonal
environment for oocyte growth and maturation (Baumgarten
and Stocco, 2018). Similarly, the oocyte can influence the
proliferation of granulosa cells, providing follicular development
through the production of growth factors such as BMP-15 and
GDF-9 (de Figueiredo and de Lima, 2017; Baumgarten and Stocco,
2018). Orisaka et al. (2006) showed that GDF-9 controls follicular
fate by promoting its survival and growth during the preantral to
early antral transition, suppressing granulosa cell apoptosis and
follicular atresia through PI3K/Akt activation.

During the development of the preantral follicle, GDF-9 and
BMP-15 continue to stimulate the proliferation of granulosa cells,
however, they decrease the production of progesterone and
increase the expansion and reorganization of granulosa cells to

form the antrum cavity. In addition, GDF-9 stimulates the
expression of FSH receptors in granulosa cells, which become
responsive to gonadotropins and influence the differentiation and
recruitment of theca cells, which form a scaffold structure,
supporting the vascular system (De Conto et al., 2021). Theca cells
begin to produce luteinizing hormone (LH) receptors, steroido-
genic enzymes and androgens (Young and McNeilly, 2010), while
LH stimulates the production of androgens by theca cells, which
are used by granulosa cells to produce 17β-estradiol (Xavier and
Freitas, 2021). 17β-Estradiol increases the sensitivity of granulosa
cells to gonadotropins and IGF-1, which stimulates follicular
steroidogenesis (Ginther et al., 2001). BMP-4 and FSH also play an
important regulatory role in the growth and steroidogenesis of
preantral follicles. According to Sakaguchi et al. (2017), BMP-4
inhibits the luteinization of granulosa cells, while FSH increases
their proliferation and the viability of the oocyte–cumulus–
granulosa complex.

Granulosa cells produce several autocrine and paracrine factors
that may be involved in the initiation of antrum formation such as
kit ligand, activins, inhibins, hyaluronan, Versican, AMH and
transforming growth factor α (TGFα). These factors also
synchronize oocyte growth, granulosa cell proliferation and theca
cell differentiation (Vasconcelos et al., 2013; Dumesic et al., 2015).
In this sense, the interaction between the oocyte and granulosa
cells, as well as the differentiation and proliferation of theca cells,
can be determinants for the progress of preantral follicle growth,
steroidogenesis and oocyte maturation (Chu et al., 2018; Alam and
Miyano, 2020). AMH plays an inhibitory role in modulating the
responsiveness of granulosa and theca cells to gonadotrophic
stimuli, thereby regulating follicular progression from the
gonadotropin-responsive to the gonadotropin-dependent stage
(Campbell et al., 2012).

After antrum formation, granulosa cells are physically
separated into mural granulosa cells, which organize along the
follicle wall, and cumulus granulosa cells, which surround the
oocyte (Baumgarten and Stocco, 2018; Zhang, 2018). Cumulus
granulosa cells nourish the oocyte by providing specific amino
acids, glycolysis products and cholesterol biosynthesis substrates
through gap junctions (Baumgarten and Stocco, 2018). In addition,
they prevent premature oocyte maturation and resumption of
meiosis in the oocyte by maintaining high levels of cAMP in the
oocyte (Russell and Robker, 2018; Zhang, 2018). The mechanisms
that control the transition from preantral to early antral follicles are
shown in Figure 1 and Table 1.

Mechanisms of antrum formation in preantral follicles

When the distance between the mural granulosa and the cumulus
cells increases, the formation of the antral cavity occurs, marking
the preantral to early antral follicles transition (Chu et al., 2018).
The antral cavity is formed between the granulosa cells and
requires a fluid ingress from the vascularization of theca cells via
membrane proteins such as aquaporins (AQPs; Kawashima and
Kawamura, 2018; Paz et al., 2018). Several AQPs, such as AQP5,
AQP7, AQP8, and AQP9, are related to the influx of water through
the follicle wall to form follicular fluid. These membrane proteins
are expressed in the granulosa cells of different species (swine:
Skowronski et al., 2009; ovine: Sales et al., 2015; bovine: Ishibashi
et al., 2009). Paz et al. (2018) also demonstrated the presence of
AQP3 in granulosa cells, and is also involved in the expansion of
the antral cavity during the transition from preantral to the antral
follicle. Antrum formation depends on the stimulation of local

306 Nascimento et al.

https://doi.org/10.1017/S0967199423000254 Published online by Cambridge University Press

https://doi.org/10.1017/S0967199423000254


Figure 1. Factors that control the transition
from preantral to early antral follicle.

Table 1. Role of growth factors in oocyte, granulosa and theca cells during the transition from preantral to early antral follicle

Origin Target cells References

Oocyte Granulosa cells

GDF-9 Stimulates granulosa cell proliferation, reduces apoptosis and increases expression of FSH
receptors

Orisaka et al., 2009a; Vasconcelos et al.,
2013; De Conto et al., 2021

BMP-15 Promotes the secretion of follicular fluid and interacts with FGF-8 to stimulate glycolysis Sugiura et al., 2007; Celestino et al.,
2011; Passos et al., 2013

BMP-6 Stimulates proliferation of granulosa cells and improves viability and increases the
production of inhibin A, activin A and follistatin

Glister et al., 2004; Frota et al., 2009

FGF-10 Inhibits estradiol secretion Buratini et al., 2007

miRNAs Regulate the expression of proteins Assou et al., 2013

Oocyte Theca cells

GDF-9 Promotes recruitment, differentiation, proliferation and androgen production in theca cells Spicer et al., 2008; Young and McNeilly,
2010

Granulosa
cells

Oocyte

cGMP Prevents premature oocyte maturation Ang et al., 2022

cAMP Prevents premature oocyte maturation Baumgarten and Stocco, 2018

KL Promotes oocyte growth and inhibits resumption of meiosis Ismail et al., 1997; Lima et al., 2011

IGF-I Stimulates oocyte growth and interacts with FSH increases oocyte metabolism Adashi et al., 1985; Zhou and Zhang
2005

EGF Increases the expression of mRNA s for GDF-9 Assou et al., 2013; Paulino et al. 2020

miRNAs Regulate the expression of proteins

Granulosa
cells

Theca cells

IGF-I Increases gene expression for androstenedione, stimulates expression of LH receptors and
acts synergistically with LH to increase expression of CYP11A1 and HSD3B

Magoffin and Weitsman, 1994; Huang
et al., 2001

KL Stimulates the expression of FGF-7 and hepatocyte growth factor to and regulates the
growth of theca cells

Parrott and Skinner, 2000

AMH Inhibits the responsiveness of theca cells to gonadotrophic stimuli Campbell et al., 2012

Theca cells Granulosa cells

Androgens Increases sensitivity to gonadotropins and IGF-I and it is involved in production of estradiol Xavier and Freitas, 2021

BMP-4 Inhibits luteinization and apoptosis, promotes estradiol production and aromatase activity Kayamori et al., 2009; Sakaguchi et al.
2017

BMP-7 Promote granulosa cell proliferation and secretion of follicular fluid, regulates
steroidogenesis and peptide secretion

Araújo et al., 2010; Frota et al., 2011

FGF-2 Increases DNA synthesis and proliferation Nuttinck et al., 1996

FGF-7 Interacts with hepatocyte growth factor to stimulate kit ligand production. Suppress
apoptosis and increase expression of inhibin

Parrott and Skinner, 1998; McGee et al.,
1999
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factors for the production and secretion of polysaccharides and
proteins by the granulosa cells, which accumulate and generate an
osmotic gradient that attracts fluid from the thecal vasculature
(Baumgarten and Stocco, 2018). It is recognized that granulosa
cells express the enzymes that synthesize hyaluronic acid, Versican
and perlecan, which are responsible for the formation of follicular
fluid (Schoenfelder and Einspanier, 2003; Clarke et al., 2006;
Vasconcelos et al., 2013; Nagyova et al., 2020).

The development of the antral cavity is intensified by granulosa
cell activity. Alam et al. (2018) showed that, even without the
presence of an oocyte, GDF-9 and BMP-15 influence the
production of antrum-like structures. GDF-9 is known to stimulate
Versican and perlecan expression and interacts favourably with
FSH to increase hyaluronan synthetase 2 expression (Vasconcelos
et al., 2013; Silva et al., 2014). Hyaluronan, proteoglycans and their
glycosaminoglycan side chains are osmotic solutes that act to
increase the osmotic pressure inside the follicle, resulting in fluid
accumulation (Rodgers and Irving-Rodgers, 2010). Some studies
have also demonstrated that EGF increases mRNA levels for GDF-
9 in in vitro cultured preantral follicles (Alam et al., 2018; Paulino
et al., 2020), showing that EGF acts via GDF-9 to promote antral
cavity formation. The mechanisms involved in the formation of
antral cavity formation are shown in Figure 2.

Production of estradiol during the transition from
preantral to early antral follicles

When preantral follicles reach six or seven layers of granulosa cells,
the inner layer of theca becomes active and the formation of the
antral cavity begins. Increased 17β-estradiol in follicular fluid is
associated with increased mRNA expression for CYP19A1 in
granulosa cells (García-Guerra et al., 2018).

As a growing follicle acquires sufficient aromatase activity as a
result of FSH stimulation, estradiol production suppresses FSH
secretion below that necessary to support the development of less
mature follicles, which consequently suffer atresia (Zeleznik,
2004). Therefore, estradiol biosynthesis is a tightly regulated
molecular process, dependent on the expression of key steroido-
genic enzymes by FSH and intraovarian signalling molecules,
including beta-catenin, an essential co-transcription factor for
maximal induction of the aromatase mRNA transcript and
subsequent estradiol production (Forrest et al., 2022). β-Catenin

regulates the transformation of androgen to estradiol by increasing
the transcription of CYP19A1 through functional interactions with
steroidogenic factor-1 (SF1; Forrest et al., 2022). Furthermore, LH
promotes preantral to antral follicular transition by upregulating
follicular androgen biosynthesis (Orisaka et al., 2013).

Expression of luteinizing hormone/choriogonadotropin recep-
tor (LHCGR) and cytochrome P450 family 17, subfamily A,
member 1 (CYP17A1) mRNAs appear in large preantral follicles,
concomitantly with theca differentiation. Followed by the
expression of steroidogenic acute regulatory protein (StAR) in
1.0 mm antral follicles, granulosa cells from preantral and early
antral follicles do not express StAR. Therefore, steroidogenesis in
bovine follicles potentially begins in follicles ≥ 1.0 mm.
Furthermore, the mRNA for CYP17A1 was located exclusively
in theca internal cells, which indicates that the conversion of
progestogens to androgens occurs only in the theca interna (Braw-
Tal and Roth, 2005). Furthermore, the neonatal rat ovary is
completely devoid of antral follicles at birth. By day 12 of age,
small-sized tomedium-sized antral follicles are present, in addition
to follicles at all preceding stages of development. During the
intervening period the ovary becomes steroidogenically active, and
responsive to gonadotrophins on days 7–9 of age, suggesting that
granulosa and theca cells become active at that time (Carson and
Smith, 1986).

The expression of key enzymes involved in steroidogenesis is
crucial for the proper development of the follicles. It has been
observed that the mRNA encoding P450arom was not detectable
until early antral cavity formation, in addition to being expressed
only in granulosa cells (Yuan et al., 2008). The mechanisms
involved in the production of estradiol during the transition from
preantral to early antral follicles are shown in Figure 2.

Follicle atresia during the transition from preantral to
early antral follicles

Follicular atresia is characterized by morphological changes in the
oocyte, granulosa, and theca cells that culminate with follicular
death and, consequently, regulate the capacity of females to
generate mature gametes during the fertile period (Makarevich
et al., 2018). This process promotes a drastic reduction in the
ovarian follicle population during the reproductive lifespan.
According to Zhang et al. (2018), crosstalk among cell apoptosis,

Figure 2. Hormones and growth factors that control the formation of the antral cavity during the transition from preantral to early antral follicles.
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autophagy and ferroptosis is involved in the control of atresia in
ovarian follicles. In preantral follicles, degeneration initially occurs
in the oocyte and, subsequently, in granulosa cells (Meng et al.,
2018). The first signs of atresia in the oocyte are the retraction of
nuclear chromatin and oocyte fragmentation, which triggers the
process of irreversible elimination of ovarian follicles at this stage
of development. In the granulosa cells of preantral follicles,
changes are rarely observed.

Zoheir et al. (2021) showed that cellular DNA fragmentation is
an important biochemical marker of apoptosis during follicular
atresia. Other evidence confirmed that apoptosis is not the only
death pathway active in the ovary. Gannon et al. (2012) reported a
decrease in preantral follicle numbers without a concomitant
increase in apoptosis, and no change in apoptosis markers caspase
3 and TUNEL. Recent studies have demonstrated that, in
granulosa cells from cultured preantral follicles of buffaloes,
transmembrane protein AQP8 is involved in the regulation of cycle
progression and apoptosis (Cao et al., 2021). Furthermore,
miRNAs have been shown to control several fundamental
biological processes, including follicular atresia through their
target genes and signalling pathways, and play a central role in the
regulation of autophagy (Ma et al., 2020). Gannon et al. (2012)
showed that degeneration of preantral follicles is associated with
the activation of the autophagy cascade. Meng et al. (2018)
reported that the standard pathway of degeneration in preantral
follicles is through autophagy, and that the activation of this
pathway occurs under normal physiological conditions.
Considering that, in vivo, follicular atresia during preantral to
early antral follicles transition is controlled by various intra-
follicular regulators such as growth factors, cytokines, and steroids
(Orisaka et al., 2009a), the development of strategies to interrupt
atresia is a difficult task.

Despite early antral follicles (~2.0 mm in diameter – human
species) are still not dependent on gonadotropins, Orisaka et al.
(2009b) showed that they are susceptible to apoptotic signals. In
these follicles, with the progression of atresia, there is a reduction in
the number of layers of granulosa cells, and invasion of fibroblasts
and macrophages (Seneda et al., 2021). Meng et al. (2018) reported
that atresia in these follicles was associated with the activation of
the autophagy cascade. Increasing the levels of microtubule-
associated light chain protein 3 (LC3) and of autophagy
homeostasis-associated protein BECLIN1 is linked with the death
of preantral and early antral follicles by the autophagy cascade

(Gordy and He, 2012). Activation of this pathway occurs under
normal physiological conditions and the presence of LC3,
sequestosome 1 (SQSTM1/P62) and autophagy-related protein 7
(ATG7) are markers for autophagy (Gannon et al., 2012). During
atresia of those follicles, Meng et al. (2018) also reported that a loss
in mitochondrial antioxidant capacity in granulosa cells led to the
activation of AMP-activated protein kinase alpha 1 (AMPK-α1)
and AMPK-α2, while at the same time the expression of protein
kinase B (AKT) and mammalian target survival of the rapamycin
complex 1 (mTORC1) was decreased. AMPK is an important
regulator of metabolism, an inhibitor of the mTORC1 complex,
and a direct activator of autophagy (Emerling et al., 2009; Egan
et al., 2011; Kim et al., 2011). Oxidative stress is able to reduce
superoxide dismutase (SOD) expression in granulosa cells of
preantral follicles, and to activate AMPK, which leads to the
activation of autophagy. The mechanisms that regulate the
preantral and early antral follicles atresia are shown in Figure 3.

Strategies to promote in vitro growth of preantral follicles

Preantral follicles represent 90% of the ovarian follicle population
and, therefore, the development of effective culture systems to
promote their growth in vitro is an interesting field of study in
regard to avoiding the process of atresia that naturally occurs in
vivo during the late antral stages of development. Follicular growth,
antrum formation and acquisition of oocyte competence have been
obtained in some species through the addition of different
substances such as hormones, growth factors and cytokines to
the culture medium in species that require short culture periods,
such asmurine (O’Brien et al., 2003). However, in human and large
animal species, the development of primordial to preovulatory
follicles is a very long process (~6 months; Paulino et al., 2022) and
various researchers have been working to develop efficient culture
systems.

The limitations of in vitro culture of preantral follicles come
from the difficulty of maintaining the three-dimensional structure
of follicles, and the many signals necessary to coordinate the
stimulation of follicular growth (Paulino et al., 2022). Although bi-
dimensional (2D) follicle culture has been successfully performed
in many studies (da Cunha et al., 2018; Paulino et al., 2018, 2020;
Vasconcelos et al., 2021), a major limitation of these systems is
their inability to maintain follicle architecture, with the oocyte
surrounded by granulosa cells. This is particularly problematic

Figure 3. Mechanisms that control production of estradiol (E2) during the transition from preantral to early antral follicles.
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with follicles from large mammalian species that require longer
term cultures (Simon et al., 2020). Given the importance of
maintaining the follicle complex architecture, three-dimensional
(3D) culture systems can help to maintain follicle complex
architecture (Simon et al., 2020). For this system, various types of
matrices are used to encapsulate follicles to maintain follicle
architecture and cell–cell interactions, thereby creating a micro-
environment similar to that of the in vivo ovary, improving somatic
cell proliferation and oocyte growth (Belli et al., 2012). In general,
matrices have been engineered from natural components such as
collagen and alginate (Healy et al., 2021), or Matrigel (Hao et al.,
2020), or from synthetic components such as polyethylene glycol
(Green and Shikanov, 2016; Tomaszewski et al., 2021).
Maintaining the follicular shape along with regulating the physical
and chemical features of the microenvironment can be used as a
tool to understand the underlying biology of follicle growth and
maturation (Ghorbani et al., 2022; Khunmanee and Park, 2022).

Preantral follicles cultured in the 3D system had greater
homogeneity of daily growth, higher rates of viability and antrum
formation, as well as low rates of degeneration (Antonino et al.,
2019; Panta et al., 2019). Preantral follicles from other species have
been successfully cultured in a three-dimensional culture system
using alginate and fibrin (monkey: Xu et al., 2013; Bulgarelli et al.,
2018; cat: Chansaenroj et al., 2019; human: Chiti et al., 2017).

Multistep culture systems have also been developed to further
mimic the physiologic environment of developing follicles (Green
and Shikanov, 2016; Simon et al., 2020). These systems have been
used for culturing early preantral follicles. The multistep method
starts with the culture of ovarian cortical tissue for 3 weeks to
initiate primordial follicle activation and to support follicle growth
to the preantral stage. At the end of ovarian tissue culture, preantral
follicles are isolated mechanically and cultured individually or in a
group for 6 weeks (Xu et al., 2021). In this system, Xu et al. (2021)
demonstrated that ~50% of human follicles survived for 6 weeks.
Most surviving follicles grew to the antral stage and produced the
ovarian steroid hormones estradiol and progesterone, in addition
to paracrine factors such as activin A, IGF-2 and VEGF. In
addition, the cultured preantral follicles exhibited morphology
similar to that of human follicles developed in vivo.

Many efforts have been made to elucidate the mechanisms
involved in the growth of preantral follicles, as reviewed recently by
Paulino et al. (2022). Although comprehension of the molecular
regulation and composition of the microenvironment

coordinating the events in preantral follicles remains incomplete,
over time many studies have been conducted to optimize culture
systems to support follicular growth (Healy et al., 2021). Preantral
follicles from human and animal species require the development
of a tightly regulated culture system with adequate nutrients,
cytokines, growth factors, and developmental stage-dependent
hormones to support cell survival and proliferation, as well as
cellular function, which changes as follicles grow and oocytes
mature (Simon et al., 2020; Paulino et al., 2022). Therefore,
understanding the influence of several compounds for supple-
mentation of culturemedium for preantral follicles is fundamental.
In this context, melatonin increases follicular and oocyte
diameters, forms the antral cavity and preserves high rates of
morphologically intact sheep preantral follicles for up to 18 days of
culture (Barros et al., 2020).

Another alternative to improve follicular development in vitro
is to supplement the culture medium with EGF, whose signalling
regulates many cellular processes associated with survival (Sabbah
et al., 2020). EGF has an important role in folliculogenesis, by
promoting several processes, such as granulosa and theca cell
proliferation (Jachter et al., 2022). The effects of adding EGF to the
culture medium are directly associated with improved survival of
bovine preantral follicles. In general, EGF-treated follicles reach a
larger diameter at the end of the culture period (Paulino et al., 2020;
Jachter et al., 2022). Hormones, such as progesterone, and
cytokines, such as TNF-α, are able to maintain healthy follicle
morphology and positively influence follicular growth and antrum
formation in cattle (Paulino et al., 2018, 2020). Also in cattle,
preantral follicles cultured in the presence of BMP-2 or BMP-4
showed a significant increase in follicular diameter and greater
average daily growth (da Cunha et al., 2018).

Understanding the mRNA transcription of preantral follicles
can provide important insights to detect follicular gene expression
at several critical stages of its development under different culture
conditions. Therefore, the identification of genes differentially
expressed at each of growth and follicular stage development can
be used to elucidate the processes involved in follicular growth
(Paulini et al., 2022). In bovine species, an overexpression of
mRNA for oocyte maturation factor Mos (c-MOS) and GDF-9 was
observed when oocytes from preantral follicles were cultured in the
presence of EGF. Furthermore, higher levels of cyclin B1 andGDF9
mRNA were observed in oocytes from follicles cultured with
progesterone (Paulino et al., 2020). In addition, bovine preantral

Figure 4. Strategies to promote in vitro growth of preantral follicles.
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follicles cultured in the presence of alpha-lipoic acid expressed
higher levels of transcripts for the FSH receptor, LHCGR, IGF-1,
BMPR1a, TGFβ1, TGFβR1, ActRIIB, GDF9, and activin. The
expression of pro-apoptotic genes BCL2 associated X (BAX) and c-
Myc were also downregulated (Zoheir et al., 2017).

To mitigate the effects of oxidative stress induced by culture
conditions, such as lower quality oocytes, follicular cell death,
inactivation of antioxidant enzymes, and mitochondrial damage,
there has been an increasing interest in the antioxidant potential of
natural compounds (Lins et al., 2017). Preantral follicles from
sheep cultured in medium supplemented with kaempferol showed
high percentages of follicular survival, antrum formation, and
greater follicular diameter. In addition, kaempferol preserves
higher levels of metabolically active mitochondria (Santos et al.,
2019). In cattle, the presence of eugenol in a culture medium
promoted higher daily growth rates of bovine preantral follicles, in
addition to stimulating the expression of mRNA for glutathione
peroxidase 1 (GPX1; Vasconcelos et al., 2021). The strategies to
promote in vitro growth of preantral follicles are represented in
Figure 4.

Final considerations

The transition from preantral to antral requires intense and precise
granulosa–oocyte interaction, any dysregulation can interfere with
the acquisition of oocyte competence. Endocrine, paracrine and
autocrine factors are essential for follicular growth, antral cavity
formation, granulosa cell proliferation, differentiation, and future
gonadotropin dependence. In vitro studies have contributed to a
better understanding of the roles of hormones and growth factors
during follicular development, addressing molecular events and
bidirectional communications between the oocyte and surround-
ing granulosa cells.

Data availability. All data searched in this study are included in this
publication.
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